1
|
Yousefpour N, Tansley SN, Locke S, Sharif B, Parisien M, Bourojeni FB, Deamond H, Mathur V, Arana NRK, Austin JS, Bourassa V, Wang C, Cabana VC, Wong C, Lister KC, Rodrigues R, St-Louis M, Paquet ME, Carroll MC, Andrews-Zwilling Y, Seguela P, Kania A, Yednock T, Mogil JS, De Koninck Y, Diatchenko L, Khoutorsky A, Ribeiro-da-Silva A. Targeting C1q prevents microglia-mediated synaptic removal in neuropathic pain. Nat Commun 2025; 16:4590. [PMID: 40382320 PMCID: PMC12085617 DOI: 10.1038/s41467-025-59849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Activation of spinal microglia following peripheral nerve injury is a central component of neuropathic pain pathology. While the contributions of microglia-mediated immune and neurotrophic signalling have been well-characterized, the phagocytic and synaptic pruning roles of microglia in neuropathic pain remain less understood. Here, we show that peripheral nerve injury induces microglial engulfment of dorsal horn synapses, leading to a preferential loss of inhibitory synapses and a shift in the balance between inhibitory and excitatory synapse density. This synapse removal is dependent on the microglial complement-mediated synapse pruning pathway, as mice deficient in complement C3 and C4 do not exhibit synapse elimination. Furthermore, pharmacological inhibition of the complement protein C1q prevents dorsal horn inhibitory synapse loss and attenuates neuropathic pain. Therefore, these results demonstrate that the complement pathway promotes persistent pain hypersensitivity via microglia-mediated engulfment of dorsal horn synapses in the spinal cord, revealing C1q as a therapeutic target in neuropathic pain.
Collapse
Affiliation(s)
- Noosha Yousefpour
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Annexon Biosciences, Brisbane, CA, USA
| | - Shannon N Tansley
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Samantha Locke
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Behrang Sharif
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, Dept. of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Farin B Bourojeni
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Haley Deamond
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | | | | | | | - Valerie Bourassa
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Chengyang Wang
- Dept. of Psychology, McGill University, Montréal, QC, Canada
| | - Valérie C Cabana
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Calvin Wong
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Kevin C Lister
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
| | - Rose Rodrigues
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Manon St-Louis
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Marie-Eve Paquet
- Dép. de biochimie, microbiologie et bioinformatique, Université Laval, Québec, QC, Canada
- CERVO Brain Research Centre, Québec, QC, Canada
| | - Michael C Carroll
- Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | | | - Philippe Seguela
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute, Dept. of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Artur Kania
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Science, McGill University, Montréal, QC, Canada
| | | | - Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Psychology, McGill University, Montréal, QC, Canada
| | - Yves De Koninck
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- CERVO Brain Research Centre, Québec, QC, Canada
- Dép. de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Arkady Khoutorsky
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
- Dept. of Anesthesia, McGill University, Montréal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Dept. of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada.
- Dept. of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Yurashevich M, Devinney M, Foster MW, Myers R, O'Grady N, Ji RR, Habib AS, Berger M. Cerebrospinal fluid proteome of patients with persistent pain and/or postpartum depression after elective cesarean delivery: An exploratory prospective cohort study. J Clin Anesth 2025; 104:111855. [PMID: 40328197 DOI: 10.1016/j.jclinane.2025.111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 03/13/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Persistent pain (>2 months) after cesarean delivery (CD) can affect up to 20 % of patients, and is associated with increased risk for postpartum depression (PPD). Preoperative identification of patients at risk for persistent pain and PPD remains a challenge due to poorly understood underlying mechanisms. To better understand these potential mechanisms, here, we examined the preoperative cerebrospinal (CSF) proteome for changes associated with persistent pain or PPD at 3 months post-CD. METHODS Eighty patients undergoing elective CD under neuraxial anesthesia were recruited. We collected baseline demographics, obstetric data, and Edinburgh Postnatal Depression Scale (EPDS) scores. EPDS and pain scores were also obtained at 3 months post-CD. CSF was collected before spinal anesthetic placement. Liquid chromatography coupled with tandem mass spectrometry was used to study the CSF proteome. RESULTS 63 patients completed clinical follow-up, however only 61 of the patients had adequate preoperative CSF sample for analysis. Of these 61 patients, 21 developed pain or PPD at 3 months post-CD (14 had persistent pain alone and 7 had PPD alone). Over 1600 proteins were quantified in each CSF sample. Forty-three of these proteins were nominally differentially expressed in patients with persistent pain and/or PPD vs those with neither disorder. Pathway analysis showed a downregulation of the complement and coagulation cascades in the preoperative CSF of patients who later developed persistent pain or PPD 3 months after CD. CONCLUSIONS These results suggest that the CSF complement and coagulation cascades may play a role in patients who develop postpartum pain or PPD 3 months later.
Collapse
Affiliation(s)
- Mary Yurashevich
- Department of Anesthesiology, Duke University Medical Center, Duke University, Durham, NC, USA.
| | - Michael Devinney
- Department of Anesthesiology, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Matthew W Foster
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Duke University, Durham, NC, USA; Duke Proteomics and Metabolomics Core Facility, Duke University, Durham, NC, USA
| | - Rachel Myers
- Bioinformatics and Clinical Analytics Team, Department of Medicine Clinical Research Unit, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Nicholas O'Grady
- Bioinformatics and Clinical Analytics Team, Department of Medicine Clinical Research Unit, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Duke University, Durham, NC, USA; Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Ashraf S Habib
- Department of Anesthesiology, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Tenner AJ, Petrisko TJ. Knowing the enemy: strategic targeting of complement to treat Alzheimer disease. Nat Rev Neurol 2025; 21:250-264. [PMID: 40128350 DOI: 10.1038/s41582-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
The complement system protects against infection, positively responds to tissue damage, clears cell debris, directs and modulates the adaptive immune system, and functions in neuronal development, normal synapse elimination and intracellular metabolism. However, complement also has a role in aberrant synaptic pruning and neuroinflammation - processes that lead to a feedforward loop of inflammation, injury and neuronal death that can contribute to neurodegenerative and neurological disorders, including Alzheimer disease. This Review provides justification, largely from preclinical mouse models but also from correlates with human tissue and biomarkers, for targeting specific complement components for therapeutic intervention in Alzheimer disease. We discuss promising strategies to slow the progression of cognitive loss with minimal undesired effects. The diverse interactions and functions of complement system components can influence biological processes in the healthy and diseased brain; here, these functions are described as a prerequisite to selecting appropriate, safe and effective therapeutic targets for translation to the clinic.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
5
|
Bettcher BM, de Oliveira FF, Willette AA, Michalowska MM, Machado LS, Rajbanshi B, Borelli WV, Tansey MG, Rocha A, Suryadevara V, Hu WT. Analysis and interpretation of inflammatory fluid markers in Alzheimer's disease: a roadmap for standardization. J Neuroinflammation 2025; 22:105. [PMID: 40234920 PMCID: PMC11998147 DOI: 10.1186/s12974-025-03432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Growing interest in the role of the immune response in Alzheimer's Disease and related dementias (ADRD) has led to widespread use of fluid inflammatory markers in research studies. To standardize the use and interpretation of inflammatory markers in AD research, we build upon prior guidelines to develop consensus statements and recommendations to advance application and interpretation of these markers. In this roadmap paper, we propose a glossary of terms related to the immune response in the context of biomarker discovery/validation, discuss current conceptualizations of inflammatory markers in research, and recommend best practices to address key knowledge gaps. We also provide consensus principles to summarize primary conceptual, methodological, and interpretative issues facing the field: (1) a single inflammatory marker is likely insufficient to describe an entire biological cascade, and multiple markers with similar or distinct functions should be simultaneously measured in a panel; (2) association studies in humans are insufficient to infer causal relationships or mechanisms; (3) neuroinflammation displays time-dependent and disease context-dependent patterns; (4) neuroinflammatory mechanisms should not be inferred based solely on blood inflammatory marker changes; and (5) standardized reporting of CSF inflammatory marker assay validation and performance will improve incorporation of inflammatory markers into the biological AD criteria.
Collapse
Affiliation(s)
- Brianne M Bettcher
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12469 East 17th Place, Room 217- Campus Box F429, Aurora, CO, 80045, USA.
| | | | - Auriel A Willette
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging Research, Rutgers Institute for Health, Health Care Policy, and Aging Research, Rutgers Health, New Brunswick, USA
| | - Malgorzata M Michalowska
- Department of Clinical Neuroscience, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Luiza Santos Machado
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Binita Rajbanshi
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California - San Francisco, San Francisco, USA
| | - Wyllians V Borelli
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Malú Gámez Tansey
- Department of Neurology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, USA
| | - Andréia Rocha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | | | - William T Hu
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging Research, Rutgers Institute for Health, Health Care Policy, and Aging Research, Rutgers Health, New Brunswick, USA
| |
Collapse
|
6
|
Wang L, Cui CY, Lee CT, Bodogai M, Yang N, Shi C, Irfanoglu MO, Occean JR, Afrin S, Sarker N, McDevitt RA, Lehrmann E, Abbas S, Banskota N, Fan J, De S, Rapp P, Biragyn A, Benjamini D, Maragkakis M, Sen P. Spatial transcriptomics of the aging mouse brain reveals origins of inflammation in the white matter. Nat Commun 2025; 16:3231. [PMID: 40185750 PMCID: PMC11971433 DOI: 10.1038/s41467-025-58466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
To systematically understand age-induced molecular changes, we performed spatial transcriptomics of young, middle-aged, and old mouse brains and identified seven transcriptionally distinct regions. All regions exhibited age-associated upregulation of inflammatory mRNAs and downregulation of mRNAs related to synaptic function. Notably, aging white matter fiber tracts showed the most prominent changes with pronounced effects in females. The inflammatory signatures indicated major ongoing events: microglia activation, astrogliosis, complement activation, and myeloid cell infiltration. Immunofluorescence and quantitative MRI analyses confirmed physical interaction of activated microglia with fiber tracts and concomitant reduction of myelin in old mice. In silico analyses identified potential transcription factors influencing these changes. Our study provides a resourceful dataset of spatially resolved transcriptomic features in the naturally aging murine brain encompassing three age groups and both sexes. The results link previous disjointed findings and provide a comprehensive overview of brain aging identifying fiber tracts as a focal point of inflammation.
Collapse
Affiliation(s)
- Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Christopher T Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Monica Bodogai
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Mustafa O Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - James R Occean
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadia Afrin
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Nishat Sarker
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ross A McDevitt
- Comparative Medicine Section, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Elin Lehrmann
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Shahroze Abbas
- Center for Alzheimer's and Related Dementia, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Nirad Banskota
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Peter Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Dan Benjamini
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
7
|
Xue RJ, Gao PY, Chen YM, Liu Y, Han BL, Huang YM, Mi YC, Cui RP, Lin YJ, Wang ZT, Tan CC, Ou YN, Tan L. Associations between plasma complement C1q and cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact adults: The CABLE study. J Alzheimers Dis 2025; 104:1136-1146. [PMID: 40138515 DOI: 10.1177/13872877251322808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundC1q is a promoter of the classical pathway of complement and its massive expression may be associated with the development of Alzheimer's disease (AD). However, the relationships between C1q and the major pathological challenges, including amyloid-β (Aβ) and tau deposition, remain undetermined in the preclinical AD phase.ObjectiveThis study aims to investigate the connections between plasma C1q and CSF AD biomarkers.MethodsThe cognitively intact participants (N = 1264) from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study were categorized into four groups, including Stage 0 [normal Amyloid-β1-42 (Aβ1-42), Phosphorylated-tau (P-tau) and Total-tau (T-tau)], Stage 1 (abnormal Aβ1-42, but normal P-tau or T-tau), Stage 2 (abnormal Aβ1-42 and abnormal P-tau or T-tau), and suspected non-Alzheimer disease pathology (SNAP) (abnormal P-tau or T-tau, but normal amyloid levels). The changes in plasma C1q levels among these groups and the correlation between C1q levels and cerebrospinal fluid (CSF) AD biomarkers were performed.ResultsThe results demonstrated plasma C1q levels are lower in Stage 0 (p = 0.010) and SNAP (p < 0.001) compared with Stage 1. A significant association between C1q levels and CSF AD pathology, including Aβ1-42 (β = -0.143, p < 0.001), Aβ1-42/Aβ1-40 (β = -0.173, p < 0.001), P-tau/Aβ1-42 (β = 0.156, p < 0.001), and T-tau/Aβ1-42 (β = 0.130, p < 0.001) has been identified.ConclusionsThe current research elucidates a positive correlation between elevated plasma C1q levels and CSF Aβ pathology, with C1q amplifying concomitantly with the pathological and clinical progression of AD.
Collapse
Affiliation(s)
- Rong-Ji Xue
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yan-Ming Chen
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ying Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bao-Lin Han
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yi-Ming Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yin-Chu Mi
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Rui-Ping Cui
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu-Jing Lin
- Department of Neurology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Basurco L, Abellanas MA, Purnapatre M, Antonello P, Schwartz M. Chronological versus immunological aging: Immune rejuvenation to arrest cognitive decline. Neuron 2025; 113:140-153. [PMID: 39788084 DOI: 10.1016/j.neuron.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
The contemporary understanding that the immune response significantly supports higher brain functions has emphasized the notion that the brain's condition is linked in a complex manner to the state of the immune system. It is therefore not surprising that immunity is a key factor in shaping brain aging. In this perspective article, we propose amending the Latin phrase "mens sana in corpore sano" ("a healthy mind in a healthy body") to "a healthy mind in a healthy immune system." Briefly, we discuss the emerging understanding of the pivotal role of the immune system in supporting lifelong brain maintenance, how the aging of the immune system impacts the brain, and how the potential rejuvenation of the immune system could, in turn, help revitalize brain function, with the ultimate ambitious goal of developing an anti-aging immune therapy.
Collapse
Affiliation(s)
- Leyre Basurco
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Paola Antonello
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Konat GW. Neuroplasticity elicited by peripheral immune challenge with a viral mimetic. Brain Res 2025; 1846:149239. [PMID: 39284559 DOI: 10.1016/j.brainres.2024.149239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Peripheral viral infections are well known to profoundly alter brain function; however detailed mechanisms of this immune-to-brain communication have not been deciphered. This review focuses on studies of cerebral effects of peripheral viral challenge employing intraperitoneal injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC). In this paradigm, PIC challenge induces the acute phase response (APR) characterized by a transient surge of circulating inflammatory factors, primarily IFNβ, IL-6 and CXCL10. The blood-borne factors, in turn, elicit the generation of CXCL10 by hippocampal neurons. Neurons also express the cognate receptor of CXCL10, i.e., CXCR3 implicating the existence of autocrine/paracrine signaling. The CXCL10/CXCR3 axis mediates the ensuing neuroplastic changes manifested as neuronal hyperexcitability, seizure hypersusceptibility, and sickness behavior. Electrophysiological studies revealed that the neuroplastic changes entail the potentiation of excitatory synapses likely at both pre- and postsynaptic loci. Excitatory synaptic transmission is further augmented by PIC challenge-induced elevation of extracellular glutamate that is mediated by astrocytes. In addition, the hyperexcitability of neuronal circuits might involve the repression of inhibitory signaling. Accordingly, CXCL10 released by neurons activates microglia whose processes invade perisomatic inhibitory synapses, resulting in a partial detachment of the presynaptic terminals, and thus, de-inhibition. This process might be facilitated by the cerebral complement system, which is also upregulated and activated by PIC challenge. Moreover, CXCL10 stimulates the expression of neuronal c-fos protein, another index of hyperexcitability. The reviewed studies form a foundation for full elucidation of the fascinating intersection between peripheral viral infections and neuroplasticity. Because the activation of such pathways may constitute a serious comorbidity factor for neuropathological conditions, this research would advance the development of preventive strategies.
Collapse
Affiliation(s)
- Gregory W Konat
- Department of Biochemistry and Molecular Medicine, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
10
|
Daskoulidou N, Carpanini SM, Zelek WM, Morgan BP. Involvement of Complement in Alzheimer's Disease: From Genetics Through Pathology to Therapeutic Strategies. Curr Top Behav Neurosci 2025; 69:3-24. [PMID: 39455500 DOI: 10.1007/7854_2024_524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Complement is a critical component of innate immunity, evolved to defend against pathogens and clear toxic debris ranging from dead and dying cells to immune complexes. These roles make complement a key player in homeostasis; however, complement has a dark side. When the rigid control mechanisms fail, complement becomes dysregulated, acting as a driver of inflammation and resultant pathology in numerous diseases. Roles of complement in Alzheimer's disease (AD) and other dementias have emerged in recent years, supported by genetic, biomarker and pathological evidence and animal model studies. Numerous questions remain regarding the precise roles of complement in the brain in health and disease, including where and when complement is expressed, how it contributes to immune defence and garbage disposal in the healthy brain, and exactly how complement contributes to pathology in dementias. In this brief review, we will summarise current knowledge on complement roles in brain, present the evidence implicating complement in AD and explore whether complement represents an attractive therapeutic target for AD.
Collapse
Affiliation(s)
| | - Sarah M Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK
| | - Wioleta M Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK
| | - B Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK.
| |
Collapse
|
11
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
12
|
Almalki WH, Almujri SS. Therapeutic approaches to microglial dysfunction in Alzheimer's disease: Enhancing phagocytosis and metabolic regulation. Pathol Res Pract 2024; 263:155614. [PMID: 39342887 DOI: 10.1016/j.prp.2024.155614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Microglia are essential in neurogenesis, synaptic pruning, and homeostasis. Nevertheless, aging, and cellular senescence may modify their role, causing them to shift from being shields to being players of neurodegeneration. In the aging brain, the population of microglia increases, followed by enhanced activity of genes related to neuroinflammation. This change increases their ability to cause inflammation, resulting in a long-lasting state of inflammation in the brain that harms the condition of neurons. In Alzheimer's Disease (AD), microglia are located inside amyloid plaques and exhibit an inflammatory phenotype characterized by a diminished ability to engulf and remove waste material, worsening the illness's advancement. Genetic polymorphisms in TREM2, APOE, and CD33 highlight the significant impact of microglial dysfunction in AD. This review examines therapeutic approaches that aim to address microglial dysfunction, such as enhancing the microglial capability to engulf and remove amyloid-β clumps and regulating microglial metabolism and mitochondrial activity. Microglial transplanting and reprogramming advancements show the potential to restore their ability to reduce inflammation. Although there has been notable advancement, there are still voids in our knowledge of microglial biology, including their relationships with other brain cells. Further studies should prioritize the improvement of human AD models, establish standardized methods for characterizing microglia, and explore how various factors influence microglial responses. It is essential to tackle these problems to create effective treatment plans that focus on reducing inflammation in the brain and protecting against damage in age-related neurodegenerative illnesses.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| |
Collapse
|
13
|
Hasavci D, Blank T. A microglial compliment: controlling neuronal function from within. Signal Transduct Target Ther 2024; 9:267. [PMID: 39370427 PMCID: PMC11456583 DOI: 10.1038/s41392-024-01989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Affiliation(s)
- Dilara Hasavci
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Blank
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Makarava N, Safadi T, Bocharova O, Mychko O, Pandit NP, Molesworth K, Baiardi S, Zhang L, Parchi P, Baskakov IV. Reactive microglia partially envelop viable neurons in prion diseases. J Clin Invest 2024; 134:e181169. [PMID: 39361421 PMCID: PMC11601909 DOI: 10.1172/jci181169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
Microglia are recognized as the main cells in the central nervous system responsible for phagocytosis. The current study demonstrated that in prion disease, microglia effectively phagocytose prions or PrPSc during early preclinical stages. However, a critical shift occured in microglial activity during the late preclinical stage, transitioning from PrPSc uptake to establishing extensive neuron-microglia body-to-body cell contacts. This change was followed by a rapid accumulation of PrPSc in the brain. Microglia that enveloped neurons exhibited hypertrophic, cathepsin D-positive lysosomal compartments. However, most neurons undergoing envelopment were only partially encircled by microglia. Despite up to 40% of cortical neurons being partially enveloped at clinical stages, only a small percentage of envelopment proceeded to full engulfment. Partially enveloped neurons lacked apoptotic markers but showed signs of functional decline. Neuronal envelopment was independent of the CD11b pathway, previously associated with phagocytosis of newborn neurons during neurodevelopment. This phenomenon of partial envelopment was consistently observed across multiple prion-affected brain regions, various mouse-adapted strains, and different subtypes of sporadic Creutzfeldt-Jakob disease (sCJD) in humans. The current work describes a new phenomenon of partial envelopment of neurons by reactive microglia in the context of an actual neurodegenerative disease, not a disease model.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tarek Safadi
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olga Bocharova
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olga Mychko
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Narayan P. Pandit
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Simone Baiardi
- University Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Piero Parchi
- University Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Chokr SM, Bui-Tran A, Cramer KS. Loss of C1q alters the auditory brainstem response. Front Cell Neurosci 2024; 18:1464670. [PMID: 39416682 PMCID: PMC11480778 DOI: 10.3389/fncel.2024.1464670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Neural circuits in the auditory brainstem compute interaural time and intensity differences used to determine the locations of sound sources. These circuits display features that are specialized for these functions. The projection from the ventral cochlear nucleus (VCN) to the medial nucleus of the trapezoid (MNTB) body travels along highly myelinated fibers and terminates in the calyx of Held. This monoinnervating synapse emerges during development as multiple inputs are eliminated. We previously demonstrated that elimination of microglia with a colony stimulating factor-1 inhibitor results in impaired synaptic pruning so that multiple calyceal terminals reside on principal cells of MNTB. This inhibitor also resulted in impaired auditory brainstem responses (ABRs), with elevated thresholds and increased peak latencies. Loss of the microglial fractalkine receptor, CX3CR1, decreased peak latencies in the ABR. The mechanisms underlying these effects are not known. One prominent microglial signaling pathway involved in synaptic pruning and plasticity during development and aging is the C1q-initiated compliment cascade. Here we investigated the classical complement pathway initiator, C1q, in auditory brainstem maturation. We found that C1q expression is detected in the MNTB by the first postnatal week. C1q levels increased with age and were detected within microglia and surrounding the soma of MNTB principal neurons. Loss of C1q did not affect microglia-dependent calyceal pruning. Excitatory and inhibitory synaptic markers in the MNTB and LSO were not altered with C1q deletion. ABRs showed that C1q KO mice had normal hearing thresholds but shortened peak latencies. Altogether this study uncovers the developmental time frame of C1q expression in the sound localization pathway and shows a subtle functional consequence of C1q knockdown.
Collapse
Affiliation(s)
| | | | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
West EE, Kemper C. Intracellular C1q - an unexpected player in neuronal proteostasis. Trends Immunol 2024; 45:718-720. [PMID: 39327206 DOI: 10.1016/j.it.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Extrahepatic, cell-autonomous, and/or intracellularly active complement components are increasingly recognized as key orchestrators of cell physiological processes. A recent study by Scott-Hewitt et al. demonstrates that microglia-derived C1q unexpectedly associates with the ribosomes of neurons in the aging murine brain, where it impacts protein translation and impairs the extinction of conditioned fear responses.
Collapse
Affiliation(s)
- Erin E West
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Ge TQ, Guan PP, Wang P. Complement 3a induces the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms during the development and progression of Alzheimer's disease. Neurosci Biobehav Rev 2024; 165:105868. [PMID: 39218048 DOI: 10.1016/j.neubiorev.2024.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
As a central molecule in complement system (CS), complement (C) 3 is upregulated in the patients and animal models of Alzheimer's disease (AD). C3 will metabolize to iC3b and C3a. iC3b is responsible for clearing β-amyloid protein (Aβ). In this scenario, C3 exerts neuroprotective effects against the disease via iC3b. However, C3a will inhibit microglia to clear the Aβ, leading to the deposition of Aβ and impair the functions of synapses. To their effects on AD, activation of C3a and C3a receptor (C3aR) will impair the mitochondria, leading to the release of reactive oxygen species (ROS), which activates the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasomes. The overloading of NLRP3 inflammasomes activate microglia, leading to the formation of inflammatory environment. The inflammatory environment will facilitate the deposition of Aβ and abnormal synapse pruning, which results in the progression of AD. Therefore, the current review will decipher the mechanisms of C3a inducing the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms, which facilitates the understanding the AD.
Collapse
Affiliation(s)
- Tong-Qi Ge
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China; College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Pu Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China.
| |
Collapse
|
18
|
DeVries SA, Dimovasili C, Medalla M, Moore TL, Rosene DL. Dysregulated C1q and CD47 in the aging monkey brain: association with myelin damage, microglia reactivity, and cognitive decline. Front Immunol 2024; 15:1426975. [PMID: 39399501 PMCID: PMC11466761 DOI: 10.3389/fimmu.2024.1426975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
Normal aging, though lacking widespread neurodegeneration, is nevertheless characterized by cognitive impairment in learning, memory, and executive function. The aged brain is spared from neuron loss, but white matter is lost and damage to myelin sheaths accumulates. This myelin damage is strongly associated with cognitive impairment. Although the cause of the myelin damage is not known, microglia dysregulation is a likely contributor. Immunologic proteins interact with microglial receptors to modulate microglia-mediated phagocytosis, which mediates myelin damage clearance and turn-over. Two such proteins, "eat me" signal C1q and "don't eat me" signal CD47, act in opposition with microglia. Both C1q and CD47 have been implicated in Multiple Sclerosis, a demyelinating disease, but whether they play a role in age-related myelin pathology is currently unknown. The present study investigates C1q and CD47 in relation to age-related myelin degeneration using multilabel immunofluorescence, RNAscope, and confocal microscopy in the cingulum bundle of male and female rhesus monkeys across the lifespan. Our findings showed significant age-related elevation in C1q localized to myelin basic protein, and this increase is associated with more severe cognitive impairment. In contrast, CD47 localization to myelin decreased in middle age and oligodendrocyte expression of CD47 RNA decreased with age. Lastly, microglia reactivity increased with age in association with the changes in C1q and CD47. Together, these results suggest disruption in the balance of "eat me" and "don't eat me" signals during normal aging, biasing microglia toward increased reactivity and phagocytosis of myelin, resulting in cognitive deficits.
Collapse
Affiliation(s)
- Sarah A. DeVries
- Laboratory for Cognitive Neurobiology, Dept of Anatomy & Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Christina Dimovasili
- Laboratory for Cognitive Neurobiology, Dept of Anatomy & Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Maria Medalla
- Laboratory of Neural Circuits and Ultrastructure, Dept of Anatomy & Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Tara L. Moore
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Laboratory of Interventions for Cortical Injury and Cognitive Decline, Dept of Anatomy & Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Douglas L. Rosene
- Laboratory for Cognitive Neurobiology, Dept of Anatomy & Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
19
|
Scott-Hewitt N, Mahoney M, Huang Y, Korte N, Yvanka de Soysa T, Wilton DK, Knorr E, Mastro K, Chang A, Zhang A, Melville D, Schenone M, Hartigan C, Stevens B. Microglial-derived C1q integrates into neuronal ribonucleoprotein complexes and impacts protein homeostasis in the aging brain. Cell 2024; 187:4193-4212.e24. [PMID: 38942014 DOI: 10.1016/j.cell.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/08/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.
Collapse
Affiliation(s)
- Nicole Scott-Hewitt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Matthew Mahoney
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Youtong Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nils Korte
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - T Yvanka de Soysa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel K Wilton
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emily Knorr
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin Mastro
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Allison Chang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Allison Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - David Melville
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica Schenone
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Hartigan
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Investigator, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Varma C, Luo E, Bostrom G, Bathini P, Berdnik D, Wyss‐Coray T, Zhao T, Dong X, Ervin FR, Beierschmitt A, Palmour RM, Lemere CA. Plasma and CSF biomarkers of aging and cognitive decline in Caribbean vervets. Alzheimers Dement 2024; 20:5460-5480. [PMID: 38946666 PMCID: PMC11350037 DOI: 10.1002/alz.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Vervets are non-human primates that share high genetic homology with humans and develop amyloid beta (Aβ) pathology with aging. We expand current knowledge by examining Aβ pathology, aging, cognition, and biomarker proteomics. METHODS Amyloid immunoreactivity in the frontal cortex and temporal cortex/hippocampal regions from archived vervet brain samples ranging from young adulthood to old age was quantified. We also obtained cognitive scores, plasma samples, and cerebrospinal fluid (CSF) samples in additional animals. Plasma and CSF proteins were quantified with platforms utilizing human antibodies. RESULTS We found age-related increases in Aβ deposition in both brain regions. Bioinformatic analyses assessed associations between biomarkers and age, sex, cognition, and CSF Aβ levels, revealing changes in proteins related to immune-related inflammation, metabolism, and cellular processes. DISCUSSION Vervets are an effective model of aging and early-stage Alzheimer's disease, and we provide translational biomarker data that both align with previous results in humans and provide a basis for future investigations. HIGHLIGHTS We found changes in immune and metabolic plasma biomarkers associated with age and cognition. Cerebrospinal fluid (CSF) biomarkers revealed changes in cell signaling indicative of adaptative processes. TNFRSF19 (TROY) and Artemin co-localize with Alzheimer's disease pathology. Vervets are a relevant model for translational studies of early-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Curran Varma
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
| | - Eva Luo
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
| | - Gustaf Bostrom
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of Public Health and Caring SciencesGeriatrics, Uppsala UniversityUppsalaSweden
- Centre for Clinical ResearchUppsala UniversityVästmanland County HospitalVästeråsSweden
| | - Praveen Bathini
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Daniela Berdnik
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Tony Wyss‐Coray
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Tingting Zhao
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Xianjun Dong
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Genomics and Bioinformatics HubBrigham and Women's HospitalBostonMassachusettsUSA
| | - Frank R. Ervin
- Behavioral Sciences FoundationSaint Kitts, Eastern CaribbeanMontrealCanada
- Faculty of Medicine and Health SciencesMcGill UniversityMontrealCanada
| | - Amy Beierschmitt
- Behavioral Sciences FoundationSaint Kitts, Eastern CaribbeanMontrealCanada
- Department of Biomedical SciencesRoss University School of Veterinary MedicineSt KittsUK
| | - Roberta M. Palmour
- Behavioral Sciences FoundationSaint Kitts, Eastern CaribbeanMontrealCanada
- Faculty of Medicine and Health SciencesMcGill UniversityMontrealCanada
| | - Cynthia A. Lemere
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
21
|
Deng Q, Wu C, Parker E, Liu TCY, Duan R, Yang L. Microglia and Astrocytes in Alzheimer's Disease: Significance and Summary of Recent Advances. Aging Dis 2024; 15:1537-1564. [PMID: 37815901 PMCID: PMC11272214 DOI: 10.14336/ad.2023.0907] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes' physiological and pathological role in AD. These roles include the inflammatory response, "eat me" and "don't eat me" signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Ong J, Zarnegar A, Selvam A, Driban M, Chhablani J. The Complement System as a Therapeutic Target in Retinal Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:945. [PMID: 38929562 PMCID: PMC11205777 DOI: 10.3390/medicina60060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The complement cascade is a vital system in the human body's defense against pathogens. During the natural aging process, it has been observed that this system is imperative for ensuring the integrity and homeostasis of the retina. While this system is critical for proper host defense and retinal integrity, it has also been found that dysregulation of this system may lead to certain retinal pathologies, including geographic atrophy and diabetic retinopathy. Targeting components of the complement system for retinal diseases has been an area of interest, and in vivo, ex vivo, and clinical trials have been conducted in this area. Following clinical trials, medications targeting the complement system for retinal disease have also become available. In this manuscript, we discuss the pathophysiology of complement dysfunction in the retina and specific pathologies. We then describe the results of cellular, animal, and clinical studies targeting the complement system for retinal diseases. We then provide an overview of complement inhibitors that have been approved by the Food and Drug Administration (FDA) for geographic atrophy. The complement system in retinal diseases continues to serve as an emerging therapeutic target, and further research in this field will provide additional insights into the mechanisms and considerations for treatment of retinal pathologies.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Amrish Selvam
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Matthew Driban
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
24
|
Carroll KR, Mizrachi M, Simmons S, Toz B, Kowal C, Wingard J, Tehrani N, Zarfeshani A, Kello N, El Khoury L, Weissman-Tsukamoto R, Levin JZ, Volpe BT, Diamond B. Lupus autoantibodies initiate neuroinflammation sustained by continuous HMGB1:RAGE signaling and reversed by increased LAIR-1 expression. Nat Immunol 2024; 25:671-681. [PMID: 38448779 PMCID: PMC11141703 DOI: 10.1038/s41590-024-01772-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Cognitive impairment is a frequent manifestation of neuropsychiatric systemic lupus erythematosus, present in up to 80% of patients and leading to a diminished quality of life. In the present study, we used a model of lupus-like cognitive impairment that is initiated when antibodies that crossreact with excitatory neuronal receptors penetrate the hippocampus, causing immediate, self-limited, excitotoxic death of hippocampal neurons, which is then followed by a significant loss of dendritic complexity in surviving neurons. This injury creates a maladaptive equilibrium that is sustained in mice for at least 1 year. We identified a feedforward loop of microglial activation and microglia-dependent synapse elimination dependent on neuronal secretion of high mobility group box 1 protein (HMGB1) which binds the receptor for advanced glycation end products (RAGE) and leads to microglial secretion of C1q, upregulation of interleukin-10 with consequent downregulation of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), an inhibitory receptor for C1q. Treatment with a centrally acting angiotensin-converting enzyme inhibitor or with an angiotensin-receptor blocker restored a healthy equilibrium, microglial quiescence and intact spatial memory.
Collapse
Affiliation(s)
- Kaitlin R Carroll
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Mark Mizrachi
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Sean Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bahtiyar Toz
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Czeslawa Kowal
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Jeffrey Wingard
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Nazila Tehrani
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Aida Zarfeshani
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | | | | | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruce T Volpe
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Betty Diamond
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
25
|
DeVries SA, Conner B, Dimovasili C, Moore TL, Medalla M, Mortazavi F, Rosene DL. Immune proteins C1q and CD47 may contribute to aberrant microglia-mediated synapse loss in the aging monkey brain that is associated with cognitive impairment. GeroScience 2024; 46:2503-2519. [PMID: 37989825 PMCID: PMC10828237 DOI: 10.1007/s11357-023-01014-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Cognitive impairment in learning, memory, and executive function occurs in normal aging even in the absence of Alzheimer's disease (AD). While neurons do not degenerate in humans or monkeys free of AD, there are structural changes including synapse loss and dendritic atrophy, especially in the dorsolateral prefrontal cortex (dlPFC), and these correlate with cognitive age-related impairment. Developmental studies revealed activity-dependent neuronal properties that lead to synapse remodeling by microglia. Microglia-mediated phagocytosis that may eliminate synapses is regulated by immune "eat me" and "don't eat me" signaling proteins in an activity-dependent manner, so that less active synapses are eliminated. Whether this process contributes to age-related synapse loss remains unknown. The present study used a rhesus monkey model of normal aging to investigate the balance between the "eat me" signal, complement component C1q, and the "don't eat me" signal, transmembrane glycoprotein CD47, relative to age-related synapse loss in dlPFC Area 46. Results showed an age-related elevation of C1q and reduction of CD47 at PSD95+ synapses that is associated with cognitive impairment. Additionally, reduced neuronal CD47 RNA expression was found, indicating that aged neurons were less able to produce the protective signal CD47. Interestingly, microglia do not show the hypertrophic morphology indicative of phagocytic activity. These findings suggest that in the aging brain, changes in the balance of immunologic proteins give microglia instructions favoring synapse elimination of less active synapses, but this may occur by a process other than classic phagocytosis such as trogocytosis.
Collapse
Affiliation(s)
- Sarah A DeVries
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA.
| | - Bryce Conner
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Christina Dimovasili
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Tara L Moore
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Maria Medalla
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Farzad Mortazavi
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Douglas L Rosene
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
26
|
Yu Y, Chen R, Mao K, Deng M, Li Z. The Role of Glial Cells in Synaptic Dysfunction: Insights into Alzheimer's Disease Mechanisms. Aging Dis 2024; 15:459-479. [PMID: 37548934 PMCID: PMC10917533 DOI: 10.14336/ad.2023.0718] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impacts a substantial number of individuals globally. Despite its widespread prevalence, there is currently no cure for AD. It is widely acknowledged that normal synaptic function holds a key role in memory, cognitive abilities, and the interneuronal transfer of information. As AD advances, symptoms including synaptic impairment, decreased synaptic density, and cognitive decline become increasingly noticeable. The importance of glial cells in the formation of synapses, the growth of neurons, brain maturation, and safeguarding the microenvironment of the central nervous system is well recognized. However, during AD progression, overactive glial cells can cause synaptic dysfunction, neuronal death, and abnormal neuroinflammation. Both neuroinflammation and synaptic dysfunction are present in the early stages of AD. Therefore, focusing on the changes in glia-synapse communication could provide insights into the mechanisms behind AD. In this review, we aim to provide a summary of the role of various glial cells, including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells, in regulating synaptic dysfunction. This may offer a new perspective on investigating the underlying mechanisms of AD.
Collapse
Affiliation(s)
- Yang Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Ran Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Kaiyue Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Maoyan Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| |
Collapse
|
27
|
Gomez‐Arboledas A, Fonseca MI, Kramar E, Chu S, Schartz ND, Selvan P, Wood MA, Tenner AJ. C5aR1 signaling promotes region- and age-dependent synaptic pruning in models of Alzheimer's disease. Alzheimers Dement 2024; 20:2173-2190. [PMID: 38278523 PMCID: PMC10984438 DOI: 10.1002/alz.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Synaptic loss is a hallmark of Alzheimer's disease (AD) that correlates with cognitive decline in AD patients. Complement-mediated synaptic pruning has been associated with this excessive loss of synapses in AD. Here, we investigated the effect of C5aR1 inhibition on microglial and astroglial synaptic pruning in two mouse models of AD. METHODS A combination of super-resolution and confocal and tridimensional image reconstruction was used to assess the effect of genetic ablation or pharmacological inhibition of C5aR1 on the Arctic48 and Tg2576 models of AD. RESULTS Genetic ablation or pharmacological inhibition of C5aR1 partially rescues excessive pre-synaptic pruning and synaptic loss in an age and region-dependent fashion in two mouse models of AD, which correlates with improved long-term potentiation (LTP). DISCUSSION Reduction of excessive synaptic pruning is an additional beneficial outcome of the suppression of C5a-C5aR1 signaling, further supporting its potential as an effective targeted therapy to treat AD. HIGHLIGHTS C5aR1 ablation restores long-term potentiation in the Arctic model of AD. C5aR1 ablation rescues region specific excessive pre-synaptic loss. C5aR1 antagonist, PMX205, rescues VGlut1 loss in the Tg2576 model of AD. C1q tagging is not sufficient to induce VGlut1 microglial ingestion. Astrocytes contribute to excessive pre-synaptic loss at late stages of the disease.
Collapse
Affiliation(s)
- Angela Gomez‐Arboledas
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Maria I. Fonseca
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Enikö Kramar
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Shu‐Hui Chu
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Nicole D. Schartz
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Purnika Selvan
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Marcelo A. Wood
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Andrea J. Tenner
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaSchool of MedicineIrvineCaliforniaUSA
| |
Collapse
|
28
|
Olivero G, Taddeucci A, Vallarino G, Trebesova H, Roggeri A, Gagliani MC, Cortese K, Grilli M, Pittaluga A. Complement tunes glutamate release and supports synaptic impairments in an animal model of multiple sclerosis. Br J Pharmacol 2024. [PMID: 38369641 DOI: 10.1111/bph.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND PURPOSE To deepen our knowledge of the role of complement in synaptic impairment in experimental autoimmune encephalomyelitis (EAE) mice, we investigated the distribution of C1q and C3 proteins and the role of complement as a promoter of glutamate release in purified nerve endings (synaptosomes) and astrocytic processes (gliosomes) isolated from the cortex of EAE mice at the acute stage of the disease (21 ± 1 day post-immunization). EXPERIMENTAL APPROACH EAE cortical synaptosomes and gliosomes were analysed for glutamate release efficiency (measured as release of preloaded [3 H]D-aspartate ([3 H]D-ASP)), C1q and C3 protein density, and for viability and ongoing apoptosis. KEY RESULTS In healthy mice, complement releases [3 H]D-ASP from gliosomes more efficiently than from synaptosomes. The releasing activity occurs in a dilution-dependent manner and involves the reversal of the excitatory amino acid transporters (EAATs). In EAE mice, the complement-induced releasing activity is significantly reduced in cortical synaptosomes but amplified in cortical gliosomes. These adaptations are paralleled by decreased density of the EAAT2 protein in synaptosomes and increased EAAT1 staining in gliosomes. Concomitantly, PSD95, GFAP, and CD11b, but not SNAP25, proteins are overexpressed in the cortex of the EAE mice. Similarly, C1q and C3 protein immunostaining is increased in EAE cortical synaptosomes and gliosomes, although signs of ongoing apoptosis or altered viability are not detectable. CONCLUSION AND IMPLICATIONS Our results unveil a new noncanonical role of complement in the CNS of EAE mice relevant to disease progression and central synaptopathy that suggests new therapeutic targets for the management of MS.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Alice Taddeucci
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Giulia Vallarino
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Hanna Trebesova
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Alessandra Roggeri
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, Università di Genova, Genoa, Italy
| | - Katia Cortese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, Università di Genova, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, Centre of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
29
|
Wen L, Bi D, Shen Y. Complement-mediated synapse loss in Alzheimer's disease: mechanisms and involvement of risk factors. Trends Neurosci 2024; 47:135-149. [PMID: 38129195 DOI: 10.1016/j.tins.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The complement system is increasingly recognized as a key player in the synapse loss and cognitive impairments observed in Alzheimer's disease (AD). In particular, the process of complement-dependent synaptic pruning through phagocytosis is over-activated in AD brains, driving detrimental excessive synapse elimination and contributing to synapse loss, which is the strongest neurobiological correlate of cognitive impairments in AD. Herein we review recent advances in characterizing complement-mediated synapse loss in AD, summarize the underlying mechanisms, and discuss the possible involvement of AD risk factors such as aging and various risk genes. We conclude with an overview of key questions that remain to be addressed.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
30
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
31
|
Abstract
Rapid removal of apoptotic cells by phagocytes, a process known as efferocytosis, is key for the maintenance of tissue homeostasis, the resolution of inflammation, and tissue repair. However, impaired efferocytosis can result in the accumulation of apoptotic cells, subsequently triggering sterile inflammation through the release of endogenous factors such as DNA and nuclear proteins from membrane permeabilized dying cells. Here, we review the molecular basis of the three key phases of efferocytosis, that is, the detection, uptake, and degradation of apoptotic materials by phagocytes. We also discuss how defects in efferocytosis due to the alteration of phagocytes and dying cells can contribute to the low-grade chronic inflammation that occurs during aging, described as inflammaging. Lastly, we explore opportunities in targeting and harnessing the efferocytic machinery to limit aging-associated inflammatory diseases.
Collapse
Affiliation(s)
- Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, and Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia;
| | - Kodi S Ravichandran
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
- VIB Center for Inflammation Research, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Batista AF, Khan KA, Papavergi MT, Lemere CA. The Importance of Complement-Mediated Immune Signaling in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2024; 25:817. [PMID: 38255891 PMCID: PMC10815224 DOI: 10.3390/ijms25020817] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
As an essential component of our innate immune system, the complement system is responsible for our defense against pathogens. The complement cascade has complex roles in the central nervous system (CNS), most of what we know about it stems from its role in brain development. However, in recent years, numerous reports have implicated the classical complement cascade in both brain development and decline. More specifically, complement dysfunction has been implicated in neurodegenerative disorders, such as Alzheimer's disease (AD), which is the most common form of dementia. Synapse loss is one of the main pathological hallmarks of AD and correlates with memory impairment. Throughout the course of AD progression, synapses are tagged with complement proteins and are consequently removed by microglia that express complement receptors. Notably, astrocytes are also capable of secreting signals that induce the expression of complement proteins in the CNS. Both astrocytes and microglia are implicated in neuroinflammation, another hallmark of AD pathogenesis. In this review, we provide an overview of previously known and newly established roles for the complement cascade in the CNS and we explore how complement interactions with microglia, astrocytes, and other risk factors such as TREM2 and ApoE4 modulate the processes of neurodegeneration in both amyloid and tau models of AD.
Collapse
Affiliation(s)
- André F. Batista
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
| | - Khyrul A. Khan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
| | - Maria-Tzousi Papavergi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Cynthia A. Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
| |
Collapse
|
33
|
Dejanovic B, Sheng M, Hanson JE. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov 2024; 23:23-42. [PMID: 38012296 DOI: 10.1038/s41573-023-00823-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
34
|
von Bernhardi R, Eugenín J. Aging Microglia and Their Impact in the Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 37:379-395. [PMID: 39207703 DOI: 10.1007/978-3-031-55529-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aging is the greatest risk factor for neurodegenerative diseases. Microglia are the resident immune cells in the central nervous system (CNS), playing key roles in its normal functioning, and as mediators for age-dependent changes of the CNS, condition at which they generate a hostile environment for neurons. Transforming Growth Factor β1 (TGFβ1) is a regulatory cytokine involved in immuneregulation and neuroprotection, affecting glial cell inflammatory activation, neuronal survival, and function. TGFβ1 signaling undergoes age-dependent changes affecting the regulation of microglial cells and can contribute to the pathophysiology of neurodegenerative diseases. This chapter focuses on assessing the role of age-related changes on the regulation of microglial cells and their impact on neuroinflammation and neuronal function, for understanding age-dependent changes of the nervous system.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastian, Santiago, Chile.
| | - Jaime Eugenín
- Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
35
|
Poliakova T, Wellington CL. Roles of peripheral lipoproteins and cholesteryl ester transfer protein in the vascular contributions to cognitive impairment and dementia. Mol Neurodegener 2023; 18:86. [PMID: 37974180 PMCID: PMC10652636 DOI: 10.1186/s13024-023-00671-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
This narrative review focuses on the role of cholesteryl ester transfer protein (CETP) and peripheral lipoproteins in the vascular contributions to cognitive impairment and dementia (VCID). Humans have a peripheral lipoprotein profile where low-density lipoproteins (LDL) represent the dominant lipoprotein fraction and high-density lipoproteins (HDL) represent a minor lipoprotein fraction. Elevated LDL-cholesterol (LDL-C) levels are well-established to cause cardiovascular disease and several LDL-C-lowering therapies are clinically available to manage this vascular risk factor. The efficacy of LDL-C-lowering therapies to reduce risk of all-cause dementia and AD is now important to address as recent studies demonstrate a role for LDL in Alzheimer's Disease (AD) as well as in all-cause dementia. The LDL:HDL ratio in humans is set mainly by CETP activity, which exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise LDL and lower HDL as CETP activity increases. Genetic and pharmacological studies support the hypothesis that CETP inhibition reduces cardiovascular risk by lowering LDL, which, by extension, may also lower VCID. Unlike humans, wild-type mice do not express catalytically active CETP and have HDL as their major lipoprotein fraction. As HDL has potent beneficial effects on endothelial cells, the naturally high HDL levels in mice protect them from vascular disorders, likely including VCID. Genetic restoration of CETP expression in mice to generate a more human-like lipid profile may increase the relevance of murine models for VCID studies. The therapeutic potential of existing and emerging LDL-lowering therapies for VCID will be discussed. Figure Legend. Cholesteryl Ester Transfer Protein in Alzheimer's Disease. CETP is mainly produced by the liver, and exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise circulating LDL and lower HDL as CETP activity increases. Low CETP activity is associated with better cardiovascular health, due to decreased LDL and increased HDL, which may also improve brain health. Although most peripheral lipoproteins cannot enter the brain parenchyma due to the BBB, it is increasingly appreciated that direct access to the vascular endothelium may enable peripheral lipoproteins to have indirect effects on brain health. Thus, lipoproteins may affect the cerebrovasculature from both sides of the BBB. Recent studies show an association between elevated plasma LDL, a well-known cardiovascular risk factor, and a higher risk of AD, and considerable evidence suggests that high HDL levels are associated with reduced CAA and lower neuroinflammation. Considering the potential detrimental role of LDL in AD and the importance of HDL's beneficial effects on endothelial cells, high CETP activity may lead to compromised BBB integrity, increased CAA deposits and greater neuroinflammation. Abbreviations: CETP - cholesteryl transfer ester protein; LDL - low-density lipoproteins; HDL - high-density lipoproteins; BBB - blood-brain barrier; CAA - cerebral amyloid angiopathy, SMC - smooth muscle cells, PVM - perivascular macrophages, RBC - red blood cells.
Collapse
Affiliation(s)
- Tetiana Poliakova
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Connolly KJ, Margaria J, Di Biase E, Cooper O, Hallett PJ, Isacson O. Loss of Lipid Carrier ApoE Exacerbates Brain Glial and Inflammatory Responses after Lysosomal GBA1 Inhibition. Cells 2023; 12:2564. [PMID: 37947642 PMCID: PMC10647680 DOI: 10.3390/cells12212564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Tightly regulated and highly adaptive lipid metabolic and transport pathways are critical to maintaining brain cellular lipid homeostasis and responding to lipid and inflammatory stress to preserve brain function and health. Deficits in the lipid handling genes APOE and GBA1 are the most significant genetic risk factors for Lewy body dementia and related dementia syndromes. Parkinson's disease patients who carry both APOE4 and GBA1 variants have accelerated cognitive decline compared to single variant carriers. To investigate functional interactions between brain ApoE and GBA1, in vivo GBA1 inhibition was tested in WT versus ApoE-deficient mice. The experiments demonstrated glycolipid stress caused by GBA1 inhibition in WT mice induced ApoE expression in several brain regions associated with movement and dementia disorders. The absence of ApoE in ApoE-KO mice amplified complement C1q elevations, reactive microgliosis and astrocytosis after glycolipid stress. Mechanistically, GBA1 inhibition triggered increases in cell surface and intracellular lipid transporters ABCA1 and NPC1, respectively. Interestingly, the absence of NPC1 in mice also triggered elevations of brain ApoE levels. These new data show that brain ApoE, GBA1 and NPC1 functions are interconnected in vivo, and that the removal or reduction of ApoE would likely be detrimental to brain function. These results provide important insights into brain ApoE adaptive responses to increased lipid loads.
Collapse
Affiliation(s)
| | | | | | | | - Penelope J. Hallett
- Departments of Psychiatry and Neurology Harvard Medical School, Neuroregeneration Institute, McLean Hospital, Belmont, MA 02478, USA
| | - Ole Isacson
- Departments of Psychiatry and Neurology Harvard Medical School, Neuroregeneration Institute, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
37
|
Gomez-Arboledas A, Fonseca MI, Kramar E, Chu SH, Schartz N, Selvan P, Wood MA, Tenner AJ. C5aR1 signaling promotes region and age dependent synaptic pruning in models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560234. [PMID: 37873302 PMCID: PMC10592845 DOI: 10.1101/2023.09.29.560234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Synaptic loss is a hallmark of Alzheimer's disease (AD) that correlates with cognitive decline in AD patients. Complement-mediated synaptic pruning has been associated with this excessive loss of synapses in AD. Here, we investigated the effect of C5aR1 inhibition on microglial and astroglial synaptic pruning in two mouse models of AD. METHODS A combination of super-resolution and confocal and tridimensional image reconstruction was used to assess the effect of genetic ablation or pharmacological inhibition of C5aR1 on the Arctic48 and Tg2576 models of AD. RESULTS Genetic ablation or pharmacological inhibition of C5aR1 rescues the excessive pre-synaptic pruning and synaptic loss in an age and region dependent fashion in two mouse models of AD, which correlates with improved long-term potentiation (LTP). DISCUSSION Reduction of excessive synaptic pruning is an additional beneficial outcome of the suppression of C5a-C5aR1 signaling, further supporting its potential as an effective targeted therapy to treat AD.
Collapse
Affiliation(s)
- Angela Gomez-Arboledas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Maria I. Fonseca
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Enikö Kramar
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Shu-Hui Chu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicole Schartz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Purnika Selvan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Andrea J. Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| |
Collapse
|
38
|
Li Y, Tao C, An N, Liu H, Liu Z, Zhang H, Sun Y, Xing Y, Gao Y. Revisiting the role of the complement system in intracerebral hemorrhage and therapeutic prospects. Int Immunopharmacol 2023; 123:110744. [PMID: 37552908 DOI: 10.1016/j.intimp.2023.110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype characterized by non-traumatic rupture of blood vessels in the brain, resulting in blood pooling in the brain parenchyma. Despite its lower incidence than ischemic stroke, ICH remains a significant contributor to stroke-related mortality, and most survivors experience poor outcomes that significantly impact their quality of life. ICH has been accompanied by various complex pathological damage, including mechanical damage of brain tissue, hematoma mass effect, and then leads to inflammatory response, thrombin activation, erythrocyte lysis, excitatory amino acid toxicity, complement activation, and other pathological changes. Accumulating evidence has demonstrated that activation of complement cascade occurs in the early stage of brain injury, and the excessive complement activation after ICH will affect the occurrence of secondary brain injury (SBI) through multiple complex pathological processes, aggravating brain edema, and pathological brain injury. Therefore, the review summarized the pathological mechanisms of brain injury after ICH, specifically the complement role in ICH, and its related pathological mechanisms, to comprehensively understand the specific mechanism of different complements at different stages after ICH. Furthermore, we systematically reviewed the current state of complement-targeted therapies for ICH, providing a reference and basis for future clinical transformation of complement-targeted therapy for ICH.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongrui Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
39
|
Chou SM, Yen YH, Yuan F, Zhang SC, Chong CM. Neuronal Senescence in the Aged Brain. Aging Dis 2023; 14:1618-1632. [PMID: 37196117 PMCID: PMC10529744 DOI: 10.14336/ad.2023.0214] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2023] [Indexed: 05/19/2023] Open
Abstract
Cellular senescence is a highly complicated cellular state that occurs throughout the lifespan of an organism. It has been well-defined in mitotic cells by various senescent features. Neurons are long-lived post-mitotic cells with special structures and functions. With age, neurons display morphological and functional changes, accompanying alterations in proteostasis, redox balance, and Ca2+ dynamics; however, it is ambiguous whether these neuronal changes belong to the features of neuronal senescence. In this review, we strive to identify and classify changes that are relatively specific to neurons in the aging brain and define them as features of neuronal senescence through comparisons with common senescent features. We also associate them with the functional decline of multiple cellular homeostasis systems, proposing the possibility that these systems are the main drivers of neuronal senescence. We hope this summary will serve as a steppingstone for further inputs on a comprehensive but relatively specific list of phenotypes for neuronal senescence and in particular their underlying molecular events during aging. This will in turn shine light on the association between neuronal senescence and neurodegeneration and lead to the development of strategies to perturb the processes.
Collapse
Affiliation(s)
- Shu-Min Chou
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Yu-Hsin Yen
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Fang Yuan
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Su-Chun Zhang
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
- Department of Neuroscience, Department of Neurology, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
40
|
Xing Y, Zhang D, Fang L, Wang J, Liu C, Wu D, Liu X, Wang X, Min W. Complement in Human Brain Health: Potential of Dietary Food in Relation to Neurodegenerative Diseases. Foods 2023; 12:3580. [PMID: 37835232 PMCID: PMC10572247 DOI: 10.3390/foods12193580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The complement pathway is a major component of the innate immune system, which is critical for recognizing and clearing pathogens that rapidly react to defend the body against external pathogens. Many components of this pathway are expressed throughout the brain and play a beneficial role in synaptic pruning in the developing central nervous system (CNS). However, excessive complement-mediated synaptic pruning in the aging or injured brain may play a contributing role in a wide range of neurodegenerative diseases. Complement Component 1q (C1q), an initiating recognition molecule of the classical complement pathway, can interact with a variety of ligands and perform a range of functions in physiological and pathophysiological conditions of the CNS. This review considers the function and immunomodulatory mechanisms of C1q; the emerging role of C1q on synaptic pruning in developing, aging, or pathological CNS; the relevance of C1q; the complement pathway to neurodegenerative diseases; and, finally, it summarizes the foods with beneficial effects in neurodegenerative diseases via C1q and complement pathway and highlights the need for further research to clarify these roles. This paper aims to provide references for the subsequent study of food functions related to C1q, complement, neurodegenerative diseases, and human health.
Collapse
Affiliation(s)
- Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
41
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
42
|
Zhou Y, Bhatt H, Mojica CA, Xin H, Pessina MA, Rosene DL, Moore TL, Medalla M. Mesenchymal-derived extracellular vesicles enhance microglia-mediated synapse remodeling after cortical injury in aging Rhesus monkeys. J Neuroinflammation 2023; 20:201. [PMID: 37660145 PMCID: PMC10475204 DOI: 10.1186/s12974-023-02880-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke or traumatic brain injury. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys following injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. A focal lesion was induced via surgical ablation of pial blood vessels over lying the cortical hand representation of M1 of aged female rhesus monkeys, that received intravenous infusions of either vehicle (veh) or EVs 24 h and again 14 days post-injury. The current study used this same cohort to address how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high-resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC). We compared this lesion cohort to age-matched non-lesion controls (ctr). Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EVs on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglia-spine contacts. Our results suggest that EV treatment may enhance synaptic plasticity via clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic function to support functional recovery after injury.
Collapse
Affiliation(s)
- Yuxin Zhou
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Hrishti Bhatt
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Chromewell A Mojica
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Hongqi Xin
- Department of Neurology, Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Monica A Pessina
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
43
|
Datta D. Interrogating the Etiology of Sporadic Alzheimer's Disease Using Aging Rhesus Macaques: Cellular, Molecular, and Cortical Circuitry Perspectives. J Gerontol A Biol Sci Med Sci 2023; 78:1523-1534. [PMID: 37279946 PMCID: PMC10460555 DOI: 10.1093/gerona/glad134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 06/08/2023] Open
Abstract
Aging is the most significant risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) associated with profound socioeconomic and personal costs. Consequently, there is an urgent need for animal models that recapitulate the age-related spatial and temporal complexity and patterns of pathology identical to human AD. Our research in aging nonhuman primate models involving rhesus macaques has revealed naturally occurring amyloid and tau pathology, including the formation of amyloid plaques and neurofibrillary tangles comprising hyperphosphorylated tau. Moreover, rhesus macaques exhibit synaptic dysfunction in association cortices and cognitive impairments with advancing age, and thus can be used to interrogate the etiological mechanisms that generate neuropathological cascades in sporadic AD. Particularly, unique molecular mechanisms (eg, feedforward cyclic adenosine 3',5'-monophosphate [cAMP]-Protein kinase A (PKA)-calcium signaling) in the newly evolved primate dorsolateral prefrontal cortex are critical for persistent firing required for subserving higher-order cognition. For example, dendritic spines in primate dorsolateral prefrontal cortex contain a specialized repertoire of proteins to magnify feedforward cAMP-PKA-calcium signaling such as N-methyl-d-aspartic acid receptors and calcium channels on the smooth endoplasmic reticulum (eg, ryanodine receptors). This process is constrained by phosphodiesterases (eg, PDE4) that hydrolyze cAMP and calcium-buffering proteins (eg, calbindin) in the cytosol. However, genetic predispositions and age-related insults exacerbate feedforward cAMP-Protein kinase A-calcium signaling pathways that induce a myriad of downstream effects, including the opening of K+ channels to weaken network connectivity, calcium-mediated dysregulation of mitochondria, and activation of inflammatory cascades to eliminate synapses, thereby increasing susceptibility to atrophy. Therefore, aging rhesus macaques provide an invaluable model to explore novel therapeutic strategies in sporadic AD.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
44
|
Park J, Chung WS. Astrocyte-dependent circuit remodeling by synapse phagocytosis. Curr Opin Neurobiol 2023; 81:102732. [PMID: 37247606 DOI: 10.1016/j.conb.2023.102732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
In the central nervous system, synaptic pruning, the removal of unnecessary synaptic contacts, is an essential process for proper circuit maturation in neurodevelopment as well as for synaptic homeostasis in the adult stage. Dysregulation of synaptic pruning can contribute to the initiation and progression of various mental disorders, such as schizophrenia and depression, as well as neurodegenerative diseases including Alzheimer's disease. In the past 15 years, pioneering works have demonstrated that different types of glial cells regulate the number of synapses by selectively eliminating them through phagocytic molecular machinery. Although a majority of findings have been focused on microglia, it is increasingly evident that astrocytes function as a critical player in activity-dependent synapse elimination in developing, adult, and diseased brains. In this review, we will discuss recent findings showing the mechanisms and physiological importance of astrocyte-mediated synapse elimination in controlling synapses and circuit homeostasis. We propose that astrocytes play dominant and non-redundant roles in eliminating synapses during the activity-dependent circuit remodeling processes that do not involve neuro-inflammation.
Collapse
Affiliation(s)
- Jungjoo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
45
|
Tamburini B, Badami GD, La Manna MP, Shekarkar Azgomi M, Caccamo N, Dieli F. Emerging Roles of Cells and Molecules of Innate Immunity in Alzheimer's Disease. Int J Mol Sci 2023; 24:11922. [PMID: 37569296 PMCID: PMC10418700 DOI: 10.3390/ijms241511922] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The inflammatory response that marks Alzheimer's disease (neuroinflammation) is considered a double-edged sword. Microglia have been shown to play a protective role at the beginning of the disease. Still, persistent harmful stimuli further activate microglia, inducing an exacerbating inflammatory process which impairs β-amyloid peptide clearance capability and leads to neurotoxicity and neurodegeneration. Moreover, microglia also appear to be closely involved in the spread of tau pathology. Soluble TREM2 also represents a crucial player in the neuroinflammatory processes. Elevated levels of TREM2 in cerebrospinal fluid have been associated with increased amyloid plaque burden, neurodegeneration, and cognitive decline in individuals with Alzheimer's disease. Understanding the intricate relationship between innate immunity and Alzheimer's disease will be a promising strategy for future advancements in diagnosis and new therapeutic interventions targeting innate immunity, by modulating its activity. Still, additional and more robust studies are needed to translate these findings into effective treatments. In this review, we focus on the role of cells (microglia, astrocytes, and oligodendrocytes) and molecules (TREM2, tau, and β-amyloid) of the innate immune system in the pathogenesis of Alzheimer's disease and their possible exploitation as disease biomarkers and targets of therapeutical approaches.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Giusto Davide Badami
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Marco Pio La Manna
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Nadia Caccamo
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| |
Collapse
|
46
|
Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, Yu M, Lan J. Microglia in Alzheimer's disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 2023; 15:1201982. [PMID: 37396657 PMCID: PMC10309009 DOI: 10.3389/fnagi.2023.1201982] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregation in the brain. Recent studies have revealed the critical role of microglia in AD pathogenesis. This review provides a comprehensive summary of the current understanding of microglial involvement in AD, focusing on genetic determinants, phenotypic state, phagocytic capacity, neuroinflammatory response, and impact on synaptic plasticity and neuronal regulation. Furthermore, recent developments in drug discovery targeting microglia in AD are reviewed, highlighting potential avenues for therapeutic intervention. This review emphasizes the essential role of microglia in AD and provides insights into potential treatments.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Haixia Ma
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yang Yang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanpin Liao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Cui Lin
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Juanxia Zheng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Muli Yu
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiao Lan
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
47
|
Wang L, Bao Y, Yu F, Zhu W, Wang JL, Yang J, Xie H, Huang D. Development of gene model combined with machine learning technology to predict for advanced atherosclerotic plaques. Clin Neurol Neurosurg 2023; 231:107819. [PMID: 37315377 DOI: 10.1016/j.clineuro.2023.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Atherosclerosis, as a major cause of stroke, is responsible for a quarter of deaths worldwide. In particular, rupture of late-stage plaques in large vessels such as the carotid artery can lead to serious cardiovascular disease. The aim of our study was to establish a genetic model combined with machining leaning techniques to screen out gene signatures and predict for advanced atherosclerosis plaques. METHODS The microarray dataset GSE28829 and GSE43292 which were publicly obtained from the Gene Expression Omnibus database were utilized to screen for potential predictive genes. Differentially expressed genes (DEGs) were identified by using the "limma" R package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) analyses of these DEGs were performed by Metascape. Later, Random Forest (RF) algorithm was applied to further screen out top-30 genes which contribute the most. The expression data of top 30-DEGs were converted into a "Gene Score". Finally, we developed a model based on artificial neural network (ANN) to predict advanced atherosclerotic plaques. The model later was validated in an independent test dataset GSE104140. RESULTS A total of 176 DEGs were identified in the training datasets. GO and KEGG enrichment analysis revealed that these genes were enriched in leukocyte-mediated immune response, cytokine- cytokine interactions, and immunoinflammatory signaling. Further, top-30 genes (including 25 upregulated and 5 downregulated DEGs) were screened as predictors by RF algorithm. The predictive model was developed with a significantly predictive value (AUC = 0.913) in the training datasets, and was validated with an independent dataset GSE104140 (AUC = 0.827). CONCLUSION In present study, our prediction model was established and showed satisfactory predictive power in both training and test datasets. In addition, this is the first study adopted bioinformatics methods combined with machine learning techniques (RF and ANN) to explore and predict for the advanced atherosclerotic plaques. However, further investigations were needed to verify the screened DEGs and predictive effectiveness of this model.
Collapse
Affiliation(s)
- Lufeng Wang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiwen Bao
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenxia Zhu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Lang Wang
- Department of Imaging, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongrong Xie
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Mrdjen D, Amouzgar M, Cannon B, Liu C, Spence A, McCaffrey E, Bharadwaj A, Tebaykin D, Bukhari S, Hartmann FJ, Kagel A, Vijayaragavan K, Oliveria JP, Yakabi K, Serrano GE, Corrada MM, Kawas CH, Camacho C, Bosse M, Tibshirani R, Beach TG, Angelo M, Montine T, Bendall SC. Spatial proteomics reveals human microglial states shaped by anatomy and neuropathology. RESEARCH SQUARE 2023:rs.3.rs-2987263. [PMID: 37398389 PMCID: PMC10312937 DOI: 10.21203/rs.3.rs-2987263/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microglia are implicated in aging, neurodegeneration, and Alzheimer's disease (AD). Traditional, low-plex, imaging methods fall short of capturing in situ cellular states and interactions in the human brain. We utilized Multiplexed Ion Beam Imaging (MIBI) and data-driven analysis to spatially map proteomic cellular states and niches in healthy human brain, identifying a spectrum of microglial profiles, called the microglial state continuum (MSC). The MSC ranged from senescent-like to active proteomic states that were skewed across large brain regions and compartmentalized locally according to their immediate microenvironment. While more active microglial states were proximal to amyloid plaques, globally, microglia significantly shifted towards a, presumably, dysfunctional low MSC in the AD hippocampus, as confirmed in an independent cohort (n=26). This provides an in situ single cell framework for mapping human microglial states along a continuous, shifting existence that is differentially enriched between healthy brain regions and disease, reinforcing differential microglial functions overall.
Collapse
Affiliation(s)
- Dunja Mrdjen
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Meelad Amouzgar
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Bryan Cannon
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Candace Liu
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Angie Spence
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Erin McCaffrey
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Anusha Bharadwaj
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Dmitry Tebaykin
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Syed Bukhari
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Felix J. Hartmann
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
- Systems Immunology and Single-Cell Biology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Adam Kagel
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Kausalia Vijayaragavan
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - John Paul Oliveria
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Koya Yakabi
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | | | - Maria M. Corrada
- Department of Neurology, University of California, Irvine, 9269, CA, USA
| | - Claudia H. Kawas
- Department of Neurology, University of California, Irvine, 9269, CA, USA
| | - Christine Camacho
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Robert Tibshirani
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, 85351, AZ, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Thomas Montine
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| | - Sean C. Bendall
- Department of Pathology, Stanford University, School of Medicine, Palo Alto 94304, CA, USA
| |
Collapse
|
49
|
Zhou Y, Bhatt H, Mojica CA, Xin H, Pessina M, Rosene DL, Moore TL, Medalla M. Mesenchymal-Derived Extracellular Vesicles Enhance Microglia-mediated Synapse Remodeling after Cortical Injury in Rhesus Monkeys. RESEARCH SQUARE 2023:rs.3.rs-2917340. [PMID: 37292805 PMCID: PMC10246272 DOI: 10.21203/rs.3.rs-2917340/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys post-injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. The current study addresses how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba-1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC) of monkeys with intravenous infusions of either vehicle (veh) or EVs post-injury. We compared this lesion cohort to aged-matched non-lesion controls. Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EV on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglial-spine contacts. Our results provided evidence that EV treatment facilitated synaptic plasticity by enhancing clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic connectivity to support functional recovery after injury.
Collapse
Affiliation(s)
- Yuxin Zhou
- Boston University Chobanian & Avedisian School of Medicine
| | - Hrishti Bhatt
- Boston University Chobanian & Avedisian School of Medicine
| | | | | | - Monica Pessina
- Boston University Chobanian & Avedisian School of Medicine
| | | | - Tara L Moore
- Boston University Chobanian & Avedisian School of Medicine
| | - Maria Medalla
- Boston University Chobanian & Avedisian School of Medicine
| |
Collapse
|
50
|
Bohlson SS, Tenner AJ. Complement in the Brain: Contributions to Neuroprotection, Neuronal Plasticity, and Neuroinflammation. Annu Rev Immunol 2023; 41:431-452. [PMID: 36750318 DOI: 10.1146/annurev-immunol-101921-035639] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The complement system is an ancient collection of proteolytic cascades with well-described roles in regulation of innate and adaptive immunity. With the convergence of a revolution in complement-directed clinical therapeutics, the discovery of specific complement-associated targetable pathways in the central nervous system, and the development of integrated multi-omic technologies that have all emerged over the last 15 years, precision therapeutic targeting in Alzheimer disease and other neurodegenerative diseases and processes appears to be within reach. As a sensor of tissue distress, the complement system protects the brain from microbial challenge as well as the accumulation of dead and/or damaged molecules and cells. Additional more recently discovered diverse functions of complement make it of paramount importance to design complement-directed neurotherapeutics such that the beneficial roles in neurodevelopment, adult neural plasticity, and neuroprotective functions of the complement system are retained.
Collapse
Affiliation(s)
- Suzanne S Bohlson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA; ,
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA; ,
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|