1
|
Carter AC, Koreman GT, Petrocelli JE, Robb JE, Bushinsky EM, Trowbridge SK, Kingsley DM, Walsh CA, Song JHT, Greenberg ME. FOS binding sites are a hub for the evolution of activity-dependent gene regulatory programs in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646366. [PMID: 40236085 PMCID: PMC11996375 DOI: 10.1101/2025.03.31.646366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
After birth, sensory inputs to neurons trigger the induction of activity-dependent genes (ADGs) that mediate many aspects of neuronal maturation and plasticity. To identify human-specific ADGs, we characterized these genes in human-chimpanzee tetraploid neurons. We identified 235 ADGs that are differentially expressed between human and chimpanzee neurons and found that their nearby regulatory sites are species-biased in their binding of the transcription factor FOS. An assessment of these sites revealed that many are enriched for single nucleotide variants that promote or eliminate FOS binding in human neurons. Disrupting the function of individual species-biased FOS-bound enhancers diminishes expression of nearby genes and affects the firing dynamics of human neurons. Our findings indicate that FOS-bound enhancers are frequent sites of evolution and that they regulate human-specific ADGs that may contribute to the unusually protracted and complex process of postnatal human brain development.
Collapse
|
2
|
Liang Z, Jin N, Guo W. Neural stem cell heterogeneity in adult hippocampus. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:6. [PMID: 40053275 DOI: 10.1186/s13619-025-00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/10/2025]
Abstract
Adult neurogenesis is a unique cellular process of the ongoing generation of new neurons throughout life, which primarily occurs in the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. In the adult DG, newly generated granule cells from neural stem cells (NSCs) integrate into existing neural circuits, significantly contributing to cognitive functions, particularly learning and memory. Recently, more and more studies have shown that rather than being a homogeneous population of identical cells, adult NSCs are composed of multiple subpopulations that differ in their morphology and function. In this study, we provide an overview of the origin, regional characteristics, prototypical morphology, and molecular factors that contribute to NSC heterogeneity. In particular, we discuss the molecular mechanisms underlying the balance between activation and quiescence of NSCs. In summary, this review highlights that deciphering NSC heterogeneity in the adult brain is a challenging but critical step in advancing our understanding of tissue-specific stem cells and the process of neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Nuomeng Jin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
3
|
Ávila-Gámiz F, Pérez-Cano AM, Pérez-Berlanga JM, Zambrana-Infantes EN, Mañas-Padilla MC, Gil-Rodríguez S, Tronel S, Santín LJ, Ladrón de Guevara-Miranda D. Sequential physical and cognitive training disrupts cocaine-context associations via multi-level stimulation of adult hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111148. [PMID: 39284561 DOI: 10.1016/j.pnpbp.2024.111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Cocaine-related contextual cues are a recurrent source of craving and relapse. Extinction of cue-driven cocaine seeking remains a clinical challenge, and the search for adjuvants is ongoing. In this regard, combining physical and cognitive training is emerging as a promising strategy that has shown synergistic benefits on brain structure and function, including enhancement of adult hippocampal neurogenesis (AHN), which has been recently linked to reduced maintenance of maladaptive drug seeking. Here, we examined whether this behavioral approach disrupts cocaine-context associations via improved AHN. To this aim, C57BL/6J mice (N = 37) developed a cocaine-induced conditioned place preference (CPP) and underwent interventions consisting of exercise and/or spatial working memory training. Bromodeoxyuridine (BrdU) was administered during early running sessions to tag a subset of new dentate granule cells (DGCs) reaching a critical window of survival during spatial learning. Once these DGCs became functionally mature (∼ 6 weeks-old), mice received extinction training before testing CPP extinction and reinstatement. We found that single and combined treatments accelerated CPP extinction and prevented reinstatement induced by a low cocaine priming (2 mg/kg). Remarkably, the dual-intervention mice showed a significant decrease of CPP after extinction relative to untreated animals. Moreover, combining the two strategies led to increased number and functional integration of BrdU+ DGCs, which in turn maximized the effect of spatial training (but not exercise) to reduce CPP persistence. Together, our findings suggests that sequencing physical and cognitive training may redound to decreased maintenance of cocaine-context associations, with multi-level stimulation of AHN as a potential underlying mechanism.
Collapse
Affiliation(s)
- Fabiola Ávila-Gámiz
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Ana M Pérez-Cano
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - José Manuel Pérez-Berlanga
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Emma N Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - M Carmen Mañas-Padilla
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Sara Gil-Rodríguez
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Sophie Tronel
- University of Bordeaux, INSERM, Magendie, U1215, F-33000 Bordeaux, France
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain.
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain.
| |
Collapse
|
4
|
Bonzano S, Dallorto E, Bovetti S, Studer M, De Marchis S. Mitochondrial regulation of adult hippocampal neurogenesis: Insights into neurological function and neurodevelopmental disorders. Neurobiol Dis 2024; 199:106604. [PMID: 39002810 DOI: 10.1016/j.nbd.2024.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Mitochondria are essential regulators of cellular energy metabolism and play a crucial role in the maintenance and function of neuronal cells. Studies in the last decade have highlighted the importance of mitochondrial dynamics and bioenergetics in adult neurogenesis, a process that significantly influences cognitive function and brain plasticity. In this review, we examine the mechanisms by which mitochondria regulate adult neurogenesis, focusing on the impact of mitochondrial function on the behavior of neural stem/progenitor cells and the maturation and plasticity of newborn neurons in the adult mouse hippocampus. In addition, we explore the link between mitochondrial dysfunction, adult hippocampal neurogenesis and genes associated with cognitive deficits in neurodevelopmental disorders. In particular, we provide insights into how alterations in the transcriptional regulator NR2F1 affect mitochondrial dynamics and may contribute to the pathophysiology of the emerging neurodevelopmental disorder Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Understanding how genes involved in embryonic and adult neurogenesis affect mitochondrial function in neurological diseases might open new directions for therapeutic interventions aimed at boosting mitochondrial function during postnatal life.
Collapse
Affiliation(s)
- Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Michèle Studer
- Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy.
| |
Collapse
|
5
|
Rasetto NB, Giacomini D, Berardino AA, Waichman TV, Beckel MS, Di Bella DJ, Brown J, Davies-Sala MG, Gerhardinger C, Lie DC, Arlotta P, Chernomoretz A, Schinder AF. Transcriptional dynamics orchestrating the development and integration of neurons born in the adult hippocampus. SCIENCE ADVANCES 2024; 10:eadp6039. [PMID: 39028813 PMCID: PMC11259177 DOI: 10.1126/sciadv.adp6039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing. Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple immature stages bearing increasing levels of effector genes supporting growth, excitability, and synaptogenesis. Analysis of differential gene expression, pseudo-time trajectory, and transcription factors (TFs) revealed critical transitions defining four cellular states: quiescent RGLs, proliferative progenitors, immature aGCs, and mature aGCs. Becoming mature aGCs involved a transcriptional switch that shuts down pathways promoting cell growth, such SoxC TFs, to activate programs that likely control neuronal homeostasis. aGCs overexpressing Sox4 or Sox11 remained immature. Our results unveil precise molecular mechanisms driving adult RGLs through the pathway of neuronal differentiation.
Collapse
Affiliation(s)
- Natalí B. Rasetto
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Damiana Giacomini
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Ariel A. Berardino
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Tomás Vega Waichman
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Maximiliano S. Beckel
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Daniela J. Di Bella
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Juliana Brown
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - M. Georgina Davies-Sala
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Chiara Gerhardinger
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dieter Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paola Arlotta
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ariel Chernomoretz
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
- University of Buenos Aires, School of Science, Phys Dept and INFINA (CONICET-UBA), Buenos Aires, Argentina
| | - Alejandro F. Schinder
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| |
Collapse
|
6
|
Lazarov O, Gupta M, Kumar P, Morrissey Z, Phan T. Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer's disease. Prog Neurobiol 2024; 236:102601. [PMID: 38570083 PMCID: PMC11221328 DOI: 10.1016/j.pneurobio.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zachery Morrissey
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Trongha Phan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Kennedy WM, Gonzalez JC, Lee H, Wadiche JI, Overstreet-Wadiche L. T-Type Ca 2+ Channels Mediate a Critical Period of Plasticity in Adult-Born Granule Cells. J Neurosci 2024; 44:e1503232024. [PMID: 38413230 PMCID: PMC11007310 DOI: 10.1523/jneurosci.1503-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Adult-born granule cells (abGCs) exhibit a transient period of elevated synaptic plasticity that plays an important role in hippocampal function. Various mechanisms have been implicated in this critical period for enhanced plasticity, including minimal GABAergic inhibition and high intrinsic excitability conferred by T-type Ca2+ channels. Here we assess the contribution of synaptic inhibition and intrinsic excitability to long-term potentiation (LTP) in abGCs of adult male and female mice using perforated patch recordings. We show that the timing of critical period plasticity is unaffected by intact GABAergic inhibition such that 4-6-week-old abGCs exhibit LTP that is absent by 8 weeks. Blocking GABAA receptors, or partial blockade of GABA release from PV and nNos-expressing interneurons by a µ-opioid receptor agonist, strongly enhances LTP in 4-week-old GCs, suggesting that minimal inhibition does not underlie critical period plasticity. Instead, the closure of the critical period coincides with a reduction in the contribution of T-type Ca2+ channels to intrinsic excitability, and a selective T-type Ca2+ channel antagonist prevents LTP in 4-week-old but not mature GCs. Interestingly, whole-cell recordings that facilitate T-type Ca2+ channel activity in mature GCs unmasks LTP (with inhibition intact) that is also sensitive to a T-type Ca2+ channel antagonist, suggesting T-type channel activity in mature GCs is suppressed by native intracellular signaling. Together these results show that abGCs use T-type Ca2+ channels to overcome inhibition, providing new insight into how high intrinsic excitability provides young abGCs a competitive advantage for experience-dependent synaptic plasticity.
Collapse
Affiliation(s)
- William M Kennedy
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jose Carlos Gonzalez
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Haeun Lee
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jacques I Wadiche
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Linda Overstreet-Wadiche
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
8
|
Rasetto NB, Giacomini D, Berardino AA, Waichman TV, Beckel MS, Di Bella DJ, Brown J, Davies-Sala MG, Gerhardinger C, Lie DC, Arlotta P, Chernomoretz A, Schinder AF. Transcriptional dynamics orchestrating the development and integration of neurons born in the adult hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565477. [PMID: 38260428 PMCID: PMC10802403 DOI: 10.1101/2023.11.03.565477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The adult hippocampus generates new granule cells (aGCs) that exhibit distinct functional capabilities along development, conveying a unique form of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like neural stem cells (RGL) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to follow newborn aGCs along differentiation using single-nuclei RNA sequencing (snRNA-seq). Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple sequential immature stages bearing increasing levels of effector genes supporting growth, excitability and synaptogenesis. Remarkably, four discrete cellular states were defined by the expression of distinct sets of transcription factors (TFs): quiescent neural stem cells, proliferative progenitors, postmitotic immature aGCs, and mature aGCs. The transition from immature to mature aCGs involved a transcriptional switch that shutdown molecular cascades promoting cell growth, such as the SoxC family of TFs, to activate programs controlling neuronal homeostasis. Indeed, aGCs overexpressing Sox4 or Sox11 remained stalled at the immature state. Our results unveil precise molecular mechanisms driving adult neural stem cells through the pathway of neuronal differentiation.
Collapse
|
9
|
Barreda-Manso MA, Soto A, Muñoz-Galdeano T, Reigada D, Nieto-Díaz M, Maza RM. MiR-138-5p Upregulation during Neuronal Maturation Parallels with an Increase in Neuronal Survival. Int J Mol Sci 2023; 24:16509. [PMID: 38003699 PMCID: PMC10671628 DOI: 10.3390/ijms242216509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Neuronal maturation is a process that plays a key role in the development and regeneration of the central nervous system. Although embryonic brain development and neurodegeneration have received considerable attention, the events that govern postnatal neuronal maturation are less understood. Among the mechanisms influencing such neuronal maturation processes, apoptosis plays a key role. Several regulators have been described to modulate apoptosis, including post-transcriptional regulation by microRNAs. This study aimed to analyze endogenous expression changes of miR-138-5p, as well as its main validated pro-apoptotic target caspase3, during the maturation of neuronal cultures and their response under apoptotic challenge. Our results point out that the observed opposite expression of miR-138-5p and its target caspase3 might modulate apoptosis favoring neuronal survival at distinct maturation stages. The unchanged expression of miR-138-5p in mature neurons contrasts with the significant downregulation in immature neurons upon apoptotic stimulation. Similarly, immunoblot and individual cellular assays confirmed that during maturation, not only the expression but processing of CASP-3 and caspase activity is reduced after apoptotic stimulation which results in a reduction of neuronal death. Further studies would be needed to determine a more detailed role of miR-138-5p in apoptosis during neuronal maturation and the synergistic action of several microRNAs acting cooperatively on caspase3 or other apoptotic targets.
Collapse
Affiliation(s)
- María Asunción Barreda-Manso
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
- Research Unit, Functional Exploration and Neuromodulation of the Central Nervous System (FENNSI) Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Altea Soto
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
| | - Teresa Muñoz-Galdeano
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
| | - David Reigada
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
| | - Manuel Nieto-Díaz
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
| | - Rodrigo M. Maza
- Research Unit, Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (A.S.); (T.M.-G.); (D.R.); (M.N.-D.)
| |
Collapse
|
10
|
Luo X, Dai M, Wang M, Wang X, Guo W. Functional heterogeneity of Wnt-responsive and Hedgehog-responsive neural stem cells in the murine adult hippocampus. Dev Cell 2023; 58:2545-2562.e6. [PMID: 37607545 DOI: 10.1016/j.devcel.2023.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
Neural stem cells (NSCs) in the adult hippocampus are composed of multiple subpopulations. However, their origin and functional heterogeneity are still unclear. Here, we found that the contribution of murine Wnt-responsive (Axin2+) and Hedgehog-responsive (Gli1+) embryonic neural progenitors to adult NSCs started from early and late postnatal stages, respectively. Axin2+ adult NSCs were intended to actively proliferate, whereas Gli1+ adult NSCs were relatively quiescent and responsive to external stimuli. Moreover, Gli1+ NSC-derived adult-born neurons exhibited more complex dendritic arborization and connectivity than Axin2+ NSC-derived ones. Importantly, genetic cell ablation analysis identified that Axin2+ and Gli1+ adult NSCs were involved in hippocampus-dependent learning, but only Axin2+ adult NSCs were engaged in buffering stress responses and depressive behavior. Together, our study not only defined the heterogeneous multiple origins of adult NSCs but also advanced the concept that different subpopulations of adult NSCs may function differently.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Min Dai
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiujie Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
11
|
Gupta P, Rathi P, Gupta R, Baldi H, Coquerel Q, Debnath A, Derami HG, Raman B, Singamaneni S. Neuronal maturation-dependent nano-neuro interaction and modulation. NANOSCALE HORIZONS 2023; 8:1537-1555. [PMID: 37672212 PMCID: PMC10615777 DOI: 10.1039/d3nh00258f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Nanotechnology-enabled neuromodulation is a promising minimally-invasive tool in neuroscience and engineering for both fundamental studies and clinical applications. However, the nano-neuro interaction at different stages of maturation of a neural network and its implications for the nano-neuromodulation remain unclear. Here, we report heterogeneous to homogeneous transformation of neuromodulation in a progressively maturing neural network. Utilizing plasmonic-fluors as ultrabright fluorescent nanolabels, we reveal that negative surface charge of nanoparticles renders selective nano-neuro interaction with a strong correlation between the maturation stage of the individual neurons in the neural network and the density of the nanoparticles bound on the neurons. In stark contrast to homogeneous neuromodulation in a mature neural network reported so far, the maturation-dependent density of the nanoparticles bound to neurons in a developing neural network resulted in a heterogeneous optical neuromodulation (i.e., simultaneous excitation and inhibition of neural network activity). This study advances our understanding of nano-neuro interactions and nano-neuromodulation with potential applications in minimally-invasive technologies for treating neuronal disorders in parts of the mammalian brain where neurogenesis persists throughout aging.
Collapse
Affiliation(s)
- Prashant Gupta
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Priya Rathi
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Rohit Gupta
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Harsh Baldi
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Quentin Coquerel
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Avishek Debnath
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Hamed Gholami Derami
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
12
|
Camp CR, Vlachos A, Klöckner C, Krey I, Banke TG, Shariatzadeh N, Ruggiero SM, Galer P, Park KL, Caccavano A, Kimmel S, Yuan X, Yuan H, Helbig I, Benke TA, Lemke JR, Pelkey KA, McBain CJ, Traynelis SF. Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons. Commun Biol 2023; 6:952. [PMID: 37723282 PMCID: PMC10507040 DOI: 10.1038/s42003-023-05298-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit. Here, we show that unlike missense GRIN2A variants, individuals affected with disease-associated null GRIN2A variants demonstrate a transient period of seizure susceptibility that begins during infancy and diminishes near adolescence. We show increased circuit excitability and CA1 pyramidal cell output in juvenile mice of both Grin2a+/- and Grin2a-/- mice. These alterations in somatic spiking are not due to global upregulation of most Grin genes (including Grin2b). Deeper evaluation of the developing CA1 circuit led us to uncover age- and Grin2a gene dosing-dependent transient delays in the electrophysiological maturation programs of parvalbumin (PV) interneurons. We report that Grin2a+/+ mice reach PV cell electrophysiological maturation between the neonatal and juvenile neurodevelopmental timepoints, with Grin2a+/- mice not reaching PV cell electrophysiological maturation until preadolescence, and Grin2a-/- mice not reaching PV cell electrophysiological maturation until adulthood. Overall, these data may represent a molecular mechanism describing the transient nature of seizure susceptibility in disease-associated null GRIN2A patients.
Collapse
Affiliation(s)
- Chad R Camp
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anna Vlachos
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Tue G Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nima Shariatzadeh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sarah M Ruggiero
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Peter Galer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Kristen L Park
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Adam Caccavano
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Kimmel
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tim A Benke
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Wang Q, Tang B, Hao S, Wu Z, Yang T, Tang J. Forniceal deep brain stimulation in a mouse model of Rett syndrome increases neurogenesis and hippocampal memory beyond the treatment period. Brain Stimul 2023; 16:1401-1411. [PMID: 37704033 PMCID: PMC11152200 DOI: 10.1016/j.brs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT), caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2), severely impairs learning and memory. We previously showed that forniceal deep brain stimulation (DBS) stimulates hippocampal neurogenesis with concomitant improvements in hippocampal-dependent learning and memory in a mouse model of RTT. OBJECTIVES To determine the duration of DBS benefits; characterize DBS effects on hippocampal neurogenesis; and determine whether DBS influences MECP2 genotype and survival of newborn dentate granular cells (DGCs) in RTT mice. METHODS Chronic DBS was delivered through an electrode implanted in the fimbria-fornix. We tested separate cohorts of mice in contextual and cued fear memory at different time points after DBS. We then examined neurogenesis, DGC apoptosis, and the expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) after DBS by immunohistochemistry. RESULTS After two weeks of forniceal DBS, memory improvements lasted between 6 and 9 weeks. Repeating DBS every 6 weeks was sufficient to maintain the improvement. Forniceal DBS stimulated the birth of more MeCP2-positive than MeCP2-negative DGCs and had no effect on DGC survival. It also increased the expression of BDNF but not VEGF in the RTT mouse dentate gyrus. CONCLUSION Improvements in learning and memory from forniceal DBS in RTT mice extends well beyond the treatment period and can be maintained by repeated DBS. Stimulation of BDNF expression correlates with improvements in hippocampal neurogenesis and memory benefits.
Collapse
Affiliation(s)
- Qi Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bin Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tingting Yang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Camp CR, Traynelis SF. Additional Depth to the NMDA Receptor Hypofunction and Parvalbumin Cell Dysfunction Hypotheses of Schizophrenia. Biol Psychiatry 2023; 94:283-284. [PMID: 37495331 PMCID: PMC10648280 DOI: 10.1016/j.biopsych.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023]
Affiliation(s)
- Chad R Camp
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia; Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, Georgia; Emory Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
15
|
Gao Y, Syed M, Zhao X. Mechanisms underlying the effect of voluntary running on adult hippocampal neurogenesis. Hippocampus 2023; 33:373-390. [PMID: 36892196 PMCID: PMC10566571 DOI: 10.1002/hipo.23520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Adult hippocampal neurogenesis is important for preserving learning and memory-related cognitive functions. Physical exercise, especially voluntary running, is one of the strongest stimuli to promote neurogenesis and has beneficial effects on cognitive functions. Voluntary running promotes exit of neural stem cells (NSCs) from the quiescent stage, proliferation of NSCs and progenitors, survival of newborn cells, morphological development of immature neuron, and integration of new neurons into the hippocampal circuitry. However, the detailed mechanisms driving these changes remain unclear. In this review, we will summarize current knowledge with respect to molecular mechanisms underlying voluntary running-induced neurogenesis, highlighting recent genome-wide gene expression analyses. In addition, we will discuss new approaches and future directions for dissecting the complex cellular mechanisms driving change in adult-born new neurons in response to physical exercise.
Collapse
Affiliation(s)
- Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Moosa Syed
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
16
|
Zhang Q, Liu J, Chen L, Zhang M. Promoting Endogenous Neurogenesis as a Treatment for Alzheimer's Disease. Mol Neurobiol 2023; 60:1353-1368. [PMID: 36445633 DOI: 10.1007/s12035-022-03145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most universal neurodegenerative disorder characterized by memory loss and cognitive impairment. AD is biologically defined by production and aggregation of misfolded protein including extracellular amyloid β (Aβ) peptide and intracellular microtubule-associated protein tau tangles in neurons, leading to irreversible neuronal loss. At present, regulation of endogenous neurogenesis to supplement lost neurons has been proposed as a promising strategy for treatment of AD. However, the exact underlying mechanisms of impaired neurogenesis in AD have not been fully explained and effective treatments targeting neurogenesis for AD are limited. In this review, we mainly focus on the latest research of impaired neurogenesis in AD. Then we discuss the factors affecting stages of neurogenesis and the interplay between neural stem cells (NSCs) and neurogenic niche under AD pathological conditions. This review aims to explore potential therapeutic strategies that promote endogenous neurogenesis for AD treatments.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jingyue Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China. .,School of Nursing, Jilin University, Changchun, China.
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
17
|
Sun D, Mei L, Xiong WC. Dorsal Dentate Gyrus, a Key Regulator for Mood and Psychiatric Disorders. Biol Psychiatry 2023:S0006-3223(23)00009-4. [PMID: 36894487 DOI: 10.1016/j.biopsych.2023.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The dentate gyrus, a "gate" that controls the flow of information into the hippocampus, is critical for learning, memory, spatial navigation, and mood regulation. Several lines of evidence have demonstrated that deficits in dentate granule cells (DGCs) (e.g., loss of DGCs or genetic mutations in DGCs) contribute to the development of various psychiatric disorders, such as depression and anxiety disorders. Whereas ventral DGCs are believed to be critical for mood regulation, the functions of dorsal DGCs in this regard remain elusive. Here, we review the role of DGCs, in particular the dorsal DGCs, in the regulation of mood, their functional relationships with DGC development, and the contributions of dysfunctional DGCs to mental disorders.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
18
|
Liang X, Tang J, Qi YQ, Luo YM, Yang CM, Dou XY, Jiang L, Xiao Q, Zhang L, Chao FL, Zhou CN, Tang Y. Exercise more efficiently regulates the maturation of newborn neurons and synaptic plasticity than fluoxetine in a CUS-induced depression mouse model. Exp Neurol 2022; 354:114103. [PMID: 35525307 DOI: 10.1016/j.expneurol.2022.114103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022]
Abstract
Depression, a common and important cause of morbidity and mortality worldwide, is commonly treated with antidepressants, electric shock and psychotherapy. Recently, increasing evidence has shown that exercise can effectively alleviate depression. To determine the difference in efficacy between exercise and the classic antidepressant fluoxetine in treating depression, we established four groups: the Control, chronic unpredictable stress (CUS/STD), running (CUS/RUN) and fluoxetine (CUS/FLX) groups. The sucrose preference test (SPT), the forced swimming test (FST), the tail suspension test (TST), immunohistochemistry, immunofluorescence and stereological analyses were used to clarify the difference in therapeutic efficacy and mechanism between exercise and fluoxetine in the treatment of depression. In the seventh week, the sucrose preference of the CUS/RUN group was significantly higher than that of the CUS/STD group, while the sucrose preference of the CUS/FLX group did not differ from that of the CUS/STD group until the eighth week. Exercise reduced the immobility time in the FST and TST, while fluoxetine only reduced immobility time in the TST. Hippocampal structure analysis showed that the CUS/STD group exhibited an increase in immature neurons and a decrease in mature neurons. Exercise reduced the number of immature neurons and increased the number of mature neurons, but no increase in the number of mature neurons was observed after fluoxetine treatment. In addition, both running and fluoxetine reversed the decrease in the number of MAP2+ dendrites in depressed mice. Exercise increased the number of spinophilin-positive (Sp+) dendritic spines in the hippocampal CA1, CA3, and dentate gyrus (DG) regions, whereas fluoxetine only increased the number of SP+ spines in the DG. In summary, exercise promoted newborn neuron maturation in the DG and regulated neuronal plasticity in three hippocampal subregions, which might explain why running exerts earlier and more comprehensive antidepressant effects than fluoxetine.
Collapse
Affiliation(s)
- Xin Liang
- Department of Pathophysiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Ying-Qiang Qi
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan-Min Luo
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-Mao Yang
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiao-Yun Dou
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Qian Xiao
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Radioactive Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Lei Zhang
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-Lei Chao
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-Ni Zhou
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
19
|
Hu X, An J, Ge Q, Sun M, Zhang Z, Cai Z, Tan R, Ma T, Lu H. Maternal High-Fat Diet Reduces Type-2 Neural Stem Cells and Promotes Premature Neuronal Differentiation during Early Postnatal Development. Nutrients 2022; 14:nu14142813. [PMID: 35889772 PMCID: PMC9316544 DOI: 10.3390/nu14142813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Maternal obesity or exposure to a high-fat diet (HFD) has an irreversible impact on the structural and functional development of offspring brains. This study aimed to investigate whether maternal HFD during pregnancy and lactation impairs dentate gyrus (DG) neurogenesis in offspring by altering neural stem cells (NSCs) behaviors. Pregnant Sprague-Dawley rats were fed a chow diet (CHD) or HFD (60% fat) during gestation and lactation. Pups were collected on postnatal day 1 (PND 1), PND 10 and PND 21. Changes in offspring body weight, brain structure and granular cell layer (GCL) thickness in the hippocampus were analyzed. Hippocampal NSCs behaviors, in terms of proliferation and differentiation, were investigated after immunohistochemical staining with Nestin, Ki67, SOX2, Doublecortin (DCX) and NeuN. Maternal HFD accelerated body weight gain and brain structural development in offspring after birth. It also reduced the number of NSCs and their proliferation, leading to a decrease in NSCs pool size. Furthermore, maternal HFD intensified NSCs depletion and promoted neuronal differentiation in the early postnatal development period. These findings suggest that maternal HFD intake significantly reduced the amount and capability of NSCs via reducing type–2 NSCs and promoting premature neuronal differentiation during postnatal hippocampal development.
Collapse
Affiliation(s)
- Xiaoxuan Hu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jing An
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Qian Ge
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Meiqi Sun
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Zixuan Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Zhenlu Cai
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Ruolan Tan
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Tianyou Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence: (T.M.); (H.L.)
| | - Haixia Lu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence: (T.M.); (H.L.)
| |
Collapse
|
20
|
Lattanzi D, Savelli D, Pagliarini M, Cuppini R, Ambrogini P. Short-Term, Voluntary Exercise Affects Morpho-Functional Maturation of Adult-Generated Neurons in Rat Hippocampus. Int J Mol Sci 2022; 23:ijms23126866. [PMID: 35743307 PMCID: PMC9224999 DOI: 10.3390/ijms23126866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
Physical exercise is a well-proven neurogenic stimulus, promoting neuronal progenitor proliferation and affecting newborn cell survival. Besides, it has beneficial effects on brain health and cognition. Previously, we found that three days of physical activity in a very precocious period of adult-generated granule cell life is able to antedate the appearance of the first GABAergic synaptic contacts and increase T-type Ca2+ channel expression. Considering the role of GABA and Ca2+ in fostering neuronal maturation, in this study, we used short-term, voluntary exercise on a running wheel to investigate if it is able to induce long-term morphological and synaptic changes in newborn neurons. Using adult male rats, we found that: (i) three days of voluntary physical exercise can definitively influence the morpho-functional maturation process of newborn granule neurons when applied very early during their development; (ii) a significant percentage of new neurons show more mature morphological characteristics far from the end of exercise protocol; (iii) the long-term morphological effects result in enhanced synaptic plasticity. Present findings demonstrate that the morpho-functional changes induced by exercise on very immature adult-generated neurons are permanent, affecting the neuron maturation and integration in hippocampal circuitry. Our data contribute to underpinning the beneficial potential of physical activity on brain health, also performed for short times.
Collapse
|
21
|
Repetitive Transcranial Magnetic Stimulation-Associated Changes in Neocortical Metabolites in Major Depression: A Systematic Review. Neuroimage Clin 2022; 35:103049. [PMID: 35738081 PMCID: PMC9233277 DOI: 10.1016/j.nicl.2022.103049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
We reviewed 12 studies that measured metabolites pre and post rTMS in MDD. Frontal lobe Glu, Gln, NAA, and GABA increased after rTMS. Increases in metabolites were often associated with MDD symptom improvement. We propose novel intracellular mechanisms by which metabolites are altered by rTMS.
Introduction Repetitive Transcranial magnetic stimulation (rTMS) is an FDA approved treatment for major depressive disorder (MDD). However, neural mechanisms contributing to rTMS effects on depressive symptoms, cognition, and behavior are unclear. Proton magnetic resonance spectroscopy (MRS), a noninvasive neuroimaging technique measuring concentrations of biochemical compounds within the brain in vivo, may provide mechanistic insights. Methods This systematic review summarized published MRS findings from rTMS treatment trials to address potential neurometabolic mechanisms of its antidepressant action. Using PubMed, Google Scholar, Web of Science, and JSTOR, we identified twelve empirical studies that evaluated changes in MRS metabolites in a within-subjects, pre- vs. post-rTMS treatment design in patients with MDD. Results rTMS protocols ranged from four days to eight weeks duration, were applied at high frequency to the left dorsolateral prefrontal cortex (DLPFC) in most studies, and were conducted in patients aged 13-to-70. Most studies utilized MRS point resolved spectroscopy acquisitions at 3 Tesla in the bilateral anterior cingulate cortex and DLPFC. Symptom improvements were correlated with rTMS-related increases in the concentration of glutamatergic compounds (glutamate, Glu, and glutamine, Gln), GABA, and N-acetylated compounds (NAA), with some results trend-level. Conclusions This is the first in-depth systematic review of metabolic effects of rTMS in individuals with MDD. The extant literature suggests rTMS stimulation does not produce changes in neurometabolites independent of clinical response; increases in frontal lobe glutamatergic compounds, N-acetylated compounds and GABA following high frequency left DLPFC rTMS therapy were generally associated with clinical improvement. Glu, Gln, GABA, and NAA may mediate rTMS treatment effects on MDD symptomatology through intracellular mechanisms.
Collapse
|
22
|
Silveira‐Rosa T, Mateus‐Pinheiro A, Correia JS, Silva JM, Martins‐Macedo J, Araújo B, Machado‐Santos AR, Alves ND, Silva M, Loureiro‐Campos E, Sotiropoulos I, Bessa JM, Rodrigues AJ, Sousa N, Patrício P, Pinto L. Suppression of adult cytogenesis in the rat brain leads to sex-differentiated disruption of the HPA axis activity. Cell Prolif 2022; 55:e13165. [PMID: 34970787 PMCID: PMC8828259 DOI: 10.1111/cpr.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The action of stress hormones, mainly glucocorticoids, starts and coordinates the systemic response to stressful events. The HPA axis activity is predicated on information processing and modulation by upstream centres, such as the hippocampus where adult-born neurons (hABN) have been reported to be an important component in the processing and integration of new information. Still, it remains unclear whether and how hABN regulates HPA axis activity and CORT production, particularly when considering sex differences. MATERIALS AND METHODS Using both sexes of a transgenic rat model of cytogenesis ablation (GFAP-Tk rat model), we examined the endocrinological and behavioural effects of disrupting the generation of new astrocytes and neurons within the hippocampal dentate gyrus (DG). RESULTS Our results show that GFAP-Tk male rats present a heightened acute stress response. In contrast, GFAP-Tk female rats have increased corticosterone secretion at nadir, a heightened, yet delayed, response to an acute stress stimulus, accompanied by neuronal hypertrophy in the basal lateral amygdala and increased expression of the glucocorticoid receptors in the ventral DG. CONCLUSIONS Our results reveal that hABN regulation of the HPA axis response is sex-differentiated.
Collapse
Affiliation(s)
- Tiago Silveira‐Rosa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - António Mateus‐Pinheiro
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Internal MedicineCoimbra Hospital and University CenterCoimbraPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Margarida Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Martins‐Macedo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana Rita Machado‐Santos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Present address:
Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA
- Present address:
New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Mariana Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Eduardo Loureiro‐Campos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - João Miguel Bessa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| |
Collapse
|
23
|
Lee S, Lee W, Yang S, Suh YJ, Hong DG, Chang SC, Kim HS, Lee J. Di- n-butyl phthalate disrupts neuron maturation in primary rat embryo neurons and male C57BL/6 mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:56-70. [PMID: 34488563 DOI: 10.1080/15287394.2021.1973631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Di-n-butyl phthalate (DBP) is commonly used as a plasticizer and its usage continues to increase in conjunction with plastic consumption. DBP is readily released into air, drinking water, and soil, and unfortunately, is a potent endocrine disrupter that impairs central nervous system functions. Previously DBP was found to (1) arrest the cell cycle of C17.2 neural progenitor cells (NPCs) at the G1 phase, (2) reduce numbers of newly generated neural stem cells in the mouse hippocampus, and (3) adversely affect learning and memory. Other investigators also noted DBP-mediated neurotoxic effects, but as yet, no study has addressed the adverse effects of DBP on neuronal differentiation. Data demonstrated that at 200 μM DBP induced apoptosis in rat embryo primary neurons by increasing reactive oxygen species levels and inducing mitochondrial dysfunction. However, no significant effect was detected on neurons at concentrations of ≤100 μM. In contrast, doublecortin/microtubule associated protein-2 (DCX/MAP2) immunocytochemistry showed that DBP at 100 μM delayed neuronal maturation by increasing protein levels of DCX (an immature neuronal marker), without markedly affecting cell viability. Further in vivo studies confirmed that DCX+ cell numbers were significantly elevated in the hippocampus of DBP-treated mice, indicating that DBP delayed neuronal maturation, which is known to be associated with impaired memory retention. Data demonstrated that DBP might disrupt neuronal maturation, which is correlated with reduced neurocognitive functions.
Collapse
Affiliation(s)
- Seulah Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Wonjong Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute Of Food And Drug Safety Evaluation, Ministry of Food and Drug Safety, Heungdeok-gu, Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Yeon Ji Suh
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Dong Geun Hong
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Seobu-ro, Republic of Korea1
| | | |
Collapse
|
24
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
25
|
Leal-Galicia P, Chávez-Hernández ME, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-de-Jesús A, Buenrostro-Jáuregui MH. Adult Neurogenesis: A Story Ranging from Controversial New Neurogenic Areas and Human Adult Neurogenesis to Molecular Regulation. Int J Mol Sci 2021; 22:11489. [PMID: 34768919 PMCID: PMC8584254 DOI: 10.3390/ijms222111489] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.
Collapse
Affiliation(s)
- Perla Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Florencia Mata
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Jesús Mata-Luévanos
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Alejandro Tapia-de-Jesús
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| |
Collapse
|
26
|
Reitz NL, Nunes PT, Savage LM. Adolescent Binge-Type Ethanol Exposure in Rats Mirrors Age-Related Cognitive Decline by Suppressing Cholinergic Tone and Hippocampal Neurogenesis. Front Behav Neurosci 2021; 15:772857. [PMID: 34744657 PMCID: PMC8569390 DOI: 10.3389/fnbeh.2021.772857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/15/2022] Open
Abstract
Heavy alcohol consumption followed by periods of abstinence (i.e., binge drinking) during adolescence is a concern for both acute and chronic health issues. Persistent brain damage after adolescent intermittent ethanol exposure in rodents, a model of binge drinking, includes reduced hippocampal neurogenesis and a loss of neurons in the basal forebrain that express the cholinergic phenotype. The circuit formed between those regions, the septohippocampal pathway, is critical for learning and memory. Furthermore, this circuit is also altered during the aging process. Thus, we examined whether pathology in septohippocampal circuit and impairments in spatial behaviors are amplified during aging following adolescent intermittent ethanol exposure. Female and male rats were exposed to intermittent intragastric gavage of water (control) or 20% ethanol (dose of 5 g/kg) for a 2 days on/off cycle from postnatal days 25-55. Either 2 (young adult) or 12-14 (middle-age) months post exposure, rats were tested on two spatial tasks: spontaneous alternation and novel object in place. Acetylcholine efflux was assessed in the hippocampus during both tasks. There was no adolescent ethanol-induced deficit on spontaneous alternation, but middle-aged male rats displayed lower alternation rates. Male rats exposed to ethanol during adolescence had blunted behavioral evoked acetylcholine during spontaneous alternation testing. All ethanol-exposed rats displayed suppression of the cholinergic neuronal phenotype. On the novel object in place task, regardless of sex, ethanol-exposed rats performed significantly worse than control-treated rats, and middle aged-rats, regardless of sex or ethanol exposure, were significantly impaired relative to young adult rats. These results indicate that male rats display earlier age-related cognitive impairment on a working memory task. Furthermore, male rats exposed to ethanol during adolescence have blunted behavior-evoked hippocampal acetylcholine efflux. In addition, middle-aged and ethanol-exposed rats, regardless of sex, are impaired at determining discrete spatial relationship between objects. This type of pattern separation impairment was associated with a loss of neurogenesis. Thus, binge-type adolescent ethanol exposure does affect the septohippocampal circuit, and can accelerate age-related cognitive impairment on select spatial tasks.
Collapse
Affiliation(s)
| | | | - Lisa M. Savage
- Department of Psychology, Binghamton University – State University of New York, Binghamton, NY, United States
| |
Collapse
|
27
|
Martins-Macedo J, Salgado AJ, Gomes ED, Pinto L. Adult brain cytogenesis in the context of mood disorders: From neurogenesis to the emergent role of gliogenesis. Neurosci Biobehav Rev 2021; 131:411-428. [PMID: 34555383 DOI: 10.1016/j.neubiorev.2021.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Psychiatric disorders severely impact patients' lives. Motivational, cognitive and emotional deficits are the most common symptoms observed in these patients and no effective treatment is still available, either due to the adverse side effects or the low rate of efficacy of currently available drugs. Neurogenesis recovery has been one important focus in the treatment of psychiatric disorders, which undeniably contributes to the therapeutic action of antidepressants. However, glial plasticity is emerging as a new strategy to explore the deficits observed in mood disorders and the efficacy of therapeutic interventions. Thus, it is crucial to understand the mechanisms behind glio- and neurogenesis to better define treatments and preventive therapies, once adult cytogenesis is of pivotal importance to cognitive and emotional components of behavior, both in healthy and pathological contexts, including in psychiatric disorders. Here, we review the concepts and history of neuro- and gliogenesis, providing as well a reflection on the functional importance of cytogenesis in the context of disease.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
28
|
Zhu Y, Armstrong JN, Contractor A. Kainate receptors regulate the functional properties of young adult-born dentate granule cells. Cell Rep 2021; 36:109751. [PMID: 34551304 PMCID: PMC8525187 DOI: 10.1016/j.celrep.2021.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 11/06/2022] Open
Abstract
Both inhibitory and excitatory neurotransmitter receptors can influence maturation and survival of adult-born neurons in the dentate gyrus; nevertheless, how these two neurotransmitter systems affect integration of new neurons into the existing circuitry is still not fully characterized. Here, we demonstrate that glutamate receptors of the kainate receptor (KAR) subfamily are expressed in adult-born dentate granule cells (abDGCs) and that, through their interaction with GABAergic signaling mechanisms, they alter the functional properties of adult-born cells during a critical period of their development. Both the intrinsic properties and synaptic connectivity of young abDGCs were affected. Timed KAR loss in a cohort of young adult-born neurons in mice disrupted their performance in a spatial discrimination task but not in a hippocampal-dependent fear conditioning task. Together, these results demonstrate the importance of KARs in the proper functional development of young abDGCs.
Collapse
Affiliation(s)
- Yiwen Zhu
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John N Armstrong
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anis Contractor
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurobiology, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
29
|
Ogando MB, Pedroncini O, Federman N, Romano SA, Brum LA, Lanuza GM, Refojo D, Marin-Burgin A. Cholinergic modulation of dentate gyrus processing through dynamic reconfiguration of inhibitory circuits. Cell Rep 2021; 36:109572. [PMID: 34433032 DOI: 10.1016/j.celrep.2021.109572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022] Open
Abstract
The dentate gyrus (DG) of the hippocampus plays a key role in memory formation, and it is known to be modulated by septal projections. By performing electrophysiology and optogenetics, we evaluated the role of cholinergic modulation in the processing of afferent inputs in the DG. We show that mature granule cells (GCs), but not adult-born immature neurons, have increased responses to afferent perforant path stimuli upon cholinergic modulation. This is due to a highly precise reconfiguration of inhibitory circuits, differentially affecting Parvalbumin and Somatostatin interneurons, resulting in a nicotinic-dependent perisomatic disinhibition of GCs. This circuit reorganization provides a mechanism by which mature GCs could escape the strong inhibition they receive, creating a window of opportunity for plasticity. Indeed, coincident activation of perforant path inputs with optogenetic release of acetylcholine produces a long-term potentiated response in GCs, essential for memory formation.
Collapse
Affiliation(s)
- Mora B Ogando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina.
| | - Olivia Pedroncini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Noel Federman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Sebastián A Romano
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Luciano A Brum
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Guillermo M Lanuza
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina.
| |
Collapse
|
30
|
Evidences for Adult Hippocampal Neurogenesis in Humans. J Neurosci 2021; 41:2541-2553. [PMID: 33762406 DOI: 10.1523/jneurosci.0675-20.2020] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
The rodent hippocampus generates new neurons throughout life. This process, named adult hippocampal neurogenesis (AHN), is a striking form of neural plasticity that occurs in the brains of numerous mammalian species. Direct evidence of adult neurogenesis in humans has remained elusive, although the occurrence of this phenomenon in the human dentate gyrus has been demonstrated in seminal studies and recent research that have applied distinct approaches to birthdate newly generated neurons and to validate markers of adult-born neurons. Our data point to the persistence of AHN until the 10th decade of human life, as well as to marked impairments in this process in patients with Alzheimer's disease. Moreover, our work demonstrates that the methods used to process and analyze postmortem human brain samples can limit the detection of various markers of AHN to the point of making them undetectable. In this Dual Perspectives article, we highlight the critical methodological aspects that should be strictly controlled in human studies and the robust evidence that supports the occurrence of AHN in humans. We also put forward reasons that may account for current discrepancies on this topic. Finally, the unresolved questions and future challenges awaiting the field are highlighted.
Collapse
|
31
|
Islam MR, Valaris S, Young MF, Haley EB, Luo R, Bond SF, Mazuera S, Kitchen RR, Caldarone BJ, Bettio LEB, Christie BR, Schmider AB, Soberman RJ, Besnard A, Jedrychowski MP, Kim H, Tu H, Kim E, Choi SH, Tanzi RE, Spiegelman BM, Wrann CD. Exercise hormone irisin is a critical regulator of cognitive function. Nat Metab 2021; 3:1058-1070. [PMID: 34417591 PMCID: PMC10317538 DOI: 10.1038/s42255-021-00438-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Identifying secreted mediators that drive the cognitive benefits of exercise holds great promise for the treatment of cognitive decline in ageing or Alzheimer's disease (AD). Here, we show that irisin, the cleaved and circulating form of the exercise-induced membrane protein FNDC5, is sufficient to confer the benefits of exercise on cognitive function. Genetic deletion of Fndc5/irisin (global Fndc5 knock-out (KO) mice; F5KO) impairs cognitive function in exercise, ageing and AD. Diminished pattern separation in F5KO mice can be rescued by delivering irisin directly into the dentate gyrus, suggesting that irisin is the active moiety. In F5KO mice, adult-born neurons in the dentate gyrus are morphologically, transcriptionally and functionally abnormal. Importantly, elevation of circulating irisin levels by peripheral delivery of irisin via adeno-associated viral overexpression in the liver results in enrichment of central irisin and is sufficient to improve both the cognitive deficit and neuropathology in AD mouse models. Irisin is a crucial regulator of the cognitive benefits of exercise and is a potential therapeutic agent for treating cognitive disorders including AD.
Collapse
Affiliation(s)
- Mohammad R Islam
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophia Valaris
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael F Young
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Erin B Haley
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Renhao Luo
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sabrina F Bond
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Behavioral Neuroscience, Northeastern University, Boston, MA, USA
| | - Sofia Mazuera
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Behavioral Neuroscience, Northeastern University, Boston, MA, USA
| | - Robert R Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Barbara J Caldarone
- Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Luis E B Bettio
- Division of Medical Sciences, University of Victoria, Victoria, British Colombia, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Colombia, Canada
| | - Angela B Schmider
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roy J Soberman
- Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Antoine Besnard
- Center for Regenerative Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hyeonwoo Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hua Tu
- LakePharma, San Carlos, CA, USA
| | - Eunhee Kim
- MassGeneral Institute for Neurodegenerative Disease, Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Se Hoon Choi
- MassGeneral Institute for Neurodegenerative Disease, Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Rudolph E Tanzi
- MassGeneral Institute for Neurodegenerative Disease, Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christiane D Wrann
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
32
|
Levone BR, Codagnone MG, Moloney GM, Nolan YM, Cryan JF, O' Leary OF. Adult-born neurons from the dorsal, intermediate, and ventral regions of the longitudinal axis of the hippocampus exhibit differential sensitivity to glucocorticoids. Mol Psychiatry 2021; 26:3240-3252. [PMID: 32709996 DOI: 10.1038/s41380-020-0848-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 01/05/2023]
Abstract
Hippocampal neurogenesis has been shown to play roles in learning, memory, and stress responses. These diverse roles may be related to a functional segregation of the hippocampus along its longitudinal axis. Indeed, the dorsal hippocampus (dHi) plays a predominant role in spatial learning and memory, while the ventral hippocampus (vHi) is predominantly involved in the regulation of anxiety, a behaviour impacted by stress. Recent studies suggest that the area between them, the intermediate hippocampus (iHi) may also be functionally independent. In parallel, it has been reported that chronic stress reduces neurogenesis preferentially in the vHi rather the dHi. We thus aimed to determine whether such stress-induced changes in neurogenesis could be related to differential intrinsic sensitivity of neural progenitor cells (NPCs) from the dHi, iHi, or vHi to the stress hormone, corticosterone, or the glucocorticoid receptor (GR) agonist, dexamethasone. Long-term exposure of rat NPCs to corticosterone or dexamethasone decreased neuronal differentiation in the vHi but not the dHi, while iHi cultures showed an intermediate response. A similar gradient-like response on neuronal differentiation and maturation was observed with dexamethasone treatment. This gradient-like effect was also observed on GR nuclear translocation in response to corticosterone or dexamethasone. Long-term exposure to corticosterone or dexamethasone treatment also tended to induce a greater downregulation of GR-associated genes in vHi-derived neurons compared to those from the dHi and iHi. These data suggest that increased intrinsic sensitivity of vHi NPC-derived neurons to chronic glucocorticoid exposure may underlie the increased vulnerability of the vHi to chronic stress-induced reductions in neurogenesis.
Collapse
Affiliation(s)
- Brunno Rocha Levone
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Martin G Codagnone
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Olivia F O' Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
33
|
Wang G, Wang C, Chen H, Chen L, Li J. Activation of 6-8-week-old new mature adult-born dentate granule cells contributes to anxiety-like behavior. Neurobiol Stress 2021; 15:100358. [PMID: 34195305 PMCID: PMC8240024 DOI: 10.1016/j.ynstr.2021.100358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022] Open
Abstract
Adult-born dentate granule cells (aDGCs) at 4–6 weeks of age are particularly excitable but subsequently develop the quiet properties of mature cells. Most existing studies have focused on the hyperactivity of 4–6-week-old aDGCs or neurogenesis, which confers stress resilience or buffers stress responses. However, the function of the quiet property of new mature aDGCs remains unclear. Here we used a retrovirus expressing cre recombinase in combination with an associated-adenovirus to specifically interfere with the activity of new mature aDGCs, and estimated anxiety-like behaviors by the open-field test and elevated plus maze test, antidepressant-like behaviors by the tail suspension test, and spatial memory by the Barnes maze test. We found that sustained hyperactivity of 6–8-week-old, but not 8–10-week-old, aDGCs induced anxiety-like behaviors, and suppression of the activity of 6–8-week-old aDGCs disturbed spatial memory. Meanwhile, sustained hyperactivity of 6–8-week-old aDGCs induced activation of mature dentate gyrus (DG) neurons and inhibition of immature aDGCs. Additionally, the mice showing anxiety-like behaviors induced by chronic mild immobilization stress exhibited increased activity in 6–8-week-old aDGCs. Furthermore, the sustained hyperactivity of mature DG neurons also induced anxiety-like behaviors and decreased the activity of immature aDGCs. Our results combined show that the excitation of 6–8-week-old new mature aDGCs, which prohibits them from normally entering the resting state, determines anxiety-like behavior, while the maintenance of normal excitation ability of 6–8-week-old new mature aDGCs confers memory. Our results suggests that strategies aimed at inhibiting unusual hyperactive new mature aDGCs at a restricted time window may protect against stress-related psychiatric disorders, such as anxiety and depression.
Collapse
Affiliation(s)
- Guohua Wang
- 502 Room, 28 Yunjing Road, Guangzhou, 510515, China
| | - Canmao Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - He Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Limei Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Juan Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
34
|
Hita FJ, Bekinschtein P, Ledda F, Paratcha G. Leucine-rich repeats and immunoglobulin-like domains 1 deficiency affects hippocampal dendrite complexity and impairs cognitive function. Dev Neurobiol 2021; 81:774-785. [PMID: 34114331 DOI: 10.1002/dneu.22840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Leucine-rich repeat (LRR) transmembrane proteins have been directly linked to neurodevelopmental and cognitive disorders. We have previously shown that the LRR transmembrane protein, leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), is a physiological regulator of dendrite complexity of hippocampal pyramidal neurons and social behavior. In this study, we performed a battery of behavioral tests to evaluate spatial memory and cognitive capabilities in Lrig1 mutant mice. The cognitive assessment demonstrated deficits in recognition and spatial memory, evaluated by novel object recognition and object location tests. Moreover, we found that Lrig1-deficient mice present specific impairments in the processing of similar but not dissimilar locations in a spatial pattern separation task, which was correlated with an enhanced dendritic growth and branching of Doublecortin-positive immature granule cells of the dentate gyrus. Altogether, these findings indicate that Lrig1 plays an essential role in controlling morphological and functional plasticity in the hippocampus.
Collapse
Affiliation(s)
- Francisco Javier Hita
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Neurociencias Cognitiva y Traslacional (INCYT), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Neurología Cognitiva (INECO), Universidad Favaloro, Buenos Aires, Argentina
| | - Fernanda Ledda
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Medicina, I° U.A. Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
35
|
Gao Y, Shen M, Gonzalez JC, Dong Q, Kannan S, Hoang JT, Eisinger BE, Pandey J, Javadi S, Chang Q, Wang D, Overstreet-Wadiche L, Zhao X. RGS6 Mediates Effects of Voluntary Running on Adult Hippocampal Neurogenesis. Cell Rep 2021; 32:107997. [PMID: 32755589 DOI: 10.1016/j.celrep.2020.107997] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 01/17/2023] Open
Abstract
Voluntary running enhances adult hippocampal neurogenesis, with consequences for hippocampal-dependent learning ability and mood regulation. However, the underlying mechanism remains unclear. Here, we show that voluntary running induces unique and dynamic gene expression changes specifically within the adult-born hippocampal neurons, with significant impact on genes involved in neuronal maturation and human diseases. We identify the regulator of G protein signaling 6 (RGS6) as a key factor that mediates running impact on adult-born neurons. RGS6 overexpression mimics the positive effects of voluntary running on morphological and physiological maturation of adult new neurons and reduced sensitivity of adult-born neurons to the inhibitory effect of GABAB (γ-Aminobutyric acid B) receptor activation. Knocking down RGS6 abolishes running-enhanced neuronal maturation and hippocampal neurogenesis-dependent learning and anxiolytic effect. Our study provides a data resource showing genome-wide intrinsic molecular changes in adult-born hippocampal neurons that contribute to voluntary running-induced neurogenesis.
Collapse
Affiliation(s)
- Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jose Carlos Gonzalez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sudharsan Kannan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Johnson T Hoang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Brian E Eisinger
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jyotsna Pandey
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sahar Javadi
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
36
|
Prathap S, Nagel BJ, Herting MM. Understanding the role of aerobic fitness, spatial learning, and hippocampal subfields in adolescent males. Sci Rep 2021; 11:9311. [PMID: 33927247 PMCID: PMC8084987 DOI: 10.1038/s41598-021-88452-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Physical exercise during adolescence, a critical developmental window, can facilitate neurogenesis in the dentate gyrus and astrogliogenesis in Cornu Ammonis (CA) hippocampal subfields of rats, and which have been associated with improved hippocampal dependent memory performance. Recent translational studies in humans also suggest that aerobic fitness is associated with hippocampal volume and better spatial memory during adolescence. However, associations between fitness, hippocampal subfield morphology, and learning capabilities in human adolescents remain largely unknown. Employing a translational study design in 34 adolescent males, we explored the relationship between aerobic fitness, hippocampal subfield volumes, and both spatial and verbal memory. Aerobic fitness, assessed by peak oxygen utilization on a high-intensity exercise test (VO2 peak), was positively associated with the volumetric enlargement of the hippocampal head, and the CA1 head region specifically. Larger CA1 volumes were also associated with spatial learning on a Virtual Morris Water Maze task and verbal learning on the Rey Auditory Verbal Learning Test, but not recall memory. In line with previous animal work, the current findings lend support for the long-axis specialization of the hippocampus in the areas of exercise and learning during adolescence.
Collapse
Affiliation(s)
- Sandhya Prathap
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90023, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90023, USA
| | - Bonnie J Nagel
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Megan M Herting
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90023, USA.
| |
Collapse
|
37
|
Babcock KR, Page JS, Fallon JR, Webb AE. Adult Hippocampal Neurogenesis in Aging and Alzheimer's Disease. Stem Cell Reports 2021; 16:681-693. [PMID: 33636114 PMCID: PMC8072031 DOI: 10.1016/j.stemcr.2021.01.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cognitive deficits associated with Alzheimer's disease (AD) severely impact daily life for the millions of affected individuals. Progressive memory impairment in AD patients is associated with degeneration of the hippocampus. The dentate gyrus of the hippocampus, a region critical for learning and memory functions, is a site of adult neurogenesis in mammals. Recent evidence in humans indicates that hippocampal neurogenesis likely persists throughout life, but declines with age and is strikingly impaired in AD. Our understanding of how neurogenesis supports learning and memory in healthy adults is only beginning to emerge. The extent to which decreased neurogenesis contributes to cognitive decline in aging and AD remains poorly understood. However, studies in rodent models of AD and other neurodegenerative diseases raise the possibility that targeting neurogenesis may ameliorate cognitive dysfunction in AD. Here, we review recent progress in understanding how adult neurogenesis is impacted in the context of aging and AD.
Collapse
Affiliation(s)
- Kelsey R Babcock
- Graduate Program in Neuroscience, Brown University, Providence, RI 02912, USA
| | - John S Page
- Warren Alpert Medical School of Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
38
|
Bondi H, Bortolotto V, Canonico PL, Grilli M. Complex and regional-specific changes in the morphological complexity of GFAP + astrocytes in middle-aged mice. Neurobiol Aging 2021; 100:59-71. [PMID: 33493951 DOI: 10.1016/j.neurobiolaging.2020.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
During aging, alterations in astrocyte phenotype occur in areas associated with age-related cognitive decline, including hippocampus. Previous work reported subregion-specific changes in surface, volume, and soma size of hippocampal astrocytes during physiological aging. Herein we extensively analyzed, by morphometric analysis, fine morphological features of GFAP+ astrocytes in young (6-month-old) and middle-aged (14-month-old) male mice. We observed remarkable heterogeneity in the astrocytic response to aging in distinct subfields and along the dorsoventral axis of hippocampus and in entorhinal cortex. In middle-aged mice dorsal granule cell and molecular layers, but not hilus, astrocytes underwent remarkable increase in their morphological complexity. These changes were absent in ventral Dentate Gyrus (DG). In addition, in entorhinal cortex, the major input to dorsal DG, astrocytes underwent remarkable atrophic changes in middle-aged mice. Since dorsal DG, and not ventral DG, is involved in cognitive functions, these findings appear worth of further evaluation. Our findings also suggest an additional level of complexity in the structural changes associated with brain aging.
Collapse
Affiliation(s)
- Heather Bondi
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
39
|
Tupikov Y, Jin DZ. Addition of new neurons and the emergence of a local neural circuit for precise timing. PLoS Comput Biol 2021; 17:e1008824. [PMID: 33730085 PMCID: PMC8007041 DOI: 10.1371/journal.pcbi.1008824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/29/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022] Open
Abstract
During development, neurons arrive at local brain areas in an extended period of time, but how they form local neural circuits is unknown. Here we computationally model the emergence of a network for precise timing in the premotor nucleus HVC in songbird. We show that new projection neurons, added to HVC post hatch at early stages of song development, are recruited to the end of a growing feedforward network. High spontaneous activity of the new neurons makes them the prime targets for recruitment in a self-organized process via synaptic plasticity. Once recruited, the new neurons fire readily at precise times, and they become mature. Neurons that are not recruited become silent and replaced by new immature neurons. Our model incorporates realistic HVC features such as interneurons, spatial distributions of neurons, and distributed axonal delays. The model predicts that the birth order of the projection neurons correlates with their burst timing during the song. Functions of local neural circuits depend on their specific network structures, but how the networks are wired is unknown. We show that such structures can emerge during development through a self-organized process, during which the network is wired by neuron-by-neuron recruitment. This growth is facilitated by steady supply of immature neurons, which are highly excitable and plastic. We suggest that neuron maturation dynamics is an integral part of constructing local neural circuits.
Collapse
Affiliation(s)
- Yevhen Tupikov
- Departments of Physics and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dezhe Z. Jin
- Departments of Physics and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Pléau C, Peret A, Pearlstein E, Scalfati T, Vigier A, Marti G, Michel FJ, Marissal T, Crépel V. Dentate Granule Cells Recruited in the Home Environment Display Distinctive Properties. Front Cell Neurosci 2021; 14:609123. [PMID: 33519383 PMCID: PMC7843370 DOI: 10.3389/fncel.2020.609123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
The dentate granule cells (DGCs) play a crucial role in learning and memory. Many studies have described the role and physiological properties of these sparsely active neurons using different behavioral contexts. However, the morpho-functional features of DGCs recruited in mice maintained in their home cage (without training), considered as a baseline condition, have not yet been established. Using fosGFP transgenic mice, we observed ex vivo that DGCs recruited in animals maintained in the home cage condition are mature neurons that display a longer dendritic tree and lower excitability compared with non-activated cells. The higher GABAA receptor-mediated shunting inhibition contributes to the lower excitability of DGCs activated in the home environment by shifting the input resistance towards lower values. Remarkably, that shunting inhibition is neither observed in non-activated DGCs nor in DGCs activated during training in virtual reality. In short, our results suggest that strong shunting inhibition and reduced excitability could constitute a distinctive neural signature of mature DGCs recruited in the context of the home environment.
Collapse
Affiliation(s)
- Claire Pléau
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Angélique Peret
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | | | - Thomas Scalfati
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Alexandre Vigier
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | | | | | - Thomas Marissal
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Valérie Crépel
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
41
|
Groisman AI, Yang SM, Schinder AF. Differential Coupling of Adult-Born Granule Cells to Parvalbumin and Somatostatin Interneurons. Cell Rep 2021; 30:202-214.e4. [PMID: 31914387 PMCID: PMC7011182 DOI: 10.1016/j.celrep.2019.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/16/2019] [Accepted: 11/27/2019] [Indexed: 12/29/2022] Open
Abstract
A strong GABAergic tone imposes sparse levels of activity in the dentate gyrus of the hippocampus. This balance is challenged by the addition of new granule cells (GCs) with high excitability. How developing GCs integrate within local inhibitory networks remains unknown. We used optogenetics to study synaptogenesis between new GCs and GABAergic interneurons expressing parvalbumin (PV-INs) and somatostatin (SST-INs). PV-INs target the soma, and synapses become mature after 6 weeks. This transition is accelerated by exposure to an enriched environment. PV-INs exert efficient control of GC spiking and participate in both feedforward and feedback loops, a mechanism that would favor lateral inhibition and sparse coding. SST-INs target the dendrites, and synapses mature after 8 weeks. Outputs from GCs onto PV-INs develop faster than those onto SST-INs. Our results reveal a long-lasting transition wherein adult-born neurons remain poorly coupled to inhibition, which might enhance activity-dependent plasticity of input and output synapses. Groisman et al. examine the integration of adult-born granule cells (GCs) to inhibitory networks of the adult hippocampus. Synapse maturation is remarkably slow for parvalbumin and somatostatin interneurons, both for connections toward and from GCs. Inhibition controls the activity of new GCs late in development.
Collapse
Affiliation(s)
- Ayelén I Groisman
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Sung M Yang
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Alejandro F Schinder
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| |
Collapse
|
42
|
Podgorny OV, Gulyaeva NV. Glucocorticoid-mediated mechanisms of hippocampal damage: Contribution of subgranular neurogenesis. J Neurochem 2020; 157:370-392. [PMID: 33301616 DOI: 10.1111/jnc.15265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
A comprehensive overview of the interplay between glucocorticoids (GCs) and adult hippocampal neurogenesis (AHN) is presented, particularly, in the context of a diseased brain. The effectors of GCs in the dentate gyrus neurogenic niche of the hippocampal are reviewed, and the consequences of the GC signaling on the generation and integration of new neurons are discussed. Recent findings demonstrating how GC signaling mediates impairments of the AHN in various brain pathologies are overviewed. GC-mediated effects on the generation and integration of adult-born neurons in the hippocampal dentate gyrus depend on the nature, severity, and duration of the acting stress factor. GCs realize their effects on the AHN primarily via specific glucocorticoid and mineralocorticoid receptors. Disruption of the reciprocal regulation between the hypothalamic-pituitary-adrenal (HPA) axis and the generation of the adult-born granular neurons is currently considered to be a key mechanism implicating the AHN into the pathogenesis of numerous brain diseases, including those without a direct hippocampal damage. These alterations vary from reduced proliferation of stem and progenitor cells to increased cell death and abnormalities in morphology, connectivity, and localization of young neurons. Although the involvement of the mutual regulation between the HPA axis and the AHN in the pathogenesis of cognitive deficits and mood impairments is evident, several unresolved critical issues are stated. Understanding the details of GC-mediated mechanisms involved in the alterations in AHN could enable the identification of molecular targets for ameliorating pathology-induced imbalance in the HPA axis/AHN mutual regulation to conquer cognitive and psychiatric disturbances.
Collapse
Affiliation(s)
- Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
43
|
Cushman JD, Drew MR, Krasne FB. The environmental sculpting hypothesis of juvenile and adult hippocampal neurogenesis. Prog Neurobiol 2020; 199:101961. [PMID: 33242572 DOI: 10.1016/j.pneurobio.2020.101961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
We propose that a major contribution of juvenile and adult hippocampal neurogenesis is to allow behavioral experience to sculpt dentate gyrus connectivity such that sensory attributes that are relevant to the animal's environment are more strongly represented. This "specialized" dentate is then able to store a larger number of discriminable memory representations. Our hypothesis builds on accumulating evidence that neurogenesis declines to low levels prior to adulthood in many species. Rather than being necessary for ongoing hippocampal function, as several current theories posit, we argue that neurogenesis has primarily a prospective function, in that it allows experience to shape hippocampal circuits and optimize them for future learning in the particular environment in which the animal lives. Using an anatomically-based simulation of the hippocampus (BACON), we demonstrate that environmental sculpting of this kind would reduce overlap among hippocampal memory representations and provide representation cells with more information about an animal's current situation; consequently, it would allow more memories to be stored and accurately recalled without significant interference. We describe several new, testable predictions generated by the sculpting hypothesis and evaluate the hypothesis with respect to existing evidence. We argue that the sculpting hypothesis provides a strong rationale for why juvenile and adult neurogenesis occurs specifically in the dentate gyrus and why it declines significantly prior to adulthood.
Collapse
Affiliation(s)
- Jesse D Cushman
- Neurobehavioral Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, United States.
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States.
| | - Franklin B Krasne
- Department of Psychology, University of California Los Angeles, Box 951563, Los Angeles, CA 90095-1563, United States.
| |
Collapse
|
44
|
Cutuli D, Landolfo E, Nobili A, De Bartolo P, Sacchetti S, Chirico D, Marini F, Pieroni L, Ronci M, D'Amelio M, D'Amato FR, Farioli-Vecchioli S, Petrosini L. Behavioral, neuromorphological, and neurobiochemical effects induced by omega-3 fatty acids following basal forebrain cholinergic depletion in aged mice. ALZHEIMERS RESEARCH & THERAPY 2020; 12:150. [PMID: 33198763 PMCID: PMC7667851 DOI: 10.1186/s13195-020-00705-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Background In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer’s disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. Methods Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary supplementation, anxiety levels as well as mnesic, social, and depressive-like behaviors were evaluated. Subsequently, hippocampal morphological and biochemical analyses and n-3 PUFA brain quantification were carried out. Results The n-3 PUFA treatment regulated the anxiety alterations and reverted the novelty recognition memory impairment induced by the cholinergic depletion in aged mice. Moreover, n-3 PUFA preserved hippocampal volume, enhanced neurogenesis in the dentate gyrus, and reduced astrogliosis in the hippocampus. Brain levels of n-3 PUFA were positively related to mnesic abilities. Conclusions The demonstration that n-3 PUFA are able to counteract behavioral deficits and hippocampal neurodegeneration in cholinergically depleted aged mice promotes their use as a low-cost, safe nutraceutical tool to improve life quality at old age, even in the presence of first stages of AD.
Collapse
Affiliation(s)
- Debora Cutuli
- IRCCS Fondazione Santa Lucia, Rome, Italy. .,University of Rome "Sapienza", Rome, Italy.
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University of Rome "Sapienza", Rome, Italy
| | - Annalisa Nobili
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University "Campus Bio-Medico", Rome, Italy
| | - Paola De Bartolo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Doriana Chirico
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo, Italy
| | - Federica Marini
- Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | | | - Maurizio Ronci
- Department of Pharmacy, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marcello D'Amelio
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University "Campus Bio-Medico", Rome, Italy
| | | | | | | |
Collapse
|
45
|
Recruitment of parvalbumin and somatostatin interneuron inputs to adult born dentate granule neurons. Sci Rep 2020; 10:17522. [PMID: 33067500 PMCID: PMC7568561 DOI: 10.1038/s41598-020-74385-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
GABA is a key regulator of adult-born dentate granule cell (abDGC) maturation so mapping the functional connectivity between abDGCs and local interneurons is required to understand their development and integration into the hippocampal circuit. We recorded from birthdated abDGCs in mice and photoactivated parvalbumin (PV) and somatostatin (SST) interneurons to map the timing and strength of inputs to abDGCs during the first 4 weeks after differentiation. abDGCs received input from PV interneurons in the first week, but SST inputs were not detected until the second week. Analysis of desynchronized quantal events established that the number of GABAergic synapses onto abDGCs increased with maturation, whereas individual synaptic strength was constant. Voluntary wheel running in mice scaled the GABAergic input to abDGCs by increasing the number of synaptic contacts from both interneuron types. This demonstrates that GABAergic innervation to abDGCs develops during a prolonged post-mitotic period and running scales both SST and PV synaptic afferents.
Collapse
|
46
|
Bonafina A, Trinchero MF, Ríos AS, Bekinschtein P, Schinder AF, Paratcha G, Ledda F. GDNF and GFRα1 Are Required for Proper Integration of Adult-Born Hippocampal Neurons. Cell Rep 2020; 29:4308-4319.e4. [PMID: 31875542 DOI: 10.1016/j.celrep.2019.11.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/23/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is required for the survival and differentiation of diverse neuronal populations during nervous system development. Despite the high expression of GDNF and its receptor GFRα1 in the adult hippocampus, the functional role of this system remains unknown. Here, we show that GDNF, acting through its GFRα1 receptor, controls dendritic structure and spine density of adult-born granule cells, which reveals that GFRα1 is required for their integration into preexisting circuits. Moreover, conditional mutant mice for GFRα1 show deficits in behavioral pattern separation, a task in which adult neurogenesis is known to play a critical role. We also find that running increases GDNF in the dentate gyrus and promotes GFRα1-dependent CREB (cAMP response element-binding protein) activation and dendrite maturation. Together, these findings indicate that GDNF/GFRα1 signaling plays an essential role in the plasticity of adult circuits, controlling the integration of newly generated neurons.
Collapse
Affiliation(s)
- Antonela Bonafina
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Mariela Fernanda Trinchero
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Antonella Soledad Ríos
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina; Laboratorio de Neurobiología Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Neurociencia Cognitiva y Translacional, Universidad Favaloro, INECO, CONICET, Buenos Aires, Argentina
| | - Alejandro Fabián Schinder
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Paratcha
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| | - Fernanda Ledda
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina; Laboratorio de Neurobiología Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
47
|
Heppt J, Wittmann MT, Schäffner I, Billmann C, Zhang J, Vogt-Weisenhorn D, Prakash N, Wurst W, Taketo MM, Lie DC. β-catenin signaling modulates the tempo of dendritic growth of adult-born hippocampal neurons. EMBO J 2020; 39:e104472. [PMID: 32929771 PMCID: PMC7604596 DOI: 10.15252/embj.2020104472] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
In adult hippocampal neurogenesis, stem/progenitor cells generate dentate granule neurons that contribute to hippocampal plasticity. The establishment of a morphologically defined dendritic arbor is central to the functional integration of adult‐born neurons. We investigated the role of canonical Wnt/β‐catenin signaling in dendritogenesis of adult‐born neurons. We show that canonical Wnt signaling follows a biphasic pattern, with high activity in stem/progenitor cells, attenuation in immature neurons, and reactivation during maturation, and demonstrate that this activity pattern is required for proper dendrite development. Increasing β‐catenin signaling in maturing neurons of young adult mice transiently accelerated dendritic growth, but eventually produced dendritic defects and excessive spine numbers. In middle‐aged mice, in which protracted dendrite and spine development were paralleled by lower canonical Wnt signaling activity, enhancement of β‐catenin signaling restored dendritic growth and spine formation to levels observed in young adult animals. Our data indicate that precise timing and strength of β‐catenin signaling are essential for the correct functional integration of adult‐born neurons and suggest Wnt/β‐catenin signaling as a pathway to ameliorate deficits in adult neurogenesis during aging.
Collapse
Affiliation(s)
- Jana Heppt
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Charlotte Billmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jingzhong Zhang
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, China
| | - Daniela Vogt-Weisenhorn
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
48
|
Sex Differences in Maturation and Attrition of Adult Neurogenesis in the Hippocampus. eNeuro 2020; 7:ENEURO.0468-19.2020. [PMID: 32586842 PMCID: PMC7369314 DOI: 10.1523/eneuro.0468-19.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sex differences exist in the regulation of adult neurogenesis in the hippocampus in response to hormones and cognitive training. Here, we investigated the trajectory and maturation rate of adult-born neurons in the dentate gyrus (DG) of male and female rats. Sprague Dawley rats were perfused 2 h, 24 h, one week (1w), 2w, or 3w after bromodeoxyuridine (BrdU) injection, a DNA synthesis marker that labels dividing progenitor cells and their progeny. Adult-born neurons (BrdU/NeuN-ir) matured faster in males compared with females. Males had a greater density of neural stem cells (Sox2-ir) in the dorsal, but not in the ventral, DG and had higher levels of cell proliferation (Ki67-ir) than non-proestrous females. However, males showed a greater reduction in neurogenesis between 1week and 2weeks after mitosis, whereas females showed similar levels of neurogenesis throughout the weeks. The faster maturation and greater attrition of new neurons in males compared with females suggests greater potential for neurogenesis to respond to external stimuli in males and emphasizes the importance of studying sex on adult hippocampal neurogenesis.
Collapse
|
49
|
Zhang Z, Ishrat S, O'Bryan M, Klein B, Saraswati M, Robertson C, Kannan S. Pediatric Traumatic Brain Injury Causes Long-Term Deficits in Adult Hippocampal Neurogenesis and Cognition. J Neurotrauma 2020; 37:1656-1667. [DOI: 10.1089/neu.2019.6894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zhi Zhang
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Samiha Ishrat
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Megan O'Bryan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Brandon Klein
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Manda Saraswati
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Courtney Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Adult-Born Hippocampal Neurons Undergo Extended Development and Are Morphologically Distinct from Neonatally-Born Neurons. J Neurosci 2020; 40:5740-5756. [PMID: 32571837 DOI: 10.1523/jneurosci.1665-19.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 11/21/2022] Open
Abstract
During immature stages, adult-born neurons pass through critical periods for survival and plasticity. It is generally assumed that by 2 months of age adult-born neurons are mature and equivalent to the broader neuronal population, raising questions of how they might contribute to hippocampal function in old age when neurogenesis has declined. However, few have examined adult-born neurons beyond the critical period or directly compared them to neurons born in infancy. Here, we used a retrovirus to visualize functionally relevant morphological features of 2- to 24-week-old adult-born neurons in male rats. From 2 to 7 weeks, neurons grew and attained a relatively mature phenotype. However, several features of 7-week-old neurons suggested a later wave of growth: these neurons had larger nuclei, thicker dendrites, and more dendritic filopodia than all other groups. Indeed, between 7 and 24 weeks, adult-born neurons gained additional dendritic branches, formed a second primary dendrite, acquired more mushroom spines, and had enlarged mossy fiber presynaptic terminals. Compared with neonatal-born neurons, old adult-born neurons had greater spine density, larger presynaptic terminals, and more putative efferent filopodial contacts onto inhibitory neurons. By integrating rates of cell birth and growth across the life span, we estimate that adult neurogenesis ultimately produces half of the cells and the majority of spines in the dentate gyrus. Critically, protracted development contributes to the plasticity of the hippocampus through to the end of life, even after cell production declines. Persistent differences from neonatal-born neurons may additionally endow adult-born neurons with unique functions even after they have matured.SIGNIFICANCE STATEMENT Neurogenesis occurs in the hippocampus throughout adult life and contributes to memory and emotion. It is generally assumed that new neurons have the greatest impact on behavior when they are immature and plastic. However, since neurogenesis declines dramatically with age, it is unclear how they might contribute to behavior later in life when cell proliferation has slowed. Here we find that newborn neurons mature over many months in rats and may end up with distinct morphological features compared with neurons born in infancy. Using a mathematical model, we estimate that a large fraction of neurons is added in adulthood. Moreover, their extended growth produces a reserve of plasticity that persists even after neurogenesis has declined to low rates.
Collapse
|