1
|
Chen HT, Mackie K. CB1 and CB2 receptors differentially modulate the cognitive impact of maternal immune activation and perinatal cannabinoid exposure. Behav Brain Res 2025; 485:115543. [PMID: 40113177 PMCID: PMC11986805 DOI: 10.1016/j.bbr.2025.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Maternal immune activation (MIA) commonly arises in response to an infection during pregnancy. MIA elevates cytokine levels, triggering an inflammatory cascade, which may be detrimental to the developing nervous system. Similarly, cannabis use and exposure of the fetus to cannabinoids during pregnancy (PCE) may elicit neuroinflammation and lead to detrimental behavioral outcomes. This is particularly concerning as there has been a notable rise in cannabis use during pregnancy. This study endeavors to examine the interaction between MIA and PCE and elucidate the role of CB1 and CB2 receptors in MIA and PCE outcomes. To this end, we compared the impact of MIA, PCE and MIA+PCE in wildtype, CB1, and CB2 cannabinoid receptor knockout mice of both sexes. PCE was modeled by daily 3 mg/kg THC administration from gestational day 5 (GD5) to postnatal day 10. MIA was modeled by intravenous Poly (I:C) injection at GD16.5. Subsequently, we assessed emotional and cognitive behaviors of adult offspring. Adult male offspring of dams exposed to PCE or MIA were impaired in novel object recognition and the delayed alternation working memory tasks. Interestingly, these behavioral impairments were absent when MIA and PCE were combined. Cannabinoid receptor knockout studies found that CB1 receptors mediated behavioral deficits after PCE. In contrast CB2 receptors were necessary for full expression of MIA-induced behavioral impairments. Although females showed more modest behavioral changes after MIA or PCE, CB1 receptors were required for the PCE deficit and CB2 receptors were required for the MIA deficit also in females. Notably, lack of CB2 receptors in males prevented the "protection" following combined MIA + PCE, while CB1 knockout mice remained protected. Taken together, these results suggest a complex interplay between PCE, MIA and CB1 and CB2 cannabinoid receptors.
Collapse
MESH Headings
- Animals
- Female
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Pregnancy
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Male
- Prenatal Exposure Delayed Effects/immunology
- Prenatal Exposure Delayed Effects/metabolism
- Prenatal Exposure Delayed Effects/physiopathology
- Mice
- Mice, Knockout
- Cannabinoids/pharmacology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Mice, Inbred C57BL
- Dronabinol/pharmacology
- Poly I-C/pharmacology
- Disease Models, Animal
- Memory, Short-Term/physiology
- Memory, Short-Term/drug effects
Collapse
Affiliation(s)
- Han-Ting Chen
- Department of Psychological and Brain Sciences, Indiana University, 702 N Walnut Grove Ave, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, 702 N Walnut Grove Ave, Bloomington, IN 47405, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, 702 N Walnut Grove Ave, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, 702 N Walnut Grove Ave, Bloomington, IN 47405, USA.
| |
Collapse
|
2
|
Scott KJ, Bilkey DK. Sex-dependent effects of rat maternal immune activation on motor function in offspring of poly I:C treated rats. Behav Brain Res 2025; 481:115431. [PMID: 39814236 DOI: 10.1016/j.bbr.2025.115431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
A majority of people with schizophrenia will experience motor symptoms such as impairments to coordination, balance and motor sequencing. These neurological soft signs are associated with negative social and functional outcomes, and poor disease prognosis. They occur prior to medication exposure, suggesting they are an intrinsic feature of schizophrenia. Despite the need to better understand this dysfunction, relatively few studies have provided a detailed focus on motor capability in animal models of schizophrenia. Here we investigate motor coordination in a rat maternal immune activation (MIA) model of schizophrenia risk. The female and male offspring of Polyinosinic:polycytidylic acid (Poly I:C), and vehicle-treated, pregnant dams were tested in a horizontal ladder rung task using regular and irregular rung configurations. We extracted information about limb positions from video, and measured faults and gait coordination in the task. We found that adult male MIA rats were more likely to slip from the ladder rungs than control animals, and they were more likely to have multiple limbs slip simultaneously. MIA rats also exhibited more variability in stride length, a result that correlated with slips and mirrored disease-related changes in human gait. In contrast, female MIA rats displayed minimal alterations in motor performance. Our findings show that the ladder task uncovers sex-dependent effects on motor coordination in MIA rats and highlights the potential usefulness of the MIA model for investigating motor dysfunction in an animal model of schizophrenia risk.
Collapse
Affiliation(s)
- K Jack Scott
- Department of Psychology, University of Otago, New Zealand
| | - David K Bilkey
- Department of Psychology, University of Otago, New Zealand.
| |
Collapse
|
3
|
Chen HT, Mackie K. CB1 and CB2 receptors differentially modulate the cognitive impact of maternal immune activation and perinatal cannabinoid exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.16.623455. [PMID: 39605459 PMCID: PMC11601341 DOI: 10.1101/2024.11.16.623455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Maternal immune activation (MIA) commonly arises in response to an infection during pregnancy. MIA elevates cytokine levels, triggering an inflammatory cascade, which may be detrimental to the developing nervous system. Similarly, cannabis use and exposure of the fetus to cannabinoids during pregnancy (PCE) may elicit neuroinflammation and lead to detrimental behavioral outcomes. This is particularly concerning as there has been a notable rise in cannabis use during pregnancy. This study endeavors to examine the interaction between MIA and PCE and elucidate the role of CB1 and CB2 receptors in MIA and PCE outcomes. To this end, we compared the impact of MIA, PCE and MIA+PCE in wildtype, CB1, and CB2 cannabinoid receptor knockout mice of both sexes. PCE was modeled by daily 3 mg/kg THC administration from gestational day 5 (GD5) to postnatal day 10. MIA was modeled by intravenous Poly (I:C) injection at GD16.5. Subsequently, we assessed emotional and cognitive behaviors of adult offspring. Adult male offspring of dams exposed to PCE or MIA were impaired in novel object recognition and the delayed alternation working memory tasks. Interestingly, these behavioral impairments were absent when MIA and PCE were combined. Cannabinoid receptor knockout studies found that CB1 receptors mediated behavioral deficits after PCE. In contrast CB2 receptors were necessary for full expression of MIA-induced behavioral impairments. Although females showed more modest behavioral changes after MIA or PCE, CB1 receptors were required for the PCE deficit and CB2 receptors were required for the MIA deficit also in females. Notably, lack of CB2 receptors in males prevented the "protection" following combined MIA + PCE, while CB1 knockout mice remained protected. Taken together, these results suggest a complex interplay between PCE, MIA and CB1 and CB2 cannabinoid receptors. Highlights Both PCE and MIA impair cognitive behaviors.Combined PCE and MIA did not affect the cognitive behaviors examined.CB1 receptors are required for deficits after prenatal cannabis exposure.CB2 receptors are required for deficits after maternal immune activation.CB2 receptors are necessary for protection from deficits by combined PCE and MIA.
Collapse
|
4
|
Black T, Barnard IL, Baccetto SL, Greba Q, Orvold SN, Austin-Scott FVL, Sanfuego GB, Onofrychuk TJ, Glass AE, Andres RM, Macfarlane LM, Adrian JC, Heidt AL, McElroy DL, Laprairie RB, Howland JG. Differential effects of gestational Cannabis smoke and phytocannabinoid injections on male and female rat offspring behavior. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111241. [PMID: 39765319 DOI: 10.1016/j.pnpbp.2024.111241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/20/2025]
Abstract
Our understanding of the implications of gestational Cannabis exposure (GCE) remains unclear as Cannabis use increases worldwide. Much of the existing knowledge of the effects of GCE has been gained from preclinical experiments using injections of isolated Δ9-tetrahydrocannabinol (THC) at relatively high doses. Few investigations of the effects of GCE to smoke from the whole Cannabis flower have been conducted, despite this being the most common mode of human consumption. Here, we compared the effects of repeated gestational exposure to high-THC or high-cannabidiol (CBD) Cannabis smoke to i.p. THC or i.p. CBD to those of GCE to high-THC or high-CBD Cannabis smoke on litter health and the offspring. We found that injecting phytocannabinoids generally had a more severe impact on measures of maternal and litter health and produced distinct behavioral phenotypes when compared to offspring from dams treated with high-THC and high-CBD smoke during gestation. GCE to high-THC smoke decreased prepulse inhibition (PPI) and MK-801-induced locomotor activity in female adolescent offspring, which normalized in adulthood. GCE to i.p. THC increased exploratory behavior in the open field test in adolescent offspring of both sexes. GCE had a negative impact on offspring performance in the Identical Stimuli Test and Different Stimuli Test with odors regardless of gestational treatment, sex, or age. CBD (i.p) impaired PPI in both male and female offspring in adulthood and increased time spent in proximity during social interaction for male offspring. There were no effects of GCE in the 5 Choice Serial Reaction Time Task. These data establish distinct behavioral phenotypes in the offspring between smoked and injected GCE, further demonstrating that route and specific phytocannabinoid dose produce differential outcomes across offspring lifespan. Smoked Cannabis is still the most common means of consumption, and more preclinical investigation is needed to determine the effects of smoked Cannabis on developmental trajectories.
Collapse
Affiliation(s)
- Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ilne L Barnard
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarah L Baccetto
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Spencer N Orvold
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Faith V L Austin-Scott
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Genre B Sanfuego
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Timothy J Onofrychuk
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aiden E Glass
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rachel M Andres
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Leah M Macfarlane
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jesse C Adrian
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ashton L Heidt
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dan L McElroy
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
5
|
Munarriz‐Cuezva E, Meana JJ. Poly (I:C)-induced maternal immune activation generates impairment of reversal learning performance in offspring. J Neurochem 2025; 169:e16212. [PMID: 39183542 PMCID: PMC11657921 DOI: 10.1111/jnc.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Maternal immune activation (MIA) induces a variety of behavioral and brain abnormalities in offspring of rodent models, compatible with neurodevelopmental disorders, such as schizophrenia or autism. However, it remains controversial whether MIA impairs reversal learning, a basic expression of cognitive flexibility that seems to be altered in schizophrenia. In the present study, MIA was induced by administration of a single dose of polyriboinosinic-polyribocytidylic acid (Poly (I:C) (5 mg/kg i.p.)) or saline to mouse pregnant dams in gestational day (GD) 9.5. Immune activation was monitored through changes in weight and temperature. The offspring were evaluated when they reached adulthood (8 weeks) using a touchscreen-based system to investigate the effects of Poly (I:C) on discrimination and reversal learning performance. After an initial pre-training, mice were trained to discriminate between two different stimuli, of which only one was rewarded (acquisition phase). When the correct response reached above 80% values for two consecutive days, the images were reversed (reversal phase) to assess the adaptation capacity to a changing environment. Maternal Poly (I:C) treatment did not interfere with the learning process but induced deficits in reversal learning compared to control saline animals. Thus, the accuracy in the reversal phase was lower, and Poly (I:C) animals required more sessions to complete it, suggesting impairments in cognitive flexibility. This study advances the knowledge of how MIA affects behavior, especially cognitive domains that are impaired in schizophrenia. The findings support the validity of the Poly (I:C)-based MIA model as a tool to develop pharmacological treatments targeting cognitive deficits associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Eva Munarriz‐Cuezva
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque CountryLeioaBizkaiaSpain
- Centro de Investigación Biomédica en Red de Salud MentalLeioaBizkaiaSpain
| | - Jose Javier Meana
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque CountryLeioaBizkaiaSpain
- Centro de Investigación Biomédica en Red de Salud MentalLeioaBizkaiaSpain
- Biobizkaia Health Research InstituteBarakaldoBizkaiaSpain
| |
Collapse
|
6
|
King C, Plakke B. Maternal choline supplementation modulates cognition and induces anti-inflammatory signaling in the prefrontal cortices of adolescent rats exposed to maternal immune activation. Brain Behav Immun Health 2024; 40:100836. [PMID: 39206430 PMCID: PMC11350509 DOI: 10.1016/j.bbih.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Maternal infection has long been described as a risk factor for neurodevelopmental disorders, especially autism spectrum disorders (ASD) and schizophrenia. Although many pathogens do not cross the placenta and infect the developing fetus directly, the maternal immune response to them is sufficient to alter fetal neurodevelopment, a phenomenon termed maternal immune activation (MIA). Low maternal choline is also a risk factor for neurodevelopmental disorders, and most pregnant people do not receive enough of it. In addition to its role in neurodevelopment, choline is capable of inducing anti-inflammatory signaling through a nicotinic pathway. Therefore, it was hypothesized that maternal choline supplementation would blunt the neurodevelopmental impact of MIA in offspring through long-term instigation of cholinergic anti-inflammatory signaling. To model MIA in rats, the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)) was used to elicit a maternal antiviral innate immune response in dams both with and without choline supplementation. Offspring were reared to both early and late adolescent stages (postnatal days 28 and 50, respectively), where anxiety-related behaviors and cognition were examined. After behavioral testing, animals were euthanized, and their prefrontal cortices (PFCs) were collected for analysis. MIA offspring demonstrated sex-specific patterns of altered cognition and repetitive behaviors, which were modulated by maternal choline supplementation. Choline supplementation also bolstered anti-inflammatory signaling in the PFCs of MIA animals at both early and late adolescent stages. These findings suggest that maternal choline supplementation may be sufficient to blunt some of the behavioral and neurobiological impacts of inflammatory exposures in utero, indicating that it may be a cheap, safe, and effective intervention for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cole King
- Department of Psychological Sciences, Kansas State University, 1114 Mid-Campus Drive, Manhattan, KS, 66502, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, 1114 Mid-Campus Drive, Manhattan, KS, 66502, USA
| |
Collapse
|
7
|
Sal-Sarria S, Conejo NM, González-Pardo H. Maternal immune activation and its multifaceted effects on learning and memory in rodent offspring: A systematic review. Neurosci Biobehav Rev 2024; 164:105844. [PMID: 39106940 DOI: 10.1016/j.neubiorev.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
This systematic review explored the impact of maternal immune activation (MIA) on learning and memory behavior in offspring, with a particular focus on sexual dimorphism. We analyzed 20 experimental studies involving rodent models (rats and mice) exposed to either lipopolysaccharide (LPS) or POLY I:C during gestation following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our findings reveal that most studies report a detrimental impact of MIA on the learning and memory performance of offspring, highlighting the significant role of prenatal environmental factors in neurodevelopment. Furthermore, this review underscores the complex effects of sex, with males often exhibiting more pronounced cognitive impairment compared to females. Notably, a small subset of studies report enhanced cognitive function following MIA, suggesting complex, context-dependent outcomes of prenatal immune challenges. This review also highlights sex differences caused by the effects of MIA in terms of cytokine responses, alterations in gene expression, and differences in microglial responses as factors that contribute to the cognitive outcomes observed.
Collapse
Affiliation(s)
- Saúl Sal-Sarria
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
8
|
Black T, Jenkins BW, Laprairie RB, Howland JG. Therapeutic potential of gamma entrainment using sensory stimulation for cognitive symptoms associated with schizophrenia. Neurosci Biobehav Rev 2024; 161:105681. [PMID: 38641090 DOI: 10.1016/j.neubiorev.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Schizophrenia is a complex neuropsychiatric disorder with significant morbidity. Treatment options that address the spectrum of symptoms are limited, highlighting the need for innovative therapeutic approaches. Gamma Entrainment Using Sensory Stimulation (GENUS) is an emerging treatment for neuropsychiatric disorders that uses sensory stimulation to entrain impaired oscillatory network activity and restore brain function. Aberrant oscillatory activity often underlies the symptoms experienced by patients with schizophrenia. We propose that GENUS has therapeutic potential for schizophrenia. This paper reviews the current status of schizophrenia treatment and explores the use of sensory stimulation as an adjunctive treatment, specifically through gamma entrainment. Impaired gamma frequency entrainment is observed in patients, particularly in response to auditory and visual stimuli. Thus, sensory stimulation, such as music listening, may have therapeutic potential for individuals with schizophrenia. GENUS holds novel therapeutic potential to improve the lives of individuals with schizophrenia, but further research is required to determine the efficacy of GENUS, optimize its delivery and therapeutic window, and develop strategies for its implementation in specific patient populations.
Collapse
Affiliation(s)
- Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Bryan W Jenkins
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Debs SR, Conn I, Navaneethan B, Penklis AG, Meyer U, Killcross S, Weickert CS, Purves-Tyson TD. Maternal immune activation and estrogen receptor modulation induce sex-specific dopamine-related behavioural and molecular alterations in adult rat offspring. Brain Behav Immun 2024; 118:236-251. [PMID: 38431238 DOI: 10.1016/j.bbi.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.
Collapse
Affiliation(s)
- Sophie R Debs
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Illya Conn
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Brendan Navaneethan
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Andriane G Penklis
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland; Switzerland Neuroscience Centre Zürich, Zürich, Switzerland
| | - Simon Killcross
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, USA
| | - Tertia D Purves-Tyson
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
10
|
Moreno-Fernández M, Ucha M, Reis-de-Paiva R, Marcos A, Ambrosio E, Higuera-Matas A. Lack of interactions between prenatal immune activation and Δ 9-tetrahydrocannabinol exposure during adolescence in behaviours relevant to symptom dimensions of schizophrenia in rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110889. [PMID: 37918558 DOI: 10.1016/j.pnpbp.2023.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The causality in the association between cannabis use and the risk of developing schizophrenia has been the subject of intense debate in the last few years. The development of animal models recapitulating several aspects of the disease is crucial for shedding light on this issue. Given that maternal infections are a known risk for schizophrenia, here, we used the maternal immune activation (MIA) model combined with THC exposure during adolescence to examine several behaviours in rats (working memory in the Y maze, sociability in the three-chamber test, sucrose preference as a measure, prepulse inhibition and formation of incidental associations) that are similar to the different symptom clusters of the disease. To this end, we administered LPS to pregnant dams and when the offspring reached adolescence, we exposed them to a mild dose of THC to examine their behaviour in adulthood. We also studied several parameters in the dams, including locomotor activity in the open field, elevated plus maze performance and their response to LPS, that could predict symptom severity of the offspring, but found no evidence of any predictive value of these variables. In the adult offspring, MIA was associated with impaired working memory and sensorimotor gating, but surprisingly, it increased sociability, social novelty and sucrose preference. THC, on its own, impaired sociability and social memory, but there were no interactions between MIA and THC exposure. These results suggest that, in this model, THC during adolescence does not trigger or aggravate symptoms related to schizophrenia in rats.
Collapse
Affiliation(s)
- Mario Moreno-Fernández
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain; UNED International Graduate School (EIDUNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| | - Raquel Reis-de-Paiva
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alberto Marcos
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| |
Collapse
|
11
|
Black T, Baccetto SL, Barnard IL, Finch E, McElroy DL, Austin-Scott FVL, Greba Q, Michel D, Zagzoog A, Howland JG, Laprairie RB. Characterization of cannabinoid plasma concentration, maternal health, and cytokine levels in a rat model of prenatal Cannabis smoke exposure. Sci Rep 2023; 13:21070. [PMID: 38030657 PMCID: PMC10687022 DOI: 10.1038/s41598-023-47861-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
Cannabis sativa has gained popularity as a "natural substance", leading many to falsely assume that it is not harmful. This assumption has been documented amongst pregnant mothers, many of whom consider Cannabis use during pregnancy as benign. The purpose of this study was to validate a Cannabis smoke exposure model in pregnant rats by determining the plasma levels of cannabinoids and associated metabolites in the dams after exposure to either Cannabis smoke or injected cannabinoids. Maternal and fetal cytokine and chemokine profiles were also assessed after exposure. Pregnant Sprague-Dawley rats were treated daily from gestational day 6-20 with either room air, i.p. vehicle, inhaled high-Δ9-tetrahydrocannabinol (THC) (18% THC, 0.1% cannabidiol [CBD]) smoke, inhaled high-CBD (0.7% THC, 13% CBD) smoke, 3 mg/kg i.p. THC, or 10 mg/kg i.p. CBD. Our data reveal that THC and CBD, but not their metabolites, accumulate in maternal plasma after repeated exposures. Injection of THC or CBD was associated with fewer offspring and increased uterine reabsorption events. For cytokines and chemokines, injection of THC or CBD up-regulated several pro-inflammatory cytokines compared to control or high-THC smoke or high-CBD smoke in placental and fetal brain tissue, whereas smoke exposure was generally associated with reduced cytokine and chemokine concentrations in placental and fetal brain tissue compared to controls. These results support existing, but limited, knowledge on how different routes of administration contribute to inconsistent manifestations of cannabinoid-mediated effects on pregnancy. Smoked Cannabis is still the most common means of human consumption, and more preclinical investigation is needed to determine the effects of smoke inhalation on developmental and behavioural trajectories.
Collapse
Affiliation(s)
- Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Sarah L Baccetto
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Ilne L Barnard
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Emma Finch
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Dan L McElroy
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Faith V L Austin-Scott
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Deborah Michel
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada.
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
12
|
Sandini TM, Onofrychuk TJ, Roebuck AJ, Hammond SA, Udenze D, Hayat S, Herdzik MA, McElroy DL, Orvold SN, Greba Q, Laprairie RB, Howland JG. Repeated Exposure to High-THC Cannabis Smoke during Gestation Alters Sex Ratio, Behavior, and Amygdala Gene Expression of Sprague Dawley Rat Offspring. eNeuro 2023; 10:ENEURO.0100-23.2023. [PMID: 37957008 PMCID: PMC10687874 DOI: 10.1523/eneuro.0100-23.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023] Open
Abstract
Because of the legalization of Cannabis in many jurisdictions and the trend of increasing Δ9-tetrahydrocannabinol (THC) content in Cannabis products, an urgent need exists to understand the impact of Cannabis use during pregnancy on fetal neurodevelopment and behavior. To this end, we exposed female Sprague Dawley rats to Cannabis smoke daily from gestational day 6 to 20 or room air. Maternal reproductive parameters, offspring behavior, and gene expression in the offspring amygdala were assessed. Body temperature was decreased in dams following smoke exposure and more fecal boli were observed in the chambers before and after smoke exposure in dams exposed to smoke. Maternal weight gain, food intake, gestational length, litter number, and litter weight were not altered by exposure to Cannabis smoke. A significant increase in the male-to-female ratio was noted in the Cannabis-exposed litters. In adulthood, male and female Cannabis smoke-exposed offspring explored the inner zone of an open field significantly less than control offspring. Gestational Cannabis smoke exposure did not affect behavior on the elevated plus maze test or social interaction test in the offspring. Cannabis offspring were better at visual pairwise discrimination and reversal learning tasks conducted in touchscreen-equipped operant conditioning chambers. Analysis of gene expression in the adult amygdala using RNA sequencing revealed subtle changes in genes related to development, cellular function, and nervous system disease in a subset of the male offspring. These results demonstrate that repeated exposure to high-THC Cannabis smoke during gestation alters maternal physiological parameters, sex ratio, and anxiety-like behaviors in the adulthood offspring.
Collapse
Affiliation(s)
- Thaisa M Sandini
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Timothy J Onofrychuk
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Andrew J Roebuck
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
- School of Liberal Arts, Yukon University, Whitehorse, Yukon Territory Y1A 5K4, Canada
| | - S Austin Hammond
- Global Institute for Food Security, Saskatoon, Saskatchewan S7N 4L8, Canada
| | - Daniel Udenze
- Next Generation Sequencing Facility, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Shahina Hayat
- Deparment of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Melissa A Herdzik
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Dan L McElroy
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Spencer N Orvold
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
13
|
Lan XY, Gu YY, Li MJ, Song TJ, Zhai FJ, Zhang Y, Zhan JS, Böckers TM, Yue XN, Wang JN, Yuan S, Jin MY, Xie YF, Dang WW, Hong HH, Guo ZR, Wang XW, Zhang R. Poly(I:C)-induced maternal immune activation causes elevated self-grooming in male rat offspring: Involvement of abnormal postpartum static nursing in dam. Front Cell Dev Biol 2023; 11:1054381. [PMID: 37009477 PMCID: PMC10062710 DOI: 10.3389/fcell.2023.1054381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Maternal immune activation (MIA) is closely related to the onset of autism-like behaviors in offspring, but the mechanism remains unclear. Maternal behaviors can influence offspring’s development and behaviors, as indicated in both human and animal studies. We hypothesized that abnormal maternal behaviors in MIA dams might be other factors leading to delayed development and abnormal behaviors in offspring.Methods: To verify our hypothesis, we analyzed poly(I:C)-induced MIA dam’s postpartum maternal behavior and serum levels of several hormones related to maternal behavior. Pup’s developmental milestones and early social communication were recorded and evaluated in infancy. Other behavioral tests, including three-chamber test, self-grooming test, open field test, novel object recognition test, rotarod test and maximum grip test, were performed in adolescence of pups.Results: Our results showed that MIA dams exhibit abnormal static nursing behavior but normal basic care and dynamic nursing behavior. The serum levels of testosterone and arginine vasopressin in MIA dams were significantly reduced compared with control dams. The developmental milestones, including pinna detachment, incisor eruption and eye opening, were significantly delayed in MIA offspring compared with control offspring, while the weight and early social communication showed no significant differences between the two groups. Behavioral tests performed in adolescence showed that only male MIA offspring display elevated self-grooming behaviors and reduced maximum grip.Discussion: In conclusion, MIA dams display abnormal postpartum static nursing behavior concomitantly with reduced serum levels of testosterone and arginine vasopressin, possibly involving in the pathogenesis of delayed development and elevated self-grooming in male offspring. These findings hint that improving dam’s postpartum maternal behavior might be a potential regime to counteract delayed development and elevated self-grooming in male MIA offspring.
Collapse
Affiliation(s)
- Xing-Yu Lan
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - You-Yu Gu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ming-Juan Li
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Tian-Jia Song
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Fu-Jun Zhai
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Yong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Jiang-Shan Zhan
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Tobias M. Böckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Xiao-Nan Yue
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
- Health Bureau of Kenli District, Dongying, China
| | - Jia-Nan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Shuo Yuan
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Meng-Ying Jin
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Yu-Fei Xie
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Wan-Wen Dang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Hai-Heng Hong
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Zi-Rui Guo
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Xue-Wei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| | - Rong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
- *Correspondence: Rong Zhang,
| |
Collapse
|
14
|
Gzieło K, Piotrowska D, Litwa E, Popik P, Nikiforuk A. Maternal immune activation affects socio-communicative behavior in adult rats. Sci Rep 2023; 13:1918. [PMID: 36732579 PMCID: PMC9894913 DOI: 10.1038/s41598-023-28919-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
A wide body of evidence suggests a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD). Since social and communicative deficits are included in the first diagnostic criterion of ASD, we aimed to characterize socio-communicative behaviors in the MIA model based on prenatal exposure to poly(I:C). Our previous studies demonstrated impaired socio-communicative functioning in poly(I:C)-exposed adolescent rats. Therefore, the current study sought to clarify whether these changes would persist beyond adolescence. For this purpose, we analyzed behavior during the social interaction test and recorded ultrasonic vocalizations (USVs) accompanying interactions between adult poly(I:C) rats. The results demonstrated that the altered pattern of social behavior in poly(I:C) males was accompanied by the changes in acoustic parameters of emitted USVs. Poly(I:C) males also demonstrated an impaired olfactory preference for social stimuli. While poly(I:C) females did not differ from controls in socio-positive behaviors, they displayed aggression during the social encounter and were more reactive to somatosensory stimulation. Furthermore, the locomotor pattern of poly(I:C) animals were characterized by repetitive behaviors. Finally, poly(I:C) reduced parvalbumin and GAD67 expression in the cerebellum. The results showed that prenatal poly(I:C) exposure altered the pattern of socio-communicative behaviors of adult rats in a sex-specific manner.
Collapse
Affiliation(s)
- Kinga Gzieło
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Diana Piotrowska
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Ewa Litwa
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| |
Collapse
|
15
|
Sun W, Mei Y, Li X, Yang Y, An L. Maternal immune activation-induced proBDNF-mediated neural information processing dysfunction at hippocampal CA3-CA1 synapses associated with memory deficits in offspring. Front Cell Dev Biol 2022; 10:1018586. [PMID: 36438556 PMCID: PMC9691851 DOI: 10.3389/fcell.2022.1018586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2023] Open
Abstract
Prenatal exposure to maternal infection increases the risk of offspring developing schizophrenia in adulthood. Current theories suggest that the consequences of MIA on mBDNF secretion may underlie the increased risk of cognitive disorder. There is little evidence for whether the expression of its precursor, proBDNF, is changed and how proBDNF-mediated signaling may involve in learning and memory. In this study, proBDNF levels were detected in the hippocampal CA1 and CA3 regions of male adult rats following MIA by prenatal polyI:C exposure. Behaviorally, learning and memory were assessed in contextual fear conditioning tasks. Local field potentials were recorded in the hippocampal CA3-CA1 pathway. The General Partial Directed Coherence approach was utilized to identify the directional alternation of neural information flow between CA3 and CA1 regions. EPSCs were recorded in CA1 pyramidal neurons to explore a possible mechanism involving the proBDNF-p75NTR signaling pathway. Results showed that the expression of proBDNF in the polyI:C-treated offspring was abnormally enhanced in both CA3 and CA1 regions. Meanwhile, the mBDNF expression was reduced in both hippocampal regions. Intra-hippocampal CA1 but not CA3 injection with anti-proBDNF antibody and p75NTR inhibitor TAT-Pep5 effectively mitigated the contextual memory deficits. Meanwhile, reductions in the phase synchronization between CA3 and CA1 and the coupling directional indexes from CA3 to CA1 were enhanced by the intra-CA1 infusions. Moreover, blocking proBDNF/p75NTR signaling could reverse the declined amplitude of EPSCs in CA1 pyramidal neurons, indicating the changes in postsynaptic information processing in the polyI:C-treated offspring. Therefore, the changes in hippocampal proBDNF activity in prenatal polyI:C exposure represent a potential mechanism involved in NIF disruption leading to contextual memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yazi Mei
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
- Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
16
|
Rasile M, Lauranzano E, Faggiani E, Ravanelli MM, Colombo FS, Mirabella F, Corradini I, Malosio ML, Borreca A, Focchi E, Pozzi D, Giorgino T, Barajon I, Matteoli M. Maternal immune activation leads to defective brain-blood vessels and intracerebral hemorrhages in male offspring. EMBO J 2022; 41:e111192. [PMID: 36314682 PMCID: PMC9713716 DOI: 10.15252/embj.2022111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Intracerebral hemorrhages are recognized risk factors for neurodevelopmental disorders and represent early biomarkers for cognitive dysfunction and mental disability, but the pathways leading to their occurrence are not well defined. We report that a single intrauterine exposure of the immunostimulant Poly I:C to pregnant mice at gestational day 9, which models a prenatal viral infection and the consequent maternal immune activation, induces the defective formation of brain vessels and causes intracerebral hemorrhagic events, specifically in male offspring. We demonstrate that maternal immune activation promotes the production of the TGF-β1 active form and the consequent enhancement of pSMAD1-5 in males' brain endothelial cells. TGF-β1, in combination with IL-1β, reduces the endothelial expression of CD146 and claudin-5, alters the endothelium-pericyte interplay resulting in low pericyte coverage, and increases hemorrhagic events in the adult offspring. By showing that exposure to Poly I:C at the beginning of fetal cerebral angiogenesis results in sex-specific alterations of brain vessels, we provide a mechanistic framework for the association between intragravidic infections and anomalies of the neural vasculature, which may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marco Rasile
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | | | - Elisa Faggiani
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Margherita M Ravanelli
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | | | - Filippo Mirabella
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Irene Corradini
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Maria L Malosio
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Antonella Borreca
- IRCCS Humanitas Clinical and Research CenterRozzanoItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Elisa Focchi
- Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| | - Davide Pozzi
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Toni Giorgino
- Institute of Biophysics (IBF‐CNR)National Research Council of ItalyMilanItaly
| | - Isabella Barajon
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,IRCCS Humanitas Clinical and Research CenterRozzanoItaly
| | - Michela Matteoli
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly,Institute of Neuroscience (IN‐CNR)National Research Council of ItalyMilanItaly
| |
Collapse
|
17
|
Hanson KL, Grant SE, Funk LH, Schumann CM, Bauman MD. Impact of Maternal Immune Activation on Nonhuman Primate Prefrontal Cortex Development: Insights for Schizophrenia. Biol Psychiatry 2022; 92:460-469. [PMID: 35773097 PMCID: PMC9888668 DOI: 10.1016/j.biopsych.2022.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 02/02/2023]
Abstract
Late adolescence is a period of dynamic change in the brain as humans learn to navigate increasingly complex environments. In particular, prefrontal cortical (PFC) regions undergo extensive remodeling as the brain is fine-tuned to orchestrate cognitive control over attention, reasoning, and emotions. Late adolescence also presents a uniquely vulnerable period as neurodevelopmental illnesses, such as schizophrenia, become evident and worsen into young adulthood. Challenges in early development, including prenatal exposure to infection, may set the stage for a cascade of maladaptive events that ultimately result in aberrant PFC connectivity and function before symptoms emerge. A growing body of research suggests that activation of the mother's immune system during pregnancy may act as a disease primer, in combination with other environmental and genetic factors, contributing to an increased risk of neurodevelopmental disorders, including schizophrenia. Animal models provide an invaluable opportunity to examine the course of brain and behavioral changes in offspring exposed to maternal immune activation (MIA). Although the vast majority of MIA research has been carried out in rodents, here we highlight the translational utility of the nonhuman primate (NHP) as a model species more closely related to humans in PFC structure and function. In this review, we consider the protracted period of brain and behavioral maturation in the NHP, describe emerging findings from MIA NHP offspring in the context of rodent preclinical models, and lastly explore the translational relevance of the NHP MIA model to expand understanding of the etiology and developmental course of PFC pathology in schizophrenia.
Collapse
Affiliation(s)
- Kari L Hanson
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California
| | - Simone E Grant
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Lucy H Funk
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California.
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California; California National Primate Research Center, University of California, Davis, Davis, California.
| |
Collapse
|
18
|
Pavlinek A, Matuleviciute R, Sichlinger L, Dutan Polit L, Armeniakos N, Vernon AC, Srivastava DP. Interferon-γ exposure of human iPSC-derived neurons alters major histocompatibility complex I and synapsin protein expression. Front Psychiatry 2022; 13:836217. [PMID: 36186864 PMCID: PMC9515429 DOI: 10.3389/fpsyt.2022.836217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Human epidemiological data links maternal immune activation (MIA) during gestation with increased risk for psychiatric disorders with a putative neurodevelopmental origin, including schizophrenia and autism. Animal models of MIA provide evidence for this association and suggest that inflammatory cytokines represent one critical link between maternal infection and any potential impact on offspring brain and behavior development. However, to what extent specific cytokines are necessary and sufficient for these effects remains unclear. It is also unclear how specific cytokines may impact the development of specific cell types. Using a human cellular model, we recently demonstrated that acute exposure to interferon-γ (IFNγ) recapitulates molecular and cellular phenotypes associated with neurodevelopmental disorders. Here, we extend this work to test whether IFNγ can impact the development of immature glutamatergic neurons using an induced neuronal cellular system. We find that acute exposure to IFNγ activates a signal transducer and activator of transcription 1 (STAT1)-pathway in immature neurons, and results in significantly increased major histocompatibility complex I (MHCI) expression at the mRNA and protein level. Furthermore, acute IFNγ exposure decreased synapsin I/II protein in neurons but did not affect the expression of synaptic genes. Interestingly, complement component 4A (C4A) gene expression was significantly increased following acute IFNγ exposure. This study builds on our previous work by showing that IFNγ-mediated disruption of relevant synaptic proteins can occur at early stages of neuronal development, potentially contributing to neurodevelopmental disorder phenotypes.
Collapse
Affiliation(s)
- Adam Pavlinek
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Laura Sichlinger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Nikolaos Armeniakos
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Anthony Christopher Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Deepak Prakash Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Wilkin-Krug LCM, Macaskill AC, Ellenbroek BA. Preweaning environmental enrichment alters neonatal ultrasonic vocalisations in a rat model for prenatal infections. Behav Pharmacol 2022; 33:402-417. [PMID: 35947067 DOI: 10.1097/fbp.0000000000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Maternal infections are a well-known risk factor for neurodevelopmental defects. Such defects are associated with a range of symptoms, and environmental enrichment (EE) could be a promising approach to rehabilitate these. We used the well-established prenatal poly I:C (polyinosinic-polycytidylic acid) model in rats to examine the effects of preweaning EE on rat pups' ultrasonic vocalisations (USVs) when separated from their mothers. USVs are one of the earliest indicators of a pup's functional level and, thus, well-suited as a marker of neurodevelopmental abnormalities. METHODS We used a two-by-two factorial design in which pregnant Sprague-Dawley rats received either saline or the viral mimic poly I:C, and one group of pups was exposed to preweaning enrichment. We measured maternal separation-induced USVs both before postnatal day (PND) 7 and after preweaning enrichment on PND 14. RESULTS Poly I:C significantly reduced the number of USVs on PND 7. EE interacted with the poly I:C treatment in that poly I:C pups in the enrichment group called more, whereas saline pups in the enriched environment called less on PND 14 than the respective controls. CONCLUSION We showed that the effects of maternal poly I:C on the offspring's USVs could be reduced by early EE. If replicated, it could open novel and safe avenues for treating children of mothers who were exposed to infections during pregnancy.
Collapse
Affiliation(s)
- Linda C M Wilkin-Krug
- School of Psychology, Victoria University Wellington.,Behavioural Neurogenetics Group, Victoria University Wellington, Wellington, New Zealand
| | | | - Bart A Ellenbroek
- School of Psychology, Victoria University Wellington.,Behavioural Neurogenetics Group, Victoria University Wellington, Wellington, New Zealand
| |
Collapse
|
20
|
Garcia-Partida JA, Torres-Sanchez S, MacDowell K, Fernández-Ponce MT, Casas L, Mantell C, Soto-Montenegro ML, Romero-Miguel D, Lamanna-Rama N, Leza JC, Desco M, Berrocoso E. The effects of mango leaf extract during adolescence and adulthood in a rat model of schizophrenia. Front Pharmacol 2022; 13:886514. [PMID: 35959428 PMCID: PMC9360613 DOI: 10.3389/fphar.2022.886514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
There is evidence that in schizophrenia, imbalances in inflammatory and oxidative processes occur during pregnancy and in the early postnatal period, generating interest in the potential therapeutic efficacy of anti-inflammatory and antioxidant compounds. Mangiferin is a polyphenolic compound abundant in the leaves of Mangifera indica L. that has robust antioxidant and anti-inflammatory properties, making it a potential candidate for preventive or co-adjuvant therapy in schizophrenia. Hence, this study set-out to evaluate the effect of mango leaf extract (MLE) in a model of schizophrenia based on maternal immune activation, in which Poly I:C (4 mg/kg) is administered intravenously to pregnant rats. Young adult (postnatal day 60-70) or adolescent (postnatal day 35-49) male offspring received MLE (50 mg/kg of mangiferin) daily, and the effects of MLE in adolescence were compared to those of risperidone, assessing behavior, brain magnetic resonance imaging (MRI), and oxidative/inflammatory and antioxidant mediators in the adult offspring. MLE treatment in adulthood reversed the deficit in prepulse inhibition (PPI) but it failed to attenuate the sensitivity to amphetamine and the deficit in novel object recognition (NOR) induced. By contrast, adolescent MLE treatment prevented the sensorimotor gating deficit in the PPI test, producing an effect similar to that of risperidone. This MLE treatment also produced a reduction in grooming behavior, but it had no effect on anxiety or novel object recognition memory. MRI studies revealed that adolescent MLE administration partially counteracted the cortical shrinkage, and cerebellum and ventricle enlargement. In addition, MLE administration in adolescence reduced iNOS mediated inflammatory activation and it promoted the expression of biomarkers of compensatory antioxidant activity in the prefrontal cortex and hippocampus, as witnessed through the reduction of Keap1 and the accumulation of NRF2 and HO1. Together, these findings suggest that MLE might be an alternative therapeutic or preventive add-on strategy to improve the clinical expression of schizophrenia in adulthood, while also modifying the time course of this disease at earlier stages in populations at high-risk.
Collapse
Affiliation(s)
- Jose Antonio Garcia-Partida
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Sonia Torres-Sanchez
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, Cádiz, Spain
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
| | - Karina MacDowell
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Health Research Institute Hospital 12 de Octubre (imas12), Institute of Research in Neurochemistry IUIN-UCM, Madrid, Spain
| | | | - Lourdes Casas
- Department of Chemical Engineering and Food Technology, Science Faculty, University of Cádiz, Cádiz, Spain
| | - Casimiro Mantell
- Department of Chemical Engineering and Food Technology, Science Faculty, University of Cádiz, Cádiz, Spain
| | - María Luisa Soto-Montenegro
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), Universidad Rey Juan Carlos, Madrid, Spain
| | - Diego Romero-Miguel
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Juan Carlos Leza
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Health Research Institute Hospital 12 de Octubre (imas12), Institute of Research in Neurochemistry IUIN-UCM, Madrid, Spain
| | - Manuel Desco
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, Cádiz, Spain
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
21
|
Abstract
Most psychiatric illnesses, such as schizophrenia, show profound sex differences in incidence, clinical presentation, course, and outcome. Fortunately, more recently the literature on sex differences and (to a lesser extent) effects of sex steroid hormones is expanding, and in this review we have focused on such studies in psychosis, both from a clinical/epidemiological and preclinical/animal model perspective. We begin by briefly describing the clinical evidence for sex differences in schizophrenia epidemiology, symptomatology, and pathophysiology. We then detail sex differences and sex hormone effects in behavioral animal models of psychosis, specifically psychotropic drug-induced locomotor hyperactivity and disruption of prepulse inhibition. We expand on the preclinical data to include developmental and genetic models of psychosis, such as the maternal immune activation model and neuregulin transgenic animals, respectively. Finally, we suggest several recommendations for future studies, in order to facilitate a better understanding of sex differences in the development of psychosis.
Collapse
|
22
|
Maleninska K, Janikova M, Radostova D, Vojtechova I, Petrasek T, Kirdajova D, Anderova M, Svoboda J, Stuchlik A. Selective deficits in attentional set-shifting in mice induced by maternal immune activation with poly(I:C). Behav Brain Res 2022; 419:113678. [PMID: 34838932 DOI: 10.1016/j.bbr.2021.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Maternal immune activation has been identified as a significant risk factor for schizophrenia. Using rodent models, past work has demonstrated various behavioral and brain impairments in offspring after immune-activating events. We applied 5 mg/kg of poly(I:C) on gestation day 9 to pregnant mouse dams, whose offspring were then stressed during puberty. We show impairments in attentional set-shifting in a T-maze, and a decreased number of parvalbumin-positive interneurons in the hippocampus as a result of peripubertal stress specifically in females.
Collapse
Affiliation(s)
- Kristyna Maleninska
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, Klecany, Czech Republic
| | - Martina Janikova
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dominika Radostova
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Iveta Vojtechova
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; National Institute of Mental Health, Topolova 748, Klecany, Czech Republic
| | - Tomas Petrasek
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; National Institute of Mental Health, Topolova 748, Klecany, Czech Republic
| | - Denisa Kirdajova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Jan Svoboda
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Ales Stuchlik
- Laboratory of the Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.
| |
Collapse
|
23
|
Rasmussen JM, Graham AM, Gyllenhammer LE, Entringer S, Chow DS, O’Connor TG, Fair DA, Wadhwa PD, Buss C. Neuroanatomical Correlates Underlying the Association Between Maternal Interleukin 6 Concentration During Pregnancy and Offspring Fluid Reasoning Performance in Early Childhood. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:24-33. [PMID: 33766778 PMCID: PMC8458517 DOI: 10.1016/j.bpsc.2021.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Maternal inflammation during pregnancy can alter offspring brain development and influence risk for disorders commonly accompanied by deficits in cognitive functioning. We therefore examined associations between maternal interleukin 6 (IL-6) concentrations during pregnancy and offspring cognitive ability and concurrent magnetic resonance imaging-based measures of brain anatomy in early childhood. We further examined newborn brain anatomy in secondary analyses to consider whether effects are evident soon after birth and to increase capacity to differentiate effects of pre- versus postnatal exposures. METHODS IL-6 concentrations were quantified in early (12.6 ± 2.8 weeks), mid (20.4 ± 1.5 weeks), and late (30.3 ± 1.3 weeks) pregnancy. Offspring nonverbal fluid intelligence (Gf) was assessed at 5.2 ± 0.6 years using a spatial reasoning task (Wechsler Preschool and Primary Scale of Intelligence-Matrix) (n = 49). T1-weighted magnetic resonance imaging scans were acquired at birth (n = 89, postmenstrual age = 42.9 ± 2.0 weeks) and in early childhood (n = 42, scan age = 5.1 ± 1.0 years). Regional cortical volumes were examined for a joint association between maternal IL-6 and offspring Gf performance. RESULTS Average maternal IL-6 concentration during pregnancy was inversely associated with offspring Gf performance after adjusting for socioeconomic status and the quality of the caregiving and learning environment (R2 = 13%; p = .02). Early-childhood pars triangularis volume was jointly associated with maternal IL-6 and childhood Gf (pcorrected < .001). An association also was observed between maternal IL-6 and newborn pars triangularis volume (R2 = 6%; p = .02). CONCLUSIONS These findings suggest that the origins of variation in child cognitive ability can, in part, trace back to maternal conditions during the intrauterine period of life and support the role of inflammation as an important component of this putative biological pathway.
Collapse
Affiliation(s)
- Jerod M. Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, California, USA 92697.,Department of Pediatrics, University of California, Irvine, California, USA 92697.,Corresponding Authors: Claudia Buss, PhD, Institute for Medical Psychology, Charité University Medicine, Luisenstr. 57, 10117 Berlin, Germany, Tel: +49 (0)30 450 529 222, Fax: +49 (0)30 450 529 990, ; Jerod M. Rasmussen, PhD., UC Irvine Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility (GNRF), 837 Health Sciences Road, Irvine, CA 92697,
| | - Alice M. Graham
- Department of Behavioral Neuroscience,Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, United States
| | - Lauren E. Gyllenhammer
- Development, Health and Disease Research Program, University of California, Irvine, California, USA 92697.,Department of Pediatrics, University of California, Irvine, California, USA 92697
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, California, USA 92697.,Department of Pediatrics, University of California, Irvine, California, USA 92697.,Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Medical Psychology, Berlin, Germany
| | - Daniel S. Chow
- Department of Radiology, University of California, Irvine, California, USA 92697
| | - Thomas G. O’Connor
- Departments of Psychiatry, Psychology, Neuroscience and Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, New York, USA 14642
| | - Damien A. Fair
- Department of Behavioral Neuroscience,Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, United States
| | - Pathik D. Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, California, USA 92697.,Department of Pediatrics, University of California, Irvine, California, USA 92697.,Departments of Psychiatry and Human Behavior, Obstetrics & Gynecology, Epidemiology, University of California, Irvine, California, USA 92697
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, California, USA 92697.,Department of Pediatrics, University of California, Irvine, California, USA 92697.,Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Medical Psychology, Berlin, Germany.,Corresponding Authors: Claudia Buss, PhD, Institute for Medical Psychology, Charité University Medicine, Luisenstr. 57, 10117 Berlin, Germany, Tel: +49 (0)30 450 529 222, Fax: +49 (0)30 450 529 990, ; Jerod M. Rasmussen, PhD., UC Irvine Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility (GNRF), 837 Health Sciences Road, Irvine, CA 92697,
| |
Collapse
|
24
|
Maternal immune activation with high molecular weight poly(I:C) in Wistar rats leads to elevated immune cell chemoattractants. J Neuroimmunol 2022; 364:577813. [DOI: 10.1016/j.jneuroim.2022.577813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022]
|
25
|
Lins B. Maternal immune activation as a risk factor for psychiatric illness in the context of the SARS-CoV-2 pandemic. Brain Behav Immun Health 2021; 16:100297. [PMID: 34308388 PMCID: PMC8279925 DOI: 10.1016/j.bbih.2021.100297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023] Open
Abstract
Inflammation, due to infectious pathogens or other non-infectious stimuli, during pregnancy is associated with elevated risk for neurodevelopmental disorders such as schizophrenia and autism in the offspring. Although historically identified through retrospective epidemiologic studies, the relationship between maternal immune activation and offspring neurodevelopmental disease risk is now well established because of clinical studies which utilized prospective birth cohorts, serologically confirmed infection records, and subsequent long-term offspring follow-up. These efforts have been corroborated by preclinical research which demonstrates anatomical, biochemical, and behavioural alterations that resemble the clinical features of psychiatric illnesses. Intervention studies further demonstrate causal roles of inflammatory mediators, such as cytokines, in these long-lasting changes in behaviour and brain. This review summarizes a selection of maternal immune activation literature that explores the relationship between these inflammatory mediators and the neuropsychiatric-like effects later observed in the offspring. This literature is presented alongside emerging information regarding SARS-CoV-2 infection in pregnancy, with discussion of how these data may inform future research regarding the effects of the present coronavirus pandemic on emerging birth cohorts.
Collapse
Affiliation(s)
- Brittney Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
26
|
Scott KJ, Tashakori-Sabzevar F, Bilkey DK. Maternal immune activation alters the sequential structure of ultrasonic communications in male rats. Brain Behav Immun Health 2021; 16:100304. [PMID: 34589796 PMCID: PMC8474666 DOI: 10.1016/j.bbih.2021.100304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 07/24/2021] [Indexed: 11/23/2022] Open
Abstract
Maternal immune activation (MIA) is a risk factor for schizophrenia and many of the symptoms and neurodevelopmental changes associated with this disorder have been modelled in the rodent. While several previous studies have reported that rodent ultrasonic vocalizations (USVs) are affected by MIA, no previous study has examined whether MIA affects the way that individual USVs occur over time to produce vocalisation sequences. The sequential aspect of this behaviour may be particularly important because changes in sequencing mechanisms have been proposed as a core deficit in schizophrenia. The present research generates MIA with POLY I:C administered to pregnant Sprague-Dawley rat dams at GD15. Male pairs of MIA adult offspring or pairs of their saline controls were placed into a two-chamber apparatus where they were separated from each other by a perforated plexiglass barrier. USVs were recorded for a period of 10 min and automated detection and call review were used to classify short call types in the nominal 50 kHz band of social affiliative calls. Our data show that the duration of these 50-kHz USVs is longer in MIA rat pairs and the time between calls is shorter. Furthermore, the transition probability between call pairs was different in the MIA animals compared to the control group, indicating alterations in sequential behaviour. These results provide the first evidence that USV call sequencing is altered by the MIA intervention and suggest that further investigations of these temporally extended aspects of USV production are likely to reveal useful information about the mechanisms that underlie sequence generation. This is particularly important given previous research suggesting that sequencing deficits may have a significant impact on both behaviour and cognition.
Collapse
Affiliation(s)
| | | | - David K. Bilkey
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
Vitor-Vieira F, Vilela FC, Giusti-Paiva A. Hyperactivation of the amygdala correlates with impaired social play behavior of prepubertal male rats in a maternal immune activation model. Behav Brain Res 2021; 414:113503. [PMID: 34331970 DOI: 10.1016/j.bbr.2021.113503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Maternal infection during pregnancy is an environmental risk factor for neurodevelopmental dysfunction, such as autism spectrum disorder (ASD). This study investigated the effect of maternal immune activation (MIA) on the behavior profile of prepubertal offspring and whether MIA alters the neuronal activation pattern of brain areas related to social play behavior. Pregnant Wistar rats received 500 μg/kg of lipopolysaccharide or saline solution on gestational day 16. Their offspring were tested using behavioral tasks to capture some of the core and associated ASD-like symptoms. Neuronal activation, indexed via c-fos expression after social play behavior, was evaluated in several brain areas. MIA had a number of adverse effects on dams and reduced the number of successful births and litter size. MIA induced sex-specific autistic-like features by a reduction in ultrasonic vocalizations in response to separation from the mother and nest, reduction in discrimination between neutral odors and their nest odor, moderate effect in stereotypies in the hole-board test, impaired risk assessment phenotype, and reduction in social play behavior without changes in locomotor activity only in prepubertal male offspring. A decrease in social play behavior may be associated with a decrease in the number of c-fos-positive cells in the prefrontal cortex and striatum, but hyperactivation of the basolateral and basomedial amygdala. Prenatal immune challenge results in ASD-like symptoms such as impaired risk assessment behavior, communication, and social interactions in male prepubertal offspring. Impaired social play behavior is correlated with neuronal hyperactivation in the amygdala.
Collapse
Affiliation(s)
- Fernando Vitor-Vieira
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil
| | - Fabiana C Vilela
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas-MG, Alfenas, Brazil.
| |
Collapse
|
28
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
29
|
Zhao X, Mohammed R, Tran H, Erickson M, Kentner AC. Poly (I:C)-induced maternal immune activation modifies ventral hippocampal regulation of stress reactivity: prevention by environmental enrichment. Brain Behav Immun 2021; 95:203-215. [PMID: 33766701 PMCID: PMC8187276 DOI: 10.1016/j.bbi.2021.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Environmental enrichment (EE) has been successfully implemented in human rehabilitation settings. However, the mechanisms underlying its success are not understood. Incorporating components of EE protocols into our animal models allows for the exploration of these mechanisms and their role in mitigation. Using a mouse model of maternal immune activation (MIA), the present study explored disruptions in social behavior and associated hypothalamic pituitary adrenal (HPA) axis functioning, and whether a supportive environment could prevent these effects. We show that prenatal immune activation of toll-like receptor 3, by the viral mimetic polyinosinic-polycytidylic acid (poly(I:C)), led to disrupted maternal care in that dams built poorer quality nests, an effect corrected by EE housing. Standard housed male and female MIA mice engaged in higher rates of repetitive rearing and had lower levels of social interaction, alongside sex-specific expression of several ventral hippocampal neural stress markers. Moreover, MIA males had delayed recovery of plasma corticosterone in response to a novel social encounter. Enrichment housing, likely mediated by improved maternal care, protected against these MIA-induced effects. We also evaluated c-Fos immunoreactivity associated with the novel social experience and found MIA to decrease neural activation in the dentate gyrus. Activation in the hypothalamus was blunted in EE housed animals, suggesting that the putative circuits modulating social behaviors may be different between standard and complex housing environments. These data demonstrate that augmentation of the environment supports parental care and offspring safety/security, which can offset effects of early health adversity by buffering HPA axis dysregulation. Our findings provide further evidence for the viability of EE interventions in maternal and pediatric settings.
Collapse
Affiliation(s)
| | | | | | | | - Amanda C. Kentner
- Corresponding author: Amanda Kentner, , Office #617-274-3360, Fax # 617-732-2959
| |
Collapse
|
30
|
Zhao X, Tran H, DeRosa H, Roderick RC, Kentner AC. Hidden talents: Poly (I:C)-induced maternal immune activation improves mouse visual discrimination performance and reversal learning in a sex-dependent manner. GENES BRAIN AND BEHAVIOR 2021; 20:e12755. [PMID: 34056840 DOI: 10.1111/gbb.12755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022]
Abstract
While there is a strong focus on the negative consequences of maternal immune activation (MIA) on developing brains, very little attention is directed towards potential advantages of early life challenges. In this study, we utilized a polyinosine-polycytidylic acid (poly(I:C)) MIA model to test visual pairwise discrimination (PD) and reversal learning (RL) in mice using touchscreen technology. Significant sex differences emerged in that MIA reduced the latency for males to make a correct choice in the PD task while females reached criterion sooner, made fewer errors, and utilized fewer correction trials in RL compared to saline controls. These surprising improvements were accompanied by the sex-specific upregulation of several genes critical to cognitive functioning, indicative of compensatory plasticity in response to MIA. In contrast, when exposed to a 'two-hit' stress model (MIA + loss of the social component of environmental enrichment [EE]), mice did not display anhedonia but required an increased number of PD and RL correction trials. These animals also had significant reductions of CamK2a mRNA in the prefrontal cortex. Appropriate functioning of synaptic plasticity, via mediators such as this protein kinase and others, are critical for behavioral flexibility. Although EE has been implicated in, delaying the appearance of symptoms associated with certain brain disorders, these findings are in line with evidence that it also makes individuals more vulnerable to its loss. Overall, with the right 'dose', early life stress exposure can confer at least some functional advantages, which are lost when the number or magnitude of these exposures become too great.
Collapse
Affiliation(s)
- Xin Zhao
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Hieu Tran
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Holly DeRosa
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Ryland C Roderick
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| |
Collapse
|
31
|
The Effect of Maternal Immune Activation on Social Play-Induced Ultrasonic Vocalization in Rats. Brain Sci 2021; 11:brainsci11030344. [PMID: 33803154 PMCID: PMC8001568 DOI: 10.3390/brainsci11030344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Prenatal maternal infection is associated with an increased risk of various neurodevelopmental disorders, including autism spectrum disorders (ASD). Maternal immune activation (MIA) can be experimentally induced by prenatal administration of polyinosinic:polycytidylic acid (poly I:C), a synthetic viral-like double-stranded RNA. Although this MIA model is adopted in many studies, social and communicative deficits, included in the first diagnostic criterion of ASD, are poorly described in the offspring of poly(I:C)-exposed dams. This study aimed to characterize the impact of prenatal poly(I:C) exposure on socio-communicative behaviors in adolescent rats. For this purpose, social play behavior was assessed in both males and females. We also analyzed quantitative and structural changes in ultrasonic vocalizations (USVs) emitted by rats during the play test. Deficits of social play behaviors were evident only in male rats. Males also emitted a significantly decreased number of USVs during social encounters. Prenatal poly(I:C) exposure also affected acoustic call parameters, as reflected by the increased peak frequencies. Additionally, repetitive behaviors were demonstrated in autistic-like animals regardless of sex. This study demonstrates that prenatal poly(I:C) exposure impairs socio-communicative functioning in adolescent rats. USVs may be a useful tool for identifying early autistic-like abnormalities.
Collapse
|
32
|
Hatzipantelis C, Langiu M, Vandekolk TH, Pierce TL, Nithianantharajah J, Stewart GD, Langmead CJ. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol Transl Sci 2020; 3:1042-1062. [PMID: 33344888 PMCID: PMC7737210 DOI: 10.1021/acsptsci.0c00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 01/07/2023]
Abstract
There are no effective therapeutics for cognitive impairments associated with schizophrenia (CIAS), which includes deficits in executive functions (working memory and cognitive flexibility) and episodic memory. Compounds that have entered clinical trials are inadequate in terms of efficacy and/or tolerability, highlighting a clear translational bottleneck and a need for a cohesive preclinical drug development strategy. In this review we propose hippocampal-prefrontal-cortical (HPC-PFC) circuitry underlying CIAS-relevant cognitive processes across mammalian species as a target source to guide the translation-focused discovery and development of novel, procognitive agents. We highlight several G protein-coupled receptors (GPCRs) enriched within HPC-PFC circuitry as therapeutic targets of interest, including noncanonical approaches (biased agonism and allosteric modulation) to conventional clinical targets, such as dopamine and muscarinic acetylcholine receptors, along with prospective novel targets, including the orphan receptors GPR52 and GPR139. We also describe the translational limitations of popular preclinical cognition tests and suggest touchscreen-based assays that probe cognitive functions reliant on HPC-PFC circuitry and reflect tests used in the clinic, as tests of greater translational relevance. Combining pharmacological and behavioral testing strategies based in HPC-PFC circuit function creates a cohesive, translation-focused approach to preclinical drug development that may improve the translational bottleneck currently hindering the development of treatments for CIAS.
Collapse
Affiliation(s)
- Cassandra
J. Hatzipantelis
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Teresa H. Vandekolk
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tracie L. Pierce
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jess Nithianantharajah
- Florey
Institute of Neuroscience
and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
33
|
Sandini TM, Greba Q, Lins BR, Howland JG. Maternal Immune Activation with the Viral Mimetic Poly:IC in Pregnant Rats. Bio Protoc 2020; 10:e3817. [PMID: 33659469 DOI: 10.21769/bioprotoc.3817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/02/2022] Open
Abstract
Maternal immune activation (MIA) is increasingly well appreciated as an environmental risk factor for some psychiatric disorders. Administration of proinflammatory compounds such as the synthetic double-stranded RNA molecule polyinosinic-polycytidylic acid (polyI:C) to pregnant rodents results in the release of proinflammatory cytokines in the maternal circulation. Various behavioural and brain changes are produced in the offspring that are associated with psychiatric disorders such as autism and schizophrenia. This protocol describes the steps necessary for inducing MIA in pregnant rat dams, which will allow for investigations into the mechanisms in the dam and offspring that mediate the long-term effects of exposure to inflammation while in utero. Increasing our understanding of these mechanisms may provide new insights for the diagnosis, treatment, and prevention of psychiatric disorders. This protocol has been developed and improved over the years by various researchers in Dr. Howland's laboratory at the University of Saskatchewan.
Collapse
Affiliation(s)
- Thaísa Meira Sandini
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Brittney Rose Lins
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - John George Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
34
|
Goh JY, O'Sullivan SE, Shortall SE, Zordan N, Piccinini AM, Potter HG, Fone KCF, King MV. Gestational poly(I:C) attenuates, not exacerbates, the behavioral, cytokine and mTOR changes caused by isolation rearing in a rat 'dual-hit' model for neurodevelopmental disorders. Brain Behav Immun 2020; 89:100-117. [PMID: 32485291 DOI: 10.1016/j.bbi.2020.05.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many psychiatric illnesses have a multifactorial etiology involving genetic and environmental risk factors that trigger persistent neurodevelopmental impairments. Several risk factors have been individually replicated in rodents, to understand disease mechanisms and evaluate novel treatments, particularly for poorly-managed negative and cognitive symptoms. However, the complex interplay between various factors remains unclear. Rodent dual-hit neurodevelopmental models offer vital opportunities to examine this and explore new strategies for early therapeutic intervention. This study combined gestational administration of polyinosinic:polycytidylic acid (poly(I:C); PIC, to mimic viral infection during pregnancy) with post-weaning isolation of resulting offspring (to mirror adolescent social adversity). After in vitro and in vivo studies required for laboratory-specific PIC characterization and optimization, we administered 10 mg/kg i.p. PIC potassium salt to time-mated Lister hooded dams on gestational day 15. This induced transient hypothermia, sickness behavior and weight loss in the dams, and led to locomotor hyperactivity, elevated striatal cytokine levels, and increased frontal cortical JNK phosphorylation in the offspring at adulthood. Remarkably, instead of exacerbating the well-characterized isolation syndrome, gestational PIC exposure actually protected against a spectrum of isolation-induced behavioral and brain regional changes. Thus isolation reared rats exhibited locomotor hyperactivity, impaired associative memory and reversal learning, elevated hippocampal and frontal cortical cytokine levels, and increased mammalian target of rapamycin (mTOR) activation in the frontal cortex - which were not evident in isolates previously exposed to gestational PIC. Brains from adolescent littermates suggest little contribution of cytokines, mTOR or JNK to early development of the isolation syndrome, or resilience conferred by PIC. But notably hippocampal oxytocin, which can protect against stress, was higher in adolescent PIC-exposed isolates so might contribute to a more favorable outcome. These findings have implications for identifying individuals at risk for disorders like schizophrenia who may benefit from early therapeutic intervention, and justify preclinical assessment of whether adolescent oxytocin manipulations can modulate disease onset or progression.
Collapse
Affiliation(s)
- Jen-Yin Goh
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Saoirse E O'Sullivan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Sinead E Shortall
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nicole Zordan
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Anna M Piccinini
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Kevin C F Fone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
35
|
Haddad FL, Patel SV, Schmid S. Maternal Immune Activation by Poly I:C as a preclinical Model for Neurodevelopmental Disorders: A focus on Autism and Schizophrenia. Neurosci Biobehav Rev 2020; 113:546-567. [PMID: 32320814 DOI: 10.1016/j.neubiorev.2020.04.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) in response to a viral infection during early and mid-gestation has been linked through various epidemiological studies to a higher risk for the child to develop autism or schizophrenia-related symptoms.. This has led to the establishment of the pathogen-free poly I:C-induced MIA animal model for neurodevelopmental disorders, which shows relatively high construct and face validity. Depending on the experimental variables, particularly the timing of poly I:C administration, different behavioural and molecular phenotypes have been described that relate to specific symptoms of neurodevelopmental disorders such as autism spectrum disorder and/or schizophrenia. We here review and summarize epidemiological evidence for the effects of maternal infection and immune activation, as well as major findings in different poly I:C MIA models with a focus on poly I:C exposure timing, behavioural and molecular changes in the offspring, and characteristics of the model that relate it to autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Salonee V Patel
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
36
|
Roebuck AJ, An L, Marks WN, Sun N, Snutch TP, Howland JG. Cognitive Impairments in Touchscreen-based Visual Discrimination and Reversal Learning in Genetic Absence Epilepsy Rats from Strasbourg. Neuroscience 2020; 430:105-112. [PMID: 32017953 DOI: 10.1016/j.neuroscience.2020.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
Absence Epilepsy (AE) is associated with recurrent losses of awareness and synchronous bilateral spike-wave discharges (SWDs). While seizures do not generally continue into adulthood, cognitive and behavioral comorbidities persist. One preclinical model used to investigate AE is the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) which consistently have bilateral SWDs and similar behavioral profiles. In this experiment, we characterized discrimination learning and behavioral flexibility in female and male GAERS (n = 7 per sex) and Non-Epileptic Controls (NEC; n = 8 per sex) in a touchscreen-based version of visual discrimination (VD) and reversal learning (RL). We found that, on average, female GAERS required more sessions (12.3) to complete pretraining compared to female and male NEC (8.2 and 7.3, respectively) and male GAERS (9.4). In contrast, there was a sex-specific impairment during VD with male GAERS requiring more sessions on average (12.3) than male and female NEC (both 7.5) and female GAERS (8.3). Additionally, male GAERS completed >30% more selection and correction trials during VD and made >30% more errors. Both female and male GAERS required more sessions on average (9.1 and 10.7, respectively) of RL compared to female and male NEC (6.4 and 6.0 sessions, respectively). Accordingly, GAERS performed ∼30% more selection trials and correction trials compared to NEC, although only male GAERS made significantly more errors (>40%). Deficits in VD and RL were not associated with differences in correct or incorrect response latency, or reward collection latency, suggesting impairments are not due to alterations in locomotor activity or motivation. Together, these data suggest that GAERS have impaired behavioral flexibility and identify some sex-dependent differences. Thus, GAERS may be suitable for assessing the potential benefit of antiepileptic drugs on comorbid behavioral and cognitive deficits.
Collapse
Affiliation(s)
- Andrew J Roebuck
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Lei An
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Wendie N Marks
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Ninglei Sun
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver V6T 1Z4, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
37
|
Aguilar-Valles A, Rodrigue B, Matta-Camacho E. Maternal Immune Activation and the Development of Dopaminergic Neurotransmission of the Offspring: Relevance for Schizophrenia and Other Psychoses. Front Psychiatry 2020; 11:852. [PMID: 33061910 PMCID: PMC7475700 DOI: 10.3389/fpsyt.2020.00852] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Prenatal infections have been linked to the development of schizophrenia (SCZ) and other neurodevelopmental disorders in the offspring, and work in animal models indicates that this is to occur through the maternal inflammatory response triggered by infection. Several studies in animal models demonstrated that acute inflammatory episodes are sufficient to trigger brain alterations in the adult offspring, especially in the mesolimbic dopamine (DA) system, involved in the pathophysiology of SCZ and other disorders involving psychosis. In the current review, we synthesize the literature on the clinical studies implicating prenatal infectious events in the development of SCZ. Then, we summarize evidence from animal models of maternal immune activation (MIA) and the behavioral and molecular alterations relevant for the function of the DAergic system. Furthermore, we discuss the evidence supporting the involvement of maternal cytokines, such as interleukin 6 (IL-6) and leptin (a hormone with effects on inflammation) in mediating the effects of MIA on the fetal brain, leading to the long-lasting effects on the offspring. In particular, IL-6 has been involved in mediating the effects of MIA animal models in the offspring through actions on the placenta, induction of IL-17a, or triggering the decrease in non-heme iron (hypoferremia). Maternal infection is very likely interacting with additional genetic and environmental risk factors in the development of SCZ; systematically investigating how these interactions produce specific phenotypes is the next step in understanding the etiology of complex psychiatric disorders.
Collapse
Affiliation(s)
| | - Brandon Rodrigue
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
38
|
Environmental influences on placental programming and offspring outcomes following maternal immune activation. Brain Behav Immun 2020; 83:44-55. [PMID: 31493445 PMCID: PMC6906258 DOI: 10.1016/j.bbi.2019.08.192] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Adverse experiences during pregnancy induce placental programming, affecting the fetus and its developmental trajectory. However, the influence of 'positive' maternal experiences on the placenta and fetus remain unclear. In animal models of early life stress, environmental enrichment (EE) has ameliorated and even prevented associated impairments in brain and behavior. Here, using a maternal immune activation (MIA) model in rats, we test whether EE attenuates maternal, placental and/or fetal responses to an inflammatory challenge, thereby offering a mechanism by which fetal programming may be prevented. Moreover, we evaluate life-long EE exposure on offspring development and examine a constellation of genes and epigenetic writers that may protect against MIA challenges. In our model, maternal plasma corticosterone and interleukin-1β were elevated 3 h after MIA, validating the maternal inflammatory response. Evidence for developmental programming was demonstrated by a simultaneous decrease in the placental enzymes Hsd11b2 and Hsd11b2/Hsd11b1, suggesting disturbances in glucocorticoid metabolism. Reductions of Hsd11b2 in response to challenge is thought to result in excess glucocorticoid exposure to the fetus and altered glucocorticoid receptor expression, increasing susceptibility to behavioral impairments later in life. The placental, but not maternal, glucocorticoid implications of MIA were attenuated by EE. There were also sustained changes in epigenetic writers in both placenta and fetal brain as a consequence of environmental experience and sex. Following MIA, both male and female juvenile animals were impaired in social discrimination ability. Life-long EE mitigated these impairments, in addition to the sex specific MIA associated disruptions in central Fkbp5 and Oprm1. These data provide the first evidence that EE protects placental functioning during stressor exposure, underscoring the importance of addressing maternal health and well-being throughout pregnancy. Future work must evaluate critical periods of EE use to determine if postnatal EE experience is necessary, or if prenatal exposure alone is sufficient to confer protection.
Collapse
|
39
|
Does Prenatal Exposure to Maternal Inflammation Causes Sex Differences in Schizophrenia-Related Behavioral Outcomes in Adult Rats? eNeuro 2019; 6:6/6/ENEURO.0393-19.2019. [PMID: 31719107 PMCID: PMC6851530 DOI: 10.1523/eneuro.0393-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Highlighted Research Paper:Maternal Immune Activation during Pregnancy Alters the Behavior Profile of Female Offspring of Sprague Dawley Rats, by Brittney R. Lins, Wendie N. Marks, Nadine K. Zabder, Quentin Greba, and John G. Howland
Collapse
|
40
|
Discrimination difficulty, cognitive burden, and reversal impairments in a maternal immune activation model of schizophrenia risk. Behav Processes 2019; 167:103936. [DOI: 10.1016/j.beproc.2019.103936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
|
41
|
Mueller FS, Richetto J, Hayes LN, Zambon A, Pollak DD, Sawa A, Meyer U, Weber-Stadlbauer U. Influence of poly(I:C) variability on thermoregulation, immune responses and pregnancy outcomes in mouse models of maternal immune activation. Brain Behav Immun 2019; 80:406-418. [PMID: 30980948 DOI: 10.1016/j.bbi.2019.04.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/24/2022] Open
Abstract
Maternal immune activation (MIA) models that are based on administration of the viral mimetic, poly(I:C), are widely used as experimental tools to study neuronal and behavioral dysfunctions in relation to immune-mediated neurodevelopmental disorders and mental illnesses. Evidence from investigations in non-pregnant rodents suggests that different poly(I:C) products can vary in terms of their immunogenicity, even if they are obtained from the same vendor. The present study aimed at extending these findings to pregnant mice, while also controlling various poly(I:C) products for potential contamination with lipopolysaccharide (LPS). We found significant variability between different batches of poly(I:C) potassium salt obtained from the same vendor (Sigma-Aldrich) in terms of the relative amount of dsRNA fragments in the high molecular weight range (1000-6000 nucleotides long) and with regards to their effects on maternal thermoregulation and immune responses in maternal plasma, placenta and fetal brain. Batches of poly(I:C) potassium salt containing larger amounts of high molecular weight fragments induced more extensive effects on thermoregulation and immune responses compared to batches with minimal amounts of high molecular weight fragments. Consistent with these findings, poly(I:C) enriched for high molecular weight dsRNA (HMW) caused larger maternal and placental immune responses compared to low molecular weight (LMW) poly(I:C). These variable effects were unrelated to possible LPS contamination. Finally, we found marked variability between different batches of the poly(I:C) potassium salt in terms of their effects on spontaneous abortion rates. This batch-to-batch variability was confirmed by three independent research groups using distinct poly(I:C) administration protocols in mice. Taken together, the present data confirm that different poly(I:C) products can induce varying immune responses and can differentially affect maternal physiology and pregnancy outcomes. It is therefore pivotal that researchers working with poly(I:C)-based MIA models ascertain and consider the precise molecular composition and immunogenicity of the product in use. We recommend the establishment of reference databases that combine phenotype data with empirically acquired quality information, which can aid the design, implementation and interpretation of poly(I:C)-based MIA models.
Collapse
Affiliation(s)
- Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Lindsay N Hayes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Alice Zambon
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, and Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Mental Health, Johns Hopkins University, Baltimore, USA; Bloomberg School of Medicine, Johns Hopkins Hospital and Medical Institutions, Baltimore, USA
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| |
Collapse
|
42
|
Weber-Stadlbauer U, Meyer U. Challenges and opportunities of a-priori and a-posteriori variability in maternal immune activation models. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Maternal Immune Activation during Pregnancy Alters the Behavior Profile of Female Offspring of Sprague Dawley Rats. eNeuro 2019; 6:eN-NWR-0437-18. [PMID: 31016229 PMCID: PMC6477592 DOI: 10.1523/eneuro.0437-18.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Sex differences are documented in psychiatric and neurological disorders, yet most preclinical animal research has been conducted in males only. There is a need to better understand of the nature of sex differences in brain disease in order to meet the needs of psychiatric patients. We present the behavior profile of adult female offspring produced using a maternal immune activation (MIA) model where pregnant rats receive an immune stimulant and the offspring typically show various abnormalities consistent with psychiatric illnesses such as schizophrenia and autism. The results in female offspring were compared to a previously published cohort of their male siblings (Lins et al., 2018). We examined prepulse inhibition (PPI), sociability, MK-801-induced locomotor activity, crossmodal object recognition (CMOR), and oddity discrimination; behaviors relevant to the positive, negative, and cognitive symptoms of schizophrenia. No between-treatment differences in PPI or locomotor activity were noted. Tactile memory was observed in the control and treated female offspring, visual recognition memory was deficient in the polyinosinic:polycytidylic acid (polyI:C) offspring only, and both groups lacked crossmodal recognition. PolyI:C offspring were impaired in oddity preference and had reduced preference for a stranger conspecific in a sociability assay. Systemic maternal CXCL1, IL-6, and TNF-a levels 3 h after polyI:C treatment were determined, but no relationship was found between these cytokines and the behavior seen in the adult female offspring. Overall, female offspring of polyI:C-treated dams display an array of behavior abnormalities relevant to psychiatric illnesses such as schizophrenia similar to those previously reported in male rats.
Collapse
|
44
|
Paylor JW, Wendlandt E, Freeman TS, Greba Q, Marks WN, Howland JG, Winship IR. Impaired Cognitive Function after Perineuronal Net Degradation in the Medial Prefrontal Cortex. eNeuro 2018; 5:ENEURO.0253-18.2018. [PMID: 30627657 PMCID: PMC6325561 DOI: 10.1523/eneuro.0253-18.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/09/2018] [Accepted: 11/29/2018] [Indexed: 11/21/2022] Open
Abstract
Perineuronal nets (PNNs) are highly organized components of the extracellular matrix that surround a subset of mature neurons in the CNS. These structures play a critical role in regulating neuronal plasticity, particularly during neurodevelopment. Consistent with this role, their presence is associated with functional and structural stability of the neurons they ensheath. A loss of PNNs in the prefrontal cortex (PFC) has been suggested to contribute to cognitive impairment in disorders such as schizophrenia. However, the direct consequences of PNN loss in medial PFC (mPFC) on cognition has not been demonstrated. Here, we examined behavior after disruption of PNNs in mPFC of Long-Evans rats following injection of the enzyme chondroitinase ABC (ChABC). Our data show that ChABC-treated animals were impaired on tests of object oddity perception. Performance in the cross-modal object recognition (CMOR) task was not significantly different for ChABC-treated rats, although ChABC-treated rats were not able to perform above chance levels whereas control rats were. ChABC-treated animals were not significantly different from controls on tests of prepulse inhibition (PPI), set-shifting (SS), reversal learning, or tactile and visual object recognition memory. Posthumous immunohistochemistry confirmed significantly reduced PNNs in mPFC due to ChABC treatment. Moreover, PNN density in the mPFC predicted performance on the oddity task, where higher PNN density was associated with better performance. These findings suggest that PNN loss within the mPFC impairs some aspects of object oddity perception and recognition and that PNNs contribute to cognitive function in young adulthood.
Collapse
Affiliation(s)
- John W. Paylor
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, T6G 2R3 Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, T6G 2E1 Canada
| | - Eszter Wendlandt
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, T6G 2R3 Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, T6G 2E1 Canada
| | - Tara S. Freeman
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, T6G 2R3 Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, T6G 2E1 Canada
| | - Quentin Greba
- Department of Physiology, University of Saskatchewan, Saskatoon, S7N 5E Canada
| | - Wendie N. Marks
- Department of Physiology, University of Saskatchewan, Saskatoon, S7N 5E Canada
| | - John G. Howland
- Department of Physiology, University of Saskatchewan, Saskatoon, S7N 5E Canada
| | - Ian R. Winship
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, T6G 2R3 Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, T6G 2E1 Canada
| |
Collapse
|