1
|
Murcia-Belmonte V, Chauvin G, Coca Y, Escalante A, Klein R, Herrera E. EphA4 Mediates EphrinB1-Dependent Adhesion in Retinal Ganglion Cells. J Neurosci 2025; 45:e0043242024. [PMID: 39622649 PMCID: PMC11756631 DOI: 10.1523/jneurosci.0043-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 01/24/2025] Open
Abstract
Eph/ephrin signaling is crucial for organizing retinotopic maps in vertebrates. Unlike other EphAs, which are expressed in the embryonic ventral retina, EphA4 is found in the retinal ganglion cell (RGC) layer at perinatal stages, and its role in mammalian visual system development remains unclear. Using classic in vitro stripe assays, we demonstrate that, while RGC axons are repelled by ephrinB2, they grow on ephrinB1 stripes through EphA4-mediated adhesion. In vivo, retinal axons from EphA4-deficient mice from either sex show impaired arborization in the medial, but not lateral, regions of the superior colliculus that express ephrinB1. Gain-of-function experiments further reveal that ephrinB1-mediated adhesion depends on EphA4 tyrosine kinase activity but it is independent of its sterile alpha motif. Together, our findings suggest that EphA4/ephrinB1 forward signaling likely facilitates adhesion between retinal axon terminals and cells in the medial colliculus, contributing to the establishment of proper connectivity within the visual system.
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Géraud Chauvin
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Yaiza Coca
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Augusto Escalante
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Rüdiger Klein
- Department 'Molecules - Signals - Development', Max Planck Institute for Biological Intelligence, Martinsried 82152, Germany
| | - Eloísa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| |
Collapse
|
2
|
Meza-Sosa KF, Valle-Garcia D, González-Conchillos H, Blanco-Ayala T, Salazar A, Flores I, Gómez-Manzo S, González Esquivel DF, Pérez de la Cruz G, Pineda B, Pérez de la Cruz V. Molecular Mimicry between Toxoplasma gondii B-Cell Epitopes and Neurodevelopmental Proteins: An Immunoinformatic Approach. Biomolecules 2024; 14:933. [PMID: 39199321 PMCID: PMC11352964 DOI: 10.3390/biom14080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Epidemiological studies and meta-analyses have shown a strong association between high seroprevalence of Toxoplasma gondii (T. gondii) and schizophrenia. Schizophrenic patients showed higher levels of anti-Toxoplasma immunoglobulins M and G (IgM and IgG) when compared to healthy controls. Previously, in a rat model, we demonstrated that the progeny of mothers immunized with T. gondii lysates before gestation had behavioral and social impairments during adulthood. Therefore, we suggested that T. gondii infection can trigger autoreactivity by molecularly mimicking host brain proteins. Here, we aimed to identify the occurrence of antigenic mimicry between T. gondii epitopes and host brain proteins. Using a bioinformatic approach, we predicted T. gondii RH-88 B cell epitopes and compared them to human cell-surface proteins involved in brain development and differentiation (BrainS). Five different algorithms for B-cell-epitope prediction were used and compared, resulting in 8584 T. gondii epitopes. We then compared T. gondii predicted epitopes to BrainS proteins by local sequence alignments using BLASTP. T. gondii immunogenic epitopes significantly overlapped with 42 BrainS proteins. Among these overlapping proteins essential for brain development and differentiation, we identified HSP90 and NOTCH receptors as the proteins most likely to be targeted by the maternally generated pathogenic antibodies due to their topological overlap at the extracellular region of their sequence. This analysis highlights the relevance of pregestational clinical surveillance and screening for potential pathogenic anti-T. gondii antibodies. It also identifies potential targets for the design of vaccines that could prevent behavioral and cognitive impairments associated with pre-gestational T. gondii exposure.
Collapse
Affiliation(s)
- Karla F. Meza-Sosa
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - David Valle-Garcia
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Hugo González-Conchillos
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Tonali Blanco-Ayala
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Mexico City 11350, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Dinora Fabiola González Esquivel
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - Gonzalo Pérez de la Cruz
- Department of Mathematics, Faculty of Sciences, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City 04510, Mexico;
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| |
Collapse
|
3
|
Baudet S, Zagar Y, Roche F, Gomez-Bravo C, Couvet S, Bécret J, Belle M, Vougny J, Uthayasuthan S, Ros O, Nicol X. Subcellular second messenger networks drive distinct repellent-induced axon behaviors. Nat Commun 2023; 14:3809. [PMID: 37369692 PMCID: PMC10300027 DOI: 10.1038/s41467-023-39516-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Second messengers, including cAMP, cGMP and Ca2+ are often placed in an integrating position to combine the extracellular cues that orient growing axons in the developing brain. This view suggests that axon repellents share the same set of cellular messenger signals and that axon attractants evoke opposite cAMP, cGMP and Ca2+ changes. Investigating the confinement of these second messengers in cellular nanodomains, we instead demonstrate that two repellent cues, ephrin-A5 and Slit1, induce spatially segregated signals. These guidance molecules activate subcellular-specific second messenger crosstalk, each signaling network controlling distinct axonal morphology changes in vitro and pathfinding decisions in vivo.
Collapse
Affiliation(s)
- Sarah Baudet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Claudia Gomez-Bravo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Johann Bécret
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Morgane Belle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Juliette Vougny
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | | | - Oriol Ros
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
4
|
Li VJ, Chorghay Z, Ruthazer ES. A Guide for the Multiplexed: The Development of Visual Feature Maps in the Brain. Neuroscience 2023; 508:62-75. [PMID: 35952996 DOI: 10.1016/j.neuroscience.2022.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/17/2023]
Abstract
Neural maps are found ubiquitously in the brain, where they encode a wide range of behaviourally relevant features into neural space. Developmental studies have shown that animals devote a great deal of resources to establish consistently patterned organization in neural circuits throughout the nervous system, but what purposes maps serve beneath their often intricate appearance and composition is a topic of active debate and exploration. In this article, we review the general mechanisms of map formation, with a focus on the visual system, and then survey notable organizational properties of neural maps: the multiplexing of feature representations through a nested architecture, the interspersing of fine-scale heterogeneity within a globally smooth organization, and the complex integration at the microcircuit level that enables a high dimensionality of information encoding. Finally, we discuss the roles of maps in cortical functions, including input segregation, feature extraction and routing of circuit outputs for higher order processing, as well as the evolutionary basis for the properties we observe in neural maps.
Collapse
Affiliation(s)
- Vanessa J Li
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| | - Zahraa Chorghay
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
5
|
Neurospheres obtained from the ciliary margin of the chicken eye possess positional values and retinal ganglion cells differentiated from them respond to EphA/ephrin-A system. Exp Eye Res 2022; 217:108965. [DOI: 10.1016/j.exer.2022.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
|
6
|
Clark JF, Soriano PM. Pulling back the curtain: The hidden functions of receptor tyrosine kinases in development. Curr Top Dev Biol 2022; 149:123-152. [PMID: 35606055 PMCID: PMC9127239 DOI: 10.1016/bs.ctdb.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor tyrosine kinases (RTKs) are a conserved superfamily of transmembrane growth factor receptors that drive numerous cellular processes during development and in the adult. Upon activation, multiple adaptors and signaling effector proteins are recruited to binding site motifs located within the intracellular domain of the RTK. These RTK-effector interactions drive subsequent intracellular signaling cascades involved in canonical RTK signaling. Genetic dissection has revealed that alleles of Fibroblast Growth Factor receptors (FGFRs) that lack all canonical RTK signaling still retain some kinase-dependent biological activity. Here we examine how genetic analysis can be used to understand the mechanism by which RTKs drive multiple developmental processes via canonical signaling while revealing noncanonical activities. Recent data from both FGFRs and other RTKs highlight potential noncanonical roles in cell adhesion and nuclear signaling. The data supporting such functions are discussed as are recent technologies that have the potential to provide valuable insight into the developmental significance of these noncanonical activities.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philippe M Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
7
|
Trigila AP, Pisciottano F, Franchini LF. Hearing loss genes reveal patterns of adaptive evolution at the coding and non-coding levels in mammals. BMC Biol 2021; 19:244. [PMID: 34784928 PMCID: PMC8594068 DOI: 10.1186/s12915-021-01170-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Background Mammals possess unique hearing capacities that differ significantly from those of the rest of the amniotes. In order to gain insights into the evolution of the mammalian inner ear, we aim to identify the set of genetic changes and the evolutionary forces that underlie this process. We hypothesize that genes that impair hearing when mutated in humans or in mice (hearing loss (HL) genes) must play important roles in the development and physiology of the inner ear and may have been targets of selective forces across the evolution of mammals. Additionally, we investigated if these HL genes underwent a human-specific evolutionary process that could underlie the evolution of phenotypic traits that characterize human hearing. Results We compiled a dataset of HL genes including non-syndromic deafness genes identified by genetic screenings in humans and mice. We found that many genes including those required for the normal function of the inner ear such as LOXHD1, TMC1, OTOF, CDH23, and PCDH15 show strong signatures of positive selection. We also found numerous noncoding accelerated regions in HL genes, and among them, we identified active transcriptional enhancers through functional enhancer assays in transgenic zebrafish. Conclusions Our results indicate that the key inner ear genes and regulatory regions underwent adaptive evolution in the basal branch of mammals and along the human-specific branch, suggesting that they could have played an important role in the functional remodeling of the cochlea. Altogether, our data suggest that morphological and functional evolution could be attained through molecular changes affecting both coding and noncoding regulatory regions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01170-6.
Collapse
Affiliation(s)
- Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Francisco Pisciottano
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.,Current address: Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Johnson KO, Triplett JW. Wiring subcortical image-forming centers: Topography, laminar targeting, and map alignment. Curr Top Dev Biol 2020; 142:283-317. [PMID: 33706920 DOI: 10.1016/bs.ctdb.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Efficient sensory processing is a complex and important function for species survival. As such, sensory circuits are highly organized to facilitate rapid detection of salient stimuli and initiate motor responses. For decades, the retina's projections to image-forming centers have served as useful models to elucidate the mechanisms by which such exquisite circuitry is wired. In this chapter, we review the roles of molecular cues, neuronal activity, and axon-axon competition in the development of topographically ordered retinal ganglion cell (RGC) projections to the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN). Further, we discuss our current state of understanding regarding the laminar-specific targeting of subclasses of RGCs in the SC and its homolog, the optic tectum (OT). Finally, we cover recent studies examining the alignment of projections from primary visual cortex with RGCs that monitor the same region of space in the SC.
Collapse
Affiliation(s)
- Kristy O Johnson
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States; Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, DC, United States
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States; Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, United States.
| |
Collapse
|
9
|
Medori M, Spelzini G, Scicolone G. Molecular complexity of visual mapping: a challenge for regenerating therapy. Neural Regen Res 2020; 15:382-389. [PMID: 31571645 PMCID: PMC6921353 DOI: 10.4103/1673-5374.266044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigating the cellular and molecular mechanisms involved in the development of topographically ordered connections in the central nervous system constitutes an important issue in neurobiology because these connections are the base of the central nervous system normal function. The dominant model to study the development of topographic maps is the projection from the retinal ganglion cells to the optic tectum/colliculus. The expression pattern of Eph/ephrin system in opposing gradients both in the retina and the tectum, labels the local addresses on the target and gives specific sensitivities to growth cones according to their topographic origin in the retina. The rigid precision of normal retinotopic mapping has prompted the chemoaffinity hypothesis, positing axonal targeting to be based on fixed biochemical affinities between fibers and targets. However, several lines of evidence have shown that the mapping can adjust to experimentally modified targets with flexibility, demonstrating the robustness of the guidance process. Here we discuss the complex ways the Ephs and ephrins interact allowing to understand how the retinotectal mapping is a precise but also a flexible process.
Collapse
Affiliation(s)
- Mara Medori
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gonzalo Spelzini
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Scicolone
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
Cheng Q, Graves MD, Pallas SL. Dynamic Alterations of Retinal EphA5 Expression in Retinocollicular Map Plasticity. Dev Neurobiol 2019; 79:252-267. [PMID: 30916472 PMCID: PMC6506164 DOI: 10.1002/dneu.22675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 11/10/2022]
Abstract
The topographically ordered retinocollicular projection is an excellent system for studying the mechanism of axon guidance. Gradients of EphA receptors in the retina and ephrin-As in the superior colliculus (SC) pattern the anteroposterior axis of the retinocollicular map, but whether they are involved in map plasticity after injury is unknown. Partial damage to the caudal SC at birth creates a compressed, complete retinotopic map in the remaining SC without affecting visual response properties. Previously, we found that the gradient of ephrin-A expression in compressed maps is steeper than normal, suggesting an instructive role in compression. Here we measured EphA5 mRNA and protein levels after caudal SC damage in order to test the hypothesis that changes in retinal EphA5 expression occur that are complementary to the changes in collicular ephrin-A expression. We find that the nasotemporal gradient of EphA5 receptor expression steepens in the retina and overall expression levels change dynamically, especially in temporal retina, supporting the hypothesis. This change in receptor expression occurs after the change in ephrin-A ligand expression. We propose that changes in the retinal EphA5 gradient guide recovery of the retinocollicular projection from early injury. This could occur directly through the change in EphA5 expression instructing retino-SC map compression, or through ephrin-A ligand signaling instructing a change in EphA5 receptor expression that in turn signals the retinocollicular map to compress. Understanding what molecular signals direct compensation for injury is essential to developing rehabilitative strategies and maximizing the potential for recovery.
Collapse
Affiliation(s)
- Qi Cheng
- Neuroscience Institute Georgia State University, Atlanta, GA, USA
| | - Mark D. Graves
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Sarah L. Pallas
- Neuroscience Institute Georgia State University, Atlanta, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
11
|
Nakamoto C, Durward E, Horie M, Nakamoto M. Nell2 regulates the contralateral-versus-ipsilateral visual projection as a domain-specific positional cue. Development 2019; 146:dev.170704. [PMID: 30745429 DOI: 10.1242/dev.170704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023]
Abstract
In mammals with binocular vision, retinal ganglion cell (RGC) axons from each eye project to eye-specific domains in the contralateral and ipsilateral dorsal lateral geniculate nucleus (dLGN), underpinning disparity-based stereopsis. Although domain-specific axon guidance cues that discriminate contralateral and ipsilateral RGC axons have long been postulated as a key mechanism for development of the eye-specific retinogeniculate projection, the molecular nature of such cues has remained elusive. Here, we show that the extracellular glycoprotein Nell2 (neural epidermal growth factor-like-like 2) is expressed in the dorsomedial region of the dLGN, which ipsilateral RGC axons terminate in and contralateral axons avoid. In Nell2 mutant mice, contralateral RGC axons abnormally invaded the ipsilateral domain of the dLGN, and ipsilateral axons terminated in partially fragmented patches, forming a mosaic pattern of contralateral and ipsilateral axon-termination zones. In vitro, Nell2 exerted inhibitory effects on contralateral, but not ipsilateral, RGC axons. These results provide evidence that Nell2 acts as a domain-specific positional label in the dLGN that discriminates contralateral and ipsilateral RGC axons, and that it plays essential roles in the establishment of the eye-specific retinogeniculate projection.
Collapse
Affiliation(s)
- Chizu Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Elaine Durward
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Masato Horie
- Department of CNS Research, Otsuka Pharmaceutical, 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masaru Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
12
|
Regulation of axonal EphA4 forward signaling is involved in the effect of EphA3 on chicken retinal ganglion cell axon growth during retinotectal mapping. Exp Eye Res 2019; 178:46-60. [DOI: 10.1016/j.exer.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 12/22/2022]
|
13
|
Protein Tyrosine Phosphatase Receptor Type J (PTPRJ) Regulates Retinal Axonal Projections by Inhibiting Eph and Abl Kinases in Mice. J Neurosci 2018; 38:8345-8363. [PMID: 30082414 DOI: 10.1523/jneurosci.0128-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/05/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022] Open
Abstract
Eph receptors play pivotal roles in the axon guidance of retinal ganglion cells (RGCs) at the optic chiasm and the establishment of the topographic retinocollicular map. We previously demonstrated that protein tyrosine phosphatase receptor type O (PTPRO) is specifically involved in the control of retinotectal projections in chicks through the dephosphorylation of EphA and EphB receptors. We subsequently revealed that all the mouse R3 subfamily members (PTPRB, PTPRH, PTPRJ, and PTPRO) of the receptor protein tyrosine phosphatase (RPTP) family inhibited Eph receptors as their substrates in cultured mammalian cells. We herein investigated the functional roles of R3 RPTPs in the projection of mouse retinal axon of both sexes. Ptpro and Ptprj were expressed in mouse RGCs; however, Ptprj expression levels were markedly higher than those of Ptpro Consistent with their expression levels, Eph receptor activity was significantly enhanced in Ptprj-knock-out (Ptprj-KO) retinas. In Ptprj-KO and Ptprj/Ptpro-double-KO (DKO) mice, the number of retinal axons that projected ipsilaterally or to the contralateral eye was significantly increased. Furthermore, retinal axons in Ptprj-KO and DKO mice formed anteriorly shifted ectopic terminal zones in the superior colliculus (SC). We found that c-Abl (Abelson tyrosine kinase) was downstream of ephrin-Eph signaling for the repulsion of retinal axons at the optic chiasm and in the SC. c-Abl was identified as a novel substrate for PTPRJ and PTPRO, and the phosphorylation of c-Abl was upregulated in Ptprj-KO and DKO retinas. Thus, PTPRJ regulates retinocollicular projections in mice by controlling the activity of Eph and c-Abl kinases.SIGNIFICANCE STATEMENT Correct retinocollicular projection is a prerequisite for proper vision. Eph receptors have been implicated in retinal axon guidance at the optic chiasm and the establishment of the topographic retinocollicular map. We herein demonstrated that protein tyrosine phosphatase receptor type J (PTPRJ) regulated retinal axonal projections by controlling Eph activities. The retinas of Ptprj-knock-out (KO) and Ptpro/Ptprj double-KO mice exhibited significantly enhanced Eph activities over those in wild-type mice, and their axons showed defects in pathfinding at the chiasm and retinocollicular topographic map formation. We also revealed that c-Abl (Abelson tyrosine kinase) downstream of Eph receptors was regulated by PTPRJ. These results indicate that the regulation of the ephrin-Eph-c-Abl axis by PTPRJ plays pivotal roles in the proper central projection of retinal axons during development.
Collapse
|
14
|
Guidance of retinal axons in mammals. Semin Cell Dev Biol 2017; 85:48-59. [PMID: 29174916 DOI: 10.1016/j.semcdb.2017.11.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022]
Abstract
In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision.
Collapse
|
15
|
Ventrella R, Kaplan N, Getsios S. Asymmetry at cell-cell interfaces direct cell sorting, boundary formation, and tissue morphogenesis. Exp Cell Res 2017; 358:58-64. [PMID: 28322822 PMCID: PMC5544567 DOI: 10.1016/j.yexcr.2017.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Abstract
During development, cells of seemingly homogenous character sort themselves out into distinct compartments in order to generate cell types with specialized features that support tissue morphogenesis and function. This process is often driven by receptors at the cell membrane that probe the extracellular microenvironment for specific ligands and alter downstream signaling pathways impacting transcription, cytoskeletal organization, and cell adhesion to regulate cell sorting and subsequent boundary formation. This review will focus on two of these receptor families, Eph and Notch, both of which are intrinsically non-adhesive and are activated by a unique set of ligands that are asymmetrically distributed from their receptor on neighboring cells. Understanding the requirement of asymmetric ligand-receptor signaling at the membrane under homeostatic conditions gives insight into how misregulation of these pathways contributes to boundary disruption in diseases like cancer.
Collapse
Affiliation(s)
- Rosa Ventrella
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Spiro Getsios
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
16
|
Pallas SL. The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry. Front Neurosci 2017; 11:344. [PMID: 28701910 PMCID: PMC5487431 DOI: 10.3389/fnins.2017.00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022] Open
Abstract
Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways.
Collapse
Affiliation(s)
- Sarah L. Pallas
- Neuroscience Institute, Georgia State UniversityAtlanta, GA, United States
| |
Collapse
|
17
|
Elliott KL, Kersigo J, Pan N, Jahan I, Fritzsch B. Spiral Ganglion Neuron Projection Development to the Hindbrain in Mice Lacking Peripheral and/or Central Target Differentiation. Front Neural Circuits 2017; 11:25. [PMID: 28450830 PMCID: PMC5389974 DOI: 10.3389/fncir.2017.00025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/28/2017] [Indexed: 12/16/2022] Open
Abstract
We investigate the importance of the degree of peripheral or central target differentiation for mouse auditory afferent navigation to the organ of Corti and auditory nuclei in three different mouse models: first, a mouse in which the differentiation of hair cells, but not central auditory nuclei neurons is compromised (Atoh1-cre; Atoh1f/f ); second, a mouse in which hair cell defects are combined with a delayed defect in central auditory nuclei neurons (Pax2-cre; Atoh1f/f ), and third, a mouse in which both hair cells and central auditory nuclei are absent (Atoh1-/-). Our results show that neither differentiated peripheral nor the central target cells of inner ear afferents are needed (hair cells, cochlear nucleus neurons) for segregation of vestibular and cochlear afferents within the hindbrain and some degree of base to apex segregation of cochlear afferents. These data suggest that inner ear spiral ganglion neuron processes may predominantly rely on temporally and spatially distinct molecular cues in the region of the targets rather than interaction with differentiated target cells for a crude topological organization. These developmental data imply that auditory neuron navigation properties may have evolved before auditory nuclei.
Collapse
Affiliation(s)
| | | | | | | | - Bernd Fritzsch
- Department of Biology, University of IowaIowa City, IA, USA
| |
Collapse
|
18
|
Das G, Yu Q, Hui R, Reuhl K, Gale NW, Zhou R. EphA5 and EphA6: regulation of neuronal and spine morphology. Cell Biosci 2016; 6:48. [PMID: 27489614 PMCID: PMC4971699 DOI: 10.1186/s13578-016-0115-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
Background The Eph family of receptor tyrosine kinases plays important roles in neural development. Previous studies have implicated Eph receptors and their ligands, the ephrins, in neuronal migration, axon bundling and guidance to specific targets, dendritic spine formation and neural plasticity. However, specific contributions of EphA5 and EphA6 receptors to the regulation of neuronal cell morphology have not been well studied. Results Here we show that deletion of EphA5 and EphA6 results in abnormal Golgi staining patterns of cells in the brain, and abnormal spine morphology. Conclusion These observations suggest novel functions of these Eph receptors in the regulation of neuronal and spine structure in brain development and function.
Collapse
Affiliation(s)
- Gitanjali Das
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Qili Yu
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Ryan Hui
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | | | - Renping Zhou
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
19
|
Wang J, Galvao J, Beach KM, Luo W, Urrutia RA, Goldberg JL, Otteson DC. Novel Roles and Mechanism for Krüppel-like Factor 16 (KLF16) Regulation of Neurite Outgrowth and Ephrin Receptor A5 (EphA5) Expression in Retinal Ganglion Cells. J Biol Chem 2016; 291:18084-95. [PMID: 27402841 DOI: 10.1074/jbc.m116.732339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Regenerative medicine holds great promise for the treatment of degenerative retinal disorders. Krüppel-like factors (KLFs) are transcription factors that have recently emerged as key tools in regenerative medicine because some of them can function as epigenetic reprogrammers in stem cell biology. Here, we show that KLF16, one of the least understood members of this family, is a POU4F2 independent transcription factor in retinal ganglion cells (RGCs) as early as embryonic day 15. When overexpressed, KLF16 inhibits RGC neurite outgrowth and enhances RGC growth cone collapse in response to exogenous ephrinA5 ligands. Ephrin/EPH signaling regulates RGC connectivity. The EphA5 promoter contains multiple GC- and GT-rich KLF-binding sites, which, as shown by ChIP-assays, bind KLF16 in vivo In electrophoretic mobility shift assays, KLF16 binds specifically to a single KLF site near the EphA5 transcription start site that is required for KLF16 transactivation. Interestingly, methylation of only six of 98 CpG dinucleotides within the EphA5 promoter blocks its transactivation by KLF16 but enables transactivation by KLF2 and KLF15. These data demonstrate a role for KLF16 in regulation of RGC neurite outgrowth and as a methylation-sensitive transcriptional regulator of EphA5 expression. Together, these data identify differential low level methylation as a novel mechanism for regulating KLF16-mediated EphA5 expression across the retina. Because of the critical role of ephrin/EPH signaling in patterning RGC connectivity, understanding the role of KLFs in regulating neurite outgrowth and Eph receptor expression will be vital for successful restoration of functional vision through optic nerve regenerative therapies.
Collapse
Affiliation(s)
- Jianbo Wang
- From the Departments of Physiological Optics and Vision Science and
| | - Joana Galvao
- the Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, California 94303, the Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, and
| | - Krista M Beach
- From the Departments of Physiological Optics and Vision Science and
| | - Weijia Luo
- Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Raul A Urrutia
- the Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Epigenomics Translational Program, Center for Individualized Medicine, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Jeffrey L Goldberg
- the Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, California 94303, the Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, and
| | - Deborah C Otteson
- From the Departments of Physiological Optics and Vision Science and Biology and Biochemistry, University of Houston, Houston, Texas 77204,
| |
Collapse
|
20
|
Sweeney NT, James KN, Sales EC, Feldheim DA. Ephrin-As are required for the topographic mapping but not laminar choice of physiologically distinct RGC types. Dev Neurobiol 2015; 75:584-93. [PMID: 25649160 DOI: 10.1002/dneu.22265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/08/2015] [Accepted: 01/25/2015] [Indexed: 02/02/2023]
Abstract
In the retinocollicular projection, the axons from functionally distinct retinal ganglion cell (RGC) types form synapses in a stereotypical manner along the superficial to deep axis of the superior colliculus (SC). Each lamina contains an orderly topographic map of the visual scene but different laminae receive inputs from distinct sets of RGCs, and inputs to each lamina are aligned with the others to integrate parallel streams of visual information. To determine the relationship between laminar organization and topography of physiologically defined RGC types, we used genetic and anatomical axon tracing techniques in wild type and ephrin-A mutant mice. We find that adjacent RGCs of the same physiological type can send axons to both ectopic and normal topographic locations, supporting a penetrance model for ephrin-A independent mapping cues. While the overall laminar organization in the SC is unaffected in ephrin-A2/A5 double mutant mice, analysis of the laminar locations of ectopic terminations shows that the topographic maps of different RGC types are misaligned. These data lend support to the hypothesis that the retinocollicular projection is a superimposition of a number of individual two-dimensional topographic maps that originate from specific types of RGCs, require ephrin-A signaling, and form independently of the other maps.
Collapse
Affiliation(s)
- Neal T Sweeney
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| | - Kiely N James
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| | - Emily C Sales
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| | - David A Feldheim
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| |
Collapse
|
21
|
Lee D, Sung ES, Ahn JH, An S, Huh J, You WK. Development of antibody-based c-Met inhibitors for targeted cancer therapy. Immunotargets Ther 2015; 4:35-44. [PMID: 27471710 PMCID: PMC4918247 DOI: 10.2147/itt.s37409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Signaling pathways mediated by receptor tyrosine kinases (RTKs) and their ligands play important roles in the development and progression of human cancers, which makes RTK-mediated signaling pathways promising therapeutic targets in the treatment of cancer. Compared with small-molecule compounds, antibody-based therapeutics can more specifically recognize and bind to ligands and RTKs. Several antibody inhibitors of RTK-mediated signaling pathways, such as human epidermal growth factor receptor 2, vascular endothelial growth factor, epidermal growth factor receptor or vascular endothelial growth factor receptor 2, have been developed and are widely used to treat cancer patients. However, since the therapeutic options are still limited in terms of therapeutic efficacy and types of cancers that can be treated, efforts are being made to identify and evaluate novel RTK-mediated signaling pathways as targets for more efficacious cancer treatment. The hepatocyte growth factor/c-Met signaling pathway has come into the spotlight as a promising target for development of potent cancer therapeutic agents. Multiple antibody-based therapeutics targeting hepatocyte growth factor or c-Met are currently in preclinical or clinical development. This review focuses on the development of inhibitors of the hepatocyte growth factor/c-Met signaling pathway for cancer treatment, including critical issues in clinical development and future perspectives for antibody-based therapeutics.
Collapse
Affiliation(s)
- Dongheon Lee
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| | - Eun-Sil Sung
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| | - Jin-Hyung Ahn
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| | - Sungwon An
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| | - Jiwon Huh
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| | - Weon-Kyoo You
- Hanwha Chemical R&D Center, Biologics Business Unit, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Armendáriz BG, Masdeu MDM, Soriano E, Ureña JM, Burgaya F. The diverse roles and multiple forms of focal adhesion kinase in brain. Eur J Neurosci 2014; 40:3573-90. [DOI: 10.1111/ejn.12737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/25/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Beatriz G. Armendáriz
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Maria del Mar Masdeu
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Eduardo Soriano
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Jesús M. Ureña
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Ferran Burgaya
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| |
Collapse
|
23
|
Godfrey KB, Swindale NV. Modeling development in retinal afferents: retinotopy, segregation, and ephrinA/EphA mutants. PLoS One 2014; 9:e104670. [PMID: 25122119 PMCID: PMC4133250 DOI: 10.1371/journal.pone.0104670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
During neural development, neurons extend axons to target areas of the brain. Through processes of growth, branching and retraction these axons establish stereotypic patterns of connectivity. In the visual system, these patterns include retinotopic organization and the segregation of individual axons onto different subsets of target neurons based on the eye of origin (ocular dominance) or receptive field type (ON or OFF). Characteristic disruptions to these patterns occur when neural activity or guidance molecule expression is perturbed. In this paper we present a model that explains how these developmental patterns might emerge as a result of the coordinated growth and retraction of individual axons and synapses responding to position-specific markers, trophic factors and spontaneous neural activity. This model derives from one presented earlier (Godfrey et al., 2009) but which is here extended to account for a wider range of phenomena than previously described. These include ocular dominance and ON-OFF segregation and the results of altered ephrinA and EphA guidance molecule expression. The model takes into account molecular guidance factors, realistic patterns of spontaneous retinal wave activity, trophic molecules, homeostatic mechanisms, axon branching and retraction rules and intra-axonal signaling mechanisms that contribute to the survival of nearby synapses on an axon. We show that, collectively, these mechanisms can account for a wider range of phenomena than previous models of retino-tectal development.
Collapse
Affiliation(s)
- Keith B. Godfrey
- NERF, Leuven, Belgium
- imec, Leuven, Belgium
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Alberta, Canada
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| | - Nicholas V. Swindale
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Weth F, Fiederling F, Gebhardt C, Bastmeyer M. Chemoaffinity in topographic mapping revisited--is it more about fiber-fiber than fiber-target interactions? Semin Cell Dev Biol 2014; 35:126-35. [PMID: 25084320 DOI: 10.1016/j.semcdb.2014.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
Abstract
Axonal projections between two populations of neurons, which preserve neighborhood relationships, are called topographic. They are ubiquitous in the brain. The development of the retinotectal projection, mapping the retinal output onto the roof of the midbrain, has been studied for decades as a model system. The rigid precision of normal retinotopic mapping has prompted the chemoaffinity hypothesis, positing axonal targeting to be based on fixed biochemical affinities between fibers and targets. In addition, however, abundant evidence has been gathered mainly in the 1970s and 80s that the mapping can adjust to variegated targets with stunning flexibility demonstrating the extraordinary robustness of the guidance process. The identification of ephrins and Eph-receptors as the underlying molecular cues has mostly been interpreted as supporting the fiber-target chemoaffinity hypothesis, while the evidence on mapping robustness has largely been neglected. By having a fresh look on the old data, we expound that they indicate, in addition to fiber-target chemoaffinity, the existence of a second autonomous guidance influence, which we call fiber-fiber chemoaffinity. Classical in vitro observations suggest both influences be composed of opposing monofunctional guidance activities. Based on the molecular evidence, we propose that those might be ephrin/Eph forward and reverse signaling, not only in fiber-target but also in fiber-fiber interactions. In fact, computational models based on this assumption can reconcile the seemingly conflicting findings on rigid and flexible topographic mapping. Supporting the suggested parsimonious and powerful mechanism, they contribute to an understanding of the evolutionary success of robust topographic mass wiring of axons.
Collapse
Affiliation(s)
- Franco Weth
- Institute of Zoology, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany.
| | - Felix Fiederling
- Institute of Zoology, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany
| | - Christoph Gebhardt
- Institut Curie, Centre de Recherche, CNRS U934/URM3215, 11-13, Rue Pierre et Marie Curie, 75005 Paris, France
| | - Martin Bastmeyer
- Institute of Zoology, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany
| |
Collapse
|
25
|
Cramer KS, Gabriele ML. Axon guidance in the auditory system: multiple functions of Eph receptors. Neuroscience 2014; 277:152-62. [PMID: 25010398 DOI: 10.1016/j.neuroscience.2014.06.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/28/2014] [Indexed: 11/29/2022]
Abstract
The neural pathways of the auditory system underlie our ability to detect sounds and to transform amplitude and frequency information into rich and meaningful perception. While it shares some organizational features with other sensory systems, the auditory system has some unique functions that impose special demands on precision in circuit assembly. In particular, the cochlear epithelium creates a frequency map rather than a space map, and specialized pathways extract information on interaural time and intensity differences to permit sound source localization. The assembly of auditory circuitry requires the coordinated function of multiple molecular cues. Eph receptors and their ephrin ligands constitute a large family of axon guidance molecules with developmentally regulated expression throughout the auditory system. Functional studies of Eph/ephrin signaling have revealed important roles at multiple levels of the auditory pathway, from the cochlea to the auditory cortex. These proteins provide graded cues used in establishing tonotopically ordered connections between auditory areas, as well as discrete cues that enable axons to form connections with appropriate postsynaptic partners within a target area. Throughout the auditory system, Eph proteins help to establish patterning in neural pathways during early development. This early targeting, which is further refined with neuronal activity, establishes the precision needed for auditory perception.
Collapse
Affiliation(s)
- K S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, United States.
| | - M L Gabriele
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States
| |
Collapse
|
26
|
Mathis C, Savier E, Bott JB, Clesse D, Bevins N, Sage-Ciocca D, Geiger K, Gillet A, Laux-Biehlmann A, Goumon Y, Lacaud A, Lelièvre V, Kelche C, Cassel JC, Pfrieger FW, Reber M. Defective response inhibition and collicular noradrenaline enrichment in mice with duplicated retinotopic map in the superior colliculus. Brain Struct Funct 2014; 220:1573-84. [PMID: 24647754 PMCID: PMC4409641 DOI: 10.1007/s00429-014-0745-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/28/2014] [Indexed: 10/27/2022]
Abstract
The superior colliculus is a hub for multisensory integration necessary for visuo-spatial orientation, control of gaze movements and attention. The multiple functions of the superior colliculus have prompted hypotheses about its involvement in neuropsychiatric conditions, but to date, this topic has not been addressed experimentally. We describe experiments on genetically modified mice, the Isl2-EphA3 knock-in line, that show a well-characterized duplication of the retino-collicular and cortico-collicular axonal projections leading to hyperstimulation of the superior colliculus. To explore the functional impact of collicular hyperstimulation, we compared the performance of homozygous knock-in, heterozygous knock-in and wild-type mice in several behavioral tasks requiring collicular activity. The light/dark box test and Go/No-Go conditioning task revealed that homozygous mutant mice exhibit defective response inhibition, a form of impulsivity. This defect was specific to attention as other tests showed no differences in visually driven behavior, motivation, visuo-spatial learning and sensorimotor abilities among the different groups of mice. Monoamine quantification and gene expression profiling demonstrated a specific enrichment of noradrenaline only in the superficial layers of the superior colliculus of Isl2-EphA3 knock-in mice, where the retinotopy is duplicated, whereas transcript levels of receptors, transporters and metabolic enzymes of the monoaminergic pathway were not affected. We demonstrate that the defect in response inhibition is a consequence of noradrenaline imbalance in the superficial layers of the superior colliculus caused by retinotopic map duplication. Our results suggest that structural abnormalities in the superior colliculus can cause defective response inhibition, a key feature of attention-deficit disorders.
Collapse
Affiliation(s)
- Chantal Mathis
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Elise Savier
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Jean-Bastien Bott
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Daniel Clesse
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Nicholas Bevins
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, San Diego, CA 92037 USA
- Department of Neurosciences, University of California, La Jolla, San Diego, CA 92039 USA
| | | | - Karin Geiger
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Anaïs Gillet
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Alexis Laux-Biehlmann
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Yannick Goumon
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Adrien Lacaud
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Vincent Lelièvre
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Christian Kelche
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Frank W. Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Michael Reber
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| |
Collapse
|
27
|
Keane N, Freeman C, Swords R, Giles FJ. EPHA3 as a novel therapeutic target in the hematological malignancies. Expert Rev Hematol 2014; 5:325-40. [DOI: 10.1586/ehm.12.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Abstract
Classic studies have proposed that genetically encoded programs and spontaneous activity play complementary but independent roles in the development of neural circuits. Recent evidence, however, suggests that these two mechanisms could interact extensively, with spontaneous activity affecting the expression and function of guidance molecules at early developmental stages. Here, using the developing chick spinal cord and the mouse visual system to ectopically express the inwardly rectifying potassium channel Kir2.1 in individual embryonic neurons, we demonstrate that cell-intrinsic blockade of spontaneous activity in vivo does not affect neuronal identity specification, axon pathfinding, or EphA/ephrinA signaling during the development of topographic maps. However, intrinsic spontaneous activity is critical for axon branching and pruning once axonal growth cones reach their correct topographic position in the target tissues. Our experiments argue for the dissociation of spontaneous activity from hard-wired developmental programs in early phases of neural circuit formation.
Collapse
|
29
|
Lehigh KM, Leonard CE, Baranoski J, Donoghue MJ. Parcellation of the thalamus into distinct nuclei reflects EphA expression and function. Gene Expr Patterns 2013; 13:454-63. [PMID: 24036135 PMCID: PMC3839050 DOI: 10.1016/j.gep.2013.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/09/2023]
Abstract
Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing.
Collapse
Affiliation(s)
- Kathryn M. Lehigh
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| | - Carrie E. Leonard
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
- Interdisciplinary Program in Neuroscience, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| | - Jacob Baranoski
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| | - Maria J. Donoghue
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
- Interdisciplinary Program in Neuroscience, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| |
Collapse
|
30
|
Huan X, Shi J, Lim L, Mitra S, Zhu W, Qin H, Pasquale EB, Song J. Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations. PLoS One 2013; 8:e74040. [PMID: 24086308 PMCID: PMC3782497 DOI: 10.1371/journal.pone.0074040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022] Open
Abstract
The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD) simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD), which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J–K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity might be to target specific dynamic states of the Eph receptor LBDs.
Collapse
Affiliation(s)
- Xuelu Huan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Jiahai Shi
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Sayantan Mitra
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Wanlong Zhu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Elena B. Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Pathology Department, University of California San Diego, La Jolla, California, United States of America
| | - Jianxing Song
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Republic of Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
31
|
Dai J, Buhusi M, Demyanenko GP, Brennaman LH, Hruska M, Dalva MB, Maness PF. Neuron glia-related cell adhesion molecule (NrCAM) promotes topographic retinocollicular mapping. PLoS One 2013; 8:e73000. [PMID: 24023801 PMCID: PMC3759449 DOI: 10.1371/journal.pone.0073000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/16/2013] [Indexed: 11/18/2022] Open
Abstract
NrCAM (Neuron-glial related cell adhesion molecule), a member of the L1 family of cell adhesion molecules, reversibly binds ankyrin and regulates axon growth, but it has not been studied for a role in retinotopic mapping. During development of retino-collicular topography, NrCAM was expressed uniformly in retinal ganglion cells (RGCs) along both mediolateral and anteroposterior retinal axes, and was localized on RGC axons within the optic tract and superior colliculus (SC). Anterograde tracing of RGC axons in NrCAM null mutant mice at P10, when the map resembles its mature form, revealed laterally displaced ectopic termination zones (eTZs) of axons from the temporal retina, indicating defective mediolateral topography, which is governed by ephrinB/EphBs. Axon tracing at P2 revealed that interstitial branch orientation of ventral-temporal RGC axons in NrCAM null mice was compromised in the medial direction, likely accounting for displacement of eTZs. A similar retinocollicular targeting defect in EphB mutant mice suggested that NrCAM and EphB interact to regulate mediolateral retino-collicular targeting. We found that EphB2 tyrosine kinase but not an EphB2 kinase dead mutant, phosphorylated NrCAM at a conserved tyrosine residue in the FIGQY ankyrin binding motif, perturbing ankyrin recruitment in NrCAM transfected HEK293 cells. Furthermore, the phosphorylation of NrCAM at FIGQY in SC was decreased in EphB1/3 and EphB1/2/3 null mice compared to WT, while phospho-FIGQY of NrCAM in SC was increased in EphB2 constitutively active (F620D/F620D) mice. These results demonstrate that NrCAM contributes to mediolateral retinocollicular axon targeting by regulating RGC branch orientation through a likely mechanism in which ephrinB/EphB phosphorylates NrCAM to modulate linkage to the actin cytoskeleton.
Collapse
Affiliation(s)
- Jinxia Dai
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Mona Buhusi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Galina P. Demyanenko
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Leann H. Brennaman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Martin Hruska
- Thomas Jefferson University, Department of Neuroscience, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Matthew B. Dalva
- Thomas Jefferson University, Department of Neuroscience, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Patricia F. Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Triplett JW. Molecular guidance of retinotopic map development in the midbrain. Curr Opin Neurobiol 2013; 24:7-12. [PMID: 24492072 DOI: 10.1016/j.conb.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
Abstract
Topographic maps are utilized in many sensory and motor systems to efficiently transfer information between brain regions. The retina's projection to the superior colliculus has served as a model for the identification of molecular cues and mechanistic strategies by which topographic maps are formed. Evidence from both in vitro and in vivo studies points to graded cell surface cues playing a central role, but support for axon-axon competition and selective degeneration have also been advanced recently. In combination with mathematical models, these studies suggest that topographic maps are established using a complex combination of strategies to ensure precise connectivity.
Collapse
Affiliation(s)
- Jason W Triplett
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, United States.
| |
Collapse
|
33
|
Wu YJ, Xu MY, Wang L, Sun BL, Gu GX. Analysis of EphA5 receptor in the developing rat brain: an in vivo study in congenital hypothyroidism model. Eur J Pediatr 2013; 172:1077-83. [PMID: 23636281 DOI: 10.1007/s00431-013-2008-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022]
Abstract
UNLABELLED The EphA5 receptor has recently been known to play an important role in the initiation of the early phase of synaptogenesis, during which irreparable harm would be done to the developing brain in the absence of sufficient thyroid hormone (TH). In the present article, we aimed to analyze the characteristics of EphA5 receptor expression in the brain of congenital hypothyroid rats. The results showed that the levels of the EphA5 receptor were downregulated by TH deficiency in the developing rat brain with remarkable spatial and temporal characteristics. In the hypothyroid rats, the mRNA and protein levels of EphA5 receptor decreased significantly in the hippocampus (27.92-53.26%), cerebral cortex (12.52-47.16%), and cerebellum (8.72-31.69%) compared with those in the normal rats from postnatal day 0 (P0) to P21 (p < 0.01). The expression of EphA5 receptor was highest and declined most as much as 53% in the hippocampus with TH deficiency. At P7, the EphA5 receptor decreased most prominently during all the observed time point. CONCLUSION The EphA5 receptor plays actively in the brain development in congenital hypothyroid rats. Our study highlights the high expression of EphA5 receptor protein in hippocampus and dramatic changes at P7 in condition of TH deficiency, which may provide important basis for further investigations in manipulating congenital hypothyroidism.
Collapse
Affiliation(s)
- You-jia Wu
- Department of Pediatric Healthcare, Children's Hospital of Soochow University, 303 Jingde Road, Suzhou 215003, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
34
|
On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model. PLoS One 2013; 8:e67096. [PMID: 23826201 PMCID: PMC3694955 DOI: 10.1371/journal.pone.0067096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/14/2013] [Indexed: 11/19/2022] Open
Abstract
During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer.
Collapse
|
35
|
Abstract
Changes in brain circuits occur within specific paradigms of action in the adult brain. These paradigms include changes in behavioral activity patterns, alterations in environmental experience, and direct brain injury. Each of these paradigms can produce axonal sprouting, dendritic morphology changes, and alterations in synaptic connectivity. Activity-, experience-, and injury-dependent plasticity alter neuronal network function and behavioral output, and in the case of brain injury, may produce neurological recovery. The molecular substrate for adult neuronal plasticity overlaps in these three paradigms in key signaling pathways. These common pathways for adult plasticity suggest common mechanisms for activity-, experience-, and injury-dependent plasticity. These common pathways may also interact to enhance or impede each other during adult recovery of function after injury. This review focuses on common molecular changes evoked during the process of adult neuronal plasticity, with a focus on neural repair in stroke.
Collapse
|
36
|
Cang J, Feldheim DA. Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci 2013; 36:51-77. [PMID: 23642132 DOI: 10.1146/annurev-neuro-062012-170341] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain connections are organized into topographic maps that are precisely aligned both within and across modalities. This alignment facilitates coherent integration of different categories of sensory inputs and allows for proper sensorimotor transformations. Topographic maps are established and aligned by multistep processes during development, including interactions of molecular guidance cues expressed in gradients; spontaneous activity-dependent axonal and dendritic remodeling; and sensory-evoked plasticity driven by experience. By focusing on the superior colliculus, a major site of topographic map alignment for different sensory modalities, this review summarizes current understanding of topographic map development in the mammalian visual system and highlights recent advances in map alignment studies. A major goal looking forward is to reveal the molecular and synaptic mechanisms underlying map alignment and to understand the physiological and behavioral consequences when these mechanisms are disrupted at various scales.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
37
|
Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells. Nat Commun 2013; 4:1438. [DOI: 10.1038/ncomms2445] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/03/2013] [Indexed: 11/08/2022] Open
|
38
|
Cooper MA, Zhou R. β-Galactosidase staining of lacZ fusion proteins in whole tissue preparations. Methods Mol Biol 2013; 1018:189-197. [PMID: 23681629 DOI: 10.1007/978-1-62703-444-9_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The lacZ gene product, β-galactosidase, has classically been used as a reporter of gene expression. β-Galactosidase activity can be detected using a chromogenic substrate, X-gal, which leaves an intense blue precipitate when cleaved by the enzyme. Insertion of the lacZ coding DNA targeted into a specific gene creates a β-galactosidase-tagged fusion protein that is expressed under the endogenous promoter. Analysis of the hybrid protein takes advantage of the chromogenic detection system, as the distribution and relative abundance of the expressed protein can be efficiently visualized.
Collapse
Affiliation(s)
- Margaret A Cooper
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
39
|
Tadesse T, Cheng Q, Xu M, Baro DJ, Young LJ, Pallas SL. Regulation of ephrin-A expression in compressed retinocollicular maps. Dev Neurobiol 2012; 73:274-96. [PMID: 23008269 DOI: 10.1002/dneu.22059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 11/11/2022]
Abstract
Retinotopic maps can undergo compression and expansion in response to changes in target size, but the mechanism underlying this compensatory process has remained a mystery. The discovery of ephrins as molecular mediators of Sperry's chemoaffinity process allows a mechanistic approach to this important issue. In Syrian hamsters, neonatal, partial (PT) ablation of posterior superior colliculus (SC) leads to compression of the retinotopic map, independent of neural activity. Graded, repulsive EphA receptor/ephrin-A ligand interactions direct the formation of the retinocollicular map, but whether ephrins might also be involved in map compression is unknown. To examine whether map compression might be directed by changes in the ephrin expression pattern, we compared ephrin-A2 and ephrin-A5 mRNA expression between normal SC and PT SC using in situ hybridization and quantitative real-time PCR. We found that ephrin-A ligand expression in the compressed maps was low anteriorly and high posteriorly, as in normal animals. Consistent with our hypothesis, the steepness of the ephrin gradient increased in the lesioned colliculi. Interestingly, overall levels of ephrin-A2 and -A5 expression declined immediately after neonatal target damage, perhaps promoting axon outgrowth. These data establish a correlation between changes in ephrin-A gradients and map compression, and suggest that ephrin-A expression gradients may be regulated by target size. This in turn could lead to compression of the retinocollicular map onto the reduced target. These findings have important implications for mechanisms of recovery from traumatic brain injury.
Collapse
Affiliation(s)
- Tizeta Tadesse
- Neuroscience Institute, Department of Biology, Graduate Program in Neurobiology & Behavior, Georgia State University, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
40
|
Yamamoto N, López-Bendito G. Shaping brain connections through spontaneous neural activity. Eur J Neurosci 2012; 35:1595-604. [PMID: 22607005 DOI: 10.1111/j.1460-9568.2012.08101.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An overwhelming number of observations demonstrate that neural activity and genetic programs interact to specify the composition and organization of neural circuits during all stages of development. Spontaneous neuronal activities have been documented in several developing neural regions in both invertebrates and vertebrates, and their roles are mostly conserved among species. Among these roles, Ca(2+) spikes and levels of electrical activity have been shown to regulate neurite growth, axon extension and axon branching. Here, we review selected findings concerning the role of spontaneous activity on circuit development.
Collapse
Affiliation(s)
- Nobuhiko Yamamoto
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita, Osaka, Japan.
| | | |
Collapse
|
41
|
Ten-m3 is required for the development of topography in the ipsilateral retinocollicular pathway. PLoS One 2012; 7:e43083. [PMID: 23028443 PMCID: PMC3446960 DOI: 10.1371/journal.pone.0043083] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/16/2012] [Indexed: 11/20/2022] Open
Abstract
Background The alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral counterparts. Results Using the advantageous model provided by the mouse retinocollicular pathway, we have performed anterograde tracing experiments which demonstrate that ipsilateral retinal axons begin to form terminal zones (TZs) in the superior colliculus (SC), within the first few postnatal days. These appear mature by postnatal day 11. Importantly, TZs formed by ipsilaterally-projecting retinal axons are spatially offset from those of contralaterally-projecting axons arising from the same retinotopic location from the outset. This pattern is consistent with that required for adult visuotopy. We further demonstrate that a member of the Ten-m/Odz/Teneurin family of homophilic transmembrane glycoproteins, Ten-m3, is an essential regulator of ipsilateral retinocollicular topography. Ten-m3 mRNA is expressed in a high-medial to low-lateral gradient in the developing SC. This corresponds topographically with its high-ventral to low-dorsal retinal gradient. In Ten-m3 knockout mice, contralateral ventrotemporal axons appropriately target rostromedial SC, whereas ipsilateral axons exhibit dramatic targeting errors along both the mediolateral and rostrocaudal axes of the SC, with a caudal shift of the primary TZ, as well as the formation of secondary, caudolaterally displaced TZs. In addition to these dramatic ipsilateral-specific mapping errors, both contralateral and ipsilateral retinocollicular TZs exhibit more subtle changes in morphology. Conclusions We conclude that important aspects of adult visuotopy are established via the differential sensitivity of ipsilateral and contralateral axons to intrinsic guidance cues. Further, we show that Ten-m3 plays a critical role in this process and is particularly important for the mapping of the ipsilateral retinocollicular pathway.
Collapse
|
42
|
Ortalli AL, Fiore L, Di Napoli J, Rapacioli M, Salierno M, Etchenique R, Flores V, Sanchez V, Carri NG, Scicolone G. EphA3 expressed in the chicken tectum stimulates nasal retinal ganglion cell axon growth and is required for retinotectal topographic map formation. PLoS One 2012; 7:e38566. [PMID: 22685584 PMCID: PMC3369860 DOI: 10.1371/journal.pone.0038566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/07/2012] [Indexed: 11/29/2022] Open
Abstract
Background Retinotopic projection onto the tectum/colliculus constitutes the most studied model of topographic mapping and Eph receptors and their ligands, the ephrins, are the best characterized molecular system involved in this process. Ephrin-As, expressed in an increasing rostro-caudal gradient in the tectum/colliculus, repel temporal retinal ganglion cell (RGC) axons from the caudal tectum and inhibit their branching posterior to their termination zones. However, there are conflicting data regarding the nature of the second force that guides nasal axons to invade and branch only in the caudal tectum/colliculus. The predominant model postulates that this second force is produced by a decreasing rostro-caudal gradient of EphA7 which repels nasal optic fibers and prevents their branching in the rostral tectum/colliculus. However, as optic fibers invade the tectum/colliculus growing throughout this gradient, this model cannot explain how the axons grow throughout this repellent molecule. Methodology/Principal Findings By using chicken retinal cultures we showed that EphA3 ectodomain stimulates nasal RGC axon growth in a concentration dependent way. Moreover, we showed that nasal axons choose growing on EphA3-expressing cells and that EphA3 diminishes the density of interstitial filopodia in nasal RGC axons. Accordingly, in vivo EphA3 ectodomain misexpression directs nasal optic fibers toward the caudal tectum preventing their branching in the rostral tectum. Conclusions We demonstrated in vitro and in vivo that EphA3 ectodomain (which is expressed in a decreasing rostro-caudal gradient in the tectum) is necessary for topographic mapping by stimulating the nasal axon growth toward the caudal tectum and inhibiting their branching in the rostral tectum. Furthermore, the ability of EphA3 of stimulating axon growth allows understanding how optic fibers invade the tectum growing throughout this molecular gradient. Therefore, opposing tectal gradients of repellent ephrin-As and of axon growth stimulating EphA3 complement each other to map optic fibers along the rostro-caudal tectal axis.
Collapse
Affiliation(s)
- Ana Laura Ortalli
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luciano Fiore
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Jennifer Di Napoli
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Melina Rapacioli
- Interdisciplinary Group in Theoretical Biology, Department of Bioestructural Sciences, Favaloro University, Buenos Aires, Argentina
| | - Marcelo Salierno
- Department of Inorganic, Analytical and Physical Chemistry (INQUIMAE), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Roberto Etchenique
- Department of Inorganic, Analytical and Physical Chemistry (INQUIMAE), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Vladimir Flores
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- Interdisciplinary Group in Theoretical Biology, Department of Bioestructural Sciences, Favaloro University, Buenos Aires, Argentina
| | - Viviana Sanchez
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Gabriel Scicolone
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
43
|
Gebhardt C, Bastmeyer M, Weth F. Balancing of ephrin/Eph forward and reverse signaling as the driving force of adaptive topographic mapping. Development 2011; 139:335-45. [PMID: 22159582 DOI: 10.1242/dev.070474] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The retinotectal projection, which topographically maps retinal axons onto the tectum of the midbrain, is an ideal model system with which to investigate the molecular genetics of embryonic brain wiring. Corroborating Sperry's seminal hypothesis, ephrin/Eph counter-gradients on both retina and tectum were found to represent matching chemospecificity markers. Intriguingly, however, it has never been possible to reconstitute topographically appropriate fiber growth in vitro with these cues. Moreover, experimentally derived molecular mechanisms have failed to provide explanations as to why the mapping adapts to grossly diverse targets in some experiments, while displaying strict point-to-point specificity in others. In vitro, ephrin-A/EphA forward, as well as reverse, signaling mediate differential repulsion to retinal fibers, instead of providing topographic guidance. We argue that those responses are indicative of ephrin-A and EphA being members of a guidance system that requires two counteracting cues per axis. Experimentally, we demonstrate by introducing novel double-cue stripe assays that the simultaneous presence of both cues indeed suffices to elicit topographically appropriate guidance. The peculiar mechanism, which uses forward and reverse signaling through a single receptor/ligand combination, entails fiber/fiber interactions. We therefore propose to extend Sperry's model to include ephrin-A/EphA-based fiber/fiber chemospecificity, eventually out-competing fiber/target interactions. By computational simulation, we show that our model is consistent with stripe assay results. More importantly, however, it not only accounts for classical in vivo evidence of point-to-point and adaptive topographic mapping, but also for the map duplication found in retinal EphA knock-in mice. Nonetheless, it is based on a single constraint of topographic growth cone navigation: the balancing of ephrin-A/EphA forward and reverse signaling.
Collapse
Affiliation(s)
- Christoph Gebhardt
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | |
Collapse
|
44
|
Abstract
Topographic maps are the primary means of relaying spatial information in the brain. Understanding the mechanisms by which they form has been a goal of experimental and theoretical neuroscientists for decades. The projection of the retina to the superior colliculus (SC)/tectum has been an important model used to show that graded molecular cues and patterned retinal activity are required for topographic map formation. Additionally, interaxon competition has been suggested to play a role in topographic map formation; however, this view has been recently challenged. Here we present experimental and computational evidence demonstrating that interaxon competition for target space is necessary to establish topography. To test this hypothesis experimentally, we determined the nature of the retinocollicular projection in Math5 (Atoh7) mutant mice, which have severely reduced numbers of retinal ganglion cell inputs into the SC. We find that in these mice, retinal axons project to the anteromedialj portion of the SC where repulsion from ephrin-A ligands is minimized and where their attraction to the midline is maximized. This observation is consistent with the chemoaffinity model that relies on axon-axon competition as a mapping mechanism. We conclude that chemical labels plus neural activity cannot alone specify the retinocollicular projection; instead axon-axon competition is necessary to create a map. Finally, we present a mathematical model for topographic mapping that incorporates molecular labels, neural activity, and axon competition.
Collapse
|
45
|
Eph and ephrin signaling in the formation of topographic maps. Semin Cell Dev Biol 2011; 23:7-15. [PMID: 22044886 DOI: 10.1016/j.semcdb.2011.10.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 10/17/2011] [Indexed: 11/20/2022]
Abstract
The axonal connections between the retina and its midbrain target, the superior colliculus (SC), is mapped topographically, such that the spatial relationships of cell bodies in the retina are maintained when terminating in the SC. Topographic map development uses a Cartesian mapping system such that each axis of the retina is mapped independently. Along the nasal-temporal mapping axis, EphAs and ephrin-As, are graded molecular cues required for topographic mapping while the dorsal-ventral axis is mapped in part via EphB and ephrin-Bs. Because both Ephs and ephrins are cell surface molecules they can signal in the forward and reverse directions. Eph/ephrin signaling leads to changes in cytoskeletal dynamics that lead to actin depolymerization and endocytosis guiding axons via attraction and repulsion.
Collapse
|
46
|
Suetterlin P, Marler KM, Drescher U. Axonal ephrinA/EphA interactions, and the emergence of order in topographic projections. Semin Cell Dev Biol 2011; 23:1-6. [PMID: 22040913 DOI: 10.1016/j.semcdb.2011.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/17/2011] [Indexed: 12/31/2022]
Abstract
In the classical view of axon guidance, neurons send out axons which are endowed with guidance receptors enabling them to find their (distant) target areas by an interaction with their ligands expressed in specific spatio-temporal patterns along their pathways and in their target area. However, this view has recently been confounded by more detailed analyses of, for example, the expression patterns of EphAs and ephrinAs in the retinotectal projection. Here ephrinA 'ligands' are expressed not only in the target area but also on the projecting RGC axons, and EphA 'receptors' not only on retinal ganglion cell (RGC) axons but also in the target area itself. This review describes the on-going functional characterisation of the surprising co-expression of ephrinAs and EphAs on retinal ganglion cell (RGC) axons and other cell types. It also investigates the function of ephrinAs as receptors and describes their interaction with co-receptors involved in mediating this function.
Collapse
Affiliation(s)
- Philipp Suetterlin
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
47
|
Bevins N, Lemke G, Reber M. Genetic dissection of EphA receptor signaling dynamics during retinotopic mapping. J Neurosci 2011; 31:10302-10. [PMID: 21753007 PMCID: PMC3144163 DOI: 10.1523/jneurosci.1652-11.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/27/2011] [Accepted: 06/02/2011] [Indexed: 11/21/2022] Open
Abstract
Retinal ganglion cells (RGCs) project axons from their cell bodies in the eye to targets in the superior colliculus of the midbrain. The wiring of these axons to their synaptic targets creates an ordered representation, or "map," of retinal space within the brain. Many lines of experiments have demonstrated that the development of this map requires complementary gradients of EphA receptor tyrosine kinases and their ephrin-A ligands, yet basic features of EphA signaling during mapping remain to be resolved. These include the individual roles played by the multiple EphA receptors that make up the retinal EphA gradient. We have developed a set of ratiometric "relative signaling" (RS) rules that quantitatively predict how the composite low-nasal-to-high-temporal EphA gradient is translated into topographic order among RGCs. A key feature of these rules is that the component receptors of the gradient--in the mouse, EphA4, EphA5, and EphA6--must be functionally equivalent and interchangeable. To test this aspect of the model, we generated compound mutant mice in which the periodicity, slope, and receptor composition of the gradient are systematically altered with respect to the levels of EphA4, EphA5, and a closely related receptor, EphA3, that we ectopically express. Analysis of the retinotopic maps of these new mouse mutants establishes the general utility of the RS rules for predicting retinocollicular topography, and demonstrates that individual EphA gene products are approximately equivalent with respect to axon guidance and target selection.
Collapse
Affiliation(s)
- Nicholas Bevins
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California 92037
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92039, and
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California 92037
| | - Michaël Reber
- INSERM U.575, University of Strasbourg, F-67084 Strasbourg, France
| |
Collapse
|
48
|
Transcription factor Foxd1 is required for the specification of the temporal retina in mammals. J Neurosci 2011; 31:5673-81. [PMID: 21490208 DOI: 10.1523/jneurosci.0394-11.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The organization of the visual system is different in birds and mammals. In both, retinal axons project topographically to the visual targets in the brain; but whereas in birds visual fibers from the entire retina decussate at the optic chiasm, in mammals, a number of axons from the temporal retina diverge at the midline to project ipsilaterally. Gain-of-function experiments in chick raised the hypothesis that the transcription factor Foxd1 specifies retinal temporal identity. However, it remains unknown whether Foxd1 is necessary for this function. In mammals, the crucial role of Foxd1 in the patterning of the optic chiasm region has complicated the interpretation of its cell-autonomous function in the retina. Furthermore, target molecules identified for Foxd1 are different in chicks and mice, leading to question the function of Foxd1 in mammals. Here we show that in the mouse, Foxd1 imprints temporal features in the retina such as axonal ipsilaterality and rostral targeting in collicular areas and that EphA6 is a Foxd1 downstream effector that sends temporal axons to the rostral colliculus. In addition, our data support a model in which the desensitization of EphA6 by ephrinA5 in cis is not necessary for the proper functioning of EphA6. Overall, these results indicate that Foxd1 functions as a conserved determinant of temporal identity but reveal that the downstream effectors, and likely their mechanisms of action, are different in mammals and birds.
Collapse
|
49
|
Simpson HD, Giacomantonio CE, Goodhill GJ. Computational modeling of neuronal map development: insights into disease. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the formation of neuronal maps in the brain has greatly increased our understanding of how the brain develops and, in some cases, regenerates. Computational modeling of neuronal map development has been invaluable in integrating complex biological phenomena and synthesizing them into quantitative and predictive frameworks. These models allow us to investigate how neuronal map development is perturbed under conditions of altered development, disease and regeneration. In this article, we use examples of activity-dependent and activity-independent models of retinotopic map formation to illustrate how they can aid our understanding of developmental and acquired disease processes. We note that fully extending these models to specific clinically relevant problems is a largely unexplored domain and suggest future work in this direction. We argue that this type of modeling will be necessary in furthering our understanding of the pathophysiology of neurological diseases and in developing treatments for them. Furthermore, we discuss how the nature of computational and theoretical approaches uniquely places them to bridge the gap between the bench and the clinic.
Collapse
Affiliation(s)
- Hugh D Simpson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Clare E Giacomantonio
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- School of Mathematics & Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
50
|
Abstract
Our understanding of the development of the retina and visual pathways has seen enormous advances during the past 25years. New imaging technologies, coupled with advances in molecular biology, have permitted a fuller appreciation of the histotypical events associated with proliferation, fate determination, migration, differentiation, pathway navigation, target innervation, synaptogenesis and cell death, and in many instances, in understanding the genetic, molecular, cellular and activity-dependent mechanisms underlying those developmental changes. The present review considers those advances associated with the lineal relationships between retinal nerve cells, the production of retinal nerve cell diversity, the migration, patterning and differentiation of different types of retinal nerve cells, the determinants of the decussation pattern at the optic chiasm, the formation of the retinotopic map, and the establishment of ocular domains within the thalamus.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA.
| |
Collapse
|