1
|
Pérez-Revuelta L, Pérez-Boyero D, Pérez-Martín E, Cabedo VL, Téllez de Meneses PG, Weruaga E, Díaz D, Alonso JR. Neuroprotective Effects of VEGF-B in a Murine Model of Aggressive Neuronal Loss with Childhood Onset. Int J Mol Sci 2025; 26:538. [PMID: 39859255 PMCID: PMC11765331 DOI: 10.3390/ijms26020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
In recent decades, the scientific community has faced a major challenge in the search for new therapies that can slow down or alleviate the process of neuronal death that accompanies neurodegenerative diseases. This study aimed to identify an effective therapy using neurotrophic factors to delay the rapid and aggressive cerebellar degeneration experienced by the Purkinje Cell Degeneration (PCD) mouse, a model of childhood-onset neurodegeneration with cerebellar atrophy (CONDCA). Initially, we analyzed the changes in the expression of several neurotrophic factors related to the degenerative process itself, identifying changes in insulin-like growth factor 1 (IGF-1) and Vascular Endothelial Growth Factor B (VEGF-B) in the affected animals. Then, we administered pharmacological treatments using human recombinant IGF-1 (rhIGF-1) or VEGF-B (rhVEGF-B) proteins, considering their temporal variations during the degenerative process. The effects of these treatments on motor, cognitive, and social behavior, as well as on cerebellar destructuration were analyzed. Whereas treatment with rhIGF-1 did not demonstrate any neuroprotective effect, rhVEGF-B administration at moderate dosages stopped the process of neuronal death and restored motor, cognitive, and social functions altered in PCD mice (and CONDCA patients). However, increasing the frequency of rhVEGF-B administration had a detrimental effect on Purkinje cell survival, suggesting an inverted U-shaped dose-response curve of this substance. Additionally, we demonstrate that this neuroprotective effect was achieved through a partial inhibition or delay of apoptosis. These findings provide strong evidence supporting the use of rhVEGF-B as a pharmacological agent to limit severe cerebellar neurodegenerative processes.
Collapse
Affiliation(s)
- Laura Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - David Pérez-Boyero
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Ester Pérez-Martín
- Neuroscience Innovative Technologies, Neurostech, 33428 Llanera, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Intervenciones Traslacionales para la Salud, 33011 Oviedo, Spain
| | - Valeria Lorena Cabedo
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Pablo González Téllez de Meneses
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José Ramón Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
2
|
Oh SY, Kim HY, Jung SY, Kim HS. Tissue Engineering and Regenerative Medicine in the Field of Otorhinolaryngology. Tissue Eng Regen Med 2024; 21:969-984. [PMID: 39017827 PMCID: PMC11416456 DOI: 10.1007/s13770-024-00661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Otorhinolaryngology is a medical specialty that focuses on the clinical study and treatments of diseases within head and neck regions, specifically including the ear, nose, and throat (ENT), but excluding eyes and brain. These anatomical structures play significant roles in a person's daily life, including eating, speaking as well as facial appearance and expression, thus greatly impacting one's overall satisfaction and quality of life. Consequently, injuries to these regions can significantly impact a person's well-being, leading to extensive research in the field of tissue engineering and regenerative medicine over many years. METHODS This chapter provides an overview of the anatomical characteristics of otorhinolaryngologic tissues and explores the tissue engineering and regenerative medicine research in otology (ear), rhinology (nose), facial bone, larynx, and trachea. RESULTS AND CONCLUSION The integration of tissue engineering and regenerative medicine in otorhinolaryngology holds the promise of broadening the therapeutic choices for a wide range of conditions, ultimately improving quality of a patient's life.
Collapse
Affiliation(s)
- Se-Young Oh
- Department of Convergence Medicine, College of Medicine, Ewha Womans University Mokdong Hospital, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Ha Yeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Soo Yeon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea.
| |
Collapse
|
3
|
Yu P, Chen W, Jiang L, Jia Y, Xu X, Shen W, Jin N, Du H. Olfactory dysfunction and the role of stem cells in the regeneration of olfactory neurons. Heliyon 2024; 10:e29948. [PMID: 38694081 PMCID: PMC11058886 DOI: 10.1016/j.heliyon.2024.e29948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The prevalence of COVID-19 has drawn increasing attention to olfactory dysfunction among researchers. Olfactory dysfunction manifests in various clinical types, influenced by numerous pathogenic factors. Despite this diversity, the underlying pathogenesis remains largely elusive, contributing to a lack of standardized treatment approaches. However, the potential regeneration of olfactory neurons within the nasal cavity presents a promising avenue for addressing olfactory dysfunction effectively. Our review aims to delve into the current research landscape and treatment modalities concerning olfactory dysfunction, emphasizing etiology, pathogenesis, clinical interventions, and the role of stem cells in regenerating olfactory nerves. Through this comprehensive examination, we aim to provide valuable insights into understanding the onset, progression, and treatment of olfactory dysfunction diseases.
Collapse
Affiliation(s)
- Pengju Yu
- Department of Otolaryngology, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Weiguan Chen
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Ling Jiang
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Yufeng Jia
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Xiaoyan Xu
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Weiye Shen
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Ni Jin
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Hongjie Du
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| |
Collapse
|
4
|
Del Pilar C, Garrido-Matilla L, Del Pozo-Filíu L, Lebrón-Galán R, Arias RF, Clemente D, Alonso JR, Weruaga E, Díaz D. Intracerebellar injection of monocytic immature myeloid cells prevents the adverse effects caused by stereotactic surgery in a model of cerebellar neurodegeneration. J Neuroinflammation 2024; 21:49. [PMID: 38355633 PMCID: PMC10867997 DOI: 10.1186/s12974-023-03000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) constitute a recently discovered bone-marrow-derived cell type useful for dealing with neuroinflammatory disorders. However, these cells are only formed during inflammatory conditions from immature myeloid cells (IMCs) that acquire immunosuppressive activity, thus being commonly gathered from diseased animals. Then, to obtain a more clinically feasible source, we characterized IMCs directly derived from healthy bone marrow and proved their potential immunosuppressive activity under pathological conditions in vitro. We then explored their neuroprotective potential in a model of human cerebellar ataxia, the Purkinje Cell Degeneration (PCD) mouse, as it displays a well-defined neurodegenerative and neuroinflammatory process that can be also aggravated by invasive surgeries. METHODS IMCs were obtained from healthy bone marrow and co-cultured with activated T cells. The proliferation and apoptotic rate of the later were analyzed with Tag-it Violet. For in vivo studies, IMCs were transplanted by stereotactic surgery into the cerebellum of PCD mice. We also used sham-operated animals as controls of the surgical effects, as well as their untreated counterparts. Motor behavior of mice was assessed by rotarod test. The Purkinje cell density was measured by immunohistochemistry and cell death assessed with the TUNEL technique. We also analyzed the microglial phenotype by immunofluorescence and the expression pattern of inflammation-related genes by qPCR. Parametric tests were applied depending on the specific experiment: one or two way ANOVA and Student's T test. RESULTS IMCs were proven to effectively acquire immunosuppressive activity under pathological conditions in vitro, thus acting as MDSCs. Concerning in vivo studios, sham-operated PCD mice suffered detrimental effects in motor coordination, Purkinje cell survival and microglial activation. After intracranial administration of IMCs into the cerebellum of PCD mice, no special benefits were detected in the transplanted animals when compared to untreated mice. Nonetheless, this transplant almost completely prevented the impairments caused by the surgery in PCD mice, probably by the modulation of the inflammatory patterns. CONCLUSIONS Our work comprise two main translational findings: (1) IMCs can be directly used as they behave as MDSCs under pathological conditions, thus avoiding their gathering from diseased subjects; (2) IMCs are promising adjuvants when performing neurosurgery.
Collapse
Affiliation(s)
- Carlos Del Pilar
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Lucía Garrido-Matilla
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Lucía Del Pozo-Filíu
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Rafael Lebrón-Galán
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Hospital Universitario de Toledo, Avd. Río Guadiana, s/n, 45007, Toledo, Spain
| | - Raúl F Arias
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Diego Clemente
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - José Ramón Alonso
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Eduardo Weruaga
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| | - David Díaz
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| |
Collapse
|
5
|
Gunder N, Dörig P, Witt M, Welge-Lüssen A, Menzel S, Hummel T. Future therapeutic strategies for olfactory disorders: electrical stimulation, stem cell therapy, and transplantation of olfactory epithelium-an overview. HNO 2023; 71:35-43. [PMID: 36734997 PMCID: PMC9897160 DOI: 10.1007/s00106-022-01249-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 02/04/2023]
Abstract
Olfactory disorders may be temporary or permanent and can have various causes. Currently, many COVID-19 patients report a reduced or complete loss of olfactory function. A wide range of treatment options have been investigated in the past, such as olfactory training, acupuncture, medical therapy, transcranial magnetic stimulation, or surgical excision of olfactory epithelium, e.g., in severe qualitative smell disorders. The development of a bioelectric nose, e.g., in connection with direct electrical stimulation or transplantation of olfactory epithelium or stem cells, represent treatment options of the future. The basis of these developments and the state of knowledge is discussed in the following work.
Collapse
Affiliation(s)
- N Gunder
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - P Dörig
- Universitäts-HNO Klinik Basel, Basel, Switzerland
| | - M Witt
- Institut für Anatomie, Universitätsmedizin Rostock, Rostock, Germany
| | | | - S Menzel
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - T Hummel
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
6
|
Hummel T, Power Guerra N, Gunder N, Hähner A, Menzel S. Olfactory Function and Olfactory Disorders. Laryngorhinootologie 2023; 102:S67-S92. [PMID: 37130532 PMCID: PMC10184680 DOI: 10.1055/a-1957-3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The sense of smell is important. This became especially clear to patients with infection-related olfactory loss during the SARS-CoV-2 pandemic. We react, for example, to the body odors of other humans. The sense of smell warns us of danger, and it allows us to perceive flavors when eating and drinking. In essence, this means quality of life. Therefore, anosmia must be taken seriously. Although olfactory receptor neurons are characterized by regenerative capacity, anosmia is relatively common with about 5 % of anosmic people in the general population. Olfactory disorders are classified according to their causes (e. g., infections of the upper respiratory tract, traumatic brain injury, chronic rhinosinusitis, age) with the resulting different therapeutic options and prognoses. Thorough history taking is therefore important. A wide variety of tools are available for diagnosis, ranging from short screening tests and detailed multidimensional test procedures to electrophysiological and imaging methods. Thus, quantitative olfactory disorders are easily assessable and traceable. For qualitative olfactory disorders such as parosmia, however, no objectifying diagnostic procedures are currently available. Therapeutic options for olfactory disorders are limited. Nevertheless, there are effective options consisting of olfactory training as well as various additive drug therapies. The consultation and the competent discussion with the patients are of major importance.
Collapse
Affiliation(s)
- T Hummel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - N Power Guerra
- Rudolf-Zenker-Institut für Experimentelle Chirurgie, Medizinische Universität Rostock, Rostock
| | - N Gunder
- Universitäts-HNO Klinik Dresden, Dresden
| | - A Hähner
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - S Menzel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| |
Collapse
|
7
|
Baltanás FC, Berciano MT, Santos E, Lafarga M. The Childhood-Onset Neurodegeneration with Cerebellar Atrophy (CONDCA) Disease Caused by AGTPBP1 Gene Mutations: The Purkinje Cell Degeneration Mouse as an Animal Model for the Study of this Human Disease. Biomedicines 2021; 9:biomedicines9091157. [PMID: 34572343 PMCID: PMC8464709 DOI: 10.3390/biomedicines9091157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Recent reports have identified rare, biallelic damaging variants of the AGTPBP1 gene that cause a novel and documented human disease known as childhood-onset neurodegeneration with cerebellar atrophy (CONDCA), linking loss of function of the AGTPBP1 protein to human neurodegenerative diseases. CONDCA patients exhibit progressive cognitive decline, ataxia, hypotonia or muscle weakness among other clinical features that may be fatal. Loss of AGTPBP1 in humans recapitulates the neurodegenerative course reported in a well-characterised murine animal model harbouring loss-of-function mutations in the AGTPBP1 gene. In particular, in the Purkinje cell degeneration (pcd) mouse model, mutations in AGTPBP1 lead to early cerebellar ataxia, which correlates with the massive loss of cerebellar Purkinje cells. In addition, neurodegeneration in the olfactory bulb, retina, thalamus and spinal cord were also reported. In addition to neurodegeneration, pcd mice show behavioural deficits such as cognitive decline. Here, we provide an overview of what is currently known about the structure and functional role of AGTPBP1 and discuss the various alterations in AGTPBP1 that cause neurodegeneration in the pcd mutant mouse and humans with CONDCA. The sequence of neuropathological events that occur in pcd mice and the mechanisms governing these neurodegenerative processes are also reported. Finally, we describe the therapeutic strategies that were applied in pcd mice and focus on the potential usefulness of pcd mice as a promising model for the development of new therapeutic strategies for clinical trials in humans, which may offer potential beneficial options for patients with AGTPBP1 mutation-related CONDCA.
Collapse
Affiliation(s)
- Fernando C. Baltanás
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-923294801
| | - María T. Berciano
- Department of Molecular Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| | - Eugenio Santos
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| |
Collapse
|
8
|
Dörig P, Gunder N, Witt M, Welge-Lüssen A, Hummel T. [Future therapeutic strategies for olfactory disorders: electrical stimulation, stem cell therapy, and transplantation of olfactory epithelium-an overview]. HNO 2021; 69:623-632. [PMID: 33988723 PMCID: PMC8120256 DOI: 10.1007/s00106-021-01060-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 11/08/2022]
Abstract
Passagere oder permanente Riechstörungen können verschiedene Ursachen haben. Ganz aktuell berichtet eine Vielzahl von Patienten im Rahmen von COVID-19-Infektionen über ein fehlendes oder vermindertes Riechvermögen. In der Vergangenheit wurden vielfältige Therapieoptionen untersucht, diese variieren vom Riechtraining über Akupunktur und medikamentöse Therapien bis hin zur transkraniellen Magnetstimulation oder, z. B. bei ausgeprägten qualitativen Riechstörungen, der chirurgischen Resektion der Riechschleimhaut. Die Entwicklung einer bioelektrischen Nase, z. B. in Verbindung mit direkter elektrischer Stimulation des Bulbus olfactorius, oder die Transplantation von Riechschleimhaut oder von Stammzellen stellen Behandlungsmöglichkeiten der Zukunft dar. Die Grundlagen für diese Entwicklungen sowie der Stand des Wissens werden in der vorliegenden Arbeit erläutert.
Collapse
Affiliation(s)
- P Dörig
- Universitäts-HNO Klinik Basel, Petersgraben 4, 4031, Basel, Schweiz.
| | - N Gunder
- Universitäts-HNO Klinik Dresden, Dresden, Deutschland
| | - M Witt
- Institut für Anatomie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - A Welge-Lüssen
- Universitäts-HNO Klinik Basel, Petersgraben 4, 4031, Basel, Schweiz
| | - T Hummel
- Universitäts-HNO Klinik Dresden, Dresden, Deutschland
| |
Collapse
|
9
|
Assis MA, Carranza PG, Ambrosio E. A "Drug-Dependent" Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses 2021; 13:v13050722. [PMID: 33919273 PMCID: PMC8143316 DOI: 10.3390/v13050722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Psychostimulant use is a major comorbidity in people living with HIV, which was initially explained by them adopting risky behaviors that facilitate HIV transmission. However, the effects of drug use on the immune system might also influence this phenomenon. Psychostimulants act on peripheral immune cells even before they reach the central nervous system (CNS) and their effects on immunity are likely to influence HIV infection. Beyond their canonical activities, classic neurotransmitters and neuromodulators are expressed by peripheral immune cells (e.g., dopamine and enkephalins), which display immunomodulatory properties and could be influenced by psychostimulants. Immune receptors, like Toll-like receptors (TLRs) on microglia, are modulated by cocaine and amphetamine exposure. Since peripheral immunocytes also express TLRs, they may be similarly affected by psychostimulants. In this review, we will summarize how psychostimulants are currently thought to influence peripheral immunity, mainly focusing on catecholamines, enkephalins and TLR4, and shed light on how these drugs might affect HIV infection. We will try to shift from the classic CNS perspective and adopt a more holistic view, addressing the potential impact of psychostimulants on the peripheral immune system and how their systemic effects could influence HIV infection.
Collapse
Affiliation(s)
- María Amparo Assis
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
- Correspondence:
| | - Pedro Gabriel Carranza
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Santiago del Estero G4206, Argentina
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| |
Collapse
|
10
|
Assis MA, Díaz D, Ferrado R, Ávila-Zarza CA, Weruaga E, Ambrosio E. Transplantation with Lewis bone marrow induces the reinstatement of cocaine-seeking behavior in male F344 resistant rats. Brain Behav Immun 2021; 93:23-34. [PMID: 33278561 DOI: 10.1016/j.bbi.2020.11.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/27/2020] [Accepted: 11/22/2020] [Indexed: 01/14/2023] Open
Abstract
One of the main challenges to understand drug addiction is defining the biological mechanisms that underlie individual differences in recidivism. Studies of these mechanisms have mainly focused on the brain, yet we demonstrate here a significant influence of the peripheral immune system on this phenomenon. Lewis (LEW) and Fischer 344 (F344) rats have different immunological profiles and they display a distinct vulnerability to the reinforcing effects of cocaine, with F344 more resistant to reinstate cocaine-seeking behavior. Bone marrow from male LEW and F344 rats was transferred to male F344 rats (F344/LEW-BM and F344/F344-BM, respectively), and these rats were trained to self-administer cocaine over 21 days. Following extinction, these animals received a sub-threshold primer dose of cocaine to evaluate reinstatement. F344/LEW-BM but not F344/F344-BM rats reinstated cocaine-seeking behavior, in conjunction with changes in their peripheral immune cell populations to a profile that corresponded to that of the LEW donors. After cocaine exposure, higher CD4+ T-cells and lower CD4+CD25+ T-cells levels were observed in F344/LEW-BM rats referred to control, and the splenic expression of Il-17a, Tgf-β, Tlr-2, Tlr-4 and Il-1β was altered in both groups. We propose that peripheral T-cells respond to cocaine, with CD4+ T-cells in particular undergoing Th17 polarization and generating long-term memory, these cells releasing mediators that trigger central mechanisms to induce reinstatement after a second encounter. This immune response may explain the high rates of recidivism observed despite long periods of detoxification, shedding light on the mechanisms underlying the vulnerability and resilience of specific individuals, and opening new perspectives for personalized medicine in the treatment of relapse.
Collapse
Affiliation(s)
- María Amparo Assis
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina; Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina.
| | - David Díaz
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca (USAL), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Rosa Ferrado
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Carmelo Antonio Ávila-Zarza
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Grupo de Estadística Aplicada, Departamento de Estadísticas, USAL, Salamanca, Spain
| | - Eduardo Weruaga
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca (USAL), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
11
|
Pérez-Revuelta L, Téllez de Meneses PG, López M, Briñón JG, Weruaga E, Díaz D, Alonso JR. Secretagogin expression in the mouse olfactory bulb under sensory impairments. Sci Rep 2020; 10:21533. [PMID: 33299042 PMCID: PMC7726155 DOI: 10.1038/s41598-020-78499-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/24/2020] [Indexed: 12/04/2022] Open
Abstract
The interneurons of the olfactory bulb (OB) are characterized by the expression of different calcium-binding proteins, whose specific functions are not fully understood. This is the case of one of the most recently discovered, the secretagogin (SCGN), which is expressed in interneurons of the glomerular and the granule cell layers, but whose function in the olfactory pathway is still unknown. To address this question, we examined the distribution, generation and activity of SCGN-positive interneurons in the OB of two complementary models of olfactory impairments: Purkinje Cell Degeneration (PCD) and olfactory-deprived mice. Our results showed a significant increase in the density of SCGN-positive cells in the inframitral layers of olfactory-deprived mice as compared to control animals. Moreover, BrdU analyses revealed that these additional SCGN-positive cells are not newly formed. Finally, the neuronal activity, estimated by c-Fos expression, increased in preexisting SCGN-positive interneurons of both deprived and PCD mice -being higher in the later- in comparison with control animals. Altogether, our results suggest that the OB possesses different compensatory mechanisms depending on the type of alteration. Particularly, the SCGN expression is dependent of olfactory stimuli and its function may be related to a compensation against a reduction in sensory inputs.
Collapse
Affiliation(s)
- L Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - P G Téllez de Meneses
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - M López
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - J G Briñón
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - E Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - D Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain. .,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain.
| | - J R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| |
Collapse
|
12
|
Díaz D, Del Pilar C, Carretero J, Alonso JR, Weruaga E. Daily bone marrow cell transplantations for the management of fast neurodegenerative processes. J Tissue Eng Regen Med 2019; 13:1702-1711. [PMID: 31272136 DOI: 10.1002/term.2925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/28/2019] [Accepted: 06/19/2019] [Indexed: 01/06/2023]
Abstract
Cell therapy has been proven to be a promising treatment for fighting neurodegenerative diseases. As neuronal replacement presents undeniable complications, the neuroprotection of live neurons arises as the most suitable therapeutic approach. Accordingly, the earlier the diagnosis and treatment, the better the prognosis. However, these diseases are commonly diagnosed when symptoms have already progressed towards an irreversible degenerative stage. This problem is especially dramatic when neurodegeneration is aggressive and rapidly progresses. One of the most interesting approaches for neuroprotection is the fusion between healthy bone marrow-derived cells and neurons, as the former can provide the latter with regular/protective genes without harming brain parenchyma. So far, this phenomenon has only been identified in Purkinje cells, whose death is the cause of different diseases like cerebellar ataxias. Here we have employed a model of aggressive cerebellar neurodegeneration, the Purkinje Cell Degeneration mouse, to optimize a cell therapy based on bone marrow-derived cell and cell fusion. Our findings show that the substitution of bone marrow in diseased animals by healthy bone marrow, even prior to the onset of neurodegeneration, is not fast enough to stop neuronal loss in time. Conversely, avoiding bone marrow replacement and ensuring a regular supply of healthy cells through continuous, daily transplants, the neurodegenerative milieu of PCD is enough to attract those transplanted elements. Furthermore, in the most affected cerebellar regions, more than a half of surviving neurons undergo a process of cell fusion. Therefore, this method deserves consideration as a means to impede neuronal cell death.
Collapse
Affiliation(s)
- David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Carlos Del Pilar
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - José Carretero
- Laboratory of Neuroendocrinology, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, Salamanca, Spain.,Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - José Ramón Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.,Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| |
Collapse
|
13
|
Nocera S, Simon A, Fiquet O, Chen Y, Gascuel J, Datiche F, Schneider N, Epelbaum J, Viollet C. Somatostatin Serves a Modulatory Role in the Mouse Olfactory Bulb: Neuroanatomical and Behavioral Evidence. Front Behav Neurosci 2019; 13:61. [PMID: 31024270 PMCID: PMC6465642 DOI: 10.3389/fnbeh.2019.00061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/12/2019] [Indexed: 11/30/2022] Open
Abstract
Somatostatin (SOM) and somatostatin receptors (SSTR1-4) are present in all olfactory structures, including the olfactory bulb (OB), where SOM modulates physiological gamma rhythms and olfactory discrimination responses. In this work, histological, viral tracing and transgenic approaches were used to characterize SOM cellular targets in the murine OB. We demonstrate that SOM targets all levels of mitral dendritic processes in the OB with somatostatin receptor 2 (SSTR2) detected in the dendrites of previously uncharacterized mitral-like cells. We show that inhibitory interneurons of the glomerular layer (GL) express SSTR4 while SSTR3 is confined to the granule cell layer (GCL). Furthermore, SOM cells in the OB receive synaptic inputs from olfactory cortical afferents. Behavioral studies demonstrate that genetic deletion of SSTR4, SSTR2 or SOM differentially affects olfactory performance. SOM or SSTR4 deletion have no major effect on olfactory behavioral performances while SSTR2 deletion impacts olfactory detection and discrimination behaviors. Altogether, these results describe novel anatomical and behavioral contributions of SOM, SSTR2 and SSTR4 receptors in olfactory processing.
Collapse
Affiliation(s)
- Sonia Nocera
- INSERM, UMR 894-Center for Psychiatry and Neuroscience (CPN), Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Axelle Simon
- INSERM, UMR 894-Center for Psychiatry and Neuroscience (CPN), Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Oriane Fiquet
- INSERM, UMR 894-Center for Psychiatry and Neuroscience (CPN), Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Ying Chen
- INSERM, UMR 894-Center for Psychiatry and Neuroscience (CPN), Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Jean Gascuel
- CNRS UMR 6265—Centre des Sciences du Goût et de l’Alimentation (CSGA), Dijon, France
| | - Frédérique Datiche
- CNRS UMR 6265—Centre des Sciences du Goût et de l’Alimentation (CSGA), Dijon, France
| | - Nanette Schneider
- CNRS UMR 6265—Centre des Sciences du Goût et de l’Alimentation (CSGA), Dijon, France
| | - Jacques Epelbaum
- INSERM, UMR 894-Center for Psychiatry and Neuroscience (CPN), Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Cécile Viollet
- INSERM, UMR 894-Center for Psychiatry and Neuroscience (CPN), Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
14
|
Díaz D, Piquer-Gil M, Recio JS, Martínez-Losa MM, Alonso JR, Weruaga E, Álvarez-Dolado M. Bone marrow transplantation improves motor activity in a mouse model of ataxia. J Tissue Eng Regen Med 2018; 12:e1950-e1961. [PMID: 29222849 DOI: 10.1002/term.2626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 01/11/2023]
Abstract
Ataxias are locomotor disorders that can have an origin both neural and muscular, although both impairments are related. Unfortunately, ataxia has no cure, and the current therapies are aimed at motor re-education or muscular reinforcement. Nevertheless, cell therapy is becoming a promising approach to deal with incurable neural diseases, including neuromuscular ataxias. Here, we have used a model of ataxia, the Purkinje Cell Degeneration (PCD) mutant mouse, to study the effect of healthy (wild-type) bone marrow transplantation on the restoration of defective mobility. Bone marrow transplants (from both mutant and healthy donors) were performed in wild-type and PCD mice. Then, a wide battery of behavioural tests was employed to determine possible motor amelioration in mutants. Finally, cerebellum, spinal cord, and muscle were analysed to study the integration of the transplant-derived cells and the origin of the behavioural changes. Our results demonstrated that the transplant of wild-type bone marrow restores the mobility of PCD mice, increasing their capabilities of movement (52-100% of recovery), exploration (20-71% of recovery), speed (35% of recovery), and motor coordination (25% of recovery). Surprisingly, our results showed that bone marrow transplant notably improves the skeletal muscle structure, which is severely damaged in the mutants, rather than ameliorating the central nervous system. Although a multimodal effect of the transplant is not discarded, muscular improvements appear to be the basis of this motor recovery. Furthermore, the results from our study indicate that bone marrow stem cell therapy can be a safe and effective alternative for dealing with movement disorders such as ataxias.
Collapse
Affiliation(s)
- David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Marina Piquer-Gil
- Laboratory of Cell Therapy for Neuropathologies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC, Seville, Spain
| | - Javier Sánchez Recio
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain
| | - María Magdalena Martínez-Losa
- Laboratory of Cell Therapy for Neuropathologies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC, Seville, Spain
| | - José Ramón Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.,Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | | |
Collapse
|
15
|
Olfactory bulb plasticity ensures proper olfaction after severe impairment in postnatal neurogenesis. Sci Rep 2017; 7:5654. [PMID: 28720887 PMCID: PMC5516035 DOI: 10.1038/s41598-017-05970-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/06/2017] [Indexed: 11/08/2022] Open
Abstract
The olfactory bulb (OB) neurons establish a complex network that ensures the correct processing of the olfactory inputs. Moreover, the OB presents a lifelong addition of new neurons into its existing circuitry. This neurogenesis is considered essential for the OB function. However, its functional impact on physiology and behavior is still unclear. Here, we investigate the mechanisms of OB plasticity that underlie bulbar physiology in relation to severe damage of neurogenesis. The neurogenesis of young mice was altered by ionizing radiation. Afterwards, both multi-channel olfactometry and electrophysiological studies were performed. Furthermore, neurogenesis and differentiation of the newly formed cells were assessed using bromodeoxyuridine labeling combined with a wide battery of neuronal markers. Our results demonstrate a reduction in both neurogenesis and volume of the OB in irradiated animals. The number of neuroblasts reaching the OB was reduced and their differentiation rate into interneurons selectively changed; some populations were noticeably affected whereas others remained preserved. Surprisingly, both olfactory detection and discrimination as well as electrophysiology presented almost no alterations in irradiated mice. Our findings suggest that after damaging postnatal neurogenesis, the neurochemical fate of some interneurons changes within a new biological scenario, while maintaining homeostasis and olfaction.
Collapse
|
16
|
|
17
|
Cendelin J. Experimental neurotransplantation treatment for hereditary cerebellar ataxias. CEREBELLUM & ATAXIAS 2016; 3:7. [PMID: 27047666 PMCID: PMC4819278 DOI: 10.1186/s40673-016-0045-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/02/2016] [Indexed: 01/09/2023]
Abstract
Hereditary cerebellar degenerations are a heterogeneous group of diseases often having a detrimental impact on patients’ quality of life. Unfortunately, no sufficiently effective causal therapy is available for human patients at present. There are several therapies that have been shown to affect the pathogenetic process and thereby to delay the progress of the disease in mouse models of cerebellar ataxias. The second experimental therapeutic approach for hereditary cerebellar ataxias is neurotransplantation. Grafted cells might provide an effect via delivery of a scarce neurotransmitter, substitution of lost cells if functionally integrated and rescue or trophic support of degenerating cells. The results of cerebellar transplantation research over the past 30 years are reviewed here and potential benefits and limitations of neurotransplantation therapy are discussed.
Collapse
Affiliation(s)
- Jan Cendelin
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
18
|
McDole B, Isgor C, Pare C, Guthrie K. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo. Neuroscience 2015. [PMID: 26211445 DOI: 10.1016/j.neuroscience.2015.07.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.
Collapse
Affiliation(s)
- B McDole
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - C Isgor
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - C Pare
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - K Guthrie
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States.
| |
Collapse
|
19
|
Díaz D, Alonso JR, Weruaga E. Bone marrow transplantation for research and regenerative therapies in the central nervous system. Methods Mol Biol 2015; 1254:317-325. [PMID: 25431074 DOI: 10.1007/978-1-4939-2152-2_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bone marrow stem cells are probably the best known stem cell type and have been employed for more than 50 years, especially in pathologies related to the hematopoietic and immune systems. However, their potential for therapeutic application is much broader (because these cells can differentiate into hepatocytes, myocytes, cardiomyocytes, pneumocytes or neural cells, among others), and they can also presumably be employed to palliate neural diseases. Current research addressing the integration of bone marrow -derived cells in the neural circuits of the central nervous system together with their features and applications are hotspots in current Neurobiology. Nevertheless, as in other leading research lines the efficacy and possibilities of their therapeutic application depend on the technical procedures employed, which are still far from being standardized. In this chapter we shall explain one of these procedures in depth, namely the transplantation of whole bone marrow from harvested bone marrow stem cells for subsequent integration into the encephalon.
Collapse
Affiliation(s)
- David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, C/ Pintor Fernando Gallego 1, Salamanca, E-37007, Spain
| | | | | |
Collapse
|
20
|
García-González D, Murcia-Belmonte V, Esteban PF, Ortega F, Díaz D, Sánchez-Vera I, Lebrón-Galán R, Escobar-Castañondo L, Martínez-Millán L, Weruaga E, García-Verdugo JM, Berninger B, de Castro F. Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb. Brain Struct Funct 2014; 221:239-60. [PMID: 25300351 DOI: 10.1007/s00429-014-0904-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022]
Abstract
New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated with severe OB morphogenesis defects leading to anosmia and hypogonadotropic hypogonadism. Here, we show that A1 over-expression in adult mice strongly increases proliferation in the SVZ, mainly with symmetrical divisions, and produces substantial morphological changes in the normal SVZ architecture, where we also report the presence of FGFR1 in almost all SVZ cells. Interestingly, for the first time we show FGFR1 expression in the basal body of primary cilia in neural progenitor cells. Additionally, we have found that A1 over-expression also enhances neuroblast motility, mainly through FGFR1 activity. Together, these changes lead to a selective increase in several GABAergic interneuron populations in different OB layers. These specific alterations in the OB would be sufficient to disrupt the normal processing of sensory information and consequently alter olfactory memory. In summary, this work shows that FGFR1-mediated A1 activity plays a crucial role in the continuous remodelling of the adult OB.
Collapse
Affiliation(s)
- Diego García-González
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain.
- Clinical Neurobiology, German Center for Cancer Research (DKFZ), Heidelberg, Germany.
| | - Verónica Murcia-Belmonte
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Pedro F Esteban
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Felipe Ortega
- University Medical Center Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - David Díaz
- Instituto de Neurociencias de Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - Irene Sánchez-Vera
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia, Spain
- Unidad mixta de Esclerosis múltiple y neurorregeneración, IIS Hospital La Fe, Valencia, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | - Luis Martínez-Millán
- Departmento de Neurosciencias, Facultad de Medicina, Universidad del País Vasco, Leioa, Spain
| | - Eduardo Weruaga
- Instituto de Neurociencias de Castilla y León-INCyL, Universidad de Salamanca, Salamanca, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia, Spain
| | - Benedikt Berninger
- University Medical Center Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain.
| |
Collapse
|
21
|
Díaz D, Muñoz-Castañeda R, Alonso JR, Weruaga E. Bone Marrow-Derived Stem Cells and Strategies for Treatment of Nervous System Disorders: Many Protocols, and Many Results. Neuroscientist 2014; 21:637-52. [PMID: 25171812 DOI: 10.1177/1073858414547538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone marrow stem cells are the best known stem cell type and have been employed for more than 50 years, especially in pathologies of the hematopoietic and immune systems. However, their therapeutic potential is much broader, and they can also be employed to palliate neural diseases. Apart from their plastic properties, these cells lack the legal or ethical constraints of other stem cell populations, that is, embryonic stem cells. Current research addressing the integration of bone marrow-derived cells into the neural circuits of the central nervous system, their features, and applications is a hotspot in neurobiology. Nevertheless, as in other leading research lines the efficacy and possibilities of their application depend on technical procedures, which are still far from being standardized. Accordingly, for efficient research this large range of variants should be taken into account as they could lead to unexpected results. Rather than focusing on clinical aspects, this review offers a compendium of the methodologies aimed at providing a guide for researchers who are working in the field of bone marrow transplantation in the central nervous system. It seeks to be useful for both introductory and trouble-shooting purposes, and in particular for dealing with the large array of bone marrow transplantation protocols available.
Collapse
Affiliation(s)
- David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain
| | - Rodrigo Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain
| | - José Ramón Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain
| |
Collapse
|
22
|
Franceschini V, Bettini S, Pifferi S, Menini A, Siciliano G, Ognio E, Brini AT, Di Oto E, Revoltella RP. Transplanted human adipose tissue-derived stem cells engraft and induce regeneration in mice olfactory neuroepithelium in response to dichlobenil subministration. Chem Senses 2014; 39:617-29. [PMID: 25056732 DOI: 10.1093/chemse/bju035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used immunodeficient mice, whose dorsomedial olfactory region was permanently damaged by dichlobenil inoculation, to test the neuroregenerative properties of transplanted human adipose tissue-derived stem cells after 30 and 60 days. Analysis of polymerase chain reaction bands revealed that stem cells preferentially engrafted in the lesioned olfactory epithelium compared with undamaged mucosa of untreated transplanted mice. Although basal cell proliferation in untransplanted lesioned mice did not give rise to neuronal cells in the olfactory mucosa, we observed clusters of differentiating olfactory cells in transplanted mice. After 30 days, and even more at 60 days, epithelial thickness was partially recovered to normal values, as also the immunohistochemical properties. Functional reactivity to odorant stimulation was also confirmed through electro-olfactogram recording in the dorsomedial epithelium. Furthermore, we demonstrated that engrafted stem cells fused with mouse cells in the olfactory organ, even if heterokaryons detected were too rare to hypothesize they directly repopulated the lesioned epithelium. The data reported prove that the migrating transplanted stem cells were able to induce a neuroregenerative process in a specific lesioned sensory area, enforcing the perspective that they could become an available tool for stem cell therapy.
Collapse
Affiliation(s)
- Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, and Foundation Onlus Stem Cells and Life, Via Selmi 3, 40126 Bologna, Italy,
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, and Foundation Onlus Stem Cells and Life, Via Selmi 3, 40126 Bologna, Italy
| | - Simone Pifferi
- International School for Advanced Studies, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Anna Menini
- International School for Advanced Studies, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Emanuela Ognio
- IRCCS San Martino, National Institute for Cancer Research (IST), Largo Rosanna Benzi 10, 16132 Genua, Italy
| | - Anna Teresa Brini
- Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milan, Via Vanvitelli 32, 2019 Milan, Italy
| | - Enrico Di Oto
- Department of Hematology and Oncology "L. and A. Seragnoli," Section of Anatomic Pathology at Bellaria Hospital, University of Bologna, Via Altura 3, 40139 Bologna, Italy and
| | - Roberto P Revoltella
- Institute for Chemical, Physical Processes, C.N.R. and Foundation Onlus Stem Cells and Life, Via L.L. Zamenhof 8, 56127 Pisa, Italy
| |
Collapse
|
23
|
Díaz D, Gómez C, Muñoz-Castañeda R, Baltanás F, Alonso JR, Weruaga E. The Olfactory System as a Puzzle: Playing With Its Pieces. Anat Rec (Hoboken) 2013; 296:1383-400. [DOI: 10.1002/ar.22748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- D. Díaz
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| | - C. Gómez
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Institute for Molecular and Cell Biology of the Cancer, IBMCC, CSIC-Universidad de Salamanca; Salamanca Spain
| | - R. Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| | - F. Baltanás
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Institute for Molecular and Cell Biology of the Cancer, IBMCC, CSIC-Universidad de Salamanca; Salamanca Spain
| | - J. R. Alonso
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
- Institute for High Research, Universidad de Tarapacá; Arica Chile
| | - E. Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| |
Collapse
|