1
|
Ward TR, Qu PP, Leung LC, Zhou B, Muench KL, Khechaduri A, Plastini MJ, Charlton CA, Pattni R, Ho S, Ho M, Huang Y, Zhou P, Hallmayer JF, Mourrain P, Palmer TD, Zhang X, Urban AE. Cell-type specific global reprogramming of the transcriptome and epigenome in induced neurons with the 16p11.2 neuropsychiatric CNVs. Eur J Hum Genet 2025:10.1038/s41431-025-01856-3. [PMID: 40374944 DOI: 10.1038/s41431-025-01856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/03/2025] [Accepted: 04/15/2025] [Indexed: 05/18/2025] Open
Abstract
Copy number variants (CNVs), either deletions or duplications, at the 16p11.2 locus in the human genome are known to increase the risk for autism spectrum disorders (ASD), schizophrenia, and several other developmental conditions. Here, we investigate the global effects on gene expression and DNA methylation using an induced pluripotent stem cell (iPSC) to induced neuron (iN) cell model system derived from 16p11.2 CNV patients and controls. This approach revealed genome-wide and cell-type specific alterations to both gene expression and DNA methylation patterns and also yielded specific leads on genes potentially contributing to some of the phenotypes in 16p11.2 patients. There is global reprogramming of both the transcriptome and the DNA methylome. We observe sets of differentially expressed genes and differentially methylated regions, respectively, that are localized genome wide and that are shared, and with changes in the same direction, between the deletion and duplication genotypes. The gene PCSK9 is identified as a possible contributing factor to symptoms seen in carriers of the 16p11.2 CNVs. The protocadherin (PCDH) gene family is found to have altered DNA methylation patterns in the CNV patient samples. The iPSC lines used for this study are available through a repository as a resource for research into the molecular etiology of the clinical phenotypes of 16p11.2 CNVs and into that of neuropsychiatric and neurodevelopmental disorders in general.
Collapse
Affiliation(s)
- Thomas R Ward
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ping-Ping Qu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Louis C Leung
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kristin L Muench
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arineh Khechaduri
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Melanie J Plastini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Carol A Charlton
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Steve Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marcus Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joachim F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Liang S, Zhao Y, Liu X, Wang Y, Yang H, Zhuo D, Fan F, Guo M, Luo G, Fan Y, Zhang L, Lv X, Chen X, Li SS, Jin X. Prenatal progesterone treatment modulates fetal brain transcriptome and impacts adult offspring behavior in mice. Physiol Behav 2024; 281:114549. [PMID: 38604593 DOI: 10.1016/j.physbeh.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Maternal exposure to elevated levels of steroid hormones during pregnancy is associated with the development of chronic conditions in offspring that manifest in adulthood. However, the effects of progesterone (P4) administration during early pregnancy on fetal development and subsequent offspring behavior remain poorly understood. In this study, we aimed to investigate the effects of P4 treatment during early pregnancy on the transcript abundance in the fetal brain and assess the behavioral consequences in the offspring during adolescence and adulthood. Using RNA-seq analysis, we examined the impact of P4 treatment on the fetal brain transcriptome in a dosage-dependent manner. Our results revealed differential regulation of genes involved in neurotransmitter transport, synaptic transmission, and transcriptional regulation. Specifically, we observed bidirectional regulation of transcription factors (TFs) by P4 at different doses, highlighting the critical role of these TFs in neurodevelopment. To assess behavioral outcomes, we conducted open field and elevated plus maze tests. Offspring treated with low-dose P4 (LP4) displayed increased exploratory behavior during both adolescence and adulthood. In contrast, the high-dose P4 (HP4) group exhibited impaired exploration and heightened anxiety-like behaviors compared to the control mice. Moreover, in a novel object recognition test, HP4-treated offspring demonstrated impaired object recognition memory during both developmental stages. Additionally, both LP4 and HP4 groups showed reduced social interaction in the three-chamber test. These results suggest that prenatal exposure to P4 exerts a notable influence on the expression of genes associated with neurodevelopment and may induce alterations in behavioral characteristics in progeny, highlighting the need to monitor progesterone levels during pregnancy for long-term impacts on fetal brain development and behavior.
Collapse
Affiliation(s)
- Shuang Liang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Ying Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Xiuwei Liu
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Yan Wang
- Jiujiang Maternal and Child Health Hospital, China
| | | | - Donghai Zhuo
- School of Medicine, Nankai University, Tianjin, China
| | - Feifei Fan
- School of Medicine, Nankai University, Tianjin, China
| | - Miao Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Gan Luo
- Tianjin Medical University, Tianjin, China
| | - Yonggang Fan
- School of Medicine, Nankai University, Tianjin, China
| | - Lingzhu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Xinxin Lv
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Chen
- School of Medicine, Nankai University, Tianjin, China; Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin, China; Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China.
| |
Collapse
|
3
|
Pekkarinen M, Nordfors K, Uusi-Mäkelä J, Kytölä V, Hartewig A, Huhtala L, Rauhala M, Urhonen H, Häyrynen S, Afyounian E, Yli-Harja O, Zhang W, Helen P, Lohi O, Haapasalo H, Haapasalo J, Nykter M, Kesseli J, Rautajoki KJ. Aberrant DNA methylation distorts developmental trajectories in atypical teratoid/rhabdoid tumors. Life Sci Alliance 2024; 7:e202302088. [PMID: 38499326 PMCID: PMC10948937 DOI: 10.26508/lsa.202302088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are pediatric brain tumors known for their aggressiveness and aberrant but still unresolved epigenetic regulation. To better understand their malignancy, we investigated how AT/RT-specific DNA hypermethylation was associated with gene expression and altered transcription factor binding and how it is linked to upstream regulation. Medulloblastomas, choroid plexus tumors, pluripotent stem cells, and fetal brain were used as references. A part of the genomic regions, which were hypermethylated in AT/RTs similarly as in pluripotent stem cells and demethylated in the fetal brain, were targeted by neural transcriptional regulators. AT/RT-unique DNA hypermethylation was associated with polycomb repressive complex 2 and linked to suppressed genes with a role in neural development and tumorigenesis. Activity of the several NEUROG/NEUROD pioneer factors, which are unable to bind to methylated DNA, was compromised via the suppressed expression or DNA hypermethylation of their target sites, which was also experimentally validated for NEUROD1 in medulloblastomas and AT/RT samples. These results highlight and characterize the role of DNA hypermethylation in AT/RT malignancy and halted neural cell differentiation.
Collapse
Affiliation(s)
- Meeri Pekkarinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kristiina Nordfors
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Unit of Pediatric Hematology and Oncology, Tampere University Hospital, Tampere, Finland
| | - Joonas Uusi-Mäkelä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ville Kytölä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anja Hartewig
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Minna Rauhala
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Henna Urhonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Sergei Häyrynen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ebrahim Afyounian
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Olli Yli-Harja
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Institute for Systems Biology, Seattle, WA, USA
| | - Wei Zhang
- Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Pauli Helen
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Hannu Haapasalo
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Joonas Haapasalo
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Juha Kesseli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| |
Collapse
|
4
|
Trimbour R, Deutschmann IM, Cantini L. Molecular mechanisms reconstruction from single-cell multi-omics data with HuMMuS. Bioinformatics 2024; 40:btae143. [PMID: 38460192 PMCID: PMC11065476 DOI: 10.1093/bioinformatics/btae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
MOTIVATION The molecular identity of a cell results from a complex interplay between heterogeneous molecular layers. Recent advances in single-cell sequencing technologies have opened the possibility to measure such molecular layers of regulation. RESULTS Here, we present HuMMuS, a new method for inferring regulatory mechanisms from single-cell multi-omics data. Differently from the state-of-the-art, HuMMuS captures cooperation between biological macromolecules and can easily include additional layers of molecular regulation. We benchmarked HuMMuS with respect to the state-of-the-art on both paired and unpaired multi-omics datasets. Our results proved the improvements provided by HuMMuS in terms of transcription factor (TF) targets, TF binding motifs and regulatory regions prediction. Finally, once applied to snmC-seq, scATAC-seq and scRNA-seq data from mouse brain cortex, HuMMuS enabled to accurately cluster scRNA profiles and to identify potential driver TFs. AVAILABILITY AND IMPLEMENTATION HuMMuS is available at https://github.com/cantinilab/HuMMuS.
Collapse
Affiliation(s)
- Remi Trimbour
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, F-75015 Paris, France
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005 Paris, France
| | - Ina Maria Deutschmann
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005 Paris, France
| | - Laura Cantini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, F-75015 Paris, France
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005 Paris, France
| |
Collapse
|
5
|
Hirota J. Molecular mechanisms of differentiation and class choice of olfactory sensory neurons. Genesis 2024; 62:e23587. [PMID: 38454646 DOI: 10.1002/dvg.23587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
The sense of smell is intricately linked to essential animal behaviors necessary for individual survival and species preservation. During vertebrate evolution, odorant receptors (ORs), responsible for detecting odor molecules, have evolved to adapt to changing environments, transitioning from aquatic to terrestrial habitats and accommodating increasing complex chemical environments. These evolutionary pressures have given rise to the largest gene family in vertebrate genomes. Vertebrate ORs are phylogenetically divided into two major classes; class I and class II. Class I OR genes, initially identified in fish and frog, have persisted across vertebrate species. On the other hand, class II OR genes are unique to terrestrial animals, accounting for ~90% of mammalian OR genes. In mice, each olfactory sensory neuron (OSN) expresses a single functional allele of a single OR gene from either the class I or class II OR repertoire. This one neuron-one receptor rule is established through two sequential steps: specification of OR class and subsequent exclusive OR expression from the corresponding OR class. Consequently, OSNs acquire diverse neuronal identities during the process of OSN differentiation, enabling animals to detect a wide array of odor molecules. This review provides an overview of the OSN differentiation process through which OSN diversity is achieved, primarily using the mouse as a model animal.
Collapse
Affiliation(s)
- Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Center for Integrative Biosciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
6
|
Li Z, Li H, Yu X, Zhou J, Dong ZY, Meng X. bHLH transcription factors Hes1, Ascl1 and Oligo2 exhibit different expression patterns in the process of physiological electric fields-induced neuronal differentiation. Mol Biol Rep 2024; 51:115. [PMID: 38227267 DOI: 10.1007/s11033-023-09118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Recent studies have shown that the expression of bHLH transcription factors Hes1, Ascl1, and Oligo2 has an oscillating balance in neural stem cells (NSCs) to maintain their self-proliferation and multi-directional differentiation potential. This balance can be disrupted by exogenous stimulation. Our previous work has identified that electrical stimulation could induce neuronal differentiation of mouse NSCs. METHODS To further evaluate if physiological electric fields (EFs)-induced neuronal differentiation is related to the expression patterns of bHLH transcription factors Hes1, Ascl1, and Oligo2, mouse embryonic brain NSCs were used to investigate the expression changes of Ascl1, Hes1 and Oligo2 in mRNA and protein levels during EF-induced neuronal differentiation. RESULTS Our results showed that NSCs expressed high level of Hes1, while expression of Ascl1 and Oligo2 stayed at very low levels. When NSCs exited proliferation, the expression of Hes1 in differentiated cells began to decrease and oscillated at the low expression level. Oligo2 showed irregular changes in low expression level. EF-stimulation significantly increased the expression of Ascl1 at mRNA and protein levels accompanied by an increased percentage of neuronal differentiation. What's more, over-expression of Hes1 inhibited the neuronal differentiation induced by EFs. CONCLUSION EF-stimulation directed neuronal differentiation of NSCs by promoting the continuous accumulation of Ascl1 expression and decreasing the expression of Hes1.
Collapse
Affiliation(s)
- Zhe Li
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Hai Li
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
- Department of Radiology, The First Hospital, Jilin University, Changchun, 130041, People's Republic of China
| | - Xiyao Yu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Jiaying Zhou
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhi Yong Dong
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Xiaoting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
7
|
Lu C, Garipler G, Dai C, Roush T, Salome-Correa J, Martin A, Liscovitch-Brauer N, Mazzoni EO, Sanjana NE. Essential transcription factors for induced neuron differentiation. Nat Commun 2023; 14:8362. [PMID: 38102126 PMCID: PMC10724217 DOI: 10.1038/s41467-023-43602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Neurogenins are proneural transcription factors required to specify neuronal identity. Their overexpression in human pluripotent stem cells rapidly produces cortical-like neurons with spiking activity and, because of this, they have been widely adopted for human neuron disease models. However, we do not fully understand the key downstream regulatory effectors responsible for driving neural differentiation. Here, using inducible expression of NEUROG1 and NEUROG2, we identify transcription factors (TFs) required for directed neuronal differentiation by combining expression and chromatin accessibility analyses with a pooled in vitro CRISPR-Cas9 screen targeting all ~1900 TFs in the human genome. The loss of one of these essential TFs (ZBTB18) yields few MAP2-positive neurons. Differentiated ZBTB18-null cells have radically altered gene expression, leading to cytoskeletal defects and stunted neurites and spines. In addition to identifying key downstream TFs for neuronal differentiation, our work develops an integrative multi-omics and TFome-wide perturbation platform to rapidly characterize essential TFs for the differentiation of any human cell type.
Collapse
Affiliation(s)
- Congyi Lu
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Görkem Garipler
- Department of Biology, New York University, New York, NY, USA
| | - Chao Dai
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Timothy Roush
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Jose Salome-Correa
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Alex Martin
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Noa Liscovitch-Brauer
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
8
|
Kim YS, Seo N, Kim JH, Kang S, Park JW, Park KD, Lee HA, Park M. Exploring the Functional Heterogeneity of Directly Reprogrammed Neural Stem Cell-Derived Neurons via Single-Cell RNA Sequencing. Cells 2023; 12:2818. [PMID: 38132138 PMCID: PMC10742074 DOI: 10.3390/cells12242818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The therapeutic potential of directly reprogrammed neural stem cells (iNSCs) for neurodegenerative diseases relies on reducing the innate tumorigenicity of pluripotent stem cells. However, the heterogeneity within iNSCs is a major hurdle in quality control prior to clinical applications. Herein, we generated iNSCs from human fibroblasts, by transfecting transcription factors using Sendai virus particles, and characterized the expression of iNSC markers. Using immunostaining and quantitative real time -polymerase chain reaction (RT -qPCR), no differences were observed between colonies of iNSCs and iNSC-derived neurons. Unexpectedly, patch-clamp analysis of iNSC-derived neurons revealed distinctive action potential firing even within the same batch product. We performed single-cell RNA sequencing in fibroblasts, iNSCs, and iNSC-derived neurons to dissect their functional heterogeneity and identify cell fate regulators during direct reprogramming followed by neuronal differentiation. Pseudotime trajectory analysis revealed distinct cell types depending on their gene expression profiles. Differential gene expression analysis showed distinct NEUROG1, PEG3, and STMN2 expression patterns in iNSCs and iNSC-derived neurons. Taken together, we recommend performing a predictable functional assessment with appropriate surrogate markers to ensure the quality control of iNSCs and their differentiated neurons, particularly before cell banking for regenerative cell therapy.
Collapse
Affiliation(s)
- Yoo Sung Kim
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - NaRi Seo
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Ji-Hye Kim
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Soyeong Kang
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Ji Won Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Ki Dae Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea;
| | - Misun Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| |
Collapse
|
9
|
Chen J, Fuhler NA, Noguchi KK, Dougherty JD. MYT1L is required for suppressing earlier neuronal development programs in the adult mouse brain. Genome Res 2023; 33:541-556. [PMID: 37100461 PMCID: PMC10234307 DOI: 10.1101/gr.277413.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/09/2023] [Indexed: 04/28/2023]
Abstract
In vitro studies indicate the neurodevelopmental disorder gene myelin transcription factor 1-like (MYT1L) suppresses non-neuronal lineage genes during fibroblast-to-neuron direct differentiation. However, MYT1L's molecular and cellular functions in the adult mammalian brain have not been fully characterized. Here, we found that MYT1L loss leads to up-regulated deep layer (DL) gene expression, corresponding to an increased ratio of DL/UL neurons in the adult mouse cortex. To define potential mechanisms, we conducted Cleavage Under Targets & Release Using Nuclease (CUT&RUN) to map MYT1L binding targets and epigenetic changes following MYT1L loss in mouse developing cortex and adult prefrontal cortex (PFC). We found MYT1L mainly binds to open chromatin, but with different transcription factor co-occupancies between promoters and enhancers. Likewise, multiomic data set integration revealed that, at promoters, MYT1L loss does not change chromatin accessibility but increases H3K4me3 and H3K27ac, activating both a subset of earlier neuronal development genes as well as Bcl11b, a key regulator for DL neuron development. Meanwhile, we discovered that MYT1L normally represses the activity of neurogenic enhancers associated with neuronal migration and neuronal projection development by closing chromatin structures and promoting removal of active histone marks. Further, we showed that MYT1L interacts with HDAC2 and transcriptional repressor SIN3B in vivo, providing potential mechanisms underlying repressive effects on histone acetylation and gene expression. Overall, our findings provide a comprehensive map of MYT1L binding in vivo and mechanistic insights into how MYT1L loss leads to aberrant activation of earlier neuronal development programs in the adult mouse brain.
Collapse
Affiliation(s)
- Jiayang Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nicole A Fuhler
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Kevin K Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
10
|
Zhang Z, Sun H, Mariappan R, Chen X, Chen X, Jain MS, Efremova M, Teichmann SA, Rajan V, Zhang X. scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection. Nat Commun 2023; 14:384. [PMID: 36693837 PMCID: PMC9873790 DOI: 10.1038/s41467-023-36066-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Single cell data integration methods aim to integrate cells across data batches and modalities, and data integration tasks can be categorized into horizontal, vertical, diagonal, and mosaic integration, where mosaic integration is the most general and challenging case with few methods developed. We propose scMoMaT, a method that is able to integrate single cell multi-omics data under the mosaic integration scenario using matrix tri-factorization. During integration, scMoMaT is also able to uncover the cluster specific bio-markers across modalities. These multi-modal bio-markers are used to interpret and annotate the clusters to cell types. Moreover, scMoMaT can integrate cell batches with unequal cell type compositions. Applying scMoMaT to multiple real and simulated datasets demonstrated these features of scMoMaT and showed that scMoMaT has superior performance compared to existing methods. Specifically, we show that integrated cell embedding combined with learned bio-markers lead to cell type annotations of higher quality or resolution compared to their original annotations.
Collapse
Affiliation(s)
- Ziqi Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haoran Sun
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ragunathan Mariappan
- Department of Information Systems and Analytics, National University of Singapore, Singapore, Singapore
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinyu Chen
- Bioengineering Program, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | - Vaibhav Rajan
- Department of Information Systems and Analytics, National University of Singapore, Singapore, Singapore
| | - Xiuwei Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
11
|
Lee DG, Kim YK, Baek KH. The bHLH Transcription Factors in Neural Development and Therapeutic Applications for Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232213936. [PMID: 36430421 PMCID: PMC9696289 DOI: 10.3390/ijms232213936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The development of functional neural circuits in the central nervous system (CNS) requires the production of sufficient numbers of various types of neurons and glial cells, such as astrocytes and oligodendrocytes, at the appropriate periods and regions. Hence, severe neuronal loss of the circuits can cause neurodegenerative diseases such as Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Treatment of such neurodegenerative diseases caused by neuronal loss includes some strategies of cell therapy employing stem cells (such as neural progenitor cells (NPCs)) and gene therapy through cell fate conversion. In this report, we review how bHLH acts as a regulator in neuronal differentiation, reprogramming, and cell fate determination. Moreover, several different researchers are conducting studies to determine the importance of bHLH factors to direct neuronal and glial cell fate specification and differentiation. Therefore, we also investigated the limitations and future directions of conversion or transdifferentiation using bHLH factors.
Collapse
Affiliation(s)
- Dong Gi Lee
- Joint Section of Science in Environmental Technology, Food Technology, and Molecular Biotechnology, Ghent University, Incheon 21569, Korea
| | - Young-Kwang Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam 13488, Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam 13488, Korea
- Correspondence: ; Tel.: +82-31-881-7134
| |
Collapse
|
12
|
Nuclear Transporter IPO13 Is Central to Efficient Neuronal Differentiation. Cells 2022; 11:cells11121904. [PMID: 35741036 PMCID: PMC9221400 DOI: 10.3390/cells11121904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular transport between the nucleus and cytoplasm of the cell is mediated by the importin superfamily of transport receptors, of which the bidirectional transporter Importin 13 (IPO13) is a unique member, with a critical role in early embryonic development through nuclear transport of key regulators, such as transcription factors Pax6, Pax3, and ARX. Here, we examined the role of IPO13 in neuronal differentiation for the first time, using a mouse embryonic stem cell (ESC) model and a monolayer-based differentiation protocol to compare IPO13−/− to wild type ESCs. Although IPO13−/− ESCs differentiated into neural progenitor cells, as indicated by the expression of dorsal forebrain progenitor markers, reduced expression of progenitor markers Pax6 and Nestin compared to IPO13−/− was evident, concomitant with reduced nuclear localisation/transcriptional function of IPO13 import cargo Pax6. Differentiation of IPO13−/− cells into neurons appeared to be strongly impaired, as evidenced by altered morphology, reduced expression of key neuronal markers, and altered response to the neurotransmitter glutamate. Our findings establish that IPO13 has a key role in ESC neuronal differentiation, in part through the nuclear transport of Pax6.
Collapse
|
13
|
Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 2022; 23:395-410. [DOI: 10.1038/s41583-022-00585-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
|
14
|
Borrett MJ, Innes BT, Jeong D, Tahmasian N, Storer MA, Bader GD, Kaplan DR, Miller FD. Single-Cell Profiling Shows Murine Forebrain Neural Stem Cells Reacquire a Developmental State when Activated for Adult Neurogenesis. Cell Rep 2021; 32:108022. [PMID: 32783944 DOI: 10.1016/j.celrep.2020.108022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
The transitions from developing to adult quiescent and activated neural stem cells (NSCs) are not well understood. Here, we use single-cell transcriptional profiling and lineage tracing to characterize these transitions in the murine forebrain. We show that the two forebrain NSC parental populations, embryonic cortex and ganglionic eminence radial precursors (RPs), are highly similar even though they make glutamatergic versus gabaergic neurons. Both RP populations progress linearly to transition from a highly active embryonic to a dormant adult stem cell state that still shares many similarities with embryonic RPs. When adult NSCs of either embryonic origin become reactivated to make gabaergic neurons, they acquire a developing ganglionic eminence RP-like identity. Thus, transitions from embryonic RPs to adult NSCs and back to neuronal progenitors do not involve fundamental changes in cell identity, but rather reflect conversions between activated and dormant NSC states that may be determined by the niche environment.
Collapse
Affiliation(s)
- Michael J Borrett
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Brendan T Innes
- The Donnelly Centre, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Danielle Jeong
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Nareh Tahmasian
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Mekayla A Storer
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - David R Kaplan
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Freda D Miller
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada.
| |
Collapse
|
15
|
Oproescu AM, Han S, Schuurmans C. New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex. Front Mol Neurosci 2021; 14:642016. [PMID: 33658912 PMCID: PMC7917194 DOI: 10.3389/fnmol.2021.642016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Historically, the mammalian brain was thought to lack stem cells as no new neurons were found to be made in adulthood. That dogma changed ∼25 years ago with the identification of neural stem cells (NSCs) in the adult rodent forebrain. However, unlike rapidly self-renewing mature tissues (e.g., blood, intestinal crypts, skin), the majority of adult NSCs are quiescent, and those that become 'activated' are restricted to a few neurogenic zones that repopulate specific brain regions. Conversely, embryonic NSCs are actively proliferating and neurogenic. Investigations into the molecular control of the quiescence-to-proliferation-to-differentiation continuum in the embryonic and adult brain have identified proneural genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs) as critical regulators. These bHLH TFs initiate genetic programs that remove NSCs from quiescence and drive daughter neural progenitor cells (NPCs) to differentiate into specific neural cell subtypes, thereby contributing to the enormous cellular diversity of the adult brain. However, new insights have revealed that proneural gene activities are context-dependent and tightly regulated. Here we review how proneural bHLH TFs are regulated, with a focus on the murine cerebral cortex, drawing parallels where appropriate to other organisms and neural tissues. We discuss upstream regulatory events, post-translational modifications (phosphorylation, ubiquitinylation), protein-protein interactions, epigenetic and metabolic mechanisms that govern bHLH TF expression, stability, localization, and consequent transactivation of downstream target genes. These tight regulatory controls help to explain paradoxical findings of changes to bHLH activity in different cellular contexts.
Collapse
Affiliation(s)
- Ana-Maria Oproescu
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sisu Han
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Vaid S, Huttner WB. Transcriptional Regulators and Human-Specific/Primate-Specific Genes in Neocortical Neurogenesis. Int J Mol Sci 2020; 21:ijms21134614. [PMID: 32610533 PMCID: PMC7369782 DOI: 10.3390/ijms21134614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
During development, starting from a pool of pluripotent stem cells, tissue-specific genetic programs help to shape and develop functional organs. To understand the development of an organ and its disorders, it is important to understand the spatio-temporal dynamics of the gene expression profiles that occur during its development. Modifications in existing genes, the de-novo appearance of new genes, or, occasionally, even the loss of genes, can greatly affect the gene expression profile of any given tissue and contribute to the evolution of organs or of parts of organs. The neocortex is evolutionarily the most recent part of the brain, it is unique to mammals, and is the seat of our higher cognitive abilities. Progenitors that give rise to this tissue undergo sequential waves of differentiation to produce the complete sets of neurons and glial cells that make up a functional neocortex. We will review herein our understanding of the transcriptional regulators that control the neural precursor cells (NPCs) during the generation of the most abundant class of neocortical neurons, the glutametergic neurons. In addition, we will discuss the roles of recently-identified human- and primate-specific genes in promoting neurogenesis, leading to neocortical expansion.
Collapse
|
17
|
Aslanpour S, Rosin JM, Balakrishnan A, Klenin N, Blot F, Gradwohl G, Schuurmans C, Kurrasch DM. Ascl1 is required to specify a subset of ventromedial hypothalamic neurons. Development 2020; 147:dev180067. [PMID: 32253239 DOI: 10.1242/dev.180067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 03/23/2020] [Indexed: 03/01/2024]
Abstract
Despite clear physiological roles, the ventromedial hypothalamus (VMH) developmental programs are poorly understood. Here, we asked whether the proneural gene achaete-scute homolog 1 (Ascl1) contributes to VMH development. Ascl1 transcripts were detected in embryonic day (E) 10.5 to postnatal day 0 VMH neural progenitors. The elimination of Ascl1 reduced the number of VMH neurons at E12.5 and E15.5, particularly within the VMH-central (VMHC) and -dorsomedial (VMHDM) subdomains, and resulted in a VMH cell fate change from glutamatergic to GABAergic. We observed a loss of Neurog3 expression in Ascl1-/- hypothalamic progenitors and an upregulation of Neurog3 when Ascl1 was overexpressed. We also demonstrated a glutamatergic to GABAergic fate switch in Neurog3-null mutant mice, suggesting that Ascl1 might act via Neurog3 to drive VMH cell fate decisions. We also showed a concomitant increase in expression of the central GABAergic fate determinant Dlx1/2 in the Ascl1-null hypothalamus. However, Ascl1 was not sufficient to induce an ectopic VMH fate when overexpressed outside the normal window of competency. Combined, Ascl1 is required but not sufficient to specify the neurotransmitter identity of VMH neurons, acting in a transcriptional cascade with Neurog3.
Collapse
Affiliation(s)
- Shaghayegh Aslanpour
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jessica M Rosin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anjali Balakrishnan
- Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, ON M4N 3M5, Canada
| | - Natalia Klenin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Florence Blot
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, Universite de Strasbourg, Illkirch 67400, France
| | - Gerard Gradwohl
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, Universite de Strasbourg, Illkirch 67400, France
| | - Carol Schuurmans
- Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, ON M4N 3M5, Canada
| | - Deborah M Kurrasch
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
18
|
Neurog2 Acts as a Classical Proneural Gene in the Ventromedial Hypothalamus and Is Required for the Early Phase of Neurogenesis. J Neurosci 2020; 40:3549-3563. [PMID: 32273485 DOI: 10.1523/jneurosci.2610-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/28/2022] Open
Abstract
The tuberal hypothalamus is comprised of the dorsomedial, ventromedial, and arcuate nuclei, as well as parts of the lateral hypothalamic area, and it governs a wide range of physiologies. During neurogenesis, tuberal hypothalamic neurons are thought to be born in a dorsal-to-ventral and outside-in pattern, although the accuracy of this description has been questioned over the years. Moreover, the intrinsic factors that control the timing of neurogenesis in this region are poorly characterized. Proneural genes, including Achate-scute-like 1 (Ascl1) and Neurogenin 3 (Neurog3) are widely expressed in hypothalamic progenitors and contribute to lineage commitment and subtype-specific neuronal identifies, but the potential role of Neurogenin 2 (Neurog2) remains unexplored. Birthdating in male and female mice showed that tuberal hypothalamic neurogenesis begins as early as E9.5 in the lateral hypothalamic and arcuate and rapidly expands to dorsomedial and ventromedial neurons by E10.5, peaking throughout the region by E11.5. We confirmed an outside-in trend, except for neurons born at E9.5, and uncovered a rostrocaudal progression but did not confirm a dorsal-ventral patterning to tuberal hypothalamic neuronal birth. In the absence of Neurog2, neurogenesis stalls, with a significant reduction in early-born BrdU+ cells but no change at later time points. Further, the loss of Ascl1 yielded a similar delay in neuronal birth, suggesting that Ascl1 cannot rescue the loss of Neurog2 and that these proneural genes act independently in the tuberal hypothalamus. Together, our findings show that Neurog2 functions as a classical proneural gene to regulate the temporal progression of tuberal hypothalamic neurogenesis.SIGNIFICANCE STATEMENT Here, we investigated the general timing and pattern of neurogenesis within the tuberal hypothalamus. Our results confirmed an outside-in trend of neurogenesis and uncovered a rostrocaudal progression. We also showed that Neurog2 acts as a classical proneural gene and is responsible for regulating the birth of early-born neurons within the ventromedial hypothalamus, acting independently of Ascl1 In addition, we revealed a role for Neurog2 in cell fate specification and differentiation of ventromedial -specific neurons. Last, Neurog2 does not have cross-inhibitory effects on Neurog1, Neurog3, and Ascl1 These findings are the first to reveal a role for Neurog2 in hypothalamic development.
Collapse
|
19
|
Williams TA, Bernier NJ. Corticotropin-releasing factor protects against ammonia neurotoxicity in isolated larval zebrafish brains. J Exp Biol 2020; 223:jeb211540. [PMID: 31988165 DOI: 10.1242/jeb.211540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 08/26/2023]
Abstract
The physiological roles of corticotropin-releasing factor (CRF) have recently been extended to cytoprotection. Here, to determine whether CRF is neuroprotective in fish, the effects of CRF against high environmental ammonia (HEA)-mediated neurogenic impairment and cell death were investigated in zebrafish. In vivo, exposure of 1 day post-fertilization (dpf) embryos to HEA only reduced the expression of the determined neuron marker neurod1 In contrast, in 5 dpf larvae, HEA increased the expression of nes and sox2, neural progenitor cell markers, and reduced the expression of neurog1, gfap and mbpa, proneuronal cell, radial glia and oligodendrocyte markers, respectively, and neurod1 The N-methyl-d-aspartate (NMDA) receptor inhibitor MK801 rescued the HEA-induced reduction in neurod1 in 5 dpf larvae but did not affect the HEA-induced transcriptional changes in other neural cell types, suggesting that hyperactivation of NMDA receptors specifically contributes to the deleterious effects of HEA in determined neurons. As observed in vivo, HEA exposure elicited marked changes in the expression of cell type-specific markers in isolated 5 dpf larval brains. The addition of CRF reversed the in vitro effects of HEA on neurod1 expression and prevented an HEA-induced increase in cell death. Finally, the protective effects of CRF against HEA-mediated neurogenic impairment and cell death were prevented by the CRF type 1 receptor selective antagonist antalarmin. Together, these results provide novel evidence that HEA has developmental time- and cell type-specific neurotoxic effects, that NMDA receptor hyperactivation contributes to HEA-mediated impairment of determined neurons, and that CRF has neuroprotective properties in the larval zebrafish brain.
Collapse
Affiliation(s)
- Tegan A Williams
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
20
|
Lindenmaier LB, Parmentier N, Guo C, Tissir F, Wright KM. Dystroglycan is a scaffold for extracellular axon guidance decisions. eLife 2019; 8:42143. [PMID: 30758284 PMCID: PMC6395066 DOI: 10.7554/elife.42143] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Axon guidance requires interactions between extracellular signaling molecules and transmembrane receptors, but how appropriate context-dependent decisions are coordinated outside the cell remains unclear. Here we show that the transmembrane glycoprotein Dystroglycan interacts with a changing set of environmental cues that regulate the trajectories of extending axons throughout the mammalian brain and spinal cord. Dystroglycan operates primarily as an extracellular scaffold during axon guidance, as it functions non-cell autonomously and does not require signaling through its intracellular domain. We identify the transmembrane receptor Celsr3/Adgrc3 as a binding partner for Dystroglycan, and show that this interaction is critical for specific axon guidance events in vivo. These findings establish Dystroglycan as a multifunctional scaffold that coordinates extracellular matrix proteins, secreted cues, and transmembrane receptors to regulate axon guidance.
Collapse
Affiliation(s)
| | - Nicolas Parmentier
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Fadel Tissir
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
21
|
Adnani L, Dixit R, Chen X, Balakrishnan A, Modi H, Touahri Y, Logan C, Schuurmans C. Plag1 and Plagl2 have overlapping and distinct functions in telencephalic development. Biol Open 2018; 7:bio.038661. [PMID: 30361413 PMCID: PMC6262857 DOI: 10.1242/bio.038661] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Plag gene family has three members; Plagl1/Zac1, which is a tumor suppressor gene, and Plag1 and Plagl2, which are proto-oncogenes. All three genes are known to be expressed in embryonic neural progenitors, and Zac1 regulates proliferation, neuronal differentiation and migration in the developing neocortex. Here we examined the functions of Plag1 and Plagl2 in neocortical development. We first attempted, and were unable to generate, E12.5 Plag1;Plagl2 double mutants, indicating that at least one Plag1 or Plagl2 gene copy is required for embryonic survival. We therefore focused on single mutants, revealing a telencephalic patterning defect in E12.5 Plagl2 mutants and a proliferation/differentiation defect in Plag1 mutant neocortices. Specifically, the ventral pallium, a dorsal telencephalic territory, expands into the ventral telencephalon in Plagl2 mutants. In contrast, Plag1 mutants develop normal regional territories, but neocortical progenitors proliferate less and instead produce more neurons. Finally, in gain-of-function studies, both Plag1 and Plagl2 reduce neurogenesis and increase BrdU-uptake, indicative of enhanced proliferation, but while Plagl2 effects on proliferation are more immediate, Plag1 effects are delayed. Taken together, we found that the Plag proto-oncogenes genes are essential regulators of neocortical development and although Plag1 and Plagl2 functions are similar, they do not entirely overlap. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lata Adnani
- Sunnybrook Research Institute, Biological Sciences, Room S1-16A, 2075 Bayview Ave, Toronto, ON, Canada M4N 3M5.,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Rajiv Dixit
- Sunnybrook Research Institute, Biological Sciences, Room S1-16A, 2075 Bayview Ave, Toronto, ON, Canada M4N 3M5.,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xingyu Chen
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Anjali Balakrishnan
- Sunnybrook Research Institute, Biological Sciences, Room S1-16A, 2075 Bayview Ave, Toronto, ON, Canada M4N 3M5.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Harshil Modi
- Sunnybrook Research Institute, Biological Sciences, Room S1-16A, 2075 Bayview Ave, Toronto, ON, Canada M4N 3M5
| | - Yacine Touahri
- Sunnybrook Research Institute, Biological Sciences, Room S1-16A, 2075 Bayview Ave, Toronto, ON, Canada M4N 3M5
| | - Cairine Logan
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences, Room S1-16A, 2075 Bayview Ave, Toronto, ON, Canada M4N 3M5 .,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
22
|
Han S, Dennis DJ, Balakrishnan A, Dixit R, Britz O, Zinyk D, Touahri Y, Olender T, Brand M, Guillemot F, Kurrasch D, Schuurmans C. A non-canonical role for the proneural gene Neurog1 as a negative regulator of neocortical neurogenesis. Development 2018; 145:dev157719. [PMID: 30201687 PMCID: PMC6198467 DOI: 10.1242/dev.157719] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/31/2018] [Indexed: 02/05/2023]
Abstract
Neural progenitors undergo temporal identity transitions to sequentially generate the neuronal and glial cells that make up the mature brain. Proneural genes have well-characterised roles in promoting neural cell differentiation and subtype specification, but they also regulate the timing of identity transitions through poorly understood mechanisms. Here, we investigated how the highly related proneural genes Neurog1 and Neurog2 interact to control the timing of neocortical neurogenesis. We found that Neurog1 acts in an atypical fashion as it is required to suppress rather than promote neuronal differentiation in early corticogenesis. In Neurog1-/- neocortices, early born neurons differentiate in excess, whereas, in vitro, Neurog1-/- progenitors have a decreased propensity to proliferate and form neurospheres. Instead, Neurog1-/- progenitors preferentially generate neurons, a phenotype restricted to the Neurog2+ progenitor pool. Mechanistically, Neurog1 and Neurog2 heterodimerise, and while Neurog1 and Neurog2 individually promote neurogenesis, misexpression together blocks this effect. Finally, Neurog1 is also required to induce the expression of neurogenic factors (Dll1 and Hes5) and to repress the expression of neuronal differentiation genes (Fezf2 and Neurod6). Neurog1 thus employs different mechanisms to temper the pace of early neocortical neurogenesis.
Collapse
Affiliation(s)
- Sisu Han
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Daniel J Dennis
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Molecular Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Olivier Britz
- The Francis Crick Institute-Mill Hill Laboratory, London NW7 1AA, UK
| | - Dawn Zinyk
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Thomas Olender
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marjorie Brand
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - Deborah Kurrasch
- Department of Molecular Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
23
|
Dennis DJ, Han S, Schuurmans C. bHLH transcription factors in neural development, disease, and reprogramming. Brain Res 2018; 1705:48-65. [PMID: 29544733 DOI: 10.1016/j.brainres.2018.03.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/16/2023]
Abstract
The formation of functional neural circuits in the vertebrate central nervous system (CNS) requires that appropriate numbers of the correct types of neuronal and glial cells are generated in their proper places and times during development. In the embryonic CNS, multipotent progenitor cells first acquire regional identities, and then undergo precisely choreographed temporal identity transitions (i.e. time-dependent changes in their identity) that determine how many neuronal and glial cells of each type they will generate. Transcription factors of the basic-helix-loop-helix (bHLH) family have emerged as key determinants of neural cell fate specification and differentiation, ensuring that appropriate numbers of specific neuronal and glial cell types are produced. Recent studies have further revealed that the functions of these bHLH factors are strictly regulated. Given their essential developmental roles, it is not surprising that bHLH mutations and de-regulated expression are associated with various neurological diseases and cancers. Moreover, the powerful ability of bHLH factors to direct neuronal and glial cell fate specification and differentiation has been exploited in the relatively new field of cellular reprogramming, in which pluripotent stem cells or somatic stem cells are converted to neural lineages, often with a transcription factor-based lineage conversion strategy that includes one or more of the bHLH genes. These concepts are reviewed herein.
Collapse
Affiliation(s)
- Daniel J Dennis
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada
| | - Sisu Han
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Sokratous M, Dardiotis E, Bellou E, Tsouris Z, Michalopoulou A, Dardioti M, Siokas V, Rikos D, Tsatsakis A, Kovatsi L, Bogdanos DP, Hadjigeorgiou GM. CpG Island Methylation Patterns in Relapsing-Remitting Multiple Sclerosis. J Mol Neurosci 2018. [PMID: 29516350 DOI: 10.1007/s12031-018-1046-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation may predispose to multiple sclerosis (MS), as aberrant methylation in the promoter regions across the genome seems to underlie several processes of MS. We have currently determined the methylation status of eight genes in relapsing-remitting MS patients. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was used to determine the status of 31 CpG islands, located across eight genes, in 33 healthy individuals and 66 MS patients (33 in relapse and 33 in remission). The methylation levels in the examined sites ranged from 0 to 31%. Methylation positivity for RUNX3 and CDKN2A differed significantly between MS patients and healthy controls. Maximum methylation in RUNX3, CDKN2A, SOCS1, and NEUROG1 genes was significantly different between patients and controls. Roc curves demonstrated that the appropriate cut-offs to distinguish patients from healthy controls were 2% for RUNX3 (OR 3.316, CI 1.207-9.107, p = 0.024) and 3% for CDKN2A (OR 3.077, CI 1.281-7.39, p = 0.018). No difference in methylation was observed between patients in relapse and patients in remission, in any of the genes examined. Methylation patterns of RUNX3 and CDKN2A may be able to distinguish between MS patients and healthy controls, but not between MS patients in relapse and in remission. Graphical Abstract Methylation patterns of RUNX3 and CDKN2A may be able to discriminate healthy individuals from MS patients.
Collapse
Affiliation(s)
- Maria Sokratous
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece.
| | - Eleni Bellou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Maria Dardioti
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Dimitrios Rikos
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Greece
- Cellular Immunotherapy & Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH)- Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| |
Collapse
|
25
|
Ruiz-Reig N, Andrés B, Huilgol D, Grove EA, Tissir F, Tole S, Theil T, Herrera E, Fairén A. Lateral Thalamic Eminence: A Novel Origin for mGluR1/Lot Cells. Cereb Cortex 2018; 27:2841-2856. [PMID: 27178193 DOI: 10.1093/cercor/bhw126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Belén Andrés
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Current address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Thomas Theil
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Eloisa Herrera
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Alfonso Fairén
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| |
Collapse
|
26
|
Lacomme M, Medevielle F, Bourbon HM, Thierion E, Kleinjan DJ, Roussat M, Pituello F, Bel-Vialar S. A long range distal enhancer controls temporal fine-tuning of PAX6 expression in neuronal precursors. Dev Biol 2018; 436:94-107. [PMID: 29486153 DOI: 10.1016/j.ydbio.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Proper embryonic development relies on a tight control of spatial and temporal gene expression profiles in a highly regulated manner. One good example is the ON/OFF switching of the transcription factor PAX6 that governs important steps of neurogenesis. In the neural tube PAX6 expression is initiated in neural progenitors through the positive action of retinoic acid signaling and downregulated in neuronal precursors by the bHLH transcription factor NEUROG2. How these two regulatory inputs are integrated at the molecular level to properly fine tune temporal PAX6 expression is not known. In this study we identified and characterized a 940-bp long distal cis-regulatory module (CRM), located far away from the PAX6 transcription unit and which conveys positive input from RA signaling pathway and indirect repressive signal(s) from NEUROG2. These opposing regulatory signals are integrated through HOMZ, a 94 bp core region within E940 which is evolutionarily conserved in distant organisms such as the zebrafish. We show that within HOMZ, NEUROG2 and RA exert their opposite temporal activities through a short 60 bp region containing a functional RA-responsive element (RARE). We propose a model in which retinoic acid receptors (RARs) and NEUROG2 repressive target(s) compete on the same DNA motif to fine tune temporal PAX6 expression during the course of spinal neurogenesis.
Collapse
Affiliation(s)
- Marine Lacomme
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France; Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, Québec, Canada
| | - François Medevielle
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Henri-Marc Bourbon
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Elodie Thierion
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Dirk-Jan Kleinjan
- 1UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mélanie Roussat
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Sophie Bel-Vialar
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
27
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Zic-Proteins Are Repressors of Dopaminergic Forebrain Fate in Mice and C. elegans. J Neurosci 2017; 37:10611-10623. [PMID: 28972122 DOI: 10.1523/jneurosci.3888-16.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 11/21/2022] Open
Abstract
In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegansSIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species.
Collapse
|
29
|
One-Step piggyBac Transposon-Based CRISPR/Cas9 Activation of Multiple Genes. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:64-76. [PMID: 28918057 PMCID: PMC5485764 DOI: 10.1016/j.omtn.2017.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 11/26/2022]
Abstract
Neural cell fate is determined by a tightly controlled transcription regulatory network during development. The ability to manipulate the expression of multiple transcription factors simultaneously is required to delineate the complex picture of neural cell development. Because of the limited carrying capacity of the commonly used viral vectors, such as lentiviral or retroviral vectors, it is often challenging to perform perturbation experiments on multiple transcription factors. Here we have developed a piggyBac (PB) transposon-based CRISPR activation (CRISPRa) all-in-one system, which allows for simultaneous and stable endogenous transactivation of multiple transcription factors and long non-coding RNAs. As a proof of principle, we showed that the PB-CRISPRa system could accelerate the differentiation of human induced pluripotent stem cells into neurons and astrocytes by triggering endogenous expression of different sets of transcription factors. The PB-CRISPRa system has the potential to become a convenient and robust tool in neuroscience, which can meet the needs of a variety of in vitro and in vivo gain-of-function applications.
Collapse
|
30
|
Neurog2 and Ascl1 together regulate a postmitotic derepression circuit to govern laminar fate specification in the murine neocortex. Proc Natl Acad Sci U S A 2017; 114:E4934-E4943. [PMID: 28584103 DOI: 10.1073/pnas.1701495114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A derepression mode of cell-fate specification involving the transcriptional repressors Tbr1, Fezf2, Satb2, and Ctip2 operates in neocortical projection neurons to specify six layer identities in sequence. Less well understood is how laminar fate transitions are regulated in cortical progenitors. The proneural genes Neurog2 and Ascl1 cooperate in progenitors to control the temporal switch from neurogenesis to gliogenesis. Here we asked whether these proneural genes also regulate laminar fate transitions. Several defects were observed in the derepression circuit in Neurog2-/-;Ascl1-/- mutants: an inability to repress expression of Tbr1 (a deep layer VI marker) during upper-layer neurogenesis, a loss of Fezf2+/Ctip2+ layer V neurons, and precocious differentiation of normally late-born, Satb2+ layer II-IV neurons. Conversely, in stable gain-of-function transgenics, Neurog2 promoted differentiative divisions and extended the period of Tbr1+/Ctip2+ deep-layer neurogenesis while reducing Satb2+ upper-layer neurogenesis. Similarly, acute misexpression of Neurog2 in early cortical progenitors promoted Tbr1 expression, whereas both Neurog2 and Ascl1 induced Ctip2. However, Neurog2 was unable to influence the derepression circuit when misexpressed in late cortical progenitors, and Ascl1 repressed only Satb2. Nevertheless, neurons derived from late misexpression of Neurog2 and, to a lesser extent, Ascl1, extended aberrant subcortical axon projections characteristic of early-born neurons. Finally, Neurog2 and Ascl1 altered the expression of Ikaros and Foxg1, known temporal regulators. Proneural genes thus act in a context-dependent fashion as early determinants, promoting deep-layer neurogenesis in early cortical progenitors via input into the derepression circuit while also influencing other temporal regulators.
Collapse
|
31
|
Development and Organization of the Evolutionarily Conserved Three-Layered Olfactory Cortex. eNeuro 2017; 4:eN-REV-0193-16. [PMID: 28144624 PMCID: PMC5272922 DOI: 10.1523/eneuro.0193-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/11/2016] [Accepted: 12/08/2016] [Indexed: 01/31/2023] Open
Abstract
The olfactory cortex is part of the mammalian cerebral cortex together with the neocortex and the hippocampus. It receives direct input from the olfactory bulbs and participates in odor discrimination, association, and learning (Bekkers and Suzuki, 2013). It is thought to be an evolutionarily conserved paleocortex, which shares common characteristics with the three-layered general cortex of reptiles (Aboitiz et al., 2002). The olfactory cortex has been studied as a “simple model” to address sensory processing, though little is known about its precise cell origin, diversity, and identity. While the development and the cellular diversity of the six-layered neocortex are increasingly understood, the olfactory cortex remains poorly documented in these aspects. Here is a review of current knowledge of the development and organization of the olfactory cortex, keeping the analogy with those of the neocortex. The comparison of olfactory cortex and neocortex will allow the opening of evolutionary perspectives on cortical development.
Collapse
|
32
|
Chen T, Wu Q, Zhang Y, Lu T, Yue W, Zhang D. Tcf4 Controls Neuronal Migration of the Cerebral Cortex through Regulation of Bmp7. Front Mol Neurosci 2016; 9:94. [PMID: 27752241 PMCID: PMC5046712 DOI: 10.3389/fnmol.2016.00094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/20/2016] [Indexed: 11/14/2022] Open
Abstract
Background: Transcription factor 4 (TCF4) is found to be associated with schizophrenia. TCF4 mutations also cause Pitt-Hopkins Syndrome, a neurodevelopmental disorder associated with severe mental retardation. However, the function of TCF4 during brain development remains unclear. Results: Here, we report that Tcf4 is expressed in the developing cerebral cortex. In utero suppression of Tcf4 arrested neuronal migration, leading to accumulation of ectopic neurons in the intermediate zone. Knockdown of Tcf4 impaired leading process formation. Furthermore, Bone Morphogenetic Protein 7 (Bmp7) is upregulated in Tcf4-deficient neurons. In vivo gain of function and rescue experiments demonstrated that Bmp7 is the major downstream effector of Tcf4 required for neuronal migration. Conclusion: Thus, we have uncovered a new Tcf4/Bmp7-dependent mechanism underlying neuronal migration, and provide insights into the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tianda Chen
- Institute of Mental Health, Peking University Sixth Hospital, BeijingChina; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, BeijingChina
| | - Qinwei Wu
- Institute of Mental Health, Peking University Sixth Hospital, BeijingChina; Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing, China; Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijing, China
| | - Yang Zhang
- Institute of Mental Health, Peking University Sixth Hospital, BeijingChina; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, BeijingChina
| | - Tianlan Lu
- Institute of Mental Health, Peking University Sixth Hospital, BeijingChina; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, BeijingChina
| | - Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, BeijingChina; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, BeijingChina
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, BeijingChina; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, BeijingChina; Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijing, China; PKU-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| |
Collapse
|
33
|
de Frutos C, Bouvier G, Arai Y, Thion M, Lokmane L, Keita M, Garcia-Dominguez M, Charnay P, Hirata T, Riethmacher D, Grove E, Tissir F, Casado M, Pierani A, Garel S. Reallocation of Olfactory Cajal-Retzius Cells Shapes Neocortex Architecture. Neuron 2016; 92:435-448. [DOI: 10.1016/j.neuron.2016.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 07/13/2016] [Accepted: 09/06/2016] [Indexed: 11/25/2022]
|
34
|
Huilgol D, Tole S. Cell migration in the developing rodent olfactory system. Cell Mol Life Sci 2016; 73:2467-90. [PMID: 26994098 PMCID: PMC4894936 DOI: 10.1007/s00018-016-2172-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
35
|
Obana EA, Lundell TG, Yi KJ, Radomski KL, Zhou Q, Doughty ML. Neurog1 Genetic Inducible Fate Mapping (GIFM) Reveals the Existence of Complex Spatiotemporal Cyto-Architectures in the Developing Cerebellum. THE CEREBELLUM 2016; 14:247-63. [PMID: 25592069 DOI: 10.1007/s12311-014-0641-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neurog1 is a pro-neural basic helix-loop-helix (bHLH) transcription factor expressed in progenitor cells located in the ventricular zone and subsequently the presumptive white matter tracts of the developing mouse cerebellum. We used genetic inducible fate mapping (GIFM) with a transgenic Neurog1-CreER allele to characterize the contributions of Neurog1 lineages to cerebellar circuit formation in mice. GIFM reveals Neurog1-expressing progenitors are fate-mapped to become Purkinje cells and all GABAergic interneuron cell types of the cerebellar cortex but not glia. The spatiotemporal sequence of GIFM is unique to each neuronal cell type. GIFM on embryonic days (E) 10.5 to E12.5 labels Purkinje cells with different medial-lateral settling patterns depending on the day of tamoxifen delivery. GIFM on E11.5 to P7 labels interneurons and the timing of tamoxifen administration correlates with the final inside-to-outside resting position of GABAergic interneurons in the cerebellar cortex. Proliferative status and long-term BrdU retention of GIFM lineages reveals Purkinje cells express Neurog1 around the time they become post-mitotic. In contrast, GIFM labels mitotic and post-mitotic interneurons. Neurog1-CreER GIFM reveals a correlation between the timing of Neurog1 expression and the spatial organization of GABAergic neurons in the cerebellar cortex with possible implications for cerebellar circuit assembly.
Collapse
Affiliation(s)
- Edwin A Obana
- Department of Anatomy, Physiology and Genetics, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | | | | | | | | | | |
Collapse
|
36
|
Molecular Predictors of Long-Term Survival in Glioblastoma Multiforme Patients. PLoS One 2016; 11:e0154313. [PMID: 27124395 PMCID: PMC4849730 DOI: 10.1371/journal.pone.0154313] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/12/2016] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive adult primary brain cancer, with <10% of patients surviving for more than 3 years. Demographic and clinical factors (e.g. age) and individual molecular biomarkers have been associated with prolonged survival in GBM patients. However, comprehensive systems-level analyses of molecular profiles associated with long-term survival (LTS) in GBM patients are still lacking. We present an integrative study of molecular data and clinical variables in these long-term survivors (LTSs, patients surviving >3 years) to identify biomarkers associated with prolonged survival, and to assess the possible similarity of molecular characteristics between LGG and LTS GBM. We analyzed the relationship between multivariable molecular data and LTS in GBM patients from the Cancer Genome Atlas (TCGA), including germline and somatic point mutation, gene expression, DNA methylation, copy number variation (CNV) and microRNA (miRNA) expression using logistic regression models. The molecular relationship between GBM LTS and LGG tumors was examined through cluster analysis. We identified 13, 94, 43, 29, and 1 significant predictors of LTS using Lasso logistic regression from the somatic point mutation, gene expression, DNA methylation, CNV, and miRNA expression data sets, respectively. Individually, DNA methylation provided the best prediction performance (AUC = 0.84). Combining multiple classes of molecular data into joint regression models did not improve prediction accuracy, but did identify additional genes that were not significantly predictive in individual models. PCA and clustering analyses showed that GBM LTS typically had gene expression profiles similar to non-LTS GBM. Furthermore, cluster analysis did not identify a close affinity between LTS GBM and LGG, nor did we find a significant association between LTS and secondary GBM. The absence of unique LTS profiles and the lack of similarity between LTS GBM and LGG, indicates that there are multiple genetic and epigenetic pathways to LTS in GBM patients.
Collapse
|
37
|
Barber M, Pierani A. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells. Dev Neurobiol 2015; 76:847-81. [PMID: 26581033 DOI: 10.1002/dneu.22363] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016.
Collapse
Affiliation(s)
- Melissa Barber
- Institut Jacques-Monod, CNRS, Université Paris Diderot, Sorbonne Cité, Paris, France.,Department of Cell and Developmental Biology, University College London, WC1E 6BT, United Kingdom
| | - Alessandra Pierani
- Institut Jacques-Monod, CNRS, Université Paris Diderot, Sorbonne Cité, Paris, France
| |
Collapse
|
38
|
Li S, Xue H, Wu J, Rao MS, Kim DH, Deng W, Liu Y. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System. Stem Cells Dev 2015; 24:2925-42. [PMID: 26414932 DOI: 10.1089/scd.2015.0131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼ 33% correctly targeted clones) compared to conventional targeting protocol (∼ 3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations.
Collapse
Affiliation(s)
- Shenglan Li
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Haipeng Xue
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Jianbo Wu
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Mahendra S Rao
- 3 The New York Stem Cell Foundation , New York, New York
| | - Dong H Kim
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Wenbin Deng
- 4 Department of Biochemistry and Molecular Medicine, School of Medicine, University of California , Davis, California.,5 Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children , Sacramento, California
| | - Ying Liu
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,6 The Senator Lloyd and B.A. Bentsen Center for Stroke Research, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| |
Collapse
|
39
|
Orchestration of Neuronal Differentiation and Progenitor Pool Expansion in the Developing Cortex by SoxC Genes. J Neurosci 2015. [PMID: 26203155 DOI: 10.1523/jneurosci.1663-15.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As the cerebral cortex forms, specialized molecular cascades direct the expansion of progenitor pools, the differentiation of neurons, or the maturation of discrete neuronal subtypes, together ensuring that the correct amounts and classes of neurons are generated. In several neural systems, the SoxC transcriptional regulators, particularly Sox11 and Sox4, have been characterized as functioning exclusively and redundantly in promoting neuronal differentiation. Using the mouse cerebral cortex as a model, Sox11 and Sox4 were examined in the formation of the most complex part of the mammalian brain. Anticipated prodifferentiation roles were observed. Distinct expression patterns and mutant phenotypes, however, reveal that Sox11 and Sox4 are not redundant in the cortex, but rather act in overlapping and discrete populations of neurons. In particular, Sox11 acts in early-born neurons; binding to its partner protein, Neurogenin1, leads to selective targeting and transactivation of a downstream gene, NeuroD1. In addition to neuronal expression, Sox4 was unexpectedly expressed in intermediate progenitor cells, the transit amplifying cell of the cerebral cortex. Sox4 mutant analyses reveal a requirement for Sox4 in IPC specification and maintenance. In intermediate progenitors, Sox4 partners with the proneural gene Neurogenin2 to activate Tbrain2 and then with Tbrain2 to maintain this cell fate. This work reveals an intricately structured molecular architecture for SoxC molecules, with Sox11 acting in a select set of cortical neurons and Sox4 playing an unanticipated role in designating secondary progenitors.
Collapse
|
40
|
Squarzoni P, Thion MS, Garel S. Neuronal and microglial regulators of cortical wiring: usual and novel guideposts. Front Neurosci 2015; 9:248. [PMID: 26236185 PMCID: PMC4505395 DOI: 10.3389/fnins.2015.00248] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022] Open
Abstract
Neocortex functioning relies on the formation of complex networks that begin to be assembled during embryogenesis by highly stereotyped processes of cell migration and axonal navigation. The guidance of cells and axons is driven by extracellular cues, released along by final targets or intermediate targets located along specific pathways. In particular, guidepost cells, originally described in the grasshopper, are considered discrete, specialized cell populations located at crucial decision points along axonal trajectories that regulate tract formation. These cells are usually early-born, transient and act at short-range or via cell-cell contact. The vast majority of guidepost cells initially identified were glial cells, which play a role in the formation of important axonal tracts in the forebrain, such as the corpus callosum, anterior, and post-optic commissures as well as optic chiasm. In the last decades, tangential migrating neurons have also been found to participate in the guidance of principal axonal tracts in the forebrain. This is the case for several examples such as guideposts for the lateral olfactory tract (LOT), corridor cells, which open an internal path for thalamo-cortical axons and Cajal-Retzius cells that have been involved in the formation of the entorhino-hippocampal connections. More recently, microglia, the resident macrophages of the brain, were specifically observed at the crossroads of important neuronal migratory routes and axonal tract pathways during forebrain development. We furthermore found that microglia participate to the shaping of prenatal forebrain circuits, thereby opening novel perspectives on forebrain development and wiring. Here we will review the last findings on already known guidepost cell populations and will discuss the role of microglia as a potentially new class of atypical guidepost cells.
Collapse
Affiliation(s)
- Paola Squarzoni
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Morgane S Thion
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Sonia Garel
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| |
Collapse
|
41
|
Touahri Y, Adnani L, Mattar P, Markham K, Klenin N, Schuurmans C. Non-isotopic RNA In Situ Hybridization on Embryonic Sections. ACTA ACUST UNITED AC 2015; 70:1.22.1-1.22.25. [PMID: 25559002 DOI: 10.1002/0471142301.ns0122s70] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit describes methods for non-isotopic RNA in situ hybridization on embryonic mouse sections. These methods can be used to follow the spatiotemporal dynamics of gene expression in an embryonic tissue of interest. They involve the use of labeled (e.g., digoxygenin, FITC) antisense riboprobes that hybridize to a specific mRNA in the target tissue. The probes are detected using an alkaline phosphatase-conjugated antibody recognizing the label and a chromogenic substrate. This method can be used to: (1) assess the expression of a single gene within a tissue, (2) compare the expression profiles of two genes within a tissue, or (3) compare the distribution of a transcript and protein within a tissue. While this approach is not quantitative, it provides a qualitative assessment of the precise cell types where a gene is expressed, which is not easily achievable with other more quantitative methods such as quantitative PCR.
Collapse
Affiliation(s)
- Yacine Touahri
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lata Adnani
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pierre Mattar
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Current address: Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Kathryn Markham
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Natalia Klenin
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Carol Schuurmans
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
42
|
Moss EG, Romer-Seibert J. Cell-intrinsic timing in animal development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:365-77. [PMID: 25124757 DOI: 10.1002/wdev.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/28/2014] [Accepted: 06/11/2014] [Indexed: 11/11/2022]
Abstract
UNLABELLED In certain instances we can witness cells controlling the sequence of their behaviors as they divide and differentiate. Striking examples occur in the nervous systems of animals where the order of differentiated cell types can be traced to internal changes in their progenitors. Elucidating the molecular mechanisms underlying such cell fate succession has been of interest for its role in generating cell type diversity and proper tissue structure. Another well-studied instance of developmental timing occurs in the larva of the nematode Caenorhabditis elegans, where the heterochronic gene pathway controls the succession of a variety of developmental events. In each case, the identification of molecules involved and the elucidation of their regulatory relationships is ongoing, but some important factors and dynamics have been revealed. In particular, certain homologs of worm heterochronic factors have been shown to work in neural development, alerting us to possible connections among these systems and the possibility of universal components of timing mechanisms. These connections also cause us to consider whether cell-intrinsic timing is more widespread, regardless of whether multiple differentiated cell types are produced in any particular order. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Eric G Moss
- Department of Molecular Biology, Rowan University, Stratford, NJ, USA
| | | |
Collapse
|
43
|
Imayoshi I, Kageyama R. bHLH Factors in Self-Renewal, Multipotency, and Fate Choice of Neural Progenitor Cells. Neuron 2014; 82:9-23. [DOI: 10.1016/j.neuron.2014.03.018] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 12/18/2022]
|
44
|
Abstract
Proneural genes encode evolutionarily conserved basic-helix-loop-helix transcription factors. In Drosophila, proneural genes are required and sufficient to confer a neural identity onto naïve ectodermal cells, inducing delamination and subsequent neuronal differentiation. In vertebrates, proneural genes are expressed in cells that already have a neural identity, but they are still required and sufficient to initiate neurogenesis. In all organisms, proneural genes control neurogenesis by regulating Notch-mediated lateral inhibition and initiating the expression of downstream differentiation genes. The general mode of proneural gene function has thus been elucidated. However, the regulatory mechanisms that spatially and temporally control proneural gene function are only beginning to be deciphered. Understanding how proneural gene function is regulated is essential, as aberrant proneural gene expression has recently been linked to a variety of human diseases-ranging from cancer to neuropsychiatric illnesses and diabetes. Recent insights into proneural gene function in development and disease are highlighted herein.
Collapse
Affiliation(s)
- Carol Huang
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Chan
- Department of Pathology & Laboratory Medicine, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Carol Schuurmans
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|