1
|
Yan G, Amita H, Nonomura S, Inoue KI, Schultz W, Takada M. Fluorescence detection of dopamine signaling to the primate striatum in relation to stimulus-reward associations. Proc Natl Acad Sci U S A 2025; 122:e2426861122. [PMID: 40080638 PMCID: PMC11929443 DOI: 10.1073/pnas.2426861122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
Dopamine (DA) signals to the striatum play critical roles in shaping and sustaining stimulus-reward associations. In primates, however, the dynamics of the DA signals remain unknown since conventional methods are not necessarily appropriate in terms of the spatiotemporal resolution or chemical specificity sufficient for detecting the DA signals. In our study, fiber photometry with a fluorescent DA sensor was employed to identify reward-related DA transients in the monkey striatum. This technique, which directly monitors local DA release, reveals a reward prediction error signal in the anterior putamen originating from midbrain DA neurons. Further, DA transients in the head of the caudate nucleus exhibit a value-based response to reward-predicting stimuli. These signals have been found to arise from two separate groups of DA neurons in the substantia nigra pars compacta. The present results demonstrate that fluorescence DA monitoring is applicable to detect DA signals in the primate striatum for investigating their roles.
Collapse
Affiliation(s)
- Gaoge Yan
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi484-8506, Japan
| | - Hidetoshi Amita
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi484-8506, Japan
| | - Satoshi Nonomura
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi484-8506, Japan
- Department of Systems Physiology, Shiga University of Medical Science, Otsu, Shiga520-2192, Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi484-8506, Japan
| | - Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, CambridgeCB2 3DY, United Kingdom
| | - Masahiko Takada
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi484-8506, Japan
| |
Collapse
|
2
|
Ong WY, Leow DMK, Herr DR, Yeo CJJ. What Do Randomized Controlled Trials Inform Us About Potential Disease-Modifying Strategies for Parkinson's Disease? Neuromolecular Med 2023; 25:1-13. [PMID: 35776238 DOI: 10.1007/s12017-022-08718-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/05/2022] [Indexed: 01/09/2023]
Abstract
Research advances have shed new insight into cellular pathways contributing to PD pathogenesis and offer increasingly compelling therapeutic targets. In this review, we made a broad survey of the published literature that report possible disease-modifying effects on PD. While there are many studies that demonstrate benefits for various therapies for PD in animal and human studies, we confined our search to human "randomised controlled trials" and with the key words "neuroprotection" or "disease-modifying". It is hoped that through studying the results of these trials, we might clarify possible mechanisms that underlie idiopathic PD. This contrasts with studying the effect of pathophysiology of familial PD, which could be carried out by gene knockouts and animal models. Randomised controlled trials indicate promising effects of MAO-B inhibitors, dopamine agonists, NMDA receptor antagonists, metabotropic glutamate receptor antagonists, therapies related to improving glucose utilization and energy production, therapies related to reduction of excitotoxicity and oxidative stress, statin use, therapies related to iron chelation, therapies related to the use of phytochemicals, and therapies related to physical exercise and brain reward pathway on slowing PD progression. Cumulatively, these approaches fall into two categories: direct enhancement of dopaminergic signalling, and reduction of neurodegeneration. Overlaps between the two categories result in challenges in distinguishing between symptomatic versus disease-modifying effects with current clinical trial designs. Nevertheless, a broad-based approach allows us to consider all possible therapeutic avenues which may be neuroprotective. While the traditional standard of care focuses on symptomatic management with dopaminergic drugs, more recent approaches suggest ways to preserve dopaminergic neurons by attenuating excitotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.
| | - Damien Meng-Kiat Leow
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Crystal Jing-Jing Yeo
- Institute of Molecular and Cell Biology, A*Star, Singapore, 138673, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- LKC School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- National Neuroscience Institute, Singapore, 308433, Singapore
| |
Collapse
|
3
|
Ketamine increases the expression of GluR1 and GluR2 α-amino-3-hydroxy-5-methy-4-isoxazole propionate receptor subunits in human dopaminergic neurons differentiated from induced pluripotent stem cells. Neuroreport 2019; 30:207-212. [PMID: 30586092 DOI: 10.1097/wnr.0000000000001185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying the prolonged antidepressant effects after a single exposure to ketamine are only partially understood. Converging findings indicate a critical role of structural neuroplasticity, recently also proposed for dopaminergic (DA) neurons known to be involved in a depression core symptom, anhedonia. We recently showed that ketamine induces dendritic outgrowth in human DA neurons differentiated in-vitro from induced pluripotent stem cells of healthy donors, a phenomenon blocked by the α-amino-3-hydroxy-5-methy-4-isoxazole propionate receptor antagonist NBQX. As changes in the expression of AMPA receptor subunits GluR1 and GluR2 were observed in neuroplasticity of rodent DA neurons, we aimed to explore this phenomenon in human DA neurons. Using specific antibodies against GluR1 and GluR2 α-amino-3-hydroxy-5-methy-4-isoxazole propionate receptor subunits, we showed that GluR1 levels were significantly higher in soma than in dendrites, whereas for GluR2, levels were significantly higher in dendrites than in soma. One hour exposure to 1 µM ketamine increased the signal of both subunits in dendrites, but only of GluR2 in soma, at 24, 48, and 72 h. Nonlinear polynomial fitting of dendritic expression indicated that the two curves were significantly different, with stronger and more sustained effects on GluR2 expression. Overall, these data support a role for GluR1 and GluR2 dendritic upregulation in driving structural plasticity in human DA neurons depending on ketamine transient exposure, indicating translationally relevant downstream mechanism possibly involved in antidepressant effects.
Collapse
|
4
|
Abstract
Parkinson's disease (PD) is predominantly idiopathic in origin, and a large body of evidence indicates that gastrointestinal (GI) dysfunctions are a significant comorbid clinical feature; these dysfunctions include dysphagia, nausea, delayed gastric emptying, and severe constipation, all of which occur commonly before the onset of the well-known motor symptoms of PD. Based on a distinct distribution pattern of Lewy bodies (LB) in the enteric nervous system (ENS) and in the preganglionic neurons of the dorsal motor nucleus of the vagus (DMV), and together with the early onset of GI symptoms, it was suggested that idiopathic PD begins in the ENS and spreads to the central nervous system (CNS), reaching the DMV and the substantia nigra pars compacta (SNpc). These two areas are connected by a recently discovered monosynaptic nigro-vagal pathway, which is dysfunctional in rodent models of PD. An alternative hypothesis downplays the role of LB transport through the vagus nerve and proposes that PD pathology is governed by regional or cell-restricted factors as the leading cause of nigral neuronal degeneration. The purpose of this brief review is to summarize the neuronal electrophysiological findings in the SNpc and DMV in PD.
Collapse
Affiliation(s)
- Cecilia Bove
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
5
|
Can Friedberg's Triad Solve Persistent Anesthesia Problems? Over-Medication, Pain Management, Postoperative Nausea and Vomiting. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1527. [PMID: 29184740 PMCID: PMC5682176 DOI: 10.1097/gox.0000000000001527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
Abstract
Friedberg’s Triad is (1) measure the brain; (2) preempt the pain; (3) emetic drugs abstain. Persistent anesthesia problems include over- and under-medication, postoperative pain management, and postoperative nausea and vomiting. Inspired by Vinnik’s diazepam-ketamine paradigm, Friedberg’s propofol ketamine paradigm was first published in 1993. The 1997 addition of the bispectral (BIS) index brain monitor made the propofol ketamine paradigm numerically reproducible. The 1998 addition of the frontalis electromyogram (EMG) as a secondary trend to the BIS transformed the time-delayed BIS monitor into a real-time, extremely useful device. Before BIS monitoring, anesthesiologists only had heart rate (HR) and blood pressure (BP) changes to guide depth of anesthesia. Not surprisingly, the American Society of Anesthesiologists’ Awareness study showed no HR or BP changes in half of the patients experiencing awareness with recall. HR and BP changes may only reflect brain stem signs while consciousness and pain are processed at higher, cortical brain levels. BIS/electromyogram measurement can accurately reflect propofol effect on the cerebral cortex in real time. Although propofol requirements can vary as much as a hundred-fold, titrating propofol to 60 < BIS < 75 with baseline electromyogram assures every patient will be anesthetized to the same degree and allows more scientific analysis of outcomes. Numerous publications are cited to support the author’s 25-year clinical experience. Over that period, no office-based, cosmetic surgery patients were admitted to the hospital for unmanageable pain or postoperative nausea and vomiting. Friedberg’s Triad appears to solve persistent anesthesia problems.
Collapse
|
6
|
Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. ACTA ACUST UNITED AC 2016; 6:123-148. [PMID: 27141430 DOI: 10.1016/j.baga.2016.02.001] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.
Collapse
Affiliation(s)
- David Sulzer
- Depts of Psychiatry, Neurology, & Pharmacology, NY State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Stephanie J Cragg
- Dept Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Margaret E Rice
- Depts of Neurosurgery & Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Hage TA, Sun Y, Khaliq ZM. Electrical and Ca(2+) signaling in dendritic spines of substantia nigra dopaminergic neurons. eLife 2016; 5. [PMID: 27163179 PMCID: PMC4900803 DOI: 10.7554/elife.13905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Little is known about the density and function of dendritic spines on midbrain dopamine neurons, or the relative contribution of spine and shaft synapses to excitability. Using Ca(2+) imaging, glutamate uncaging, fluorescence recovery after photobleaching and transgenic mice expressing labeled PSD-95, we comparatively analyzed electrical and Ca(2+) signaling in spines and shaft synapses of dopamine neurons. Dendritic spines were present on dopaminergic neurons at low densities in live and fixed tissue. Uncaging-evoked potential amplitudes correlated inversely with spine length but positively with the presence of PSD-95. Spine Ca(2+) signals were less sensitive to hyperpolarization than shaft synapses, suggesting amplification of spine head voltages. Lastly, activating spines during pacemaking, we observed an unexpected enhancement of spine Ca(2+) midway throughout the spike cycle, likely involving recruitment of NMDA receptors and voltage-gated conductances. These results demonstrate functionality of spines in dopamine neurons and reveal a novel modulation of spine Ca(2+) signaling during pacemaking.
Collapse
Affiliation(s)
- Travis A Hage
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Yujie Sun
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Zayd M Khaliq
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
8
|
Rice ME, Patel JC. Somatodendritic dopamine release: recent mechanistic insights. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0185. [PMID: 26009764 DOI: 10.1098/rstb.2014.0185] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K(+) channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca(2+) dependence of release and the potential role of exocytotic proteins.
Collapse
Affiliation(s)
- Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
9
|
Radwan B, Liu H, Chaudhury D. Regulation and Modulation of Depression-Related Behaviours: Role of Dopaminergic Neurons. DOPAMINE AND SLEEP 2016:147-190. [DOI: 10.1007/978-3-319-46437-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
10
|
Wild AR, Bollands M, Morris PG, Jones S. Mechanisms regulating spill-over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons. Eur J Neurosci 2015; 42:2633-43. [PMID: 26370007 PMCID: PMC4832385 DOI: 10.1111/ejn.13075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 02/02/2023]
Abstract
N‐Methyl‐d‐aspartate glutamate receptors (NMDARs) contribute to neural development, plasticity and survival, but they are also linked with neurodegeneration. NMDARs at synapses are activated by coincident glutamate release and depolarization. NMDARs distal to synapses can sometimes be recruited by ‘spill‐over’ of glutamate during high‐frequency synaptic stimulation or when glutamate uptake is compromised, and this influences the shape of NMDAR‐mediated postsynaptic responses. In substantia nigra dopamine neurons, activation of NMDARs beyond the synapse during different frequencies of presynaptic stimulation has not been explored, even though excitatory afferents from the subthalamic nucleus show a range of firing frequencies, and these frequencies change in human and experimental Parkinson's disease. This study reports that high‐frequency stimulation (80 Hz/200 ms) evoked NMDAR‐excitatory postsynaptic currents (EPSCs) that were larger and longer lasting than those evoked by single stimuli at low frequency (0.1 Hz). MK‐801, which irreversibly blocked NMDAR‐EPSCs activated during 0.1‐Hz stimulation, left a proportion of NMDAR‐EPSCs that could be activated by 80‐Hz stimulation and that may represent activity of NMDARs distal to synapses. TBOA, which blocks glutamate transporters, significantly increased NMDAR‐EPSCs in response to 80‐Hz stimulation, particularly when metabotropic glutamate receptors (mGluRs) were also blocked, indicating that recruitment of NMDARs distal to synapses is regulated by glutamate transporters and mGluRs. These regulatory mechanisms may be essential in the substantia nigra for restricting glutamate diffusion from synaptic sites and keeping NMDAR‐EPSCs in dopamine neurons relatively small and fast. Failure of glutamate transporters may contribute to the declining health of dopamine neurons during pathological conditions.
Collapse
Affiliation(s)
- A R Wild
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - M Bollands
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - P G Morris
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - S Jones
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| |
Collapse
|
11
|
Pignatelli M, Bonci A. Role of Dopamine Neurons in Reward and Aversion: A Synaptic Plasticity Perspective. Neuron 2015; 86:1145-57. [PMID: 26050034 DOI: 10.1016/j.neuron.2015.04.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The brain is wired to predict future outcomes. Experience-dependent plasticity at excitatory synapses within dopamine neurons of the ventral tegmental area, a key region for a broad range of motivated behaviors, is thought to be a fundamental cellular mechanism that enables adaptation to a dynamic environment. Thus, depending on the circumstances, dopamine neurons are capable of processing both positive and negative reinforcement learning strategies. In this review, we will discuss how changes in synaptic plasticity of dopamine neurons may affect dopamine release, as well as behavioral adaptations to different environmental conditions falling at opposite ends of a saliency spectrum ranging from reward to aversion.
Collapse
Affiliation(s)
- Marco Pignatelli
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD 21224, USA; Solomon H. Snyder Neuroscience Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Jourdain VA, Schechtmann G, Di Paolo T. Subthalamotomy in the treatment of Parkinson's disease: clinical aspects and mechanisms of action. J Neurosurg 2014; 120:140-51. [DOI: 10.3171/2013.10.jns13332] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition that can be pharmacologically treated with levodopa. However, important motor and nonmotor symptoms appear with its long-term use. The subthalamic nucleus (STN) is known to be involved in the pathophysiology of PD and to contribute to levodopa-induced complications. Surgery is considered in patients who have advanced PD that is refractory to pharmacotherapy and who display disabling dyskinesia. Deep brain stimulation of the STN is currently the main surgical procedure for PD, but lesioning is still performed. This review covers the clinical aspects and complications of subthalamotomy as one of the lesion-based options for PD patients with levodopa-induced dyskinesias. Moreover, the authors discuss the possible effects of subthalamic lesioning.
Collapse
Affiliation(s)
- Vincent A. Jourdain
- 1Neurosciences Research Center, Centre de Recherche du CHU de Québec
- 2Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada, and
| | - Gastón Schechtmann
- 3Department of Neurosurgery and Clinical Neuroscience, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Thérèse Di Paolo
- 1Neurosciences Research Center, Centre de Recherche du CHU de Québec
- 2Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada, and
| |
Collapse
|
13
|
Korecka JA, van Kesteren RE, Blaas E, Spitzer SO, Kamstra JH, Smit AB, Swaab DF, Verhaagen J, Bossers K. Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One 2013; 8:e63862. [PMID: 23724009 PMCID: PMC3665836 DOI: 10.1371/journal.pone.0063862] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Multiple genetic and environmental factors play a role in the development and progression of Parkinson's disease (PD). The main neuropathological hallmark of PD is the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. To study genetic and molecular contributors to the disease process, there is a great need for readily accessible cells with prominent DAergic features that can be used for reproducible in vitro cellular screening. Here, we investigated the molecular phenotype of retinoic acid (RA) differentiated SH-SY5Y cells using genome wide transcriptional profiling combined with gene ontology, transcription factor and molecular pathway analysis. We demonstrated that RA induces a general neuronal differentiation program in SH-SY5Y cells and that these cells develop a predominantly mature DAergic-like neurotransmitter phenotype. This phenotype is characterized by increased dopamine levels together with a substantial suppression of other neurotransmitter phenotypes, such as those for noradrenaline, acetylcholine, glutamate, serotonin and histamine. In addition, we show that RA differentiated SH-SY5Y cells express the dopamine and noradrenalin neurotransmitter transporters that are responsible for uptake of MPP(+), a well known DAergic cell toxicant. MPP(+) treatment alters mitochondrial activity according to its proposed cytotoxic effect in DAergic neurons. Taken together, RA differentiated SH-SY5Y cells have a DAergic-like phenotype, and provide a good cellular screening tool to find novel genes or compounds that affect cytotoxic processes that are associated with PD.
Collapse
Affiliation(s)
- Joanna A Korecka
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Munhall AC, Wu YN, Belknap JK, Meshul CK, Johnson SW. NMDA alters rotenone toxicity in rat substantia nigra zona compacta and ventral tegmental area dopamine neurons. Neurotoxicology 2012; 33:429-35. [DOI: 10.1016/j.neuro.2012.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 12/21/2022]
|
15
|
Zhang H, Sulzer D. Regulation of striatal dopamine release by presynaptic auto- and heteroreceptors. ACTA ACUST UNITED AC 2012; 2:5-13. [PMID: 22712055 DOI: 10.1016/j.baga.2011.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Striatal dopamine neurotransmission is critical for normal voluntary movement, affect and cognition. Dysfunctions of its regulation are implicated in a broad range of behaviors and disorders including Parkinson's disease, schizophrenia and drug abuse. Extracellular dopamine levels result from a dynamic equilibrium between release and reuptake by dopaminergic terminals. Both processes are regulated by multiple mechanisms. Here we review data characterizing how dopamine levels are regulated by presynaptic autoreceptors and heteroreceptors, an area intensively investigated due to advances in real time electrochemical detection of extracellular dopamine, i.e., fast-scan cyclic voltammetry and amperometry, and the development of mutant mouse lines with deletions for specific receptors.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Psychiatry and Neurology, Columbia University, New York
| | | |
Collapse
|
16
|
Jones S, Brothwell S, Huang-Doran I, Hallett J. Ionotropic Glutamate Receptors in the Basal Ganglia. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b11284-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Rice ME, Patel JC, Cragg SJ. Dopamine release in the basal ganglia. Neuroscience 2011; 198:112-37. [PMID: 21939738 PMCID: PMC3357127 DOI: 10.1016/j.neuroscience.2011.08.066] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
Dopamine (DA) is a key transmitter in the basal ganglia, yet DA transmission does not conform to several aspects of the classic synaptic doctrine. Axonal DA release occurs through vesicular exocytosis and is action potential- and Ca²⁺-dependent. However, in addition to axonal release, DA neurons in midbrain exhibit somatodendritic release by an incompletely understood, but apparently exocytotic, mechanism. Even in striatum, axonal release sites are controversial, with evidence for DA varicosities that lack postsynaptic specialization, and largely extrasynaptic DA receptors and transporters. Moreover, DA release is often assumed to reflect a global response to a population of activities in midbrain DA neurons, whether tonic or phasic, with precise timing and specificity of action governed by other basal ganglia circuits. This view has been reinforced by anatomical evidence showing dense axonal DA arbors throughout striatum, and a lattice network formed by DA axons and glutamatergic input from cortex and thalamus. Nonetheless, localized DA transients are seen in vivo using voltammetric methods with high spatial and temporal resolution. Mechanistic studies using similar methods in vitro have revealed local regulation of DA release by other transmitters and modulators, as well as by proteins known to be disrupted in Parkinson's disease and other movement disorders. Notably, the actions of most other striatal transmitters on DA release also do not conform to the synaptic doctrine, with the absence of direct synaptic contacts for glutamate, GABA, and acetylcholine (ACh) on striatal DA axons. Overall, the findings reviewed here indicate that DA signaling in the basal ganglia is sculpted by cooperation between the timing and pattern of DA input and those of local regulatory factors.
Collapse
Affiliation(s)
- M E Rice
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
18
|
Functional reduction of SK3-mediated currents precedes AMPA-receptor-mediated excitotoxicity in dopaminergic neurons. Neuropharmacology 2010; 60:1176-86. [PMID: 21044638 DOI: 10.1016/j.neuropharm.2010.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/28/2010] [Accepted: 10/26/2010] [Indexed: 11/21/2022]
Abstract
In primary cultures of mesencephalon small-conductance calcium-activated potassium channels (SK) are expressed in dopaminergic neurons. We characterized SK-mediated currents (I(SK)) in this system and evaluated their role on homeostasis against excitotoxicity. I(SK) amplitude was reduced by the glutamatergic agonist AMPA through a reduction in SK channel number in the membrane. Blockade of I(SK) for 12 h with apamin or NS8593 reduced the number of dopaminergic neurons in a concentration-dependent manner. The effect of apamin was not additive to AMPA toxicity. On the other hand, two I(SK) agonists, 1-EBIO and CyPPA, caused a significant reduction of spontaneous loss of dopaminergic neurons. 1-EBIO reversed the effects of both AMPA and apamin as well. Thus, I(SK) influences survival and differentiation of dopaminergic neurons in vitro, and is part of protective homeostatic responses, participating in a rapidly acting negative feedback loop coupling calcium levels, neuron excitability and cellular defenses. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
|
19
|
Lane DA, Jaferi A, Kreek MJ, Pickel VM. Acute and chronic cocaine differentially alter the subcellular distribution of AMPA GluR1 subunits in region-specific neurons within the mouse ventral tegmental area. Neuroscience 2010; 169:559-73. [PMID: 20553819 PMCID: PMC2908945 DOI: 10.1016/j.neuroscience.2010.05.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 01/01/2023]
Abstract
Cocaine administration increases AMPA GluR1 expression and receptor-mediated activation of the ventral tegmental area (VTA). Functionality is determined, however, by surface availability of these receptors in transmitter- and VTA-region-specific neurons, which may also be affected by cocaine. To test this hypothesis, we used electron microscopic immunolabeling of AMPA GluR1 subunits and tyrosine hydroxylase (TH), the enzyme needed for dopamine synthesis, in the cortical-associated parabrachial (PB) and in the limbic-associated paranigral (PN) VTA of adult male C57BL/6 mice receiving either a single injection (acute) or repeated escalating-doses for 14 days (chronic) of cocaine. Acute cocaine resulted in opposing VTA-region-specific changes in TH-containing dopaminergic dendrites. TH-labeled dendrites within the PB VTA showed increased cytoplasmic GluR1 immunogold particle density consistent with decreased AMPA receptor-mediated glutamatergic transmission. Conversely, TH-labeled dendrites within the PN VTA showed greater surface expression of GluR1 with increases in both synaptic and plasmalemmal GluR1 immunogold density after a single injection of cocaine. These changes diminished in both VTA subregions after chronic cocaine administration. In contrast, non-TH-containing, presumably GABAergic dendrites showed VTA-region-specific changes only after repeated cocaine administration such that synaptic GluR1 decreased in the PB, but increased in the PN VTA. Taken together, these findings provide ultrastructural evidence suggesting that chronic cocaine not only reverses the respective depression and facilitation of mesocortical (PB) and mesolimbic (PN) dopaminergic neurons elicited by acute cocaine, but also differentially affects synaptic availability of these receptors in non-dopaminergic neurons of each region. These adaptations may contribute to increased cocaine seeking/relapse and decreased reward that is reported with chronic cocaine use.
Collapse
Affiliation(s)
- D A Lane
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
20
|
Mosley CA, Acker TM, Hansen KB, Mullasseril P, Andersen KT, Le P, Vellano KM, Bräuner-Osborne H, Liotta DC, Traynelis SF. Quinazolin-4-one derivatives: A novel class of noncompetitive NR2C/D subunit-selective N-methyl-D-aspartate receptor antagonists. J Med Chem 2010; 53:5476-90. [PMID: 20684595 PMCID: PMC2920070 DOI: 10.1021/jm100027p] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a new class of subunit-selective antagonists of N-methyl D-aspartate (NMDA)-selective ionotropic glutamate receptors that contain the (E)-3-phenyl-2-styrylquinazolin-4(3H)-one backbone. The inhibition of recombinant NMDA receptor function induced by these quinazolin-4-one derivatives is noncompetitive and voltage-independent, suggesting that this family of compounds does not exert action on the agonist binding site of the receptor or block the channel pore. The compounds described here resemble CP-465,022 ((S)-3-(2-chlorophenyl)-2-[2-(6-diethylaminomethyl-pyridin-2-yl)-vinyl]-6-fluoro-3H-quinazolin-4-one), a noncompetitive antagonist of AMPA-selective glutamate receptors. However, modification of ring substituents resulted in analogues with greater than 100-fold selectivity for recombinant NMDA receptors over AMPA and kainate receptors. Furthermore, within this series of compounds, analogues were identified with 50-fold selectivity for recombinant NR2C/D-containing receptors over NR2A/B containing receptors. These compounds represent a new class of noncompetitive subunit-selective NMDA receptor antagonists.
Collapse
Affiliation(s)
| | - Timothy M. Acker
- Department of Chemistry, Emory University, Atlanta, GA
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| | - Kasper B. Hansen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| | | | - Karen T. Andersen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Phuong Le
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| | - Kimberly M. Vellano
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| | - Hans Bräuner-Osborne
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
21
|
Paul S, Connor JA. NR2B-NMDA receptor-mediated increases in intracellular Ca2+ concentration regulate the tyrosine phosphatase, STEP, and ERK MAP kinase signaling. J Neurochem 2010; 114:1107-18. [PMID: 20524968 PMCID: PMC3049732 DOI: 10.1111/j.1471-4159.2010.06835.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMDA receptors regulate both the activation and inactivation of the extracellular signal-regulated kinase (ERK) signaling cascade, a key pathway involved in neuronal plasticity and survival. This bi-directional regulation of ERK activity by NMDA receptors has been attributed to opposing actions of NR2A- versus NR2B-containing NMDA receptors, but how this is implemented is not understood. Here, we show that glutamate-mediated intracellular Ca(2+) increases occur in two phases, a rapid initial increase followed by a delayed larger increase. Both phases of the Ca(2+) increase were blocked by MK-801, a non-selective NMDA receptor inhibitor. On the other hand, selective inhibition of NR2B-NMDA receptors by Ifenprodil or Ro 25-6981 blocked the delayed larger phase but had only a small effect on the rapid initial increase. The rapid initial increase in Ca(2+), presumably because of NR2A-NMDAR activation, was sufficient to activate ERK, whereas the large delayed increases in Ca(2+) mediated by NR2B-NMDARs were necessary for dephosphorylation and subsequent activation of striatal-enriched phosphatase, a neuron-specific tyrosine phosphatase that in turn mediates the dephosphorylation and inactivation of ERK. We conclude that the magnitude of Ca(2+) increases mediated through NR2B-NMDA receptors plays a critical role in the regulation of the serine/threonine and tyrosine kinases and phosphatases that are involved in the regulation of ERK activity.
Collapse
Affiliation(s)
- Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | | |
Collapse
|
22
|
Lee CR, Tepper JM. Basal ganglia control of substantia nigra dopaminergic neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2010:71-90. [PMID: 20411769 DOI: 10.1007/978-3-211-92660-4_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Although substantia nigra dopaminergic neurons are spontaneously active both in vivo and in vitro, this activity does not depend on afferent input as these neurons express an endogenous calcium-dependent oscillatory mechanism sufficient to drive action potential generation. However, afferents to these neurons, a large proportion of them GABAergic and arising from other nuclei in the basal ganglia, play a crucial role in modulating the activity of dopaminergic neurons. In the absence of afferent activity or when in brain slices, dopaminergic neurons fire in a very regular, pacemaker-like mode. Phasic activity in GABAergic, glutamatergic, and cholinergic inputs modulates the pacemaker activity into two other modes. The most common is a random firing pattern in which interspike intervals assume a Poisson-like distribution, and a less common pattern, often in response to a conditioned stimulus or a reward in which the neurons fire bursts of 2-8 spikes time-locked to the stimulus. Typically in vivo, all three firing patterns are observed, intermixed, in single nigrostriatal neurons varying over time. Although the precise mechanism(s) underlying the burst are currently the focus of intensive study, it is obvious that bursting must be triggered by afferent inputs. Most of the afferents to substantia nigra pars compacta dopaminergic neurons comprise monosynaptic inputs from GABAergic projection neurons in the ipsilateral neostriatum, the globus pallidus, and the substantia nigra pars reticulata. A smaller fraction of the basal ganglia inputs, something less than 30%, are glutamatergic and arise principally from the ipsilateral subthalamic nucleus and pedunculopontine nucleus. The pedunculopontine nucleus also sends a cholinergic input to nigral dopaminergic neurons. The GABAergic pars reticulata projection neurons also receive inputs from all of these sources, in some cases relaying them disynaptically to the dopaminergic neurons, thereby playing a particularly significant role in setting and/or modulating the firing pattern of the nigrostriatal neurons.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Neurosurgery, New York University School of Medicine, 4 New York, NY 10016, USA.
| | | |
Collapse
|
23
|
Regulation of Extracellular Dopamine. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374767-9.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Epidermal growth factor administered in the periphery influences excitatory synaptic inputs onto midbrain dopaminergic neurons in postnatal mice. Neuroscience 2009; 158:1731-41. [DOI: 10.1016/j.neuroscience.2008.10.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 10/13/2008] [Accepted: 10/31/2008] [Indexed: 01/08/2023]
|
25
|
González-Hernández T, Afonso-Oramas D, Cruz-Muros I. Phenotype, compartmental organization and differential vulnerability of nigral dopaminergic neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:21-37. [PMID: 20411765 DOI: 10.1007/978-3-211-92660-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The degeneration of nigral dopaminergic (DA-) neurons is the histopathologic hallmark of Parkinson's disease (PD), but not all nigral DA-cells show the same susceptibility to degeneration. This starts in DA-cells in the ventrolateral and caudal regions of the susbtantia nigra (SN) and progresses to DA-cells in the dorsomedial and rostral regions of the SN and the ventral tegmental area, where many neurons remain intact until the final stages of the disease. This fact indicates a relationship between the topographic distribution of midbrain DA-cells and their differential vulnerability, and the possibility that this differential vulnerability is associated with phenotypic differences between different subpopulations of nigral DA-cells. Studies carried out during the last two decades have contributed to establishing the existence of different compartments of nigral DA-cells according to their neurochemical profile, and a possible relationship between the expression of some factors and the relative vulnerability or resistance of DA-cell subpopulations to degeneration. These aspects are reviewed and discussed here.
Collapse
Affiliation(s)
- Tomás González-Hernández
- Department of Anatomy, Faculty of Medicine, University of La Laguna, 38071, La Laguna, Tenerife, Spain.
| | | | | |
Collapse
|
26
|
Grilli M, Pittaluga A, Merlo-Pich E, Marchi M. NMDA-mediated modulation of dopamine release is modified in rat prefrontal cortex and nucleus accumbens after chronic nicotine treatment. J Neurochem 2009; 108:408-16. [DOI: 10.1111/j.1471-4159.2008.05792.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Paraquat inhibits postsynaptic AMPA receptors on dopaminergic neurons in the substantia nigra pars compacta. Biochem Pharmacol 2008; 76:1155-64. [DOI: 10.1016/j.bcp.2008.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/27/2022]
|
28
|
Glutamate-mediated neuroplasticity in an animal model of self-injurious behaviour. Behav Brain Res 2007; 189:32-40. [PMID: 18243356 DOI: 10.1016/j.bbr.2007.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/30/2007] [Accepted: 12/05/2007] [Indexed: 11/22/2022]
Abstract
Self-injurious behaviour (SIB) is exhibited by individuals with a broad variety of developmental disorders and genetic abnormalities, including autism and Lesch-Nyhan, Prader-Willi and Rett syndromes. Most research has focused on environmental factors that reinforce SIB, and less is known about the biological basis of this behaviour disorder. However, animal models have been developed to study the neurochemical pathology that underlies SIB. In one model, rats exhibit self-biting after repeated daily administration of moderately high doses of pemoline (100-200mg/kg). Dopaminergic and glutamatergic neurotransmission have been implicated in this model. Accordingly, we investigated the role of glutamatergic neurotransmission in pemoline-induced SIB, using the N-methyl-d-aspartate (NMDA) receptor antagonists MK-801 and memantine. MK-801 is a high affinity antagonist which blocks glutamate-mediated neuroplasticity and behavioural sensitization to other psychostimulants. It lessened the incidence of SIB, the time spent self-injuring, and the area of tissue damage in the pemoline model. Memantine, on the other hand, is a low affinity antagonist which does not disrupt glutamate-mediated neuroplasticity, and it had little if any effect on any measure of pemoline-induced SIB. These results suggest that repeated pemoline administration induces glutamate-mediated neuroplastic changes that lead to the eventual expression of SIB. Further investigation of these changes may reveal specific neurochemical factors that contribute to SIB in this animal model of self-injury.
Collapse
|
29
|
Involvement of brain endogenous histamine in the degeneration of dopaminergic neurons in 6-hydroxydopamine-lesioned rats. Neuropharmacology 2007; 53:832-41. [PMID: 17919665 DOI: 10.1016/j.neuropharm.2007.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 06/15/2007] [Accepted: 08/11/2007] [Indexed: 12/31/2022]
Abstract
Previous studies have suggested that brain histamine is involved in the pathogenesis of Parkinson's disease (PD), but the role of endogenous histamine in the degeneration of dopaminergic neurons in the substantia nigra pars compact (SNpc) remains unclear. We aimed to investigate this issue by changing the brain histamine levels by giving histaminergic agents, and administrating histamine receptor antagonists in the PD animal model, i.e. the 6-hydroxydopamine (6-OHDA)-lesioned rat. In saline-treated animals, 6-OHDA infusion produced a progressive increase in apomorphine-induced turning rate and a loss of tyrosine hydroxylase immunoreactive (TH-ir) neurons in the SNpc. Histaminergic agents were given prior and daily for 1, 7 or 14 days after 6-OHDA infusion. Histidine (500 mg/kg, i.p.), a precursor of histamine, increased the turning rate (27% on day 7 and 26% on day 14, respectively; P<0.05) and also the loss of TH-ir neurons, but only on day 1 and 7 (67% vs 47% and 90.4% vs 74% loss, respectively; P<0.05). In contrast, alpha-fluoromethylhistidine (alpha-FMH, 25 microg, i.c.v.), an irreversible inhibitor of histidine decarboxylase (HDC), significantly decreased the turning rate (25% on day 7 and 26% on day 14, respectively; P<0.05) and prevented the loss of TH-ir neurons, also only on day 1 and day 7 (28% vs 47% and 58% vs 74% loss, respectively; P<0.05). In addition, the histamine H(1) receptor antagonist pyrilamine (5 microg, i.c.v.), but not the H(2) receptor antagonist cimetidine (5 microg, i.c.v.), also decreased the turning rate (38% on day 7 and 21% on day 14, respectively; P<0.05) and prevented the loss of TH-ir neurons on day 1 and day 7 (38% vs 51% and 60% vs 78% loss, respectively; P<0.05). On day 14 after 6-OHDA lesion, there were no significant differences in the number of TH-ir neurons among all the different treatment groups. Taken together, these findings indicate that endogenous histamine may accelerate the degeneration of dopaminergic neurons via its H(1) receptor, while attenuation of histamine transmission may play a protective role on it in the early stage of development of 6-OHDA lesioned PD rats.
Collapse
|
30
|
Abstract
Dopamine (DA)-containing neurons involved in the regulation of sleep and waking (W) arise in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc). The VTA and SNc cells have efferent and afferent connections with the dorsal raphe nucleus (DRN), the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT), the locus coeruleus (LC), the lateral and posterior hypothalamus (LH), the basal forebrain (BFB), and the thalamus. Molecular cloning techniques have enabled the characterization of two distinct groups of DA receptors, D(1)-like and D(2)-like receptors. The D(1) subfamily includes the D(1) and D(5) receptors, whereas the D(2) subfamily comprises the D(2), D(3), and D(4) receptors. Systemic administration of a selective D(1) receptor agonist induces behavioral arousal, together with an increase of W and a reduction of slow wave sleep (SWS) and REM sleep (REMS). Systemic injection of a DA D(2) receptor agonist induces biphasic effects, such that low doses reduce W and increase SWS and REMS (predominant activation of the D(2) autoreceptor), whereas large doses induce the opposite effect (predominant facilitation of the D(2) postsynaptic receptor). Compounds with DA D(1) or D(2) receptor blocking properties augment non-REMS and reduce W. Preliminary findings tend to indicate that the administration of a DA D(3)-preferring agonist induces somnolence and sleep in laboratory animals and man. DA neurons in the VTA and the SNc do not change their mean firing rate across the sleep-wake cycle. It has been proposed that DA cells in the midbrain show a change in temporal pattern rather than firing rate during the sleep-wake cycle. The available evidence tends to indicate that during W there occurs an increase of burst firing activity of DA neurons, and an enhanced release of DA in the VTA, the nucleus accumbens (NAc), and a number of forebrain structures. A series of structures relevant for the regulation of the behavioral state, including the DRN, LDT/PPT, LC, and LH, could be partly responsible for the changes in the temporal pattern of activity of DA neurons.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, Clinics Hospital, 2833/602 Zudañez Street, Montevideo 11300, Uruguay.
| | | |
Collapse
|
31
|
Blythe SN, Atherton JF, Bevan MD. Synaptic activation of dendritic AMPA and NMDA receptors generates transient high-frequency firing in substantia nigra dopamine neurons in vitro. J Neurophysiol 2007; 97:2837-50. [PMID: 17251363 DOI: 10.1152/jn.01157.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transient high-frequency activity of substantia nigra dopamine neurons is critical for striatal synaptic plasticity and associative learning. However, the mechanisms underlying this mode of activity are poorly understood because, in contrast to other rapidly firing neurons, high-frequency activity is not evoked by somatic current injection. Previous studies have suggested that activation of dendritic N-methyl-d-aspartate (NMDA) receptors and/or G-protein-coupled receptor (GPCR)-mediated reduction of action potential afterhyperpolarization and/or activation of cation channels underlie high-frequency activity. To address their relative contribution, transient high-frequency activity was evoked using local electrical stimulation (1 s, 10-100 Hz) in brain slices prepared from p15-p25 rats in the presence of GABA and D2 dopamine receptor antagonists. The frequency, pattern, and morphology of action potentials evoked under these conditions were similar to those observed in vivo. Evoked activity and reductions in action potential afterhyperpolarization were diminished greatly by application of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or NMDA receptor selective antagonists and abolished completely by co-application of AMPA and NMDA antagonists. In contrast, application of glutamatergic and cholinergic GPCR antagonists moderately enhanced evoked activity. Dendritic pressure-pulse application of glutamate evoked high-frequency activity that was similarly sensitive to antagonism of AMPA or NMDA receptors. Taken together, these data suggest that dendritic AMPA and NMDA receptor-mediated synaptic conductances are sufficient to generate transient high-frequency activity in substantia nigra dopamine neurons by rapidly but transiently overwhelming the conductances underlying action potential afterhyperpolarization and/or engaging postsynaptic voltage-dependent ion channels in a manner that overcomes the limiting effects of afterhyperpolarization.
Collapse
Affiliation(s)
- Sarah N Blythe
- Dept. of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago IL 60611, USA
| | | | | |
Collapse
|
32
|
Hewett SJ, Bell SC, Hewett JA. Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. Pharmacol Ther 2006; 112:335-57. [PMID: 16750270 DOI: 10.1016/j.pharmthera.2005.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase (COX) enzymes, or prostaglandin-endoperoxide synthases (PTGS), are heme-containing bis-oxygenases that catalyze the first committed reaction in metabolism of arachidonic acid (AA) to the potent lipid mediators, prostanoids and thromboxanes. Two isozymes of COX enzymes (COX-1 and COX-2) have been identified to date. This review will focus specifically on the neurobiological and neuropathological consequences of AA metabolism via the COX-2 pathway and discuss the potential therapeutic benefit of COX-2 inhibition in the setting of neurological disease. However, given the controversy surrounding the use of COX-2 selective inhibitors with respect to cardiovascular health, it will be important to move beyond COX to identify which down-stream effectors are responsible for the deleterious and/or potentially protective effects of COX-2 activation in the setting of neurological disease. Important advances toward this goal are highlighted herein. Identification of unique effectors in AA metabolism could direct the development of new therapeutics holding significant promise for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sandra J Hewett
- Department of Neuroscience MC3401, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
33
|
Garzón M, Pickel VM. Subcellular distribution of M2 muscarinic receptors in relation to dopaminergic neurons of the rat ventral tegmental area. J Comp Neurol 2006; 498:821-39. [PMID: 16927256 PMCID: PMC2577061 DOI: 10.1002/cne.21082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acetylcholine can affect cognitive functions and reward, in part, through activation of muscarinic receptors in the ventral tegmental area (VTA) to evoke changes in mesocorticolimbic dopaminergic transmission. Among the known muscarinic receptor subtypes present in the VTA, the M2 receptor (M2R) is most implicated in autoregulation and also may play a heteroreceptor role in regulation of the output of the dopaminergic neurons. We sought to determine the functionally relevant sites for M2R activation in relation to VTA dopaminergic neurons by examining the electron microscopic immunolabeling of M2R and the dopamine transporter (DAT) in the VTA of rat brain. The M2R was localized to endomembranes in DAT-containing somatodendritic profiles but showed a more prominent, size-dependent plasmalemmal location in nondopaminergic dendrites. M2R also was located on the plasma membrane of morphologically heterogenous axon terminals contacting unlabeled as well as M2R- or DAT-labeled dendrites. Some of these terminals formed asymmetric synapses resembling those of cholinergic terminals in the VTA. The majority, however, formed symmetric, inhibitory-type synapses or were apposed without recognized junctions. Our results provide the first ultrastructural evidence that the M2R is expressed, but largely not available for local activation, on the plasma membrane of VTA dopaminergic neurons. Instead, the M2R in this region has a distribution suggesting more indirect regulation of mesocorticolimbic transmission through autoregulation of acetylcholine release and changes in the physiological activity or release of other, largely inhibitory transmitters. These findings could have implications for understanding the muscarinic control of cognitive and goal-directed behaviors within the VTA.
Collapse
Affiliation(s)
- Miguel Garzón
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
34
|
Frankle WG, Laruelle M, Haber SN. Prefrontal cortical projections to the midbrain in primates: evidence for a sparse connection. Neuropsychopharmacology 2006; 31:1627-36. [PMID: 16395309 DOI: 10.1038/sj.npp.1300990] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Frontal cortical efferent fibers are thought to have important regulatory influence on cortico-basal ganglia (BG) circuits. The cortico-midbrain (substantia nigra/ventral tegmental area, SN/VTA) pathway has received particular attention in psychiatric diseases, most notably schizophrenia. Work in rodents demonstrates that the prefrontal cortico (PFC)-midbrain pathway plays a central role in regulating the firing pattern of dopamine (DA) neurons. These findings have led to some important hypotheses concerning PFC/BG interaction in schizophrenia. Descending PFC projections to the SN/VTA have been primarily documented in the rodent. The aim of this study was to determine the degree and organization of PFC afferents to these areas in the Macaque monkey. Anterograde tracer injections were made into discrete orbital, cingulate, and dorsolateral prefrontal areas. Projections were charted to the SN and VTA. Overall, there were very few fibers in the ventral midbrain following injections confined to specific areas of the PFC. To determine the relationship of the descending fibers to the midbrain DA neurons, sections were double stained for the tracer molecules and for tyrosine hydroxylase. In all cases, the prefrontal projections and the TH-positive cells did not appear to be in close juxtaposition. The results show a very limited projection from the PFC to the midbrain DA neurons in primates, terminating both within the SN proper as well as in the VTA. They arise from a broad region of the PFC, including the DLPF, cingulate, and orbital cortices. However, despite the relative lack of cortical input to the midbrain cells, these neurons are rich in glutamate receptors in primates. Thus, while, based on these anatomical studies, direct cortical control of DA neurons remains debatable in primates; the cortex may directly impact other sources of glutamatergic control.
Collapse
Affiliation(s)
- William Gordon Frankle
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | |
Collapse
|
35
|
Suárez LM, Solís JM. Taurine potentiates presynaptic NMDA receptors in hippocampal Schaffer collateral axons. Eur J Neurosci 2006; 24:405-18. [PMID: 16836643 DOI: 10.1111/j.1460-9568.2006.04911.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have previously shown that activation of presynaptic N-methyl-d-aspartate (NMDA) receptors (NMDAR) enhances the amplitude of the presynaptic fibre volley (FV) evoked in Schaffer collateral axons of rat hippocampal slices, by a mechanism independent of extracellular Ca(2+). Here we compared the pharmacological characteristics of presynaptic NMDARs affecting axon excitability (activated by 10-300 microM NMDA for 10 min), with those mediating field excitatory postsynaptic potentials (NMDA-fEPSP). We found that NMDA-induced potentiation was completely inhibited by NVP-AAM077, an antagonist of NR2A-containing NMDAR, but not by ifenprodil, an NR2B-selective antagonist. The inhibitor of the glycine-binding site in NMDARs, 7-clorokynurenic acid (7-CK), was more potent against NMDA-fEPSP (IC(50) = 6.3 +/- 1.3 microM) than against the NMDA-induced FV potentiation (IC(50) = 26.5 +/- 1.3 microM). Moreover, both post- and presynaptic NMDAR-mediated phenomena were enhanced by glycine and d-serine, but taurine, an endogenous analogue of glycine, only enhanced the latter (EC(50) = 19 microM). Taurine was able to block the inhibitory effect of low doses of 7-CK on NMDA-induced FV potentiation, while glycine and d-serine only reduced the effects of higher concentrations of this drug. Surprisingly, the enhancing effect of taurine on NMDA-induced FV potentiation was blocked when it was co-applied with glycine. Furthermore, the glutamate released synaptically with a train of stimuli also increased FV amplitude by a mechanism dependent on NMDARs; this was potentiated by taurine but not by co-application of taurine and glycine. These results reveal that presynaptic NMDARs have unique properties that mediate the facilitation of axon excitability.
Collapse
Affiliation(s)
- Luz M Suárez
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, Madrid 28034, Spain
| | | |
Collapse
|
36
|
Dopico JG, González-Hernández T, Pérez IM, García IG, Abril AM, Inchausti JO, Rodríguez Díaz M. Glycine release in the substantia nigra: Interaction with glutamate and GABA. Neuropharmacology 2006; 50:548-57. [PMID: 16337663 DOI: 10.1016/j.neuropharm.2005.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 09/28/2005] [Accepted: 10/25/2005] [Indexed: 01/25/2023]
Abstract
Previous studies have reported a high number of glycine (GLY) receptors in the substantia nigra (SN) but a low number of GLY-neurons, suggesting that taurine, a partial agonist of GLY-receptors, is the natural substrate for SN GLY-receptors. By using microdialysis to quantify amino acids in the extracellular space of the SN, we observed an extracellular pool of GLY in the rat that increased after depolarizing with high-K+ in a Ca2+-dependent manner and that diffuses through the extracellular space. GLY markedly increased after blocking either the tricarboxylic cycle with fluorocitrate or the glutamine synthetase activity with MSO. Because these products act selectively on glial cells, their effects show glia as a key cell in maintaining the extracellular pool of GLY in the SN. Extracellular GLY was modified by glutamate and glutamate receptor agonists. The local administration of GLY modified the extracellular concentration of GABA. Taken together, the complex regulation of the extracellular level of GLY, its possible glial origin and interaction with glutamate and GABA suggest a volume transmitter role for GLY in the SN, a possibility which also agrees with the recent finding of GLY-transporters in this centre.
Collapse
Affiliation(s)
- José García Dopico
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang YQ, Hu HJ, Cao R, Chen LW. Differential co-localization of neurokinin-3 receptor and NMDA/AMPA receptor subunits in neurons of the substantia nigra of C57/BL mice. Brain Res 2005; 1053:207-12. [PMID: 16038885 DOI: 10.1016/j.brainres.2005.06.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 06/13/2005] [Accepted: 06/14/2005] [Indexed: 12/15/2022]
Abstract
By using a double immunofluorescence method we examined co-localization of neurokinin-3 receptor (NK-3R) and N-methyl-D-aspartate (NMDA)/alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits in neurons of the substantia nigra of adult mice. Overlapping distribution of NMDA receptor subunit 1 (NR1)/AMPA receptor subunits 1-4 (GluR1-4) and NK-3R-immunoreactive neurons were found in the substantia nigra pars compacta. It revealed that all (100%) of NK-3R-positive neurons displayed NR1, GluR2 or GluR3 immunoreactivity, 80% of them showed GluR1 immunoreactivity. In contrast, these neurons exhibiting both NK-3R and GluR4 immunoreactivity were hardly detected although GluR4-positive neurons were still distributed in the substantia nigra. The co-expression of NK-3R and NMDA/AMPA receptor subunits in the nigral neurons has provided a structural basis for functional modulation of neuronal glutamate receptors by neurokinin-3, suggesting that neurokinin peptides may be involved in modulation of neuronal properties and excitotoxicity in the substantia nigra of basal ganglia.
Collapse
Affiliation(s)
- Yan-Qin Wang
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, P R China
| | | | | | | |
Collapse
|
38
|
Kuznetsov AS, Kopell NJ, Wilson CJ. Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. J Neurophysiol 2005; 95:932-47. [PMID: 16207783 DOI: 10.1152/jn.00691.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopaminergic neurons of the midbrain fire spontaneously at rates <10/s and ordinarily will not exceed this range even when driven with somatic current injection. When driven at higher rates, these cells undergo spike failure through depolarization block. During spontaneous bursting of dopaminergic neurons in vivo, bursts related to reward expectation in behaving animals, and bursts generated by dendritic application of N-methyl-d-aspartate (NMDA) agonists, transient firing attains rates well above this range. We suggest a way such high-frequency firing may occur in response to dendritic NMDA receptor activation. We have extended the coupled oscillator model of the dopaminergic neuron, which represents the soma and dendrites as electrically coupled compartments with different natural spiking frequencies, by addition of dendritic AMPA (voltage-independent) or NMDA (voltage-dependent) synaptic conductance. Both soma and dendrites contain a simplified version of the calcium-potassium mechanism known to be the mechanism for slow spontaneous oscillation and background firing in dopaminergic cells. The compartments differ only in diameter, and this difference is responsible for the difference in natural frequencies. We show that because of its voltage dependence, NMDA receptor activation acts to amplify the effect on the soma of the high-frequency oscillation of the dendrites, which is normally too weak to exert a large influence on the overall oscillation frequency of the neuron. During the high-frequency oscillations that result, sodium inactivation in the soma is removed rapidly after each action potential by the hyperpolarizing influence of the dendritic calcium-dependent potassium current, preventing depolarization block of the spike mechanism, and allowing high-frequency spiking.
Collapse
Affiliation(s)
- Alexey S Kuznetsov
- Center for BioDynamics and Mathematics Department, Boston University, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
39
|
Jones S, Gibb AJ. Functional NR2B- and NR2D-containing NMDA receptor channels in rat substantia nigra dopaminergic neurones. J Physiol 2005; 569:209-21. [PMID: 16141268 PMCID: PMC1464203 DOI: 10.1113/jphysiol.2005.095554] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NMDA receptors regulate burst firing of dopaminergic neurones in the substantia nigra pars compacta (SNc) and may contribute to excitotoxic cell death in Parkinson's disease (PD). In order to investigate the subunit composition of functional NMDA receptors in identified rat SNc dopaminergic neurones, we have analysed the properties of individual NMDA receptor channels in outside-out patches. NMDA (100 nm) activated channels corresponding to four chord conductances of 18, 30, 41 and 54 pS. Direct transitions were observed between all conductance levels. Between 18 pS and 41 pS conductance levels, direct transitions were asymmetric, consistent with the presence of NR2D-containing NMDA receptors. Channel activity in response to 100 nm or 200 microm NMDA was not affected by zinc or TPEN (N,N,N',N'-tetrakis-[2-pyridylmethyl]-ethylenediamine), indicating that SNc dopaminergic neurones do not contain functional NR2A subunits. The effect of the NR2B antagonist ifenprodil was complex: 1 microm ifenprodil reduced open probability, while 10 microm reduced channel open time but had no effect on open probability of channels activated by 100 nm NMDA. When the concentration of NMDA was increased to 200 microm, ifenprodil (10 microm) produced the expected reduction in open probability. These results indicate that NR2B subunits are present in SNc dopaminergic neurones. Taken together, these findings indicate that NR2D and NR2B subunits form functional NMDA receptor channels in SNc dopaminergic neurones, and suggest that they may form a triheteromeric NMDA receptor composed of NR1/NR2B/NR2D subunits.
Collapse
Affiliation(s)
- Susan Jones
- Department of Pharmacology, University College London, UK
| | | |
Collapse
|
40
|
Lee B, Platt DM, Rowlett JK, Adewale AS, Spealman RD. Attenuation of behavioral effects of cocaine by the Metabotropic Glutamate Receptor 5 Antagonist 2-Methyl-6-(phenylethynyl)-pyridine in squirrel monkeys: comparison with dizocilpine. J Pharmacol Exp Ther 2005; 312:1232-40. [PMID: 15550570 DOI: 10.1124/jpet.104.078733] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Growing evidence suggests a role for metabotropic glutamate receptors (mGluRs) in the behavioral effects of cocaine related to its abuse. The mGluR5 subtype, in particular, has come under scrutiny due to its distribution in brain regions associated with drug addiction. This study investigated interactions between the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) and cocaine in squirrel monkeys whose lever-pressing behavior was 1) maintained under a second-order schedule of cocaine self-administration, 2) extinguished and then reinstated by cocaine priming, and 3) controlled by the discriminative stimulus (DS) effects of cocaine. Additional studies determined the effects of MPEP on unconditioned behaviors, coordination, and muscle resistance. In each experiment, the effects of MPEP were compared with those of the N-methyl-d-aspartate antagonist dizocilpine. MPEP attenuated cocaine self-administration, cocaine-induced reinstatement of drug seeking, and the DS effects of cocaine at doses that did not markedly impair motor function or operant behavior in the context of drug discrimination. Dizocilpine also attenuated cocaine self-administration, but it did not significantly alter cocaine-induced reinstatement of drug seeking, and it enhanced rather than attenuated the DS effects of cocaine. The findings point to a significant contribution of mGluR5 mechanisms in the behavioral effects of cocaine related to its abuse and suggest that MPEP has properties of a functional cocaine antagonist, which are not secondary to antagonism at NMDA receptors. The contrasting interactions of MPEP and dizocilpine with cocaine imply that glutamate acting through different metabotropic and ionotropic receptors may modulate the behavioral effects of cocaine in qualitatively different ways.
Collapse
Affiliation(s)
- Buyean Lee
- Harvard Medical School, New England Primate Research Center, P.O. Box 9102, Southborough, MA 01772-9102, USA
| | | | | | | | | |
Collapse
|
41
|
Suárez LM, Suárez F, Del Olmo N, Ruiz M, González-Escalada JR, Solís JM. Presynaptic NMDA autoreceptors facilitate axon excitability: a new molecular target for the anticonvulsant gabapentin. Eur J Neurosci 2005; 21:197-209. [PMID: 15654857 DOI: 10.1111/j.1460-9568.2004.03832.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Gabapentin is a drug with anticonvulsant and analgesic properties causing the reduction of neurotransmitter release. We show that one of the mechanisms implicated in this effect of gabapentin is the reduction of the axon excitability measured as an amplitude change of the presynaptic fibre volley (FV) in the CA1 area of rat hippocampal slices. Interestingly, we found that gabapentin-induced depression of FV is mimicked and occluded by NMDA receptor (NMDA-R) antagonists, indicating that these receptors are located presynaptically and are activated by ambient levels of glutamate. Conversely, NMDA application (20 microM, 10 min) elicits a reversible FV potentiation which is reduced by gabapentin. Both NMDA- and gabapentin-induced FV changes are partially explained by modifications in the firing threshold of individual fibres. Increasing [K(+)](o) does not mimic or occlude (at a concentration of 6.5 mM) the effect of NMDA on FV amplitude, which makes it unlikely that a rise in [K(+)](o) induced by NMDA receptor activation could indirectly participate in the potentiation of the FV. The NMDA-induced FV potentiation is independent of extracellular calcium presence but is completely inhibited in a low-Na(+) solution (50% reduction) or under NMDA channel block (high Mg(2+) or MK 801). These findings suggest that sodium entry through presynaptic NMDA-R channels facilitates axon excitability. The interaction of gabapentin with this newly described mechanism might contribute to its therapeutic benefits.
Collapse
Affiliation(s)
- Luz M Suárez
- Servicio de Neurobiología, Dpto de Investigación, Hospital Ramón y Cajal, Ctra. de Colmenar Km 9, Madrid 28034, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Bustos G, Abarca J, Campusano J, Bustos V, Noriega V, Aliaga E. Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. ACTA ACUST UNITED AC 2004; 47:126-44. [PMID: 15572168 DOI: 10.1016/j.brainresrev.2004.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2004] [Indexed: 11/28/2022]
Abstract
Dopaminergic nigrostriatal neurons may be considered as bipolar functional entities since they are endowed with the ability to synthesize, store and release the transmitter dopamine (DA) at the somatodendritic level in the substantia nigra (SN). Such dendritic DA release seems to be distinct from the transmitter release occurring at the axon terminal and seems to rely preferentially on volume transmission to exert its physiological effects. An increased glutamatergic (Gluergic) transmission into the SN facilitates such dendritic DA release via activation of NMDA-receptors (NMDA-Rs) and to a lesser extent through group II metabotropic glutamate receptors (mGluRs). In addition, nigral mGluRs functionally interact with NMDA-Rs in the SN, further modulating the NMDA-R-mediated increase of DA release from dendrites in the SN. In turn, dendritically released DA may exert, via D1 receptors, a tonic inhibitory control upon nigral glutamate (Glu). Furthermore, released DA, via D2/D3 autoreceptors, produces an autoinhibitory effect upon DA cell firing and its own release process. An increased Gluergic transmission into the SN may also induce, via activation of NMDA-Rs, an augmented expression of different brain-derived neurotrophic factor (BDNF) gene transcripts in this brain area. Pharmacological evidence suggests that non-NMDA-Rs could also participate in the regulation of BDNF gene expression in the SN. Glu-mediated changes of nigral BDNF expression could regulate, in turn, the expression of important transmitter-related proteins in the SN, such as different NMDA-R subunits, mGluRs and DA-D3 receptors. In conclusion, Glu-DA-BDNF interactions in the SN may play an important role in modulating the flow of neuronal information in this brain structure under normal conditions, as well as during adaptive and plastic responses associated with various neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Gonzalo Bustos
- Laboratory of Biochemical Pharmacology, Department of Cell and Molecular Biology, Catholic University of Chile, Alameda 340, Santiago 114-D, Chile.
| | | | | | | | | | | |
Collapse
|
43
|
Adell A, Artigas F. The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neurosci Biobehav Rev 2004; 28:415-31. [PMID: 15289006 DOI: 10.1016/j.neubiorev.2004.05.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 05/12/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
The release of dopamine in the ventral tegmental area (VTA) plays an important role in the autoinhibition of the dopamine neurons of the mesocorticolimbic system through the activation of somatodendritic dopamine D2 autoreceptors. Accordingly, the intra-VTA application of dopamine D2 receptor agonists reduces the firing rate and release of dopamine in the VTA, and this control appears to possess a tonic nature because the corresponding antagonists enhance the somatodendritic release of the transmitter. In addition, the release of dopamine in the VTA is increased by potassium or veratridine depolarization and abolished by tetrodotoxin and calcium omission. Overall, it appears that the somatodendritic release of dopamine is consistently lower than that in nerve endings. Apart from intrinsic dopaminergic mechanisms, other transmitter systems such as serotonin, noradrenaline, acetylcholine, GABA and glutamate play a role in the control of the activity of dopaminergic neurons of the VTA, although the final action depends on the particular receptor involved as well as the neuronal type where it is localized. Given the involvement of the mesocorticolimbic dopaminergic systems in the pathogenesis of severe neuropsychiatric disorders such as schizophrenia, the knowledge of the factors that regulate the release of dopamine in the VTA could provide new insight into the ethiogenesis of the disease as well as its implication on the mechanisms of action of therapeutic drugs.
Collapse
Affiliation(s)
- Albert Adell
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), Carrer Rosselló 161, 6th floor, E-08036 Barcelona, Spain.
| | | |
Collapse
|
44
|
Semba J, Akanuma N, Wakuta M, Tanaka N, Suhara T. Alterations in the expressions of mRNA for GDNF and its receptors in the ventral midbrain of rats exposed to subchronic phencyclidine. ACTA ACUST UNITED AC 2004; 124:88-95. [PMID: 15093689 DOI: 10.1016/j.molbrainres.2004.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2004] [Indexed: 11/18/2022]
Abstract
Phencyclidine (PCP) produces schizophrenia-like symptoms in normal humans. This suggests that the dysfunction of glutamatergic neurotransmission may play an important role in the pathology of schizophrenia. However, PCP also exerts its effect on the mesolimbic dopamine (DA) system and modulates DA function in the brain, the abnormality of which is proposed to be a main pathology of schizophrenia. Recently, glial cell-line derived neurotrophic factor (GDNF) has been shown to play a protective role for DA neurons against neurotoxic injuries and maintaining DA function in the brain. We hypothesized that subchronic PCP may alter the function of GDNF in the ventral midbrain, where DA cell bodies are localized. Male Wistar rats were injected intraperitoneally with PCP daily for 10 days at 5 or 10 mg/kg, and their brains were removed 24 h after the last injection. The expressions of GDNF and its receptor (GFRalpha-1 and c-ret) mRNAs in the substantia nigra compacta (SNC) and ventral tegmental area (VTA) were determined by non-radioactive in situ hybridization, and those of GDNF and c-ret mRNA were found to be increased after the PCP subchronic administration. No significant changes, however, were observed in the expressions of GFRalpha-1 and basic fibroblast growth factor. These results suggest that subchronic PCP may modulate the function of the GDNF system, which exerts a trophic action on DA neurons in the ventral midbrain.
Collapse
Affiliation(s)
- Jun'ichi Semba
- Division of Health Sciences, University of the Air, Wakaba, Mihama, Chiba, Japan.
| | | | | | | | | |
Collapse
|
45
|
Mueller HT, Haroutunian V, Davis KL, Meador-Woodruff JH. Expression of the ionotropic glutamate receptor subunits and NMDA receptor-associated intracellular proteins in the substantia nigra in schizophrenia. ACTA ACUST UNITED AC 2004; 121:60-9. [PMID: 14969737 DOI: 10.1016/j.molbrainres.2003.11.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
Multiple neurotransmitter systems have been implicated in the pathophysiology of schizophrenia. Dopamine hyperactivity has often been implicated in this illness. More recently, the glutamate hypothesis of schizophrenia suggests that NMDA receptor (NMDAR) hypofunction may also play a role in this illness. This is based primarily on studies showing that phencyclidine, an NMDAR antagonist, can induce a schizophreniform psychosis. While NMDAR dysfunction is most often implicated in schizophrenia, other components of the glutamate system, such as the AMPA and kainate receptors, as well as NMDAR-associated intracellular proteins, may also play a role in regulating NMDA receptor activity and glutamate neurotransmission. There is growing interest in the hypothesis that the pathophysiology of schizophrenia involves alterations in dopamine-glutamate interactions. The glutamate system is anatomically and functionally linked to the dopamine system, and glutamate can modulate dopaminergic activity and release by stimulating various glutamate receptor subtypes expressed by dopaminergic neurons in the substantia nigra/ventral tegmental area. In this study, we investigated dopamine-glutamate interactions by measuring the expression of transcripts encoding the subunits for the ionotropic glutamate receptors (NMDA, AMPA and kainate) and five NMDAR-associated intracellular proteins, PSD-93, PSD-95, SAP102, NF-L and yotiao in the dopaminergic neurons in the substantia nigra pars compacta (SNc) of subjects with schizophrenia and a comparison group. Tyrosine hydroxylase (TH, a marker of dopamine-synthesizing cells), NR1 (an NMDA receptor subunit) and GluR5 (a kainate subunit) transcript levels were significantly increased in the SNc in schizophrenia. These data support the hypothesis that schizophrenia may involve alterations in dopamine-glutamate interactions.
Collapse
Affiliation(s)
- Helena T Mueller
- Department of Psychiatry and Mental Health Research Institute, University of Michigan, Medical School, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, USA.
| | | | | | | |
Collapse
|
46
|
Garzón M, Pickel VM. Ultrastructural localization of Leu5-enkephalin immunoreactivity in mesocortical neurons and their input terminals in rat ventral tegmental area. Synapse 2004; 52:38-52. [PMID: 14755631 DOI: 10.1002/syn.20000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enkephalin (ENK) immunoreactivity is widely distributed in the ventral tegmental area (VTA), where endogenous ENK and dynorphin opioid peptides are known to have opposing actions in reward, stress, cognition, and fear-related behaviors. Many neurons in the VTA give rise to mesocortical projections terminating in the medial prefrontal cortex (mPFC), and these projections have been implicated to varying extents in all these functions. To determine whether there is a synaptic basis for ENK and/or dynorphin modulation of cortically projecting neurons within the VTA, we combined retrograde tract-tracing from the mPFC with dual immunocytochemical-labeling electron microscopy in the rat VTA. The retrograde tracer Fluorogold (FG) was microinjected into mPFC. At optimal survival periods, sections through the VTA were processed for immunolabeling of anti-FG and a Leu(5)-ENK antibody recognizing both ENK and dynorphin peptides. Over 26% of the retrogradely labeled neuronal somatodendritic profiles (n = 177) were contacted by ENK-immunoreactive axonal profiles including small axons and axon terminals. The axon terminals varied in their subcellular distribution of ENK immunoreactivity and also differed in forming either inhibitory-type (symmetric) or excitatory-type (asymmetric) synapses. Many of the axonal profiles also were apposed to FG-labeled somata or dendrites without forming recognizable synapses. Approximately one-third of the mesocortical neuronal perikarya also showed sparsely distributed somatodendritic ENK-immunoreactivity. Our results provide ultrastructural evidence that ENK and possibly dynorphin in the rat VTA have distributions consistent with involvement in diverse physiological actions affecting the output of mesocortical neurons, some of which also contain one or both peptides.
Collapse
Affiliation(s)
- Miguel Garzón
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021
| | | |
Collapse
|
47
|
Abstract
Stress is the major epigenetic factor that contributes to the etiology, pathophysiology, and treatment outcome of most psychiatric disorders. Understanding the mechanisms by which stress contributes to these processes can have important implications for improving therapeutic outcome. Considering that a dysfunctional prefrontal cortex has been implicated in many psychiatric disorders, such as schizophrenia and mood disorders, delineating mechanisms by which stress affects prefrontal cortex (PFC) function is critical to our understanding of the role of stress in influencing the disease process. This paper will review recent mechanistic information about the effects of stress on dopamine and glutamate neurotransmission in the PFC.
Collapse
Affiliation(s)
- Bita Moghaddam
- Department of Neuroscience, 446 Crawford Hall, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
48
|
Church WH, Hewett SJ. Relationship between NMDA receptor expression and MPP+ toxicity in cultured dopaminergic cells. J Neurosci Res 2003; 73:811-7. [PMID: 12949907 DOI: 10.1002/jnr.10732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been suggested that excitotoxicity could be contributing to dopamine cell loss after methylphenylpyridinium ion (MPP+) exposure, although the literature regarding this is contradictory. Given that in cell culture excitotoxicity has been reported to be dependent on culture age, we postulated that these discrepant results might be explained by a difference in developmental expression of N-methyl-D-aspartate (NMDA) receptors. To test this, mesencephalic cells were cultured and the number of dopaminergic neurons (tyrosine hydroxylase-immunoreactive cells [TH-IR] cells) expressing the NMDA R1 subunit (NR1) was determined using double-label immunofluorescence microscopy. An increase in the percentage of TH-IR cells expressing NR1 occurred over time in culture and this correlated with the toxicity of NMDA. At 7 days in vitro (DIV 7), only 17% (n=167 cells/4 experiments) of TH-IR cells expressed NR1 and these cells were insensitive to NMDA toxicity. This increased to 80% (n=254 cells/6 experiments) by DIV 11 and cultures were now susceptible to NMDA-induced injury. Cultures grown for either 7 or 11 days were treated for 48 hr with increasing concentrations of MPP= (0.5-20 microM) and the loss of dopaminergic neurons was determined by cell counting. Cultures at DIV 7 were more sensitive to MPP= than 11-day-old cultures (LD50= approximately 0.75 microM vs. 15 microM, respectively). Co-exposure to MK-801 (5 microM) did not protect against MPP+ toxicity in young cultures, but attenuated MPP+ toxicity in the older cultures, becoming statistically significant at 20 microM MPP+. These data indicate that the activation of NMDA receptors is not required for, but can contribute to, MPP(+)-induced neurodegeneration of dopaminergic cells in culture.
Collapse
Affiliation(s)
- William H Church
- Department of Chemistry/Neuroscience Program, Trinity College, Hartford, Connecticut 06106, USA.
| | | |
Collapse
|
49
|
Abstract
Chronic cocaine use in humans and animal models is known to lead to pronounced alterations in neuronal function in brain regions associated with drug reinforcement. To evaluate whether the alterations in gene expression in cocaine overdose victims are associated with specific dopamine populations in the midbrain, cDNA arrays and western blotting were used to compare gene and protein expression patterns between cocaine overdose victims and age-matched controls in the ventral tegmental area (VTA) and lateral substantia nigra (l-SN). Array analysis revealed significant up-regulation of numerous transcripts in the VTA, but not in the l-SN, of cocaine overdose victims including NMDAR1, GluR2, GluR5 and KA2 receptor mRNA (p < 0.05). No significant alterations between overdose victims and controls were observed for GluR1, R3 or R4 mRNA levels. Correspondingly, western blot analysis revealed VTA-selective up-regulation of CREB (p < 0.01), NMDAR1 (p < 0.01), GluR2 (p < 0.05), GluR5 (p < 0.01) and KA2 (p < 0.05) protein levels of cocaine overdose victims. The present results indicate that selective alterations of CREB and certain ionotropic glutamate receptor (iGluR) subtypes appear to be associated with chronic cocaine use in humans in a region-specific manner. Moreover, as subunit composition determines the functional properties of iGluRs, the observed changes may indicate alterations in the excitability of dopamine transmission underlying long-term biochemical and behavioral effects of cocaine in humans.
Collapse
Affiliation(s)
- Wen-Xue Tang
- Department of Pharmacology and Psychiatry/Behavioral Sciences, Yerkes National Primate Research Center, Neuroscience Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wendy H. Fasulo
- Department of Pharmacology and Psychiatry/Behavioral Sciences, Yerkes National Primate Research Center, Neuroscience Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deborah C. Mash
- Department of Neurology and Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida, USA
| | - Scott E. Hemby
- Department of Pharmacology and Psychiatry/Behavioral Sciences, Yerkes National Primate Research Center, Neuroscience Division, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
50
|
|