1
|
Kawasaki T, Fujimori KE, Imada J, Yuba S. Analysis of medaka GAP43 gene promoter activity in transgenic lines. Gene 2023:147590. [PMID: 37364694 DOI: 10.1016/j.gene.2023.147590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/03/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
We produced transgenic medaka fish lines that mimicked the expression of the GAP43 gene. Fish lines with the proximal 2-kilobase (kb) 5'-untranslated region (UTR) as the expression promoter specifically expressed enhanced green fluorescent protein (EGFP) in neural tissues, such as the brain, spinal cord, and peripheral nerves, and its expression decreased with growth, but persisted until adulthood. A functional analysis of the promoter using partially deleted UTRs revealed that functions related to neural tissue-specific promoter activity were widely distributed in the region upstream of the proximal 400-b. Furthermore, the distal half of the 2-kb UTR contributed to expression throughout the brain, while the region 400-b upstream of the proximal 600-b was strongly associated with expression in specific areas, such as the telencephalon. In addition, a region from 957 to 557 b upstream of the translation initiation site was important for the long-term maintenance of promoter activity into adulthood. Among the transcription factors with recognition sequences in this region, Sp1 and CREB1 have been suggested to play important roles in the GAP43 promoter expression characteristics, such as strong expression in the telencephalon and long-term maintenance of expression.
Collapse
Affiliation(s)
- Takashi Kawasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Kazuhiro E Fujimori
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-0046, Japan.
| | - Junko Imada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Shunsuke Yuba
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| |
Collapse
|
2
|
Chung D, Shum A, Caraveo G. GAP-43 and BASP1 in Axon Regeneration: Implications for the Treatment of Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8:567537. [PMID: 33015061 PMCID: PMC7494789 DOI: 10.3389/fcell.2020.567537] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/14/2020] [Indexed: 01/06/2023] Open
Abstract
Growth-associated protein-43 (GAP-43) and brain acid-soluble protein 1 (BASP1) regulate actin dynamics and presynaptic vesicle cycling at axon terminals, thereby facilitating axonal growth, regeneration, and plasticity. These functions highly depend on changes in GAP-43 and BASP1 expression levels and post-translational modifications such as phosphorylation. Interestingly, examinations of GAP-43 and BASP1 in neurodegenerative diseases reveal alterations in their expression and phosphorylation profiles. This review provides an overview of the structural properties, regulations, and functions of GAP-43 and BASP1, highlighting their involvement in neural injury response and regeneration. By discussing GAP-43 and BASP1 in the context of neurodegenerative diseases, we also explore the therapeutic potential of modulating their activities to compensate for neuron loss in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daayun Chung
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew Shum
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gabriela Caraveo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
3
|
Holahan MR. A Shift from a Pivotal to Supporting Role for the Growth-Associated Protein (GAP-43) in the Coordination of Axonal Structural and Functional Plasticity. Front Cell Neurosci 2017; 11:266. [PMID: 28912688 PMCID: PMC5583208 DOI: 10.3389/fncel.2017.00266] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 11/14/2022] Open
Abstract
In a number of animal species, the growth-associated protein (GAP), GAP-43 (aka: F1, neuromodulin, B-50, G50, pp46), has been implicated in the regulation of presynaptic vesicular function and axonal growth and plasticity via its own biochemical properties and interactions with a number of other presynaptic proteins. Changes in the expression of GAP-43 mRNA or distribution of the protein coincide with axonal outgrowth as a consequence of neuronal damage and presynaptic rearrangement that would occur following instances of elevated patterned neural activity including memory formation and development. While functional enhancement in GAP-43 mRNA and/or protein activity has historically been hypothesized as a central mediator of axonal neuroplastic and regenerative responses in the central nervous system, it does not appear to be the crucial substrate sufficient for driving these responses. This review explores the historical discovery of GAP-43 (and associated monikers), its transcriptional, post-transcriptional and post-translational regulation and current understanding of protein interactions and regulation with respect to its role in axonal function. While GAP-43 itself appears to have moved from a pivotal to a supporting factor, there is no doubt that investigations into its functions have provided a clearer understanding of the biochemical underpinnings of axonal plasticity.
Collapse
|
4
|
Bossi F, Fan J, Xiao J, Chandra L, Shen M, Dorone Y, Wagner D, Rhee SY. Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction. BMC Genomics 2017; 18:480. [PMID: 28651538 PMCID: PMC5485742 DOI: 10.1186/s12864-017-3853-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. RESULTS To identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation. We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. CONCLUSIONS Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.
Collapse
Affiliation(s)
- Flavia Bossi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Jue Fan
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Lilyana Chandra
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Max Shen
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Yanniv Dorone
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
- Department of Biology, Stanford University, Stanford, California, 94305 USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| |
Collapse
|
5
|
Williams KR, McAninch DS, Stefanovic S, Xing L, Allen M, Li W, Feng Y, Mihailescu MR, Bassell GJ. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Mol Biol Cell 2015; 27:518-34. [PMID: 26658614 PMCID: PMC4751602 DOI: 10.1091/mbc.e15-07-0504] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022] Open
Abstract
A novel posttranscriptional mechanism for regulating the neuronal protein GAP-43 is reported. The mRNA-binding protein hnRNP-Q1 represses Gap-43 mRNA translation by a mechanism involving a 5′ untranslated region G-quadruplex structure, which affects GAP-43 function, as demonstrated by a GAP-43–dependent increase in neurite length and number with hnRNP-Q1 knockdown. Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development.
Collapse
Affiliation(s)
- Kathryn R Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Damian S McAninch
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Snezana Stefanovic
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Megan Allen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Wenqi Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
6
|
Kusik BW, Hammond DR, Udvadia AJ. Transcriptional regulatory regions of gap43 needed in developing and regenerating retinal ganglion cells. Dev Dyn 2010; 239:482-95. [PMID: 20034105 DOI: 10.1002/dvdy.22190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammals and fish differ in their ability to express axon growth-associated genes in response to CNS injury, which contributes to the differences in their ability for CNS regeneration. Previously we demonstrated that for the axon growth-associated gene, gap43, regions of the rat promoter that are sufficient to promote reporter gene expression in the developing zebrafish nervous system are not sufficient to promote expression in regenerating retinal ganglion cells in zebrafish. Recently, we identified a 3.6-kb gap43 promoter fragment from the pufferfish, Takifugu rubripes (fugu), that can promote reporter gene expression during both development and regeneration. Using promoter deletion analysis, we have found regions of the 3.6-kb fugu gap43 promoter that are necessary for expression in regenerating, but not developing, retinal ganglion cells. Within the 3.6-kb promoter, we have identified elements that are highly conserved among fish, as well as elements conserved among fish, mammals, and birds.
Collapse
Affiliation(s)
- Brandon W Kusik
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
7
|
Wigerius M, Melik W, Elväng A, Johansson M. Rac1 and Scribble are targets for the arrest of neurite outgrowth by TBE virus NS5. Mol Cell Neurosci 2010; 44:260-71. [PMID: 20363326 DOI: 10.1016/j.mcn.2010.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/09/2010] [Accepted: 03/29/2010] [Indexed: 01/09/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes extensive CNS disease in humans known as TBE, however, relatively little is known of the molecular mechanisms for its progress. Here, we now show that TBEV produces defects in neuronal development of PC12 cells through a function of the viral NS5 protein. The methyltransferase domain of NS5 is critical and sufficient for restriction of nerve growth factor induced neurite outgrowth. This effect is reversed by expression of NS5 mutants unable to bind Scribble and unexpectedly, in Scribble depleted cells with binding-competent NS5. Furthermore, we also demonstrate that the Rho GTPase Rac1 and the guanine nucleotide-exchange factor, betaPIX are outcompeted by NS5 for binding to Scribble, linking to effects on neurite outgrowth by TBEV. Together, these findings provide the first experimental evidence that Rac1 and betaPIX are indirect targets of NS5 acting through the multifunctional polarity protein Scribble to oppose neuronal differentiation. In conclusion, our results offer a potential mechanism by which TBEV alters neuronal circuitry and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Michael Wigerius
- School of Life Sciences, Södertörn University, SE-141 89 Huddinge, Sweden
| | | | | | | |
Collapse
|
8
|
Fujimori KE, Kawasaki T, Deguchi T, Yuba S. Characterization of a nervous system-specific promoter for growth-associated protein 43 gene in Medaka (Oryzias latipes). Brain Res 2008; 1245:1-15. [PMID: 18951884 DOI: 10.1016/j.brainres.2008.09.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 09/17/2008] [Accepted: 09/23/2008] [Indexed: 12/29/2022]
Abstract
Genes expressed by neurons are controlled by specific, interacting cis-regulatory elements and trans-acting factors within their promoters. In the present study, we asked whether the transcriptional machinery regulating neuron-specific gene expression was conserved in evolution. We identified a GAP-43 homolog in Medaka (Oryzias latipes), and analyzed its expression during various stages of development. Compared with the amino acid sequences of GAP-43 homologs in other vertebrates, the amino-terminus of GAP-43 was highly conserved evolutionarily, but the carboxy-terminus exhibited significant variability. Expression of GAP-43 predominantly occurred in cells of the central and peripheral nervous systems as determined by in situ hybridization and by RT-PCR. Expression of GAP-43 increased throughout development and significant levels continued to be expressed into adulthood. We also showed that a proximal approximately 2.0 kbp fragment in the 5'-flanking region had promoter activity as determined by in vivo reporter assays. Furthermore, based upon computational analysis of transcription factor binding sites and an in vivo reporter analysis using sequentially deleted promoters, we demonstrated that cis-regulatory elements for neuronal expression were widely distributed in this region. In mammals, a TATA-box, E-box and neuronal repressive elements have been thought to contribute to neuronal expression. However, these features were not found in the orthologous region of the Medaka GAP-43 promoter. Our results suggest that the arrangement of cis-regulatory elements of the GAP-43 ortholog in Medaka is different from that in mammals, yet maintains neuron-specific regulation.
Collapse
Affiliation(s)
- Kazuhiro E Fujimori
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Nakoji 3-11-46, Amagasaki, Hyogo 661-0974, Japan.
| | | | | | | |
Collapse
|
9
|
Hoo RLC, Chan KYY, Leung FKY, Lee LTO, Leung PCK, Chow BKC. Involvement of NF-κB subunit p65 and retinoic acid receptors, RARα and RXRα, in transcriptional regulation of the human GnRH II gene. FEBS J 2007; 274:2695-706. [PMID: 17451432 DOI: 10.1111/j.1742-4658.2007.05804.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) I and II are hypothalamic decapeptides with pivotal roles in the development of reproductive competence and regulation of reproductive events. In this study, transcriptional regulation of the human GnRH II gene was investigated. By scanning mutation analysis coupled with transient promoter assays, the motif at -641/-636 (CATGCC, designated GII-Sil) was identified as a repressor element. Mutation of this motif led to full restoration of promoter activity in TE671 medulloblastoma and JEG-3 placenta choriocarcinoma cells. Supershift and chromatin immunoprecipitation assays showed in vitro and in vivo binding of NF-kappaB subunit p65 and the retinoic acid receptors, RARalpha and RXRalpha, to the promoter sequences. Over-expression of these protein factors indicated that p65 is a potent repressor, and the RARalpha/RXRalpha heterodimer is involved in the differential regulation of the GnRH II gene in neuronal and placental cells. This was confirmed by quantitative real-time PCR. Treatment of cells with the RARalpha/RXRalpha ligands, all-trans retinoic acid and 9-cis-retinoic acid, reduced and increased GnRH II gene expression in TE671 and JEG-3 cells, respectively. Taken together, these data demonstrate the differential roles of NF-kappaB p65 and RARalpha/RXRalpha, interacting with the same sequence in the promoter of the human GnRH II gene to influence gene expression in a cell-specific manner.
Collapse
Affiliation(s)
- Ruby L C Hoo
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
10
|
Chen PY, Chang WSW, Chou RH, Lai YK, Lin SC, Chi CY, Wu CW. Two non-homologous brain diseases-related genes, SERPINI1 and PDCD10, are tightly linked by an asymmetric bidirectional promoter in an evolutionarily conserved manner. BMC Mol Biol 2007; 8:2. [PMID: 17212813 PMCID: PMC1796892 DOI: 10.1186/1471-2199-8-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 01/09/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Despite of the fact that mammalian genomes are far more spacious than prokaryotic genomes, recent nucleotide sequencing data have revealed that many mammalian genes are arranged in a head-to-head orientation and separated by a small intergenic sequence. Extensive studies on some of these neighboring genes, in particular homologous gene pairs, have shown that these genes are often co-expressed in a symmetric manner and regulated by a shared promoter region. Here we report the identification of two non-homologous brain disease-related genes, with one coding for a serine protease inhibitor (SERPINI1) and the other for a programmed cell death-related gene (PDCD10), being tightly linked together by an asymmetric bidirectional promoter in an evolutionarily conserved fashion. This asymmetric bidirectional promoter, in cooperation with some cis-acting elements, is responsible for the co-regulation of the gene expression pattern as well as the tissue specificity of SERPINI1 and PDCD10. RESULTS While SERPINI1 is predominantly expressed in normal brain and down-regulated in brain tumors, PDCD10 is ubiquitously expressed in all normal tissues but its gene transcription becomes aberrant in different types of cancers. By measuring the luciferase activity in various cell lysates, their 851-bp intergenic sequence was shown to be capable of driving the reporter gene expression in either direction. A 175-bp fragment from nt 1 to 175 in the vicinity of PDCD10 was further determined to function as a minimal bidirectional promoter. A critical regulatory fragment, from nt 176-473 outside the minimal promoter in the intergenic region, was identified to contain a strong repressive element for SERPINI1 and an enhancer for PDCD10. These cis-acting elements may exist to help coordinate the expression and regulation of the two flanking genes. CONCLUSION For all non-homologous genes that have been described to be closely adjacent in the mammalian genomes, the intergenic region of the head-to-head PDCD10-SERPINI1 gene pair provides an interesting and informative example of a complex regulatory system that governs the expression of both genes not only through an asymmetric bidirectional promoter, but also through fine-tuned regulations with some cis-acting elements.
Collapse
Affiliation(s)
- Ping-Yen Chen
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
- Department of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Wun-Shaing W Chang
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Ruey-Hwang Chou
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Yiu-Kay Lai
- Department of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
- Department of Bioresources, Da-Yeh University, Changhua County 515, Taiwan, ROC
| | - Sheng-Chieh Lin
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chia-Yi Chi
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Cheng-Wen Wu
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| |
Collapse
|
11
|
Takahashi M, Sato Y, Nakagami Y, Miyake K, Iijima S. Identification of cis-acting regions that contribute to neuron-specific expression of the GAP-43 gene. Biosci Biotechnol Biochem 2006; 70:1492-5. [PMID: 16794332 DOI: 10.1271/bbb.50576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are two transcription start sites in the growth-associated protein 43 (GAP-43) promoter, and several repressive elements have been reported in the control region. But the repressive effects have been analyzed only for the distal transcription start site. Among the repressive elements reported, we found that modulator I repressed GAP-43 gene expression from the proximal promoter in non-neuronal cells. We also found a novel stimulative element immediately downstream of modulator I.
Collapse
Affiliation(s)
- Mikio Takahashi
- Department of Biotechnology, Graduate School of Engieering, Nagoya University
| | | | | | | | | |
Collapse
|
12
|
Ward ME, Toporsian M, Scott JA, Teoh H, Govindaraju V, Quan A, Wener AD, Wang G, Bevan SC, Newton DC, Marsden PA. Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. J Clin Invest 2006; 115:3128-39. [PMID: 16276418 PMCID: PMC1265848 DOI: 10.1172/jci20806] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 08/30/2005] [Indexed: 11/17/2022] Open
Abstract
We tested the hypothesis that induction of neuronal NO synthase (nNOS) impairs vascular smooth muscle contractility after hypoxia. nNOS protein was increased in aorta, mesenteric arterioles, pulmonary arteries, brain, and diaphragm from rats exposed to 8% O2 for 48 hours and in human aortic SMCs after hypoxic incubation (1% O2). Ca-dependent NO synthase activity was increased in endothelium-denuded aortic segments from hypoxia-exposed rats. N-nitro-L-arginine methyl ester enhanced the contractile responses of endothelium-denuded aortic rings and mesenteric arterioles from hypoxia-exposed but not normoxic rats (P < 0.05). The hypoxia-inducible mRNA transcript expressed by human cells was found to contain a novel 5'-untranslated region, consistent with activation of transcription in the genomic region contiguous with exon 2. Translational efficiency of this transcript is markedly increased compared with previously described human nNOS mRNAs. Transgenic mice possessing a lacZ reporter construct under control of these genomic sequences demonstrated expression of the construct after exposure to hypoxia (8% O2, 48 hours) in the aorta, mesenteric arterioles, renal papilla, and brain. These results reveal a novel human nNOS promoter that confers the ability to rapidly upregulate nNOS expression in response to hypoxia with a functionally significant effect on vascular smooth muscle contraction.
Collapse
Affiliation(s)
- Michael E Ward
- Division of Respirology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Papadodima O, Sergaki M, Hurel C, Mamalaki A, Matsas R. Characterization of the BM88 promoter and identification of an 88 bp fragment sufficient to drive neurone-specific expression. J Neurochem 2005; 95:146-59. [PMID: 16181419 DOI: 10.1111/j.1471-4159.2005.03350.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BM88 is a neurone-specific protein implicated in cell cycle exit and differentiation of neuronal precursors. It is widely expressed in terminally differentiated neurones but also in neuronal progenitors, albeit in lower levels. Thus BM88 expression shows a tight correlation with the progression of progenitor cells towards neuronal differentiation. Here we report the genomic organization and proximal promoter characterization of the human and mouse BM88 genes. Both promoters lie in a CpG island, are TATA-less and have multiple transcription start sites. Deletion analysis performed on the human BM88 gene revealed an 88 bp minimal promoter fragment that is preferentially active in neural cells. Importantly, this minimal promoter is sufficient to confer specific transcriptional activity in primary neurones, but not in glial cells. Within the promoter region there are four functional Sp1-binding sites. Simultaneous mutations to all four Sp1 sites results in complete loss of promoter activity. Transactivation experiments revealed that Sp1 directly activates the BM88 promoter while activation also occurs in the presence of neurogenin-1. Characterization of the promoter elements that control neurone-specific and developmental expression of BM88 should contribute to the elucidation of the transcriptional networks that regulate the transition from a proliferative neural progenitor to a post-mitotic neurone.
Collapse
Affiliation(s)
- Olga Papadodima
- Department of Biochemistry, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | | | | |
Collapse
|
14
|
Liu A, Zhuang Z, Hoffman PW, Bai G. Functional analysis of the rat N-methyl-D-aspartate receptor 2A promoter: multiple transcription starts points, positive regulation by Sp factors, and translational regulation. J Biol Chem 2003; 278:26423-34. [PMID: 12746457 DOI: 10.1074/jbc.m211165200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
N-Methyl-d-aspartate (NMDA) receptor subunit 2A (NR2A) is an important modulatory component of the NMDA subtype of glutamate receptors. To investigate the transcription mechanism of the NR2A gene, we cloned the 5'-flanking sequence from a rat genomic library. RNA mapping with rat brain RNA revealed two sets of major and several minor transcription start points in a single exon of 1140 bp. Reporter gene and mutation studies indicated that core promoter activity resided in exon 1, whereas the 5'-flanking sequence up to 1.5 kb showed no significant impact on promoter activity. Fragments containing minor transcription start points were able to drive a reporter gene in transfected cells and produce nascent RNAs in an in vitro transcription system. All fragments tested showed more promoter activity in dissociated neurons of the rat embryonic cerebrocortex and cell lines expressing NR2A mRNA than that in glial cultures and non-neuronal cells. Within exon 1 there are three GC-box elements that displayed distinct binding affinity to both Sp1- and Sp4-like factors. Overexpression of Sp1 or Sp4, but not Sp3, significantly increased the activity of the promoter containing these elements. Inclusion of exon 2 and 3 sequences, which contain five short open-reading frames, attenuated promoter-driven reporter activity more than 3-fold but attenuated the level of reporter mRNA less than 1.4-fold. Our results suggest that the core promoter of the rat NR2A gene requires exon 1, that Sp factors positively regulate this core promoter, and that a post-transcriptional mechanism may negatively regulate expression of the gene.
Collapse
Affiliation(s)
- Anguo Liu
- Department of Oral & Craniofacial Biological Sciences, University of Maryland Dental School and Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
15
|
Mori N, Morii H. SCG10-related neuronal growth-associated proteins in neural development, plasticity, degeneration, and aging. J Neurosci Res 2002; 70:264-73. [PMID: 12391585 DOI: 10.1002/jnr.10353] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuronal growth-associated proteins (nGAPs) are in general neuron-specific gene products whose expression correlates tightly with neuronal process outgrowth and/or regeneration, and are mostly good downstream targets of neurotrophin stimulation. Expression of genes encoding nGAPs such as GAP-43, SCG10, and stathmin is upregulated following lesioning of cortical and hippocampal regions of the adult rat brain. In the brains of aged animals, however, the magnitude of the response is reduced, whereas the time course of the response is mostly unchanged when compared with that for brains of young ones. Expression of GAP-43 and stathmin is reduced by aging, and is also changed in age-related neurodegenerative conditions such as Alzheimer's disease in humans. Certain nGAPs are induced during long-term potentiation (LTP) and also during critical periods of song-learning and ocular dominance column formation in birds and cats, respectively. Recent evidence further supports the idea that functional synaptic modulation is often associated with remodeling of synaptic structures. These results suggest that neurotrophin-responsive nGAPs serve as molecular markers of neuronal plasticity during development and aging, and that the neuronal plasticity decreases, at least in certain neuronal circuits, in the aged brain and neurodegenerative diseases. Recent findings on the roles of stathmin and SCG10-related proteins in microtubule destabilization and its functional block by phosphorylation further support the importance of the SCG10 family proteins in neuronal cytoskeletal regulation, particularly as to microtubule dynamics. We summarize here a decade of research on SCG10 and its related molecules with special interests to brain aging and disease.
Collapse
Affiliation(s)
- Nozomu Mori
- Department of Molecular Genetics, National Institute for Longevity Sciences, and Program of "Protecting the Brain", CREST, JST, Morioka, Oobu, Aichi, Japan.
| | | |
Collapse
|
16
|
Saur D, Seidler B, Paehge H, Schusdziarra V, Allescher HD. Complex regulation of human neuronal nitric-oxide synthase exon 1c gene transcription. Essential role of Sp and ZNF family members of transcription factors. J Biol Chem 2002; 277:25798-814. [PMID: 11960979 DOI: 10.1074/jbc.m109802200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neuronal nitric-oxide synthase (nNOS) is expressed in a variety of human tissues and shows a complex transcriptional regulation with the presence of nine alternative first exons (1a-1i) resulting in nNOS transcripts with differing 5'-untranslated regions. We previously demonstrated that nNOS exon 1c, one of the predominant transcripts in the human gastrointestinal tract, is driven by a separate promoter (Saur, D., Paehge, H., Schusdziarra, V., and Allescher, H. D. (2000) Gastroenterology 118, 849-858). The present study focused on the quantitative expression of nNOS first exon variants in different human tissues and the characterization of the basal nNOS exon 1c promoter. In human brain, skeletal muscle, colon, and TGW-nu-I neuroblastoma cells, first exon expression patterns were analyzed by quantitative real-time reverse transcription-PCR. In these tissues/cells exon 1c was one of the most abundant first exons of nNOS. By transient transfections of TGW-nu-I and HeLa cells with reporter plasmids containing a series of 5' and 3' deletions in the exon 1c regulatory region, the minimal TATA-less promoter was localized within 44 base pairs. Gel mobility shift assays of this cis-regulatory region revealed a high complexity of the basal promoter with a cooperative binding of several transcription factors, like Sp and ZNF family members. When the Sp binding site of the minimal promoter construct was mutated, promoter activity was completely abolished in both cell lines, whereas mutation of the common binding site of ZNF76 and ZNF143 resulted in a decrease of 53% in TGW-nu-I and 37% in HeLa cells. In Drosophila Schneider cells expression of Sp1, the long Sp3 isoform, ZNF76 and ZNF143 potently transactivated the nNOS exon 1c promoter. These results identify the critical regulatory region for the nNOS exon 1c basal promoter and stress the functional importance of multiple protein complexes involving Sp and ZNF families of transcription factors in regulating nNOS exon 1c transcription.
Collapse
Affiliation(s)
- Dieter Saur
- Department of Internal Medicine II, Technische Universität München, Germany.
| | | | | | | | | |
Collapse
|
17
|
Katsuyama Y, Matsumoto J, Okada T, Ohtsuka Y, Chen L, Okado H, Okamura Y. Regulation of synaptotagmin gene expression during ascidian embryogenesis. Dev Biol 2002; 244:293-304. [PMID: 11944938 DOI: 10.1006/dbio.2002.0584] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ascidian embryo, a model for the primitive mode of chordate development, rapidly forms a dorsal nervous system which consists of a small number of neurons. Here, we have characterized the transcriptional regulation of an ascidian synaptotagmin (syt) gene to explore the molecular mechanisms underlying development of synaptic transmission. In situ hybridization showed that syt is expressed in all neurons described in previous studies and transiently in the embryonic epidermis. Neuronal expression of syt requires induction from the vegetal side of the embryo, whereas epidermal expression occurs autonomously in isolated ectodermal blastomeres. Introduction of green fluorescent protein reporter gene constructs into the ascidian embryos indicates that a genomic fragment of the 3.4-kb 5' upstream region contains promoter elements of syt gene. Deletion analysis of the promoter suggests that syt expression in neurons and in the embryonic epidermis depends on distinct cis-regulatory regions.
Collapse
Affiliation(s)
- You Katsuyama
- Molecular Neurobiology Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Francis N, Deneris ES. Retinal neuron activity of ETS domain-binding sites in a nicotinic acetylcholine receptor gene cluster enhancer. J Biol Chem 2002; 277:6511-9. [PMID: 11734552 DOI: 10.1074/jbc.m105616200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAchRs) mediate amacrine to ganglion cell synaptic transmission in the developing mammalian retina. The clustered neuronal nAchRs subunit genes, alpha 3 and beta 4, are expressed in amacrine and ganglion cells where they are used to assemble functional receptor subtypes. The transcriptional mechanisms underlying expression of these subunits in retina are not yet known but may involve enhancers that are selectively active in retinal neurons. We previously identified a neuron-selective enhancer, beta 43', whose activity in neural cell lines is dependent on ETS domain-binding sites. To determine whether beta 43' is active in retinal neurons that express the alpha 3 and beta 4 genes, we investigated beta 43' activity in primary dissociated rat retinal cultures. We found that beta 43' is selectively active in retinal neurons compared with retinal non-neuronal cells. This activity was derived primarily from amacrine and ganglion neurons, which are the retinal neuron cell types that express the clustered genes. Moreover, beta 43' was selectively active in retinal neurons compared with cerebral cortical neurons suggesting that it is not a pan-neuronal enhancer. ETS factor-binding sites in the enhancer are required for its retinal neuron activity. These findings suggest that ETS factor interactions with beta 43' control retinal neuron expression of certain nAchR subtypes.
Collapse
Affiliation(s)
- Nicole Francis
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
19
|
Boatright JH, Knox BE, Jones KM, Stodulkova E, Nguyen HT, Padove SA, Borst DE, Nickerson JM. Evidence of a tissue-restricting DNA regulatory element in the mouse IRBP promoter. FEBS Lett 2001; 504:27-30. [PMID: 11522290 DOI: 10.1016/s0014-5793(01)02662-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expression of interphotoreceptor retinoid binding protein (IRBP) is limited to photoreceptor cells of the retina and pinealocytes of the pineal gland. We sought to define cis-elements of the mouse IRBP 5' flanking region that are required for this restricted activity. In vitro transient transfections of retinoblastoma and neuroblastoma cells and in vivo experiments with transgenic Xenopus laevis indicate that -1783/+101 and -156/+101 IRBP gene fragments directed expression predominantly to the retina and pineal, with minor neuronal expression elsewhere. In contrast, a -70/+101 fragment was less restrictive in controlling expression, exhibiting activity not only in retina, but also in forebrain, hindbrain, spinal cord, and motor neurons innervating gills.
Collapse
Affiliation(s)
- J H Boatright
- Department of Ophthalmology, Emory Eye Center, Atlanta, University of Emory, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Borges K, Dingledine R. Functional organization of the GluR1 glutamate receptor promoter. J Biol Chem 2001; 276:25929-38. [PMID: 11340067 DOI: 10.1074/jbc.m009105200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GluR1 glutamate receptor subunit is expressed in most brain areas and plays a major role in excitatory synaptic transmission. We cloned and sequenced 5 kilobase pairs of the rat GluR1 promoter and identified multiple transcriptional start sites between -295 and -202 (relative to the first ATG). Similar to other glutamate receptor subunit promoters, the GluR1 promoter lacks TATA and CAAT elements in that region but binds Sp1 proteins at two sites. Promoter activity of GluR1 fragments cloned into pGL3 was assessed by immunocytochemistry and by measuring luciferase activity after transfection into primary cultures of rat cortical neurons and glia. GluR1 promoter activity was stronger in neurons, with neuronal specificity appearing to reside mainly within the neuronal expression-enhancing regions, -1395 to -743 and -253 to -48. The latter region contains 4 sites that bound recombinant cAMP-response element-binding proteins and a glial silencing region between -253 and -202. In both neurons and glia, promoter activity was increased by a 64-base pair GA repeat upstream of the initiation sites and reduced by a 57-base pair region that contained an N box. In contrast to the GluR2 promoter the regulatory regions are mainly located outside of the GluR1 initiation region.
Collapse
Affiliation(s)
- K Borges
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
21
|
Udvadia AJ, Köster RW, Skene JH. GAP-43 promoter elements in transgenic zebrafish reveal a difference in signals for axon growth during CNS development and regeneration. Development 2001; 128:1175-82. [PMID: 11245583 DOI: 10.1242/dev.128.7.1175] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A pivotal event in neural development is the point at which differentiating neurons become competent to extend long axons. Initiation of axon growth is equally critical for regeneration. Yet we have a limited understanding of the signaling pathways that regulate the capacity for axon growth during either development or regeneration. Expression of a number of genes encoding growth associated proteins (GAPs) accompanies both developmental and regenerative axon growth and has led to the suggestion that the same signaling pathways regulate both modes of axon growth. We have tested this possibility by asking whether a promoter fragment from a well characterized GAP gene, GAP-43, is sufficient to activate expression in both developing and regenerating neurons. We generated stable lines of transgenic zebrafish that express green fluorescent protein (GFP) under regulation of a 1 kb fragment of the rat GAP-43 gene, a fragment that contains a number of evolutionarily conserved elements. Analysis of GFP expression in these lines confirms that the rat 1 kb region can direct growth-associated expression of the transgene in differentiating neurons that extend long axons. Furthermore, this region supports developmental down-regulation of transgene expression which, like the endogenous gene, coincides with neuronal maturation. Strikingly, these same sequences are insufficient for directing expression in regenerating neurons. This finding suggests that signaling pathways regulating axon growth during development and regeneration are not the same. While these results do not exclude the possibility that pathways involved in developmental axon growth are also active in regenerative growth, they do indicate that signaling pathway(s) controlling activation of the GAP-43 gene after CNS injury differ in at least one key component from the signals controlling essential features of developmental axon growth.
Collapse
Affiliation(s)
- A J Udvadia
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
22
|
McDonough J, Francis N, Miller T, Deneris ES. Regulation of transcription in the neuronal nicotinic receptor subunit gene cluster by a neuron-selective enhancer and ETS domain factors. J Biol Chem 2000; 275:28962-70. [PMID: 10878018 DOI: 10.1074/jbc.m004181200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of neurotransmitter receptors encoded by the nicotinic acetylcholine receptor (nAchR) subunit gene cluster depends on coexpression of the beta4, alpha3, and alpha5 subunits in certain kinds of neurons. One way in which coexpression might be achieved is through the regulation of promoters in the cluster by neuron-selective enhancers. The beta43' enhancer is located between the beta4 and alpha3 promoters and it directs cell type-specific expression in cell lines. It is not known, however, whether beta43' is active in neurons. Therefore, we assayed beta43' in dissociated rat sympathetic ganglia cultures, which contain nAchR-positive neurons as well as nAchR-negative non-neuronal cells. Reporters controlled by the alpha3 promoter and beta43' were expressed in a neuron-selective manner; greater than 90% and up to 100% of luciferase expression was detected in neurons. Neuron selectivity was maintained when beta43' was placed next to ubiquitously active viral promoters. In contrast, replacing beta43' with the SV40 enhancer eliminated neuron selectivity. The enhancer is composed of at least two separate but functionally interdependent elements, each of which interacts with a different type of ETS domain factor. These findings support a model in which beta43' controls neuronal expression of one or more genes in the cluster through interactions with a combination of ETS factors.
Collapse
Affiliation(s)
- J McDonough
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
23
|
Anderson KD, Morin MA, Beckel-Mitchener A, Mobarak CD, Neve RL, Furneaux HM, Burry R, Perrone-Bizzozero NI. Overexpression of HuD, but not of its truncated form HuD I+II, promotes GAP-43 gene expression and neurite outgrowth in PC12 cells in the absence of nerve growth factor. J Neurochem 2000; 75:1103-14. [PMID: 10936192 DOI: 10.1046/j.1471-4159.2000.0751103.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that the RNA-binding protein HuD binds to a regulatory element in the growth-associated protein (GAP)-43 mRNA and that this interaction involves its first two RNA recognition motifs (RRMs). In this study, we investigated the functional significance of this interaction by overexpression of human HuD protein (pcHuD) or its truncated form lacking the third RRM (pcHuD I+II) in PC12 cells. Morphological analysis revealed that pcHuD cells extended short neurites containing GAP-43-positive growth cones in the absence of nerve growth factor (NGF). These processes also contained tubulin and F-actin filaments but were not stained with antibodies against neurofilament M protein. In correlation with this phenotype, pcHuD cells contained higher levels of GAP-43 without changes in levels of other NGF-induced proteins, such as SNAP-25 and tau. In mRNA decay studies, HuD stabilized the GAP-43 mRNA, whereas HuD I+II did not have any effect either on GAP-43 mRNA stability or on the levels of GAP-43 protein. Likewise, pcHuD I+II cells showed no spontaneous neurite outgrowth and deficient outgrowth in response to NGF. Our results indicate that HuD is sufficient to increase GAP-43 gene expression and neurite outgrowth in the absence of NGF and that the third RRM in the protein is critical for this function.
Collapse
Affiliation(s)
- K D Anderson
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Spier AD, de Lecea L. Cortistatin: a member of the somatostatin neuropeptide family with distinct physiological functions. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:228-41. [PMID: 11011067 DOI: 10.1016/s0165-0173(00)00031-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cortistatin is a recently discovered neuropeptide relative of somatostatin named after its predominantly cortical expression and ability to depress cortical activity. Cortistatin-14 shares 11 of the 14 amino acids of somatostatin-14 yet their nucleotide sequences and chromosomal localization clearly indicate they are products of separate genes. Now cloned from human, mouse and rat sources, cortistatin is known to bind all five cloned somatostatin receptors and share many pharmacological and functional properties with somatostatin including the depression of neuronal activity. However, cortistatin also has many properties distinct from somatostatin including induction of slow-wave sleep, apparently by antagonism of the excitatory effects of acetylcholine on the cortex, reduction of locomotor activity, and activation of cation selective currents not responsive to somatostatin. Expression of mRNA encoding cortistatin follows a circadian rhythm and is upregulated on deprivation of sleep, suggesting cortistatin is a sleep modulatory factor. This review summarizes recent advances in our understanding of the neurobiology of cortistatin, examines the similarities and differences between cortistatin and somatostatin, and asks the question: does cortistatin bind to a cortistatin-specific receptor?
Collapse
Affiliation(s)
- A D Spier
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, CA, USA
| | | |
Collapse
|
25
|
Givogri MI, Kampf K, Schonmann V, Campagnoni AT. Identification of a novel silencer that regulates the myelin basic protein gene in neural cells. Gene 2000; 252:183-93. [PMID: 10903450 DOI: 10.1016/s0378-1119(00)00223-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The myelin basic protein gene produces two families of proteins, the golli proteins and the 'classic' myelin basic proteins from three transcription start sites (tsp). The golli proteins are expressed from the first tsp, and little is known about genetic elements that control its activity. We have examined elements that may regulate the expression of the golli products produced from this promoter in neural cell lines with constructs containing upstream portions of the first tsp by transient transfection assays. Three putative regulatory elements were identified, among them a 345bp novel silencer region, termed the golli silencer region (GSR), which was characterized in detail. This silencer was responsible for a significant (approx. 60%) inhibition of luciferase expression in PC12 cells. It was orientation-dependent and a double dose of this GSR completely abolished expression of the luciferase reporter activity. Transfections with deleted constructs identified three critical sites that bind at least two repressor proteins. We postulate that the silencer activity is the result of synergistic interactions between these repressor proteins and might involve the formation of a high-ordered protein-DNA structure.
Collapse
Affiliation(s)
- M I Givogri
- Mental Retardation Research Center, University of California at Los Angeles, Medical School, 760 Westwood Plaza, 90024, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
26
|
Ou XM, Jafar-Nejad H, Storring JM, Meng JH, Lemonde S, Albert PR. Novel dual repressor elements for neuronal cell-specific transcription of the rat 5-HT1A receptor gene. J Biol Chem 2000; 275:8161-8. [PMID: 10713139 DOI: 10.1074/jbc.275.11.8161] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The level of expression of the 5-HT1A receptor in the raphe and limbic systems is implicated in the etiology and treatment of major depression and anxiety disorders. The rat 5-HT1A receptor gene is regulated by a proximal TATA-driven promoter and by upstream repressors that inhibit gene expression. Deletion of a 71-base pair (bp) segment between -1590/-1519 bp of the 5-HT1A receptor gene induced over 10-fold enhancement of transcriptional activity in both 5-HT1A receptor-expressing (RN46A raphe and SN48 septal) cells and receptor-negative (L6 myoblast and C6 glioma) cells. A 31-bp segment of the repressor was protected from DNase I digestion by RN46A or L6 nuclear extracts. Within the 31-bp segment, a single protein complex was present in receptor-expressing cells that bound a novel 14-bp DNA element; in receptor-negative cells, an additional complex bound an adjacent 12-bp sequence. In receptor-positive but not receptor-negative cells, mutation of the 14-bp element to eliminate protein binding abrogated repression to nearly the same extent as deletion of the -1590/-1519 bp segment. Additional mutation of both 14-bp and 12-bp elements abolished protein binding and repressor activity in receptor-negative cells. Thus a single protein-DNA complex at the 14-bp element represses the 5-HT1A receptor gene in 5-HT1A receptor-positive neuronal cells, whereas adjacent DNA elements provide a dual repression mechanism in 5-HT1A receptor-negative cells.
Collapse
Affiliation(s)
- X M Ou
- Neuroscience Research Institute, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Meijer OC, Williamson A, Dallman MF, Pearce D. Transcriptional repression of the 5-HT1A receptor promoter by corticosterone via mineralocorticoid receptors depends on the cellular context. J Neuroendocrinol 2000; 12:245-54. [PMID: 10718920 DOI: 10.1046/j.1365-2826.2000.00445.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The diverse effects of the corticosteroid hormones are mediated in large measure by the mineralocorticoid and glucocorticoid receptors, two closely related members of the nuclear receptor superfamily. In the brain, corticosteroids regulate neuronal excitability and responses to neurotransmitters in a cell type-specific manner. The 5-HT1A receptor, for example, is highly expressed in the hippocampus and raphe but transcription is repressed by corticosterone (the principal glucocorticoid in rodents) only in hippocampus. We have used transient transfection of cultured cells to study the transcriptional regulation of the 5-HT1A receptor promoter by activators and repression by glucocorticoids. We find that transcription factors Sp1 and NF-kB subunit p65, both of which are coexpressed in hippocampus with the 5-HT1A receptor in vivo, synergistically activate a reporter driven by receptor 5'-flanking region. Primer extension data suggest that the multiple transcription initiation sites used in reporter gene transcription correlate with those used in transcription of the endogenous gene which has a TATA-less promoter. Repression of transcription by corticosteroids was found to be mediated by both mineralocorticoid and glucocorticoid receptors, but not identically. While glucocorticoid receptors potently inhibited both p65- and p65/Sp1-stimulated transcription, repression via mineralocorticoid receptors (MR) depended on the transcriptional activators that were present: p65-stimulated reporter activity was not repressed via MR, whereas a similar level of transcription resulting from synergistic activation by p65/Sp1-stimulation was repressed via MR. The context-dependence of these MR-mediated effects provides a model for the cell-type and state-dependent actions of corticosterone in the brain.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Corticosterone/pharmacology
- Gene Deletion
- Hippocampus/cytology
- Hippocampus/metabolism
- NF-kappa B/pharmacology
- Promoter Regions, Genetic
- Rats
- Receptors, Glucocorticoid/physiology
- Receptors, Mineralocorticoid/drug effects
- Receptors, Mineralocorticoid/physiology
- Receptors, Serotonin/genetics
- Receptors, Serotonin, 5-HT1
- Sequence Analysis, DNA
- Sp1 Transcription Factor/pharmacology
- Transcription, Genetic/drug effects
- Transfection
Collapse
Affiliation(s)
- O C Meijer
- Department of Physiology, Division of Nephrology, University of California, San Francisco, CA, USA
| | | | | | | |
Collapse
|
28
|
Rife TK, Xie J, Redman C, Young AP. The 5'2 promoter of the neuronal nitric oxide synthase dual promoter complex mediates inducibility by nerve growth factor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:225-36. [PMID: 10686343 DOI: 10.1016/s0169-328x(99)00293-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is induced by nerve growth factor (NGF) in pheochromocytoma PC12 cells. Previous studies from our laboratory identified two closely linked promoters (designated 5'1 and 5'2) that mediate transcription of the human nNOS gene in the brain [J. Xie, P. Roddy, T.K. Rife, F. Murad, A.P. Young, Two closely linked but separable promoters for human neuronal nitric oxide synthase gene transcription, Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 1242-1246]. In this report, we demonstrate that luciferase fusion genes under transcriptional control by the 5'1 and 5'2 dual promoter complex are inducible by NGF in stably transformed PC12 cells. In sharp contrast, neither epidermal growth factor (EGF) nor fibroblast growth factor 2 (FGF2) are able to significantly enhance the expression of NOS-luciferase fusion genes. Deletion studies indicate that the 5'2 promoter plays a major role in mediating NGF inducibility. The 5'2 promoter contains six potential Ets binding sites as well as four potential AP1 binding sites. Thus, it is possible that activation of Ets and/or AP1 transcription factors by the Ras-Raf-MAP kinase cascade contributes to the NGF-mediated induction of nNOS.
Collapse
Affiliation(s)
- T K Rife
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
29
|
Mu W, Burt DR. The mouse GABA(A) receptor alpha3 subunit gene and promoter. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 73:172-80. [PMID: 10581410 DOI: 10.1016/s0169-328x(99)00258-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gamma-aminobutyric acid (GABA) type A receptors are multisubunit ligand-gated ion channels which mediate inhibition in the brain. The GABA(A) receptor alpha3 subunit gene exhibits extensive variation in its developmental and regional expression, but the detailed mechanisms governing the expression patterns of this gene remain unknown. We have cloned and begun to characterize the murine alpha3 subunit gene Gabra3. All but one of the 10 exons and the intron-exon boundaries have been sequenced; the first intron is in the 5' untranslated region (5'UTR) of the alpha3 mRNA. Rapid amplification of the cDNA 5'-end (5'-RACE) and RNase protection indicated many transcription start sites, with the major site (=+1) corresponding to a 5'UTR of 178 bases. Most sites were in or just downstream of a region of 55 (mouse) and 25 (human) GA repeats in the proximal promoter, as revealed by genome walking of Gabra3 and the human gene GABRA3. No canonical TATA or CAAT boxes or initiator (Inr) sites were found in either promoter, but both contained conserved consensus sites for several transcription factors. Progressive deletion of the mouse promoter produced positive or negative effects on expression of reporter (luciferase) constructs, with the highest observed activity in several types of transiently transfected cells for a construct containing bases -320 to +35. The GA repeats and a much shorter nearby series of four GC repeats, the first three of which are part of a consensus E2F site, appear to contribute significantly to mouse promoter activity. Upstream GA repeats enhanced activity of the SV40 promoter, and the GA repeat sequence bound nuclear proteins from several tissues.
Collapse
Affiliation(s)
- W Mu
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201-1559, USA
| | | |
Collapse
|
30
|
Calbet M, Guadaño-Ferraz A, Spier AD, Maj M, Sutcliffe JG, Przewłocki R, de Lecea L. Cortistatin and somatostatin mRNAs are differentially regulated in response to kainate. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:55-64. [PMID: 10521599 DOI: 10.1016/s0169-328x(99)00220-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cortistatin (CST) is a presumptive neuropeptide that shares 11 of its 14 amino acids with somatostatin (SST). CST and SST are expressed in partially overlapping but distinct populations of cortical interneurons. In the hippocampal formation, most CST-positive cells are also positive for SST. In contrast to SST, administration of CST into the rat brain ventricles reduces locomotor activity and specifically enhances slow wave sleep. Intracerebroventricular injection of CST or SST has been shown to protect against the neurotoxic effects of kainic acid. Here, we show that CST and SST mRNAs respond differently to kainate-induced seizures. Furthermore, comparison of the upstream sequences from the CST and SST precursor genes reveal that they contain binding motifs for different transcriptional regulatory factors. Our data demonstrate that CST and SST, which are often co-expressed in the same neurons, are regulated by different stimuli.
Collapse
Affiliation(s)
- M Calbet
- Department of Molecular Biology, MB-10, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Storring JM, Charest A, Cheng P, Albert PR. TATA-driven transcriptional initiation and regulation of the rat serotonin 5-HT1A receptor gene. J Neurochem 1999; 72:2238-47. [PMID: 10349831 DOI: 10.1046/j.1471-4159.1999.0722238.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional initiation and regulation of the rat serotonin 5-HT1A receptor gene were characterized. By three types of analyses, a single brain-specific site of transcriptional initiation was localized to -967 bp upstream of the translation initiation codon that is utilized both in hippocampus and in the rat raphe RN46A cell line. This major site of transcriptional initiation was located 58 bp downstream from a consensus TATA element, suggesting TATA-driven transcription of the rat 5-HT1A receptor. To identify the promoter activity of the receptor gene, progressive 5' deletions of the -2,719/-117-bp fragment of the 5-HT1A promoter linked to luciferase gene were transfected into 5-HT1A-negative (pituitary GH4C1, L6 myoblast, and C6 glioma) and 5-HT1A-positive (septal SN-48 and raphe RN46A) cell lines. Enhancer regions were identified within a fragment between nucleotides -426 and -117 that selectively enhanced transcription in 5-HT1A-positive cells. A nonselective enhancer/promoter that mediated expression in all cell lines was located upstream between -1,519 and -426 bp in a DNA segment containing consensus TATA, CCAAT, SP-1, and AP-1 elements as well as a poly-GT26 dinucleotide repeat. Strong repression of transcription in all cell lines was conferred by the region upstream of -1,519 bp that contains a 152-bp DNA segment with >80% identity to RANTES, tumor necrosis factor-beta, and other immune system genes. Our results indicate that TATA-driven expression of the 5-HT1A receptor is regulated by a novel proximal tissue-specific enhancer region, a nonselective promoter, and an upstream repressor region that is distinct from previously identified neuron-specific repressors.
Collapse
Affiliation(s)
- J M Storring
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
32
|
Abstract
Transcriptional and translational regulation of glutamate receptor expression determines one of the key phenotypic features of neurons in the brain--the properties of their excitatory synaptic receptors. Up- and down-regulation of various glutamate receptor subunits occur throughout development, following ischemia, seizures, repetitive activation of afferents, or chronic administration of a variety of drugs. The promoters of the genes that encode the NR1, NR2B, NR2C, GluR1, GluR2, and KA2 subunits share several characteristics that include multiple transcriptional start sites within a CpG island, lack of TATA and CAAT boxes, and neuronal-selective expression. In most cases, the promoter regions include overlapping Sp1 and GSG motifs near the major initiation sites, and a silencer element, to guide expression in neurons. Manipulating the levels of glutamate receptors in vivo by generating transgenic and knockout mice has enhanced understanding of the role of specific glutamate receptor subunits in long-term potentiation and depression, learning, seizures, neural pattern formation, and survival. Neuron-specific glutamate receptor promoter fragments may be employed in the design of novel gene-targeting constructs to deliver future experimental transgene and therapeutic agents to selected neurons in the brain.
Collapse
Affiliation(s)
- S J Myers
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
33
|
Carrión AM, Mellström B, Naranjo JR. Protein kinase A-dependent derepression of the human prodynorphin gene via differential binding to an intragenic silencer element. Mol Cell Biol 1998; 18:6921-9. [PMID: 9819380 PMCID: PMC109275 DOI: 10.1128/mcb.18.12.6921] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of the prodynorphin gene has been implicated in medium and long-term adaptation during memory acquisition and pain. By 5' deletion mapping and site-directed mutagenesis of the human prodynorphin promoter, we demonstrate that both basal transcription and protein kinase A (PKA)-induced transcription in NB69 and SK-N-MC human neuroblastoma cells are regulated by the GAGTCAAGG sequence centered at position +40 in the 5' untranslated region of the gene (named the DRE, for downstream regulatory element). The DRE repressed basal transcription in an orientation-independent and cell-specific manner when placed downstream from the heterologous thymidine kinase promoter. Southwestern blotting and UV cross-linking experiments with nuclear extracts from human neuroblastoma cells or human brain revealed a protein complex of approximately 110 kDa that specifically bound to the DRE. Forskolin treatment reduced binding to the DRE, and the time course paralleled that for an increase in prodynorphin gene expression. Our results suggest that under basal conditions, expression of the prodynorphin gene is repressed by occupancy of the DRE site. Upon PKA stimulation, binding to the DRE is reduced and transcription increases. We propose a model for human prodynorphin activation through PKA-dependent derepression at the DRE site.
Collapse
Affiliation(s)
- A M Carrión
- Instituto de Neurobiología, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | | | | |
Collapse
|
34
|
Longo BM, Mello LE. Supragranular mossy fiber sprouting is not necessary for spontaneous seizures in the intrahippocampal kainate model of epilepsy in the rat. Epilepsy Res 1998; 32:172-82. [PMID: 9761318 DOI: 10.1016/s0920-1211(98)00049-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In a previous study, we suggested a dissociation between spontaneous recurrent epileptic seizures (SRS) and hippocampal supragranular mossy fiber sprouting (MFS) in the pilocarpine model of epilepsy (PILO). One possible explanation, would be that SRS in the PILO model do not originate in the hippocampus and thus would not depend on MFS. In the present study, we investigated whether MFS is necessary for the SRS that develop after a small intrahippocampal dose of kainic acid (KA), a model where seizures are more likely to start in the hippocampus. Intrahippocampal injections of KA were performed in rats, with and without the concomitant administration of cycloheximide (CHX) (0.5 microg of KA and 6 microg of CHX). After injection, recording electrodes were positioned in the same stereotaxic location. Here again, CHX was able to completely block (5/8 animals) MFS, visualized by neo-Timm staining, without altering the frequency and intensity of spontaneous ictal and interictal EEG events. From these data, we can conclude that, in the intra-hippocampal KA model, MFS is not necessary for the occurrence of ictal events. We suggest that CHX can be used together with classic epileptogenic agents, as a means to study temporal lobe epilepsy (TLE) without the contributing effect of MFS--as seen in TLE patients with mass lesions in the lateral temporal lobe.
Collapse
Affiliation(s)
- B M Longo
- Department of Physiology, Universidade Federal se Sao Paulo-EPM, São Paulo SP, Brazil
| | | |
Collapse
|
35
|
Myers SJ, Peters J, Huang Y, Comer MB, Barthel F, Dingledine R. Transcriptional regulation of the GluR2 gene: neural-specific expression, multiple promoters, and regulatory elements. J Neurosci 1998; 18:6723-39. [PMID: 9712644 PMCID: PMC6792970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/1998] [Revised: 06/17/1998] [Accepted: 06/19/1998] [Indexed: 02/08/2023] Open
Abstract
To understand how neurons control the expression of the AMPA receptor subunit GluR2, we cloned the 5' proximal region of the rat gene and investigated GluR2 promoter activity by transient transfection. RNase protection and primer extension of rat brain mRNA revealed multiple transcription initiation sites from -340 to -481 bases upstream of the GluR2 AUG codon. The relative use of 5' start sites was different in cortex and cerebellum, indicating complexity of GluR2 transcript expression among different sets of neurons. When GluR2 promoter activity was investigated by plasmid transfection into cultured cortical neurons, cortical glia, and C6 glioma cells, the promoter construct with the strongest activity, per transfected cell, was 29.4-fold (+/- 3.7) more active in neurons than in non-neural cells. Immunostaining of cortical cultures showed that >97% of the luciferase-positive cells also expressed the neuronal marker MAP-2. Evaluation of internal deletion and substitution mutations identified a functional repressor element I RE1-like silencer and functional Sp1 and nuclear respiratory factor-1 (NRF-1) elements within a GC-rich proximal GluR2 promoter region. The GluR2 silencer reduced promoter activity in glia and non-neuronal cell lines by two- to threefold, was without effect in cortical neurons, and could bind the RE1-silencing transcription factor (REST) because cotransfection of REST into neurons reduced GluR2 promoter activity in a silencer-dependent manner. Substitution of the GluR2 silencer by the homologous NaII RE1 silencer further reduced GluR2 promoter activity in non-neuronal cells by 30-47%. Maximal positive GluR2 promoter activity required both Sp1 and NRF-1 cis elements and an interelement nucleotide bridge sequence. These results indicate that GluR2 transcription initiates from multiple sites, is highly neuronal selective, and is regulated by three regulatory elements in the 5' proximal promoter region.
Collapse
Affiliation(s)
- S J Myers
- Department of Pharmacology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
36
|
Weber JR, Skene JH. The activity of a highly promiscuous AP-1 element can be confined to neurons by a tissue-selective repressive element. J Neurosci 1998; 18:5264-74. [PMID: 9651209 PMCID: PMC6793474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1997] [Revised: 03/31/1998] [Accepted: 05/05/1998] [Indexed: 02/08/2023] Open
Abstract
Tissue-specific gene transcription can be determined by the use of either positive-acting or negative-acting DNA regulatory elements. We have analyzed a promoter from the growth-associated protein 43 (GAP-43) gene and found that it uses both of these mechanisms to achieve its high degree of neuron-specific activity. Two novel transcription factor binding sites, designated Cx1 and Cx2, drive promoter activity in neurons from developing cerebral cortex but not in several other cell types. The promoter also contains an activator protein 1 (AP-1) site that contributes to activity in neurons. The AP-1 site can drive promoter activity in a wide range of non-neuronal cells that express little or no endogenous GAP-43, but only in the absence of a tissue-specific repressive element located downstream of the GAP-43 TATA box. These findings suggest that the GAP-43 repressive element plays an important role in allowing AP-1 signaling pathways to modulate activity of the GAP-43 gene in neurons, without also causing inappropriate activation by AP-1 transcription factors in other cell types.
Collapse
Affiliation(s)
- J R Weber
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
37
|
Abstract
The mechanisms underlying transcriptional activation and repression have become much clearer. Recent evidence suggests that transcription factors that do not bind DNA directly, the co-activators and co-repressors, mediate a large number of cell signaling events. Their association with histone acetylases, to mediate activation, or deacetylases, to mediate repression, provide a model for explaining how gene expression is regulated.
Collapse
Affiliation(s)
- R H Goodman
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA.
| | | |
Collapse
|