1
|
Pifl C, Wolf A, Elevado M, Scholze P. α7-Nicotinic Acetylcholine Receptor and Mutated α-Synuclein Interact in Motor Behaviour and Nigrostriatal Dopamine-Findings With Potential Relevance for a Protective Effect of Cigarette Smoking and Parkinson's Disease. Eur J Neurosci 2025; 61:e70063. [PMID: 40125558 PMCID: PMC11931489 DOI: 10.1111/ejn.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Parkinson's disease (PD) occurs less frequently in cigarette smokers than in nonsmokers. Assuming that nicotinic acetylcholine receptors are periodically active by activation through endogenous acetylcholine, we tested whether they act against the effect of α-synuclein, a protein relevant in PD. Transgenic mice with a human α-synuclein containing two mutations that cause familial PD were crossed with mice lacking the nicotinic α7-acetylcholine receptor. Vertical movements determined at 7 and 16 months and nonambulatory movements at 16 months of age were significantly lower in mice with α7-acetylcholine receptor knockout if they express the mutated α-synuclein but not in mice with α-synuclein wild type. Striatal noradrenaline, serotonin and dopamine levels did not differ between the four groups of mice at 21 months; however, striatal dopamine turnover was significantly higher in mice without than with α7-acetylcholine receptor. Stereological counts of nigral cells positive for tyrosine hydroxylase in the left and right hemisphere at 21 months revealed that asymmetry was also significantly higher in mice without than with α7-acetylcholine receptor. In conclusion, up to the age of 16 months, there was no obvious PD behaviour; however, absence of the α7-acetylcholine receptor generally reduced several features of motor behaviour and showed a statistically significant interaction between α7-acetylcholine receptor and mutated α-synuclein. The asymmetry of nigral cell counts and the increased striatal dopamine turnover suggest a stressed nigrostriatal system in mice without α7-acetylcholine receptor and that the neuroprotective effect of smoking might at least partly be mediated by the nicotine in the cigarettes acting via α7-acetylcholine receptors.
Collapse
Affiliation(s)
- Christian Pifl
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Alexandra Wolf
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Mark Elevado
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
2
|
Shi Q, Wu Q, Wang Q, Zhu S, Guo M, Xia Y. Cannabidiol finds dihydrocannabidiol as its twin in anti-inflammatory activities and the mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118911. [PMID: 39389390 DOI: 10.1016/j.jep.2024.118911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The hemp (cataloged at the "Medicinal Plant Names Services" as Cannabis sativa L.) extracts, cannabinoids have been used for centuries in Southeast Asia as folk medicines and now authorized by about 50 countries for application in medicine, health care products and cosmetics. As the most consumed cannabinoid, cannabidiol (CBD) has been recognized due to its various bioactivities, including anti-inflammatory and antibacterial properties. AIMS OF THE STUDY The utilization of CBD is limited due to its potential conversion to psychoactive Δ9-tetrahydrocannabinol in strong acidic environment, demanding to excavate safer alternatives with clarified bioactivities. Yet the anti-inflammatory and antibacterial properties of CBD still remain unknown, in both of the performances and the corresponding mechanisms. Previously, a synthetic CBD analogue, H2CBD (Dihydrocannabidiol) was found to be effective as CBD does towards some antioxidantive activities and mouse seizure mitigation. Therefore, it is wondering if H2CBD also acted similarly as CBD does in the aspect of anti-inflammatory performance and mechanism, and the safety. MATERIAL AND METHODS The anti-inflammatory properties of CBD and H2CBD were revealed with enzymatic assays, proteins denaturation and lipopolysaccharide (LPS) stimulated RAW264.7 cells model, with epigallocatechin gallate (EGCG) as the positive control. Their anti-inflammatory mechanism was revealed with ELISA and Western blot assay. The antibacterial properties of CBD and H2CBD were also investigated towards E. faecalis and B. cereus along with their synergistic effect with commercial antibiotics. RESULTS CBD and H2CBD exhibited almost same (P > 0.05) performance in all the assayed anti-inflammatory properties, yet their anti-inflammatory efficiencies positively correlated to their antioxidantive activity. Moreover, both of CBD and H2CBD presented anti-inflammation to LPS stimulated RAW264.7 cells through NF-κB and AKT pathway. Furthermore, CBD and H2CBD also supplied strong and very similar (P > 0.05) antibacterial activities, comparable to tetracycline in same dose and strength. The erythrocyte hemolytic assay indicates CBD and H2CBD possessing the same safety. All the combinations of H2CBD with other cannabinoids or antibiotics present no antagonism against the bacteria, but nice synergistic or additive effect in some cases. CONCLUSION CBD and H2CBD presented very similarly in all the assayed anti-inflammatory performances, undergoing same inflammatory mechanism with NF-κB and AKT pathway; they also expressed similar antibacterial activity, like twins. These findings will supply CBD a sustainable, safer and economic alternative with same excellent performances.
Collapse
Affiliation(s)
- Qiandai Shi
- School of Chemical and Materials Engineering, Jiangnan University, Jiangsu, 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Jiangsu, 214122, China
| | - Qi Wu
- School of Chemical and Materials Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Qiqi Wang
- School of Chemical and Materials Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Jiangsu, 214122, China
| | - Maoyue Guo
- School of Chemical and Materials Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yongmei Xia
- School of Chemical and Materials Engineering, Jiangnan University, Jiangsu, 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Jiangsu, 214122, China.
| |
Collapse
|
3
|
Görgülü I, Jagannath V, Pons S, Koniuszewski F, Groszer M, Maskos U, Huck S, Scholze P. The human-specific nicotinic receptor subunit CHRFAM7A reduces α7 receptor function in human induced pluripotent stem cells-derived and transgenic mouse neurons. Eur J Neurosci 2024; 60:4893-4906. [PMID: 39073048 DOI: 10.1111/ejn.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
We investigated the impact of the human-specific gene CHRFAM7A on the function of α7 nicotinic acetylcholine receptors (α7 nAChRs) in two different types of neurons: human-induced pluripotent stem cell (hiPSC)-derived cortical neurons, and superior cervical ganglion (SCG) neurons, taken from transgenic mice expressing CHRFAM7A. dupα7, the gene product of CHRFAM7A, which lacks a major part of the extracellular N-terminal ligand-binding domain, co-assembles with α7, the gene product of CHRNA7. We assessed the receptor function in hiPSC-derived cortical and SCG neurons with Fura-2 calcium imaging and three different α7-specific ligands: PNU282987, choline, and 4BP-TQS. Given the short-lived open state of α7 receptors, we combined the two orthosteric agonists PNU282987 and choline with the type-2 positive allosteric modulator (PAM II) PNU120596. In line with different cellular models used previously, we demonstrate that CHRFAM7A has a major impact on nicotinic α7 nAChRs by reducing calcium transients in response to all three agonists.
Collapse
Affiliation(s)
- Ilayda Görgülü
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Vinita Jagannath
- Institut du Fer à Moulin, Sorbonne University, UMR-S 1270, Paris, France
- MSD R&D Innovation Centre, London, UK
| | - Stephanie Pons
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Université Paris Cité, UMR 3571, Paris, France
| | - Filip Koniuszewski
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Groszer
- Institut du Fer à Moulin, Sorbonne University, UMR-S 1270, Paris, France
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Université Paris Cité, UMR 3571, Paris, France
| | - Sigismund Huck
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Petra Scholze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Honwad HH, Najibi M, Koscso B, Bogunovic M, Irazoqui JE. TFEB-Mediated Pro-inflammatory Response in Murine Macrophages Induced by Acute Alpha7 Nicotinic Receptor Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577408. [PMID: 39211236 PMCID: PMC11361017 DOI: 10.1101/2024.01.26.577408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Transcription factors TFEB and TFE3 are crucial for regulating autophagy, lysosomal biogenesis, and lipid metabolism, and have significant roles in macrophage function and innate immunity. The alpha7 nicotinic acetylcholine receptor (α7nAChR), a ligand-gated Ca 2+ channel known for its therapeutic potential in neurological and inflammatory disorders, has been implicated in modulating immune responses by modulating macrophage function. Stimulation of α7nAChR with chemical agonists has been claimed to activate TFEB in pancreatic acinar cells and neurons. However, the impact of α7nAChR activation on TFEB and TFE3 in macrophages remained unknown, posing an important question due to the potential implications for inflammation regulation. This study investigates the effects of acute α7nAChR activation on TFEB-mediated responses in murine macrophages using the specific agonist PNU-282987. We demonstrate that α7nAChR stimulation triggers TFEB nuclear translocation and lysosomal expansion. Surprisingly, PNU-282987 induces a broad pro-inflammatory gene signature without concomitant cytokine secretion, suggesting an uncoupling of gene expression from cytokine release. Mechanistically, TFEB activation requires the lysosomal Ca 2+ exporter MCOLN1 and the Ca 2+ -dependent phosphatase PPP3/calcineurin. Additionally, PNU-282987 elevates reactive oxygen species (ROS) levels, and ROS are involved in TFEB activation by PNU-282987. Notably, even with α7nAChR deletion, compensatory ROS-mediated TFEB activation persists, suggesting the involvement of additional nicotinic receptors. Our findings reveal a novel α7nAChR-TFEB signaling axis in macrophages, offer new insights into the cholinergic regulation of immune responses, establish a baseline for comparison with disease states, and identify potential therapeutic targets for modulating inflammation.
Collapse
|
5
|
Biswal SR, Kumar A, Muthuswamy S, Kumar S. Genetic components of microdeletion syndromes and their role in determining schizophrenia traits. Mol Biol Rep 2024; 51:804. [PMID: 39001960 DOI: 10.1007/s11033-024-09731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms such as hallucinations, delusions, and disordered thinking. The etiology of this disease is unknown; however, it has been linked to many microdeletion syndromes that are likely to contribute to the pathology of schizophrenia. In this review we have comprehensively analyzed the role of various microdeletion syndromes, like 3q29, 15q13.3, and 22q11.2, which are known to be involved with schizophrenia. A variety of factors lead to schizophrenia phenotypes, but copy number variants that disrupt gene regulation and impair brain function and cognition are one of the causes that have been identified. Multiple case studies have shown that loss of one or more genes in the microdeletion regions lead to brain activity defects. In this article, we present a coherent paradigm that connects copy number variations (CNVs) to numerous neurological and behavioral abnormalities associated with schizophrenia. It would be helpful in understanding the different aspects of the microdeletions and how they contribute in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Smruti Rekha Biswal
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Srinivasan Muthuswamy
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| |
Collapse
|
6
|
Rommel FR, Tumala S, Urban AL, Siebenhaar F, Kruse J, Gieler U, Peters EMJ. Stress Affects Mast Cell Proteases in Murine Skin in a Model of Atopic Dermatitis-like Allergic Inflammation. Int J Mol Sci 2024; 25:5738. [PMID: 38891925 PMCID: PMC11171663 DOI: 10.3390/ijms25115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Stress exposure worsens allergic inflammatory diseases substantially. Mast cells (MCs) play a key role in peripheral immune responses to neuroendocrine stress mediators such as nerve growth factor (NGF) and substance P (SP). Mast cell proteases (MCPs) and cholinergic factors (Chrna7, SLURP1) were recently described to modulate MC stress response. We studied MCPs and Chrna7/SLURP1 and their interplay in a mouse model for noise induced stress (NiS) and atopic dermatitis-like allergic inflammation (AlD) and in cultured MC lacking Chrna7. We found that the cholinergic stress axis interacts with neuroendocrine stress mediators and stress-mediator cleaving enzymes in AlD. SP-cleaving mMCP4+ MC were upregulated in AlD and further upregulated by stress in NiS+AlD. Anti-NGF neutralizing antibody treatment blocked the stress-induced upregulation in vivo, and mMCP4+ MCs correlated with measures of AlD disease activity. Finally, high mMCP4 production in response to SP depended on Chrna7/SLURP1 in cultured MCs. In conclusion, mMCP4 and its upstream regulation by Chrna7/SLURP1 are interesting novel targets for the treatment of allergic inflammation and its aggravation by stress.
Collapse
Affiliation(s)
- Frank R. Rommel
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Susanne Tumala
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Anna-Lena Urban
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, 12203 Berlin, Germany
| | - Johannes Kruse
- Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Uwe Gieler
- Department of Dermatology, University Hospital Giessen, 35392 Giessen, Germany
| | - Eva M. J. Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
- Charité Center 12 for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
7
|
Caban KM, Seßenhausen P, Stöckl JB, Popper B, Mayerhofer A, Fröhlich T. Proteome profile of the cerebellum from α7 nicotinic acetylcholine receptor deficient mice. Proteomics 2024; 24:e2300384. [PMID: 38185761 DOI: 10.1002/pmic.202300384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
The alpha7 nicotinic acetylcholine receptor (α7 nAChR; CHRNA7) is expressed in the nervous system and in non-neuronal tissues. Within the central nervous system, it is involved in various cognitive and sensory processes such as learning, attention, and memory. It is also expressed in the cerebellum, where its roles are; however, not as well understood as in the other brain regions. To investigate the consequences of absence of CHRNA7 on the cerebellum proteome, we performed a quantitative nano-LC-MS/MS analysis of samples from CHRNA7 knockout (KO) mice and corresponding wild type (WT) controls. Liver, an organ which does not express this receptor, was analyzed, in comparison. While the liver proteome remained relatively unaltered (three proteins more abundant in KOs), 90 more and 20 less abundant proteins were detected in the cerebellum proteome of the KO mice. The gene ontology analysis of the differentially abundant proteins indicates that the absence of CHRNA7 leads to alterations in the glutamatergic system and myelin sheath in the cerebellum. In conclusion, our dataset provides new insights in the role of CHRNA7 in the cerebellum, which may serve as a basis for future in depth-investigations.
Collapse
Affiliation(s)
| | - Pia Seßenhausen
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Jan Bernard Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, München, Germany
| | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, München, Germany
| |
Collapse
|
8
|
Targosova K, Kucera M, Fazekas T, Kilianova Z, Stankovicova T, Hrabovska A. α7 nicotinic receptors play a role in regulation of cardiac hemodynamics. J Neurochem 2024; 168:414-427. [PMID: 37017608 DOI: 10.1111/jnc.15821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023]
Abstract
The α7 nicotinic receptors (NR) have been confirmed in the heart but their role in cardiac functions has been contradictory. To address these contradictory findings, we analyzed cardiac functions in α7 NR knockout mice (α7-/-) in vivo and ex vivo in isolated hearts. A standard limb leads electrocardiogram was used, and the pressure curves were recorded in vivo, in Arteria carotis and in the left ventricle, or ex vivo, in the left ventricle of the spontaneously beating isolated hearts perfused following Langedorff's method. Experiments were performed under basic conditions, hypercholinergic conditions, and adrenergic stress. The relative expression levels of α and β NR subunits, muscarinic receptors, β1 adrenergic receptors, and acetylcholine life cycle markers were determined using RT-qPCR. Our results revealed a prolonged QT interval in α7-/- mice. All in vivo hemodynamic parameters were preserved under all studied conditions. The only difference in ex vivo heart rate between genotypes was the loss of bradycardia in prolonged incubation of isoproterenol-pretreated hearts with high doses of acetylcholine. In contrast, left ventricular systolic pressure was lower under basal conditions and showed a significantly higher increase during adrenergic stimulation. No changes in mRNA expression were observed. In conclusion, α7 NR has no major effect on heart rate, except when stressed hearts are exposed to a prolonged hypercholinergic state, suggesting a role in acetylcholine spillover control. In the absence of extracardiac regulatory mechanisms, left ventricular systolic impairment is revealed.
Collapse
Affiliation(s)
- Katarina Targosova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
| | - Matej Kucera
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
| | - Tomas Fazekas
- Faculty of Pharmacy, Department of Physical Chemistry of Drugs, Comenius University Bratislava, Bratislava, Slovakia
| | - Zuzana Kilianova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
| | - Tatiana Stankovicova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
| | - Anna Hrabovska
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
9
|
Andrew PM, Feng W, Calsbeek JJ, Antrobus SP, Cherednychenko GA, MacMahon JA, Bernardino PN, Liu X, Harvey DJ, Lein PJ, Pessah IN. The α4 Nicotinic Acetylcholine Receptor Is Necessary for the Initiation of Organophosphate-Induced Neuronal Hyperexcitability. TOXICS 2024; 12:263. [PMID: 38668486 PMCID: PMC11054284 DOI: 10.3390/toxics12040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024]
Abstract
Acute intoxication with organophosphorus (OP) cholinesterase inhibitors can produce seizures that rapidly progress to life-threatening status epilepticus. Significant research effort has been focused on investigating the involvement of muscarinic acetylcholine receptors (mAChRs) in OP-induced seizure activity. In contrast, there has been far less attention on nicotinic AChRs (nAChRs) in this context. Here, we address this data gap using a combination of in vitro and in vivo models. Pharmacological antagonism and genetic deletion of α4, but not α7, nAChR subunits prevented or significantly attenuated OP-induced electrical spike activity in acute hippocampal slices and seizure activity in mice, indicating that α4 nAChR activation is necessary for neuronal hyperexcitability triggered by acute OP exposures. These findings not only suggest that therapeutic strategies for inhibiting the α4 nAChR subunit warrant further investigation as prophylactic and immediate treatments for acute OP-induced seizures, but also provide mechanistic insight into the role of the nicotinic cholinergic system in seizure generation.
Collapse
Affiliation(s)
- Peter M. Andrew
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Wei Feng
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Jonas J. Calsbeek
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Shane P. Antrobus
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Gennady A. Cherednychenko
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Jeremy A. MacMahon
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Pedro N. Bernardino
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Xiuzhen Liu
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Danielle J. Harvey
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, CA 95616, USA;
| | - Pamela J. Lein
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Isaac N. Pessah
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| |
Collapse
|
10
|
Hanley PJ. Elusive physiological role of prostatic acid phosphatase (PAP): generation of choline for sperm motility via auto-and paracrine cholinergic signaling. Front Physiol 2023; 14:1327769. [PMID: 38187135 PMCID: PMC10766772 DOI: 10.3389/fphys.2023.1327769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Prostatic acid phosphatase (PAP) exists as two splice variants, secreted PAP and transmembrane PAP, the latter of which is implicated in antinociceptive signaling in dorsal root ganglia. However, PAP is predominantly expressed in the prostate gland and the physiological role of seminal PAP, first identified in 1938, is largely unknown. Here, the author proposes that PAP, following ejaculation, functions to hydrolyze phosphocholine (PC) in seminal fluid and generate choline, which is imported by sperm via a choline transporter and converted to acetylcholine (ACh) by choline acetyltransferase. Auto- and paracrine cholinergic signaling, or choline directly, may subsequently stimulate sperm motility via α7 nicotinic ACh receptors (nAChRs) and contractility of the female reproductive tract through muscarinic ACh receptors (mAChRs). Consistent with a role of PAP in cholinergic signaling, 1) seminal vesicles secrete PC, 2) the prostate gland secretes PAP, 3) PAP specifically catalyzes the hydrolysis of PC into inorganic phosphate and choline, 4) seminal choline levels increase post-ejaculation, 5) pharmacological inhibition of choline acetyltransferase inhibits sperm motility, 6) inhibition or genetic deletion of α7 nAChRs impairs sperm motility, and 7) mAChRs are expressed in the uterus and oviduct (fallopian tube). Notably, PAP does not degrade glycerophosphocholine (GPC), the predominant choline source in the semen of rats and other mammals. Instead, uterine GPC phosphodiesterases may liberate choline from seminal GPC. In summary, the author deduces that PAP in humans, and uterine GPC phosphodiesterases in other mammals, function to generate choline for sperm cholinergic signaling, which promotes sperm motility and possibly contractility of the female reproductive tract.
Collapse
Affiliation(s)
- Peter J. Hanley
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
11
|
Letsinger AC, Nacer SA, Stevanovic KD, Larson GJ, DeFilipp JS, Cushman JD, Yakel JL. Genetic deletion of α7 nAChRs reduces hippocampal granule and pyramidal cell number in both sexes but impairs pattern separation in males only. Front Neurosci 2023; 17:1244118. [PMID: 37746145 PMCID: PMC10513752 DOI: 10.3389/fnins.2023.1244118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neurogenesis within the dentate gyrus is thought to play an important role in cognitive processes such as reversal learning and pattern separation. The α7 nicotinic acetylcholine receptor (α7 nAChR) is expressed early in newly formed granule cells of the dentate gyrus, though its role in neurogenesis and related cognitive function is not fully understood. Methods To better characterize relevant function of α7 nAChRs, we performed unbiased stereology to quantify hippocampal granule cells, pyramidal cells, and total volume and used a touchscreen operant spatial discrimination/reversal task to test pattern separation in a global α7 nAChR knockout mouse line. Results The knockout resulted in an ≈22% reduction in granule cells and a ≈ 20% reduction in pyramidal cells in both sexes, with no change in total hippocampal volume. However, the knockout impaired performance in the touchscreen task for males only. The sex-dependent difference in behavioral, but not stereological, results suggest a divergence in the structure-function relationship in males versus females. Detailed analyses revealed males were more biased by the initial reversal contingency relative to females indicating a potential source of the sex-specific interaction with the loss of α7 nAChRs. Discussion These findings argue that the α7 nAChR plays a critical role in hippocampal development, not just granule cell neurogenesis, and plays a sex-dependent role in cognitive function.
Collapse
Affiliation(s)
- Ayland C. Letsinger
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Samir A. Nacer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Korey D. Stevanovic
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Gary J. Larson
- Social & Scientific Systems, Inc., a DLH Holdings Corp. Company, Durham, NC, United States
| | - Jemma S. DeFilipp
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Jesse D. Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Jerrel L. Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
12
|
Vallés AS, Barrantes FJ. Nicotinic Acetylcholine Receptor Dysfunction in Addiction and in Some Neurodegenerative and Neuropsychiatric Diseases. Cells 2023; 12:2051. [PMID: 37626860 PMCID: PMC10453526 DOI: 10.3390/cells12162051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with inflammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum disorders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar bibliographic databases were searched with the keywords indicated below.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Bahía Blanca Institute of Biochemical Research (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina—National Scientific and Technical Research Council, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
13
|
Linn DM. Target identification and validation of the alpha7 nicotinic acetylcholine receptor as a potential therapeutic target in retinal disease. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1190439. [PMID: 38983049 PMCID: PMC11182235 DOI: 10.3389/fopht.2023.1190439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2024]
Abstract
The role of acetylcholine (ACh) in visual processing in the mammalian retina has been the focus of research for many decades. Pioneering work on the localization of ACh discovered that the neurotransmitter is synthesized and stored in a distinct subpopulation of amacrine (starburst) cells. It has been shown that ACh release is regulated to a low resting "tonic" level, much like what is observed at the neuromuscular junction (NMJ). If there were a dysfunction in the tonic release of ACh, might post-synaptic changes render the targets of ACh [i.e., retinal ganglion cells (RGCs)] vulnerable to disease? During my time at Pharmacia & Upjohn (PNU), selective nicotinic ACh receptor (nAChR) agonists (e.g., PNU-282987) were developed as a possible therapy for central nervous system (CNS) diseases. As RGCs are the main targets of neurodegeneration in glaucoma, could the activation of this target provide neuroprotection? In response to this question, experiments to identify alpha7 nAChRs in the retina (i.e., target ID studies) followed by "proof-of-concept" experiments were conducted. Target ID studies included binding studies with retinal homogenates, [125I]-alpha-bungarotoxin (α-BTX) autoradiography, and fluorescently tagged α-BTX binding in retinal slices. Imaging studies of intracellular calcium dynamics in the retinal slice were conducted. Reverse transcription-polymerase chain reaction (RT-PCR) analysis with alpha7 nAChR knockout mice using the "laser-capture microdissection" technique, in situ hybridization studies, and RT-PCR analysis of the human retina were conducted. Collectively, these experiments confirmed the presence of alpha7 nAChRs on specific cells in the retina. "Proof-of-concept" neuroprotection studies demonstrated that PNU-282987 provided significant protection for RGCs. This protection was dose dependent and was blocked with selective antagonists. More recently, evidence for the generation of new RGCs has been reported with PNU-282987 in rodents. Interestingly, the appearance of new RGCs is more pronounced with eye-drop application than with intravitreal injection. One could postulate that this reflects the neurogenic activation of alpha7 receptors on the retinal pigment epithelium (RPE) (eye drops) vs. a neuroprotective effect on RGCs (injections). In conclusion, there does appear to be a cholinergic retinal "tone" associated with RGCs that could be utilized as a neuroprotective therapy. However, a distinct cholinergic neurogenic mechanism also appears to exist in the outer retina that could possibly be exploited to generate new RGCs lost through various disease processes.
Collapse
Affiliation(s)
- David M Linn
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, United States
| |
Collapse
|
14
|
Tae HS, Adams DJ. Nicotinic acetylcholine receptor subtype expression, function, and pharmacology: Therapeutic potential of α-conotoxins. Pharmacol Res 2023; 191:106747. [PMID: 37001708 DOI: 10.1016/j.phrs.2023.106747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The pentameric nicotinic acetylcholine receptors (nAChRs) are typically classed as muscle- or neuronal-type, however, the latter has also been reported in non-neuronal cells. Given their broad distribution, nAChRs mediate numerous physiological and pathological processes including synaptic transmission, presynaptic modulation of transmitter release, neuropathic pain, inflammation, and cancer. There are 17 different nAChR subunits and combinations of these subunits produce subtypes with diverse pharmacological properties. The expression and role of some nAChR subtypes have been extensively deciphered with the aid of knock-out models. Many nAChR subtypes expressed in heterologous systems are selectively targeted by the disulfide-rich α-conotoxins. α-Conotoxins are small peptides isolated from the venom of cone snails, and a number of them have potential pharmaceutical value.
Collapse
|
15
|
Becchetti A, Grandi LC, Cerina M, Amadeo A. Nicotinic acetylcholine receptors and epilepsy. Pharmacol Res 2023; 189:106698. [PMID: 36796465 DOI: 10.1016/j.phrs.2023.106698] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Despite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity. First, tonic-clonic seizures are triggered by administration of high doses of nicotinic agonists, whereas non-convulsive doses have kindling effects. Second, sleep-related epilepsy can be caused by mutations on genes encoding nAChR subunits widely expressed in the forebrain (CHRNA4, CHRNB2, CHRNA2). Third, in animal models of acquired epilepsy, complex time-dependent alterations in cholinergic innervation are observed following repeated seizures. Heteromeric nAChRs are central players in epileptogenesis. Evidence is wide for autosomal dominant sleep-related hypermotor epilepsy (ADSHE). Studies of ADSHE-linked nAChR subunits in expression systems suggest that the epileptogenic process is promoted by overactive receptors. Investigation in animal models of ADSHE indicates that expression of mutant nAChRs can lead to lifelong hyperexcitability by altering i) the function of GABAergic populations in the mature neocortex and thalamus, ii) synaptic architecture during synaptogenesis. Understanding the balance of the epileptogenic effects in adult and developing networks is essential to plan rational therapy at different ages. Combining this knowledge with a deeper understanding of the functional and pharmacological properties of individual mutations will advance precision and personalized medicine in nAChR-dependent epilepsy.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Laura Clara Grandi
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Marta Cerina
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
16
|
Expression of Chrna9 is regulated by Tbx3 in undifferentiated pluripotent stem cells. Sci Rep 2023; 13:1611. [PMID: 36709241 PMCID: PMC9884305 DOI: 10.1038/s41598-023-28814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
It was reported that nicotinic acetylcholine receptor (nAChR)-mediated signaling pathways affect the proliferation and differentiation of pluripotent stem cells. However, detail expression profiles of nAChR genes were unrevealed in these cells. In this study, we comprehensively investigated the gene expression of α subunit of nAChRs (Chrna) during differentiation and induction of pluripotent stem cells. Mouse embryonic stem (ES) cells expressed multiple Chrna genes (Chrna3-5, 7 and 9) in undifferentiated status. Among them, Chrna9 was markedly down-regulated upon the differentiation into mesenchymal cell lineage. In mouse tissues and cells, Chrna9 was mainly expressed in testes, ES cells and embryonal F9 teratocarcinoma stem cells. Expression of Chrna9 gene was acutely reduced during differentiation of ES and F9 cells within 24 h. In contrast, Chrna9 expression was increased in induced pluripotent stem cells established from mouse embryonic fibroblast. It was shown by the reporter assays that T element-like sequence in the promoter region of Chrna9 gene is important for its activities in ES cells. Chrna9 was markedly reduced by siRNA-mediated knockdown of Tbx3, a pluripotency-related transcription factor of the T-box gene family. These results indicate that Chrna9 is a nAChR gene that are transcriptionally regulated by Tbx3 in undifferentiated pluripotent cells.
Collapse
|
17
|
Meng Q, Chepurny OG, Leech CA, Pruekprasert N, Molnar ME, Collier JJ, Cooney RN, Holz GG. The alpha-7 nicotinic acetylcholine receptor agonist GTS-21 engages the glucagon-like peptide-1 incretin hormone axis to lower levels of blood glucose in db/db mice. Diabetes Obes Metab 2022; 24:1255-1266. [PMID: 35293666 PMCID: PMC9177741 DOI: 10.1111/dom.14693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
Abstract
AIM To establish if alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist GTS-21 exerts a blood glucose-lowering action in db/db mice, and to test if this action requires coordinate α7nAChR and GLP-1 receptor (GLP-1R) stimulation by GTS-21 and endogenous GLP-1, respectively. MATERIALS AND METHODS Blood glucose levels were measured during an oral glucose tolerance test (OGTT) using db/db mice administered intraperitoneal GTS-21. Plasma GLP-1, peptide tyrosine tyrosine 1-36 (PYY1-36), glucose-dependent insulinotropic peptide (GIP), glucagon, and insulin levels were measured by ELISA. A GLP-1R-mediated action of GTS-21 that is secondary to α7nAChR stimulation was evaluated using α7nAChR and GLP-1R knockout (KO) mice, or by co-administration of GTS-21 with the dipeptidyl peptidase-4 inhibitor, sitagliptin, or the GLP-1R antagonist, exendin (9-39). Insulin sensitivity was assessed in an insulin tolerance test. RESULTS Single or multiple dose GTS-21 (0.5-8.0 mg/kg) acted in a dose-dependent manner to lower levels of blood glucose in the OGTT using 10-14 week-old male and female db/db mice. This action of GTS-21 was reproduced by the α7nAChR agonist, PNU-282987, was enhanced by sitagliptin, was counteracted by exendin (9-39), and was absent in α7nAChR and GLP-1R KO mice. Plasma GLP-1, PYY1-36, GIP, glucagon, and insulin levels increased in response to GTS-21, but insulin sensitivity, body weight, and food intake were unchanged. CONCLUSIONS α7nAChR agonists improve oral glucose tolerance in db/db mice. This action is contingent to coordinate α7nAChR and GLP-1R stimulation. Thus α7nAChR agonists administered in combination with sitagliptin might serve as a new treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Oleg G. Chepurny
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Colin A. Leech
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Napat Pruekprasert
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Megan E. Molnar
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Robert N. Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Co-corresponding Authors: Robert N. Cooney, M.D., Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Suite 8141, Syracuse, NY 13210 USA, Tel. +1 315-464-5549, Fax +1 315-464-6250, , George G. Holz, Ph.D., Department of Medicine, SUNY Upstate Medical University, 505 Irving Avenue, IHP4310, Syracuse, NY 13210 USA, Tel. +1 315-464-9841,
| | - George G. Holz
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
- Co-corresponding Authors: Robert N. Cooney, M.D., Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Suite 8141, Syracuse, NY 13210 USA, Tel. +1 315-464-5549, Fax +1 315-464-6250, , George G. Holz, Ph.D., Department of Medicine, SUNY Upstate Medical University, 505 Irving Avenue, IHP4310, Syracuse, NY 13210 USA, Tel. +1 315-464-9841,
| |
Collapse
|
18
|
Whitehead AK, Fried ND, Li Z, Neelamegam K, Pearson CS, LaPenna KB, Sharp TE, Lefer DJ, Lazartigues E, Gardner JD, Yue X. Alpha7 nicotinic acetylcholine receptor mediates chronic nicotine inhalation-induced cardiopulmonary dysfunction. Clin Sci (Lond) 2022; 136:973-987. [PMID: 35678315 PMCID: PMC10199464 DOI: 10.1042/cs20220083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022]
Abstract
Cigarette smoking remains the leading modifiable risk factor for cardiopulmonary diseases; however, the effects of nicotine alone on cardiopulmonary function remain largely unknown. Previously, we have shown that chronic nicotine vapor inhalation in mice leads to the development of pulmonary hypertension (PH) with right ventricular (RV) remodeling. The present study aims to further examine the cardiopulmonary effects of nicotine and the role of the α7 nicotinic acetylcholine receptor (α7-nAChR), which is widely expressed in the cardiovascular system. Wild-type (WT) and α7-nAChR knockout (α7-nAChR-/-) mice were exposed to room air (control) or nicotine vapor daily for 12 weeks. Consistent with our previous study, echocardiography and RV catheterization reveal that male WT mice developed increased RV systolic pressure with RV hypertrophy and dilatation following 12-week nicotine vapor exposure; in contrast, these changes were not observed in male α7-nAChR-/- mice. In addition, chronic nicotine inhalation failed to induce PH and RV remodeling in female mice regardless of genotype. The effects of nicotine on the vasculature were further examined in male mice. Our results show that chronic nicotine inhalation led to impaired acetylcholine-mediated vasodilatory response in both thoracic aortas and pulmonary arteries, and these effects were accompanied by altered endothelial nitric oxide synthase phosphorylation (enhanced inhibitory phosphorylation at threonine 495) and reduced plasma nitrite levels in WT but not α7-nAChR-/- mice. Finally, RNA sequencing revealed up-regulation of multiple inflammatory pathways in thoracic aortas from WT but not α7-nAChR-/- mice. We conclude that the α7-nAChR mediates chronic nicotine inhalation-induced PH, RV remodeling and vascular dysfunction.
Collapse
Affiliation(s)
- Anna K. Whitehead
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Nicholas D. Fried
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Zhen Li
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Kandasamy Neelamegam
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Charlotte S. Pearson
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Kyle B. LaPenna
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Thomas E. Sharp
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Department of Medicine Section of Cardiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - David J. Lefer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Southeast Louisiana Veterans Health Care Systems, New Orleans, LA 70119, U.S.A
| | - Jason D. Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| |
Collapse
|
19
|
Mishra A, Prabha PK, Singla R, Kaur G, Sharma AR, Joshi R, Suroy B, Medhi B. Epigenetic Interface of Autism Spectrum Disorders (ASDs): Implications of Chromosome 15q11-q13 Segment. ACS Chem Neurosci 2022; 13:1684-1696. [PMID: 35635007 DOI: 10.1021/acschemneuro.2c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASDs) are multifactorial in nature and include both genetic and environmental factors. The increasing evidence advocates an important role of epigenetics in ASD etiology. One of the most common forms of epigenetic changes observed in the case of neurodevelopmental disorders is imprinting which is tightly regulated by developmental and tissue-specific mechanisms. Interestingly, many of these disorders that demonstrate autism-like phenotypes at varying degrees have found involvement of chromosome 15q11-q13 segment. Numerous studies demonstrate occurrence of ASD in the presence of chromosomal abnormalities located mainly in Chr15q11-q13 region. Several plausible candidate genes associated with ASD are in this chromosomal segment, including gamma aminobutyric acid A (GABAA) receptor genes GABRB3, GABRA5 and GABRG3, UBE3A, ATP 10A, MKRN3, ZNF, MAGEL2, Necdin (NDN), and SNRPN. The main objective of this review is to highlight the contribution of epigenetic modulations in chromosome 15q11-q13 segment toward the genetic etiology and pathophysiology of ASD. The present review reports the abnormalities in epigenetic regulation on genes and genomic regions located on chromosome 15 in relation to either syndromic (15q11-q13 maternal duplication) or nonsyndromic forms of ASD. Furthermore, studies reviewed in this article demonstrate conditions in which epigenetic dysregulation has been found to be a pathological factor for ASD development, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD. Also, on the basis of the evidence found so far, we strongly emphasize the need to develop future therapeutic strategies as well as screening procedures for ASD that target mechanisms involving genes located on the chromosomal 15q11-q13 segment.
Collapse
Affiliation(s)
- Abhishek Mishra
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Praisy K Prabha
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rubal Singla
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Dept. of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Benjamin Suroy
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
20
|
Hoogland ICM, Yik J, Westhoff D, Engelen-Lee JY, Valls Seron M, Man WK, Houben-Weerts JHPM, Tanck MWT, van Westerloo DJ, van der Poll T, van Gool WA, van de Beek D. Microglial cell response in α7 nicotinic acetylcholine receptor-deficient mice after systemic infection with Escherichia coli. J Neuroinflammation 2022; 19:94. [PMID: 35413868 PMCID: PMC9006549 DOI: 10.1186/s12974-022-02452-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/29/2022] [Indexed: 12/04/2022] Open
Abstract
Background Development of neurodegeneration in older people has been associated with microglial cell activation triggered by systemic infection. We hypothesize that α7 nicotinic acetylcholine receptor (α7nAChR) plays an important role in regulation of this process. Methods 8- to 10-week-old male wild-type (WT) and α7nAChR knock-out (α7nAChR−/−) mice were intraperitoneally inoculated with live Escherichia (E.) coli or saline. After inoculation, all mice were treated with ceftriaxone (an antimicrobial drug) at 12 and 24 h and killed at 2 or 3 days. The microglial response was characterized by immunohistochemical staining with an ionized calcium-binding adaptor molecule 1 (Iba-1) antibody and flow cytometry. To quantify inflammatory response, mRNA expression of pro- and anti-inflammatory mediators was measured in brain and spleen. Results We observed no differences in Iba-1 positive cell number or morphology and flow cytometry (CD11b, CD45 and CD14) of microglial cells between WT and α7nAChR−/− mice after systemic infection. Infected α7nAChR−/− mice showed significantly higher mRNA expression in brain for tumor necrosis factor alpha (TNF-α) at day 2 and 3, interleukin 6 (IL-6) at day 2 and monocyte chemotactic protein 1 (MCP-1) and suppressor of cytokine signaling 1 (SOCS1) at day 3, there was significantly lower mRNA expression in brain for mitogen-activated protein kinase 1 (MAPK1) at day 2 and 3, high-mobility group 1 (HMGB-1) and CD11b at day 2, and deubiquitinase protein A20 (A20) at day 3 compared to infected WT mice. Interpretation Loss of function of α7nAChR during systemic infection led to an increased expression of TNF-α and IL-6 in brain after systemic infection with E. coli, but not to distinct differences in microglial cell number or morphological activation of microglia. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02452-8.
Collapse
Affiliation(s)
- Inge C M Hoogland
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Jutka Yik
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Dunja Westhoff
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Joo-Yeon Engelen-Lee
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Merche Valls Seron
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Wing Kit Man
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Judith H P M Houben-Weerts
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Michael W T Tanck
- Department of Clinical Epidemiology, Amsterdam University Medical Centres, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Tom van der Poll
- Centre of Experimental Molecular Medicine, Amsterdam University Medical Centres, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem A van Gool
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam University Medical Centres, Location Academic Medical Center, Amsterdam Neuroscience, University of Amsterdam, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Wedn AM, El-Bassossy HM, Eid AH, El-Mas MM. Modulation of preeclampsia by the cholinergic anti-inflammatory pathway: Therapeutic perspectives. Biochem Pharmacol 2021; 192:114703. [PMID: 34324867 DOI: 10.1016/j.bcp.2021.114703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is vital for the orchestration of the immune and inflammatory responses under normal and challenged conditions. Over the past two decades, peripheral and central circuits of CAP have been shown to be critically involved in dampening the inflammatory reaction in a wide array of inflammatory disorders. Additionally, emerging evidence supports a key role for CAP in the regulation of the female reproductive system during gestation as well as in the advent of serious pregnancy-related inflammatory insults such as preeclampsia (PE). Within this framework, the modulatory action of CAP encompasses the perinatal maternal and fetal adverse consequences that surface due to antenatal PE programming. Albeit, a considerable gap still exists in our knowledge of the precise cellular and molecular underpinnings of PE/CAP interaction, which hampered global efforts in safeguarding effective preventive or therapeutic measures against PE complications. Here, we summarize reports in the literature regarding the roles of peripheral and reflex cholinergic neuroinflammatory pathways of nicotinic acetylcholine receptors (nAChRs) in reprogramming PE complications in mothers and their progenies. The possible contributions of α7-nAChRs, cholinesterases, immune cells, adhesion molecules, angiogenesis, and endothelial dysfunction to the interaction have also been reviewed.
Collapse
Affiliation(s)
- Abdalla M Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
22
|
Vang A, da Silva Gonçalves Bos D, Fernandez-Nicolas A, Zhang P, Morrison AR, Mancini TJ, Clements RT, Polina I, Cypress MW, Jhun BS, Hawrot E, Mende U, O-Uchi J, Choudhary G. α7 Nicotinic acetylcholine receptor mediates right ventricular fibrosis and diastolic dysfunction in pulmonary hypertension. JCI Insight 2021; 6:142945. [PMID: 33974567 PMCID: PMC8262476 DOI: 10.1172/jci.insight.142945] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Right ventricular (RV) fibrosis is a key feature of maladaptive RV hypertrophy and dysfunction and is associated with poor outcomes in pulmonary hypertension (PH). However, mechanisms and therapeutic strategies to mitigate RV fibrosis remain unrealized. Previously, we identified that cardiac fibroblast α7 nicotinic acetylcholine receptor (α7 nAChR) drives smoking-induced RV fibrosis. Here, we sought to define the role of α7 nAChR in RV dysfunction and fibrosis in the settings of RV pressure overload as seen in PH. We show that RV tissue from PH patients has increased collagen content and ACh expression. Using an experimental rat model of PH, we demonstrate that RV fibrosis and dysfunction are associated with increases in ACh and α7 nAChR expression in the RV but not in the left ventricle (LV). In vitro studies show that α7 nAChR activation leads to an increase in adult ventricular fibroblast proliferation and collagen content mediated by a Ca2+/epidermal growth factor receptor (EGFR) signaling mechanism. Pharmacological antagonism of nAChR decreases RV collagen content and improves RV function in the PH model. Furthermore, mice lacking α7 nAChR exhibit improved RV diastolic function and have lower RV collagen content in response to persistently increased RV afterload, compared with WT controls. These finding indicate that enhanced α7 nAChR signaling is an important mechanism underlying RV fibrosis and dysfunction, and targeted inhibition of α7 nAChR is a potentially novel therapeutic strategy in the setting of increased RV afterload.
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Denielli da Silva Gonçalves Bos
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ana Fernandez-Nicolas
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peng Zhang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Thomas J. Mancini
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Richard T. Clements
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Iuliia Polina
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael W. Cypress
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bong Sook Jhun
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ulrike Mende
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Jin O-Uchi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
23
|
Baradaran R, Anbarkeh FR, Delavar A, Khorasgani EM, Rahimian N, Abbasi Y, Jaberi N. Hippocampal asymmetry and regional dispersal of nAChRs alpha4 and alpha7 subtypes in the adult rat. J Chem Neuroanat 2021; 116:101977. [PMID: 34052301 DOI: 10.1016/j.jchemneu.2021.101977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
To better comprehend the relationship between left/right (L/R) differences and hippocampus functions is necessary knowledge of lateral asymmetry and regional distribution. This research was design to examine hippocampal L/R asymmetry and regional distribution profile of the alpha7 and alpha4 subtypes of nicotinic acetylcholine receptors (nAChRs) in the adult rat. 10-12-week-old twenty-four male wistar rats were randomly selected. After removing the brains, immunohistochemistry, real-time PCR, and western blot methods were applied to distinguish the presence of the receptors in the hippocampus. Outcomes stated that the mentioned receptors expression profile was spatial-dependent. As, the hippocampal dispersal of alpha7 and alpha4 subtypes in the left hippocampus (LH) was remarkably maximum compare with the right hippocampus (RH) (p = 0.001, p = 0.005 respectively). Furthermore, the alpha7 optical density (OD) was not significantly different in the diverse regions in hippocampus of adult rat (p = 0.057), while the maximum OD of the alpha4 was detected in the hippocampal dentate gyrus and CA3 regions of LH (p = 0.007, p = 0.009 respectively) and the minimum OD was in the CA1 of the RH (p = 0.019). In real time PCR evaluation, there is a significantly higher expression of alpha7 and alpha4 in LH compared to RH (p = 0.043, p = 0.049 respectively), also, for western blot (p = 0.042, p = 0.030 respectively). According to present data, the alpha7 and alpha4 nAChR subtypes expression profile demonstrated lateral asymmetry, the uniform regional dispersal for alpha7 and different regional dispersal for alpha4 in the adult rat hippocampus.
Collapse
Affiliation(s)
- Raheleh Baradaran
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Fatemeh Rahimi Anbarkeh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Delavar
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Yusef Abbasi
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Najmeh Jaberi
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Ertle CM, Rommel FR, Tumala S, Moriwaki Y, Klein J, Kruse J, Gieler U, Peters EMJ. New Pathways for the Skin's Stress Response: The Cholinergic Neuropeptide SLURP-1 Can Activate Mast Cells and Alter Cytokine Production in Mice. Front Immunol 2021; 12:631881. [PMID: 33815383 PMCID: PMC8012551 DOI: 10.3389/fimmu.2021.631881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The alpha7 nicotinic acetylcholine receptor (Chrna7) plays an essential anti-inflammatory role in immune homeostasis and was recently found on mast cells (MC). Psychosocial stress can trigger MC hyperactivation and increases pro-inflammatory cytokines in target tissues such as the skin. If the cholinergic system (CS) and Chrna7 ligands play a role in these cascades is largely unknown. Objective: To elucidate the role of the CS in the response to psychosocial stress using a mouse-model for stress-triggered cutaneous inflammatory circuits. Methods: Key CS markers (ACh, Ch, SLURP-1, SLURP-2, Lynx1, Chrm3, Chrna7, Chrna9, ChAT, VAChT, Oct3, AChE, and BChE) in skin and its MC (sMC), MC activation, immune parameters (TNFα, IL1β, IL10, TGFβ, HIF1α, and STAT3) and oxidative stress were analyzed in skin from 24 h noise-stressed mice and in cultured MC (cMC) from C57BL/6 or Chrna7-Knockout mice. Results: First, Chrna7 and SLURP-1 mRNA were exclusively upregulated in stressed skin. Second, histomorphometry located Chrna7 and SLURP-1 in nerves and sMC and demonstrated upregulated contacts and increased Chrna7+ sMC in stressed skin, while 5 ng/mL SLURP-1 degranulated cMC. Third, IL1β+ sMC were high in stressed skin, and while SLURP-1 alone had no significant effect on cMC cytokines, it upregulated IL1β in cMC from Chrna7-KO and in IL1β-treated wildtype cMC. In addition, HIF1α+ sMC were high in stressed skin and Chrna7-agonist AR-R 17779 induced ROS in cMC while SLURP-1 upregulated TNFα and IL1β in cMC when HIF1α was blocked. Conclusions: These data infer that the CS plays a role in the regulation of stress-sensitive inflammatory responses but may have a surprising pro-inflammatory effect in healthy skin, driving IL1β expression if SLURP-1 is involved.
Collapse
Affiliation(s)
- Christoph M Ertle
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Frank R Rommel
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Susanne Tumala
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Yasuhiro Moriwaki
- Department of Pharmacology, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Jochen Klein
- Department of Pharmacology, Biocenter N260, Goethe University Frankfurt, Frankfurt, Germany
| | - Johannes Kruse
- Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany.,Clinic for Psychosomatic Medicine and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Uwe Gieler
- Department of Dermatology, University Hospital Giessen, Giessen, Germany
| | - Eva M J Peters
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany.,Charité Center 12 for Internal Medicine and Dermatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
Xie H, Yepuri N, Meng Q, Dhawan R, Leech CA, Chepurny OG, Holz GG, Cooney RN. Therapeutic potential of α7 nicotinic acetylcholine receptor agonists to combat obesity, diabetes, and inflammation. Rev Endocr Metab Disord 2020; 21:431-447. [PMID: 32851581 PMCID: PMC7572644 DOI: 10.1007/s11154-020-09584-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory reflex (CAIR) represents an important homeostatic regulatory mechanism for sensing and controlling the body's response to inflammatory stimuli. Vagovagal reflexes are an integral component of CAIR whose anti-inflammatory effects are mediated by acetylcholine (ACh) acting at α7 nicotinic acetylcholine receptors (α7nAChR) located on cells of the immune system. Recently, it is appreciated that CAIR and α7nAChR also participate in the control of metabolic homeostasis. This has led to the understanding that defective vagovagal reflex circuitry underlying CAIR might explain the coexistence of obesity, diabetes, and inflammation in the metabolic syndrome. Thus, there is renewed interest in the α7nAChR that mediates CAIR, particularly from the standpoint of therapeutics. Of special note is the recent finding that α7nAChR agonist GTS-21 acts at L-cells of the distal intestine to stimulate the release of two glucoregulatory and anorexigenic hormones: glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Furthermore, α7nAChR agonist PNU 282987 exerts trophic factor-like actions to support pancreatic β-cell survival under conditions of stress resembling diabetes. This review provides an overview of α7nAChR function as it pertains to CAIR, vagovagal reflexes, and metabolic homeostasis. We also consider the possible usefulness of α7nAChR agonists for treatment of obesity, diabetes, and inflammation.
Collapse
Affiliation(s)
- Han Xie
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Natesh Yepuri
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Qinghe Meng
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Ravi Dhawan
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Colin A Leech
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Oleg G Chepurny
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - George G Holz
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Robert N Cooney
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA.
| |
Collapse
|
26
|
Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology. Brain Sci 2020; 10:brainsci10120907. [PMID: 33255633 PMCID: PMC7761363 DOI: 10.3390/brainsci10120907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is characterized by hyperkinetic focal seizures, mainly arising in the neocortex during non-rapid eye movements (NREM) sleep. The familial form is autosomal dominant SHE (ADSHE), which can be caused by mutations in genes encoding subunits of the neuronal nicotinic acetylcholine receptor (nAChR), Na+-gated K+ channels, as well as non-channel signaling proteins, such as components of the gap activity toward rags 1 (GATOR1) macromolecular complex. The causative genes may have different roles in developing and mature brains. Under this respect, nicotinic receptors are paradigmatic, as different pathophysiological roles are exerted by distinct nAChR subunits in adult and developing brains. The widest evidence concerns α4 and β2 subunits. These participate in heteromeric nAChRs that are major modulators of excitability in mature neocortical circuits as well as regulate postnatal synaptogenesis. However, growing evidence implicates mutant α2 subunits in ADSHE, which poses interpretive difficulties as very little is known about the function of α2-containing (α2*) nAChRs in the human brain. Planning rational therapy must consider that pharmacological treatment could have different effects on synaptic maturation and adult excitability. We discuss recent attempts towards precision medicine in the mature brain and possible approaches to target developmental stages. These issues have general relevance in epilepsy treatment, as the pathogenesis of genetic epilepsies is increasingly recognized to involve developmental alterations.
Collapse
|
27
|
Courties A, Do A, Leite S, Legris M, Sudre L, Pigenet A, Petit J, Nourissat G, Cambon-Binder A, Maskos U, Berenbaum F, Sellam J. The Role of the Non-neuronal Cholinergic System in Inflammation and Degradation Processes in Osteoarthritis. Arthritis Rheumatol 2020; 72:2072-2082. [PMID: 32638534 DOI: 10.1002/art.41429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/27/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The non-neuronal cholinergic system represents non-neuronal cells that have the biochemical machinery to synthetize de novo and/or respond to acetylcholine (ACh). We undertook this study to investigate this biochemical machinery in chondrocytes and its involvement in osteoarthritis (OA). METHODS Expression of the biochemical machinery for ACh metabolism and nicotinic ACh receptors (nAChR), particularly α7-nAChR, in human OA and murine chondrocytes was determined by polymerase chain reaction and ligand-binding. We investigated the messenger RNA expression of the human duplicate α7-nACh subunit, called CHRFAM7A, which is responsible for truncated α7-nAChR. We assessed the effect of nAChR on chondrocytes activated by interleukin-1β (IL-1β) and the involvement of α7-nAChR using chondrocytes from wild-type (WT) and α7-deficient Chrna7-/- mice. The role of α7-nAChR in OA was explored after medial meniscectomy in WT and Chrna7-/- mice. RESULTS Human and murine chondrocytes express the biochemical partners of the non-neuronal cholinergic system and a functional α7-nAChR at their cell surface (n = 5 experiments with 5 samples each). The expression of CHRFAM7A in human OA chondrocytes (n = 23 samples) correlated positively with matrix metalloproteinase 3 (MMP-3) (r = 0.38, P < 0.05) and MMP-13 (r = 0.48, P < 0.05) expression. Nicotine decreased the IL-1β-induced IL-6 and MMP expression, in a dose-dependent manner, in WT chondrocytes but not in Chrna7-/- chondrocytes. Chrna7-/- mice that underwent meniscectomy (n = 7) displayed more severe OA cartilage damage (mean ± SD Osteoarthritis Research Society International [OARSI] score 4.46 ± 1.09) compared to WT mice that underwent meniscectomy (n = 9) (mean ± SD OARSI score 3.05 ± 0.9; P < 0.05). CONCLUSION The non-neuronal cholinergic system is functionally expressed in chondrocytes. Stimulation of nAChR induces antiinflammatory and anticatabolic activity through α7-nAChR, but the anticatabolic activity may be mitigated by truncated α7-nAChR in human chondrocytes. In vivo experiments strongly suggest that α7-nAChR has a protective role in OA.
Collapse
Affiliation(s)
- Alice Courties
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Ariane Do
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Sarah Leite
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Manon Legris
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Laure Sudre
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Audrey Pigenet
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Juliette Petit
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Geoffroy Nourissat
- 2INSERM UMR 938, Centre de Recherche Saint-Antoine, Clinique Maussins, Groupe Ramsay Générale de Santé, Paris, France
| | - Adeline Cambon-Binder
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Francis Berenbaum
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jérémie Sellam
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| |
Collapse
|
28
|
Trikash I, Kasatkina L, Lykhmus O, Skok M. Nicotinic acetylcholine receptors regulate clustering, fusion and acidification of the rat brain synaptic vesicles. Neurochem Int 2020; 138:104779. [PMID: 32474177 PMCID: PMC7256623 DOI: 10.1016/j.neuint.2020.104779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
Abstract
The brain nicotinic acetylcholine receptors (nAChRs) expressed in pre-synaptic nerve terminals regulate neurotransmitter release. However, there is no evidence for the expression of nAChRs in synaptic vesicles, which deliver neurotransmitter to synaptic cleft. The aim of this paper was to investigate the presence of nAChRs in synaptic vesicles purified from the rat brain and to study their possible involvement in vesicles life cycle. According to dynamic light scattering analysis, the antibody against extracellular domain (1-208) of α7 nAChR subunit inhibited synaptic vesicles clustering. Sandwich ELISA with nAChR subunit-specific antibodies demonstrated the presence of α4β2, α7 and α7β2nAChR subtypes in synaptic vesicles and showed that α7 and β2 nAChR subunits are co-localized with synaptic vesicle glycoprotein 2A (SV2A). Pre-incubation with either α7-selective agonist PNU282987 or nicotine did not affect synaptic vesicles clustering but delayed their Ca2+-dependent fusion with the plasma membranes. In contrast, nicotine but not PNU282987 stimulated acidification of isolated synaptic vesicles, indicating that α4β2 but not α7-containing nAChRs are involved in regulation of proton influx and neurotransmitter refilling. Treatment of rats with levetiracetam, a specific modulator of SV2A, increased the content of α7 nAChRs in synaptic vesicles accompanied by increased clustering but decreased Ca2+-dependent fusion. These data for the first time demonstrate the presence of nAChRs in synaptic vesicles and suggest an active involvement of cholinergic regulation in neurotransmitter release. Synaptic vesicles may be an additional target of nicotine inhaled upon smoking and of α7-specific drugs widely discussed as anti-inflammatory and pro-cognitive tools.
Collapse
Affiliation(s)
- Irene Trikash
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | | | - Olena Lykhmus
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine.
| |
Collapse
|
29
|
Endogenous neurotoxin-like protein Ly6H inhibits alpha7 nicotinic acetylcholine receptor currents at the plasma membrane. Sci Rep 2020; 10:11996. [PMID: 32686737 PMCID: PMC7371702 DOI: 10.1038/s41598-020-68947-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/03/2020] [Indexed: 11/08/2022] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and regarded as potential therapeutic targets for neurodegenerative conditions, such as Alzheimer's disease and schizophrenia. Yet, despite the assumed pathophysiological importance of the α7 nAChR, molecular physiological characterization remains poorly advanced because α7 nAChR cannot be properly folded and sorted to the plasma membranes in most mammalian cell lines, thus preventing the analyses in heterologous expression system. Recently, ER-resident membrane protein NACHO was discovered as a strong chaperone for the functional expression of α7 nAChR in non-permissive cells. Ly6H, a brain-enriched GPI-anchored neurotoxin-like protein, was reported as a novel modulator regulating intracellular trafficking of α7 nAChR. In this study, we established cell lines that stably and robustly express surface α7 nAChR by introducing α7 nAChR, Ric-3, and NACHO cDNA into HEK293 cells (Triple α7 nAChR/RIC-3/NACHO cells; TARO cells), and re-evaluated the function of Ly6H. We report here that Ly6H binds with α7 nAChRs on the cell membrane and modulates the channel activity without affecting intracellular trafficking of α7 nAChR.
Collapse
|
30
|
Impact of Key Nicotinic AChR Subunits on Post-Stroke Pneumococcal Pneumonia. Vaccines (Basel) 2020; 8:vaccines8020253. [PMID: 32481512 PMCID: PMC7349987 DOI: 10.3390/vaccines8020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pneumonia is the most frequent severe medical complication after stroke. An overactivation of the cholinergic signaling after stroke contributes to immunosuppression and the development of spontaneous pneumonia caused by Gram-negative pathogens. The α7 nicotinic acetylcholine receptor (α7nAChR) has already been identified as an important mediator of the anti-inflammatory pathway after stroke. However, whether the α2, α5 and α9/10 nAChR expressed in the lung also play a role in suppression of pulmonary innate immunity after stroke is unknown. In the present study, we investigate the impact of various nAChRs on aspiration-induced pneumonia after stroke. Therefore, α2, α5, α7 and α9/10 nAChR knockout (KO) mice and wild type (WT) littermates were infected with Streptococcus pneumoniae (S. pneumoniae) three days after middle cerebral artery occlusion (MCAo). One day after infection pathogen clearance, cellularity in lung and spleen, cytokine secretion in bronchoalveolar lavage (BAL) and alveolar-capillary barrier were investigated. Here, we found that deficiency of various nAChRs does not contribute to an enhanced clearance of a Gram-positive pathogen causing post-stroke pneumonia in mice. In conclusion, these findings suggest that a single nAChR is not sufficient to mediate the impaired pulmonary defense against S. pneumoniae after experimental stroke.
Collapse
|
31
|
Perniss A, Latz A, Boseva I, Papadakis T, Dames C, Meisel C, Meisel A, Scholze P, Kummer W, Krasteva-Christ G. Acute nicotine administration stimulates ciliary activity via α3β4 nAChR in the mouse trachea. Int Immunopharmacol 2020; 84:106496. [PMID: 32304995 DOI: 10.1016/j.intimp.2020.106496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022]
Abstract
Mucociliary clearance, the continuous removal of mucus-trapped particles by cilia-driven directed transport of the airway lining fluid, is the primary innate defense mechanism of the airways. It is potently activated by acetylcholine (ACh) addressing muscarinic receptors with a currently less defined role of nicotinic ACh receptors (nAChR). We here set out to determine their contribution in driving ciliary activity in an explanted mouse trachea preparation utilizing selected agonists and antagonists and nAChR-subunit deficient mice. Nicotine (100 µM) induced an increase in ciliary beat frequency, accompanied by a sharp, but not long lasting increase in particle transport speed (PTS) on the mucosal surface showing marked desensitization within the next 30 min. Nicotine-induced PTS acceleration was sensitive to the general nAChR inhibitors mecamylamine and d-tubocurarine as well as to the α3β4-nAChR antagonist α-conotoxin AulB, but not to other antagonists primarily addressing α3β2-nAChR or α4-, α7- and α9-containing nAChR. Agonists at α3β*-nAChR (epibatidine, cytisine), but not cotinine mimicked the effect. Tracheas from mice with genetic deletion of nAChR subunits α5, α7, α9, α10, α9/10, and β2 retained full PTS response to nicotine, whereas this was entirely lost in tracheas from mice lacking the β4-subunit. Collectively, our data show that nicotinic stimulation of α3β4-nAChR acutely increases PTS to the same extent as the established strong activator ATP. In view of the marked desensitization observed in the present setting, the physiological relevance of these receptors in adapting mucociliary clearance to rapidly changing endogenous or environmental stimuli remains open.
Collapse
Affiliation(s)
- Alexander Perniss
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Ariane Latz
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivelina Boseva
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tamara Papadakis
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Claudia Dames
- Charité Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Christian Meisel
- Charité Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Andreas Meisel
- Charité Berlin, Departments of Neurology and Experimental Neurology, NeuroCure Clinical Research Center, Berlin, Germany
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany; Present address: Department of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
32
|
Baradaran R, Khoshdel‐Sarkarizi H, Kargozar S, Hami J, Mohammadipour A, Sadr‐Nabavi A, Peyvandi Karizbodagh M, Kheradmand H, Haghir H. Developmental regulation and lateralisation of the α7 and α4 subunits of nicotinic acetylcholine receptors in developing rat hippocampus. Int J Dev Neurosci 2020; 80:303-318. [DOI: 10.1002/jdn.10026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Raheleh Baradaran
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Hoda Khoshdel‐Sarkarizi
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG) Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Javad Hami
- Department of Anatomical Sciences School of Medicine Birjand University of Medical Sciences Birjand Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Ariane Sadr‐Nabavi
- Department of Medical Genetics School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Medical Genetic Research Center (MGRC) School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | | | - Hamed Kheradmand
- Hazrat Rasoul Hospital Tehran University of Medical Sciences Tehran Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Medical Genetic Research Center (MGRC) School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
33
|
Why Does Knocking Out NACHO, But Not RIC3, Completely Block Expression of α7 Nicotinic Receptors in Mouse Brain? Biomolecules 2020; 10:biom10030470. [PMID: 32204458 PMCID: PMC7175337 DOI: 10.3390/biom10030470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptors (α7nAChRs) are interesting not only because of their physiological effects, but because this receptor requires chaperones to traffic to cell surfaces (measured by alpha-bungarotoxin [αBGT] binding). While knockout (KO) animals and antibodies that react across species exist for tmem35a encoding the protein chaperone NACHO, commercially available antibodies against the chaperone RIC3 that allow Western blots across species have not been generally available. Further, no effects of deleting RIC3 function (ric3 KO) on α7nAChR expression are reported. Finally, antibodies against α7nAChRs have shown various deficiencies. We find mouse macrophages bind αBGT but lack NACHO. We also report on a new α7nAChR antibody and testing commercially available anti-RIC3 antibodies that react across species allowing Western blot analysis of in vitro cultures. These antibodies also react to specific RIC3 splice variants and single-nucleotide polymorphisms. Preliminary autoradiographic analysis reveals that ric3 KOs show subtle αBGT binding changes across different mouse brain regions, while tmem35a KOs show a complete loss of αBGT binding. These findings are inconsistent with effects observed in vitro, as RIC3 promotes αBGT binding to α7nAChRs expressed in HEK cells, even in the absence of NACHO. Collectively, additional regulatory factors are likely involved in the in vivo expression of α7nAChRs.
Collapse
|
34
|
Tarasenko O, Voytenko S, Koval L, Lykhmus O, Kalashnyk O, Skok M. Unusual properties of α7 nicotinic acetylcholine receptor ion channels in B lymphocyte-derived SP-2/0 cells. Int Immunopharmacol 2020; 82:106373. [PMID: 32163855 DOI: 10.1016/j.intimp.2020.106373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
This study demonstrates the presence of α7 nicotinic acetylcholine receptors (nAChR) in B lymphocyte-derived SP-2/0 cells by means of flow cytometry and immunocytochemistry. According to lectin and sandwich ELISA, the α7 subunits expressed in SP-2/0 cells are more glycosylated compared to those expressed in the brain or normal B lymphocytes and are combined with β2 subunits. At zero and negative pipette potentials, either acetylcholine or α7-specific agonist PNU282987 stimulated the ion channel activity in SP-2/0 cells revealed by single channel patch-clamp recordings. The conductivity was within the range of 19 to 39 pS and reversal potential was between -17 mV and +28 mV, the currents were potentiated by α7-specific positive allosteric modulator PNU120596 and were partially blocked by α7-specific antagonist methyllicaconitine (MLA). However, they were oriented downwards suggesting that the channels mediated the cation outflux rather than influx. As shown by Ca2+ imaging studies, PNU282987 did not stimulate immediate Ca2+ influx into SP-2/0 cells. Instead, Ca2+ influx through Ca-release-activated channels (CRACs) was observed within minutes after either PNU282987 or MLA application. It is concluded that SP-2/0 express α7β2 nAChRs, which mediate the cation outflux under negative pipette potentials applied, possibly, due to depolarized membrane or negative surface charge formed by carbohydrate residues. In addition, α7β2 nAChRs may influence CRACs in ion-independent way.
Collapse
Affiliation(s)
| | - Sergiy Voytenko
- Bogomoletz Institute of Physiology, 4, Bogomoletz Str, 01024 Kyiv, Ukraine
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine.
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine.
| |
Collapse
|
35
|
Casamassa A, Ferrari D, Gelati M, Carella M, Vescovi AL, Rosati J. A Link between Genetic Disorders and Cellular Impairment, Using Human Induced Pluripotent Stem Cells to Reveal the Functional Consequences of Copy Number Variations in the Central Nervous System-A Close Look at Chromosome 15. Int J Mol Sci 2020; 21:ijms21051860. [PMID: 32182809 PMCID: PMC7084702 DOI: 10.3390/ijms21051860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Recent cutting-edge human genetics technology has allowed us to identify copy number variations (CNVs) and has provided new insights for understanding causative mechanisms of human diseases. A growing number of studies show that CNVs could be associated with physiological mechanisms linked to evolutionary trigger, as well as to the pathogenesis of various diseases, including cancer, autoimmune disease and mental disorders such as autism spectrum disorders, schizophrenia, intellectual disabilities or attention-deficit/hyperactivity disorder. Their incomplete penetrance and variable expressivity make diagnosis difficult and hinder comprehension of the mechanistic bases of these disorders. Additional elements such as co-presence of other CNVs, genomic background and environmental factors are involved in determining the final phenotype associated with a CNV. Genetically engineered animal models are helpful tools for understanding the behavioral consequences of CNVs. However, the genetic background and the biology of these animal model systems have sometimes led to confusing results. New cellular models obtained through somatic cellular reprogramming technology that produce induced pluripotent stem cells (iPSCs) from human subjects are being used to explore the mechanisms involved in the pathogenic consequences of CNVs. Considering the vast quantity of CNVs found in the human genome, we intend to focus on reviewing the current literature on the use of iPSCs carrying CNVs on chromosome 15, highlighting advantages and limits of this system with respect to mouse model systems.
Collapse
Affiliation(s)
- Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Viale Abramo Lincoln 5, 81100 Caserta, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
- Correspondence: (A.L.V.); (J.R.)
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Correspondence: (A.L.V.); (J.R.)
| |
Collapse
|
36
|
Gallegos CE, Bartos M, Gumilar F, Raisman-Vozari R, Minetti A, Baier CJ. Intranasal glyphosate-based herbicide administration alters the redox balance and the cholinergic system in the mouse brain. Neurotoxicology 2020; 77:205-215. [PMID: 31991143 DOI: 10.1016/j.neuro.2020.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
Pesticide exposure is associated with cognitive and psychomotor disorders. Glyphosate-based herbicides (GlyBH) are among the most used agrochemicals, and inhalation of GlyBH sprays may arise from frequent aerial pulverizations. Previously, we described that intranasal (IN) administration of GlyBH in mice decreases locomotor activity, increases anxiety, and impairs recognition memory. Then, the aim of the present study was to investigate the mechanisms involved in GlyBH neurotoxicity after IN administration. Adult male CF-1 mice were exposed to GlyBH IN administration (equivalent to 50 mg/kg/day of Gly acid, 3 days a week, during 4 weeks). Total thiol content and the activity of the enzymes catalase, acetylcholinesterase and transaminases were evaluated in different brain areas. In addition, markers of the cholinergic and the nigrostriatal pathways, as well as of astrocytes were evaluated by fluorescence microscopy in coronal brain sections. The brain areas chosen for analysis were those seen to be affected in our previous study. GlyBH IN administration impaired the redox balance of the brain and modified the activities of enzymes involved in cholinergic and glutamatergic pathways. Moreover, GlyBH treatment decreased the number of cholinergic neurons in the medial septum as well as the expression of the α7-acetylcholine receptor in the hippocampus. Also, the number of astrocytes increased in the anterior olfactory nucleus of the exposed mice. Taken together, these disturbances may contribute to the neurobehavioural impairments reported previously by us after IN GlyBH administration in mice.
Collapse
Affiliation(s)
- Cristina Eugenia Gallegos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Mariana Bartos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Rita Raisman-Vozari
- INSERM UMR 1127, CNRS UMR 7225, UPMC, ThérapeutiqueExpérimentale de la Neurodégénérescence, Hôpital de la Salpetrière-ICM (Institut du cerveau et de la moelleépinière), Paris, France
| | - Alejandra Minetti
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Carlos Javier Baier
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Lykhmus O, Kalashnyk O, Uspenska K, Horid’ko T, Kosyakova H, Komisarenko S, Skok M. Different Effects of Nicotine and N-Stearoyl-ethanolamine on Episodic Memory and Brain Mitochondria of α7 Nicotinic Acetylcholine Receptor Knockout Mice. Biomolecules 2020; 10:E226. [PMID: 32028688 PMCID: PMC7072576 DOI: 10.3390/biom10020226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acetylcholine receptors of α7 subtype (α7 nAChRs) are involved in regulating neuroinflammation and cognitive functions. Correspondingly, α7-/- mice demonstrate pro-inflammatory phenotype and impaired episodic memory. In addition, nAChRs expressed in mitochondria regulate the release of pro-apoptotic factors like cytochrome c. Here we studied whether the cognitive deficiency of α7-/- mice can be cured by oral consumption of either nicotine or N-stearoylethanolamine (NSE), a lipid possessing anti-inflammatory, cannabimimetic and membrane-stabilizing activity. Mice were examined in Novel Object Recognition behavioral test, their blood, brains and brain mitochondria were tested for the levels of interleukin-6, various nAChR subtypes and cytochrome c released by ELISA. The data presented demonstrate that both substances stimulated the raise of interleukin-6 in the blood and improved episodic memory of α7-/- mice. However, NSE improved, while nicotine worsened the brain mitochondria sustainability to apoptogenic stimuli, as shown by either decreased or increased amounts of cytochrome c released. Both nicotine and NSE up-regulated α4β2 nAChRs in the brain; NSE up-regulated, while nicotine down-regulated α9-containing nAChRs in the brain mitochondria. It is concluded that the level of alternative nAChR subtypes in the brain is critically important for memory and mitochondria sustainability in the absence of α7 nAChRs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maryna Skok
- Palladin Institute of Biochemistry, 01030 Kyiv, Ukraine; (O.L.); (O.K.); (K.U.); (T.H.); (H.K.); (S.K.)
| |
Collapse
|
38
|
Hua Y, Yang B, Chen Q, Zhang J, Hu J, Fan Y. Activation of α7 Nicotinic Acetylcholine Receptor Protects Against 1-Methyl-4-Phenylpyridinium-Induced Astroglial Apoptosis. Front Cell Neurosci 2019; 13:507. [PMID: 31780901 PMCID: PMC6861188 DOI: 10.3389/fncel.2019.00507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/28/2019] [Indexed: 01/13/2023] Open
Abstract
Astrocytes, as the largest population of glial subtype, play crucial roles in normal brain function and pathological conditions, such as Parkinson's disease (PD). Restoring the functions of astrocyte is a promising new therapeutic target for PD. Astrocytes can express multiple types of neurotransmitter receptors, including functional α7 nicotinic acetylcholine receptor (α7nAChR). Previously, we found that a non-selective α7nAChR agonist nicotine exerted a protective effect against H2O2-induced astrocyte apoptosis via an α7nAChR-dependent pathway. However, the molecular mechanism of the antiapoptotic response of astroglial α7nAChR has not been studied. In the present study, using pharmacological inhibition and genetic knockout of α7nAChR, we assessed the antiapoptotic effects of an α7nAChR agonist PNU-282987 in primary cultured astrocytes treated with 1-methyl-4-phenylpyridinium (MPP+). PNU-282987 promoted the viability of astrocytes, alleviated MPP+ induced apoptosis, and decreased the number of GFAP+/TUNEL+ cells. Meanwhile, PNU-282987 upregulated the expression of the antiapoptotic protein Bcl-2 and downregulated the expression of the apoptotic protein Bax and cleaved-caspase-3. Moreover, the suppression of the JNK-p53-caspase-3 signaling may underlie the neuroprotective property of PNU-282987. Therefore, PNU-282987 ameliorates astroglial apoptosis induced by MPP+ through α7nAChR-JNK-p53 signaling. Our findings suggest that PNU-282987 may be a potential drug for restoring astroglial functions in the treatment of PD.
Collapse
Affiliation(s)
- Ye Hua
- Department of Neurology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Beibei Yang
- Department of Pharmacology, Neuroprotective Drug Discovery Center, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Pharmacology, Neuroprotective Drug Discovery Center, Nanjing Medical University, Nanjing, China
| | - Ji Zhang
- Division of Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Fan
- Department of Pharmacology, Neuroprotective Drug Discovery Center, Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Positive allosteric modulation of the α7 nicotinic acetylcholine receptor as a treatment for cognitive deficits after traumatic brain injury. PLoS One 2019; 14:e0223180. [PMID: 31581202 PMCID: PMC6776323 DOI: 10.1371/journal.pone.0223180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
Cognitive impairments are a common consequence of traumatic brain injury (TBI). The hippocampus is a subcortical structure that plays a key role in the formation of declarative memories and is highly vulnerable to TBI. The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in the hippocampus and reduced expression and function of this receptor are linked with cognitive impairments in Alzheimer's disease and schizophrenia. Positive allosteric modulation of α7 nAChRs with AVL-3288 enhances receptor currents and improves cognitive functioning in naïve animals and healthy human subjects. Therefore, we hypothesized that targeting the α7 nAChR with the positive allosteric modulator AVL-3288 would enhance cognitive functioning in the chronic recovery period of TBI. To test this hypothesis, adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 3 months after recovery, animals were treated with vehicle or AVL-3288 at 30 min prior to cue and contextual fear conditioning and the water maze task. Treatment of TBI animals with AVL-3288 rescued learning and memory deficits in water maze retention and working memory. AVL-3288 treatment also improved cue and contextual fear memory when tested at 24 hr and 1 month after training, when TBI animals were treated acutely just during fear conditioning at 3 months post-TBI. Hippocampal atrophy but not cortical atrophy was reduced with AVL-3288 treatment in the chronic recovery phase of TBI. AVL-3288 application to acute hippocampal slices from animals at 3 months after TBI rescued basal synaptic transmission deficits and long-term potentiation (LTP) in area CA1. Our results demonstrate that AVL-3288 improves hippocampal synaptic plasticity, and learning and memory performance after TBI in the chronic recovery period. Enhancing cholinergic transmission through positive allosteric modulation of the α7 nAChR may be a novel therapeutic to improve cognition after TBI.
Collapse
|
40
|
Kamio Y, Miyamoto T, Kimura T, Mitsui K, Furukawa H, Zhang D, Yokosuka K, Korai M, Kudo D, Lukas RJ, Lawton MT, Hashimoto T. Roles of Nicotine in the Development of Intracranial Aneurysm Rupture. Stroke 2019; 49:2445-2452. [PMID: 30355112 DOI: 10.1161/strokeaha.118.021706] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background and Purpose- Tobacco cigarette smoking is considered to be a strong risk factor for intracranial aneurysmal rupture. Nicotine is a major biologically active constituent of tobacco products. Nicotine's interactions with vascular cell nicotinic acetylcholine receptors containing α7 subunits (α7*-nAChR) are thought to promote local inflammation and sustained angiogenesis. In this study, using a mouse intracranial aneurysm model, we assessed potential contributions of nicotine exposure and activation of α7*-nAChR to the development of aneurysmal rupture. Methods- Intracranial aneurysms were induced by a combination of deoxycorticosterone-salt induced hypertension and a single-dose elastase injection into cerebrospinal fluid in mice. Results- Exposure to nicotine or an α7*-nAChR-selective agonist significantly increased aneurysm rupture rate. Coexposure to an α7*-nAChR antagonist abolished nicotine's deleterious effect. In addition, nicotine's promotion of aneurysm rupture was absent in smooth muscle cell-specific α7*-nAChR subunit knockout mice but not in mice lacking α7*-nAChR on endothelial cells or macrophages. Nicotine treatment increased the mRNA levels of vascular endothelial growth factor, platelet-derived growth factor-B, and inflammatory cytokines. α7*-nAChR antagonist reversed nicotine-induced upregulation of these growth factors and cytokines. Conclusions- Our findings indicate that nicotine exposure promotes aneurysmal rupture through actions on vascular smooth muscle cell α7*-nAChR.
Collapse
Affiliation(s)
- Yoshinobu Kamio
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Takeshi Miyamoto
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Neurobiology (T.M., T.K., D.K., R.J.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Tetsuro Kimura
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Neurobiology (T.M., T.K., D.K., R.J.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Kazuha Mitsui
- Department of Anesthesia and Perioperative Care, University of California, San Francisco (K.M., H.F., D.Z., K.Y., M.K.)
| | - Hajime Furukawa
- Department of Anesthesia and Perioperative Care, University of California, San Francisco (K.M., H.F., D.Z., K.Y., M.K.)
| | - Dingding Zhang
- Department of Anesthesia and Perioperative Care, University of California, San Francisco (K.M., H.F., D.Z., K.Y., M.K.)
| | - Kimihiko Yokosuka
- Department of Anesthesia and Perioperative Care, University of California, San Francisco (K.M., H.F., D.Z., K.Y., M.K.)
| | - Masaaki Korai
- Department of Anesthesia and Perioperative Care, University of California, San Francisco (K.M., H.F., D.Z., K.Y., M.K.)
| | - Daisuke Kudo
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Neurobiology (T.M., T.K., D.K., R.J.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Ronald J Lukas
- Neurobiology (T.M., T.K., D.K., R.J.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Michael T Lawton
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Tomoki Hashimoto
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Neurobiology (T.M., T.K., D.K., R.J.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| |
Collapse
|
41
|
Lykhmus O, Kalashnyk O, Koval L, Voytenko L, Uspenska K, Komisarenko S, Deryabina O, Shuvalova N, Kordium V, Ustymenko A, Kyryk V, Skok M. Mesenchymal Stem Cells or Interleukin-6 Improve Episodic Memory of Mice Lacking α7 Nicotinic Acetylcholine Receptors. Neuroscience 2019; 413:31-44. [DOI: 10.1016/j.neuroscience.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
|
42
|
Rothbard JB, Kurnellas MP, Ousman SS, Brownell S, Rothbard JJ, Steinman L. Small Heat Shock Proteins, Amyloid Fibrils, and Nicotine Stimulate a Common Immune Suppressive Pathway with Implications for Future Therapies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034223. [PMID: 30249602 DOI: 10.1101/cshperspect.a034223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) is central to the anti-inflammatory function of the vagus nerve in a physiological mechanism termed the inflammatory reflex. Studies on the inflammatory reflex have been instrumental for the current development of the field of bioelectronic medicine. An independent investigation of the biological role of αB-crystallin (HspB5), the most abundant gene transcript present in active multiple sclerosis lesions in human brains, also led to α7nAChR. Induction of experimental autoimmune encephalomyelitis (EAE) in HspB5-/- mice results in greater paralytic signs, increased levels of proinflammatory cytokines, and T-lymphocyte activation relative to wild-type animals. Administration of HspB5 was therapeutic in animal models of multiple sclerosis, retinal and cardiac ischemia, and stroke. Structure-activity studies established that residues 73-92 were as potent as the parent protein, but only when it formed amyloid fibrils. Amyloid fibrils and small heat shock proteins (sHsps) selectively bound α7nAChR on peritoneal macrophages (MΦs) and B lymphocytes, converting the MΦs to an immune suppressive phenotype and mobilizing the migration of both cell types from the peritoneum to secondary lymph organs. Here, we review multiple aspects of this work, which may be of interest for developing future therapeutic approaches for multiple sclerosis and other disorders.
Collapse
Affiliation(s)
- Jonathan B Rothbard
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| | | | - Shalina S Ousman
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 1N4, Canada
| | - Sara Brownell
- School of Life Sciences, Arizona State University, Tempe, Arizona 85281
| | - Jesse J Rothbard
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| | - Lawrence Steinman
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| |
Collapse
|
43
|
Forsingdal A, Jørgensen TN, Olsen L, Werge T, Didriksen M, Nielsen J. Can Animal Models of Copy Number Variants That Predispose to Schizophrenia Elucidate Underlying Biology? Biol Psychiatry 2019; 85:13-24. [PMID: 30144930 DOI: 10.1016/j.biopsych.2018.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The diagnosis of schizophrenia rests on clinical criteria that cannot be assessed in animal models. Together with absence of a clear underlying pathology and understanding of what causes schizophrenia, this has hindered development of informative animal models. However, recent large-scale genomic studies have identified copy number variants (CNVs) that confer high risk of schizophrenia and have opened a new avenue for generation of relevant animal models. Eight recurrent CNVs have reproducibly been shown to increase the risk of schizophrenia by severalfold: 22q11.2(del), 15q13.3(del), 1q21(del), 1q21(dup), NRXN1(del), 3q29(del), 7q11.23(dup), and 16p11.2(dup). Five of these CNVs have been modeled in animals, mainly mice, but also rats, flies, and zebrafish, and have been shown to recapitulate behavioral and electrophysiological aspects of schizophrenia. Here, we provide an overview of the schizophrenia-related phenotypes found in animal models of schizophrenia high-risk CNVs. We also discuss strengths and limitations of the CNV models, and how they can advance our biological understanding of mechanisms that can lead to schizophrenia and can be used to develop new and better treatments for schizophrenia.
Collapse
Affiliation(s)
- Annika Forsingdal
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Trine Nygaard Jørgensen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Line Olsen
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Michael Didriksen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Jacob Nielsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde.
| |
Collapse
|
44
|
Phosphocholine-Modified Lipooligosaccharides of Haemophilus influenzae Inhibit ATP-Induced IL-1β Release by Pulmonary Epithelial Cells. Molecules 2018; 23:molecules23081979. [PMID: 30096783 PMCID: PMC6222299 DOI: 10.3390/molecules23081979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Phosphocholine-modified bacterial cell wall components are virulence factors enabling immune evasion and permanent colonization of the mammalian host, by mechanisms that are poorly understood. Recently, we demonstrated that free phosphocholine (PC) and PC-modified lipooligosaccharides (PC-LOS) from Haemophilus influenzae, an opportunistic pathogen of the upper and lower airways, function as unconventional nicotinic agonists and efficiently inhibit the ATP-induced release of monocytic IL-1β. We hypothesize that H. influenzae PC-LOS exert similar effects on pulmonary epithelial cells and on the complex lung tissue. The human lung carcinoma-derived epithelial cell lines A549 and Calu-3 were primed with lipopolysaccharide from Escherichia coli followed by stimulation with ATP in the presence or absence of PC or PC-LOS or LOS devoid of PC. The involvement of nicotinic acetylcholine receptors was tested using specific antagonists. We demonstrate that PC and PC-LOS efficiently inhibit ATP-mediated IL-1β release by A549 and Calu-3 cells via nicotinic acetylcholine receptors containing subunits α7, α9, and/or α10. Primed precision-cut lung slices behaved similarly. We conclude that H. influenzae hijacked an endogenous anti-inflammatory cholinergic control mechanism of the lung to evade innate immune responses of the host. These findings may pave the way towards a host-centered antibiotic treatment of chronic airway infections with H. influenzae.
Collapse
|
45
|
Vivekanandarajah A, Waters KA, Machaalani R. Cigarette smoke exposure effects on the brainstem expression of nicotinic acetylcholine receptors (nAChRs), and on cardiac, respiratory and sleep physiologies. Respir Physiol Neurobiol 2018; 259:1-15. [PMID: 30031221 DOI: 10.1016/j.resp.2018.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022]
Abstract
Cigarette smoking during pregnancy is the largest modifiable risk factor for adverse outcomes in the infant. Investigations have focused on the psychoactive component of cigarettes, nicotine. One proposed mechanism leading to adverse effects is the interaction between nicotine and its nicotinic acetylcholine receptors (nAChRs). Much data has been generated over the past three decades on the effects of cigarette smoke exposure (CSE) on the expression of the nAChRs in the brainstem and physiological parameters related to cardiac, respiration and sleep, in the offspring of smoking mothers and animal models of nicotine exposure. This review summarises this data and discusses the main findings, highlighting that findings in animal models closely correlate with those from human studies, and that the major brainstem sites where the expression level for the nAChRs are consistently affected include those that play vital roles in cardiorespiration (hypoglossal nucleus, dorsal motor nucleus of the vagus, nucleus of the solitary tract), chemosensation (nucleus of the solitary tract, arcuate nucleus) and arousal (rostral mesopontine sites such as the locus coeruleus and nucleus pontis oralis). These findings provide evidence for the adverse effects of CSE during and after pregnancy to the infant and the need to continue with the health campaign advising against CSE.
Collapse
Affiliation(s)
- Arunnjah Vivekanandarajah
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Medical Foundation Building K25, University of Sydney, NSW 2006, Australia.
| | - Karen A Waters
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Medical Foundation Building K25, University of Sydney, NSW 2006, Australia; Discipline of Paediatrics and Child Health, Children's Hospital Westmead, NSW, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Medical Foundation Building K25, University of Sydney, NSW 2006, Australia; Discipline of Paediatrics and Child Health, Children's Hospital Westmead, NSW, Australia
| |
Collapse
|
46
|
Uspenska K, Lykhmus O, Obolenskaya M, Pons S, Maskos U, Komisarenko S, Skok M. Mitochondrial Nicotinic Acetylcholine Receptors Support Liver Cells Viability After Partial Hepatectomy. Front Pharmacol 2018; 9:626. [PMID: 29950998 PMCID: PMC6008424 DOI: 10.3389/fphar.2018.00626] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) expressed on the cell plasma membrane are ligand-gated ion channels mediating fast synaptic transmission, regulating neurotransmitter and cytokine release and supporting the viability of many cell types. The nAChRs expressed in mitochondria regulate the release of pro-apoptotic factors, like cytochrome c, in ion channel-independent manner. Here we show that α3β2, α7β2, and α9α10 nAChR subtypes are up-regulated in rat liver mitochondria 3–6 h after partial hepatectomy resulting in increased sustainability of mitochondria to apoptogenic effects of Ca2+ and H2O2. In contrast, laparotomy resulted in down-regulation of all nAChR subunits, except α9, and decreased mitochondria sustainability to apoptogenic effects of Ca2+ and H2O2. Experiments performed in liver mitochondria from α3+/-, α7-/-, β4-/-, α7β2-/-, or wild-type C57Bl/6J mice demonstrated that the decrease of α3 or absence of α7 or α7/β2 subunits in mitochondria is compensated with β4 and α9 subunits, which could be found in α3β4, α4β4, α9β4, and α9α10 combinations. Mitochondria from knockout mice maintained their sustainability to Ca2+ but were differently regulated by nAChR subtype-specific ligands: PNU-282987, methyllycaconitine, dihydro-β-erythroidine, α-conotoxin MII, and α-conotoxin PeIA. It is concluded that mitochondrial nAChRs play an important role in supporting the viability of hepatic cells and, therefore, may be a pharmacological target for pro-survival therapy. The concerted action of multiple nAChR subtypes controlling either CaKMII- or Src-dependent signaling pathways in mitochondria ensures a reliable protection against apoptogenic factors of different nature.
Collapse
Affiliation(s)
- Kateryna Uspenska
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of Biochemistry, Kiev, Ukraine
| | - Olena Lykhmus
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of Biochemistry, Kiev, Ukraine
| | - Maria Obolenskaya
- System Biology Group, Institute of Molecular Biology and Genetics, Kiev, Ukraine
| | - Stephanie Pons
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Paris, France
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Paris, France
| | - Serhiy Komisarenko
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of Biochemistry, Kiev, Ukraine
| | - Maryna Skok
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of Biochemistry, Kiev, Ukraine
| |
Collapse
|
47
|
Mineur YS, Mose TN, Blakeman S, Picciotto MR. Hippocampal α7 nicotinic ACh receptors contribute to modulation of depression-like behaviour in C57BL/6J mice. Br J Pharmacol 2018; 175:1903-1914. [PMID: 28264149 PMCID: PMC5979617 DOI: 10.1111/bph.13769] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Clinical studies have identified links between cholinergic signalling and depression in human subjects. Increased cholinergic signalling in hippocampus also increases behaviours related to anxiety and depression in mice, which can be reversed by ACh receptor antagonists. EXPERIMENTAL APPROACH As the α7 subunit of the nicotinic ACh receptor (nAChR) is highly expressed in hippocampus, we determined whether blocking α7 nAChRs could reverse the effects of increased ACh signalling in anxiety- and depression-related behaviours in mice. KEY RESULTS Administration of the α7 nAChR agonist GTS-21 had no effect in tail suspension or forced swim tests. Conversely, the α7 nAChR antagonist methyllycaconitine (MLA) induced significant antidepressant-like effects in male mice in these paradigms, consistent with previous studies, but this was not observed in female mice. MLA also decreased physostigmine-induced c-fos immunoreactivity (a marker of neuronal activity) in hippocampus. Local knockdown of α7 nAChRs in hippocampus had no effect on its own but decreased a subset of depression-like phenotypes induced by physostigmine in male mice. Few effects of α7 nAChR knockdown were observed in depression-like behaviors in female mice, possibly due to a limited response to physostigmine. There was no significant effect of hippocampal α7 nAChR knockdown on anxiety-like phenotypes in male mice. However, a modest increase in anxiety-like behavior was observed in female mice infused with a scrambled control vector in response to physostigmine administration, that was not seen after a7 nAChR knockdown in the hippocampus. CONCLUSIONS AND IMPLICATIONS These results suggest that ACh signalling through α7 nAChRs in the hippocampus contributes to regulation of a subset of depression-like behaviours when ACh is increased, as can occur under stressful conditions. These studies also provide evidence for sex differences that may be relevant for treatments of mood disorders based on cholinergic signalling. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of PsychiatryYale University School of MedicineNew HavenCTUSA
| | - Tenna N Mose
- Department of PsychiatryYale University School of MedicineNew HavenCTUSA
| | - Sam Blakeman
- Department of PsychiatryYale University School of MedicineNew HavenCTUSA
| | - Marina R Picciotto
- Department of PsychiatryYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
48
|
Lewis AS, Pittenger ST, Mineur YS, Stout D, Smith PH, Picciotto MR. Bidirectional Regulation of Aggression in Mice by Hippocampal Alpha-7 Nicotinic Acetylcholine Receptors. Neuropsychopharmacology 2018; 43:1267-1275. [PMID: 29114104 PMCID: PMC5916354 DOI: 10.1038/npp.2017.276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/06/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Humans with 15q13.3 microdeletion syndrome (15q13.3DS) are typically hemizygous for CHRNA7, the gene coding for the α7 nicotinic acetylcholine receptor (nAChR), and manifest a variable neuropsychiatric phenotype that frequently includes persistent aggression. In mice, nAChR activation by nicotine is anti-aggressive, or 'serenic,' an effect which requires α7 nAChRs and is recapitulated by GTS-21, an α7 nAChR partial agonist. Pharmacotherapies potentiating α7 nAChR signaling have also been shown to reduce aggression in human 15q13.3DS. These findings identify the α7 nAChR as an important regulator of aggressive behavior, but the underlying neurobiological substrates remain to be determined. We therefore investigated the brain regions and potential neural circuits in which α7 nAChRs regulate aggressive behavior in male mice. As in 15q13.3DS, mice heterozygous for Chrna7 were significantly more aggressive compared to wild-type controls in the resident-intruder test. We subsequently examined the hippocampus, where α7 nAChRs are highly expressed, particularly in GABAergic interneurons. Resident-intruder interactions strongly activated granule cells in the dentate gyrus (DG). In contrast, GTS-21, which reduces aggression in mice, reduced DG granule cell activity during resident-intruder interactions. Short hairpin RNA knockdown of Chrna7 in the DG enhanced baseline aggression and eliminated the serenic effects of both nicotine and GTS-21 on attack latency. These data further implicate α7 nAChRs in regulation of aggression, and demonstrate that hippocampal α7 nAChR signaling is necessary and sufficient to limit aggression. These findings suggest that nAChR-mediated regulation of hippocampal excitatory-inhibitory balance could be a promising therapeutic intervention for aggression arising in certain forms of neuropsychiatric disease.
Collapse
Affiliation(s)
- Alan S Lewis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Steven T Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yann S Mineur
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Dawson Stout
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Philip H Smith
- Department of Community Health and Social Medicine, CUNY School of Medicine, New York, NY, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA, Tel: +203-737-2041, Fax: +203-737-2043, E-mail:
| |
Collapse
|
49
|
Morley BJ, Whiteaker P, Elgoyhen AB. Commentary: Nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice. Front Cell Neurosci 2018; 12:104. [PMID: 29765305 PMCID: PMC5938352 DOI: 10.3389/fncel.2018.00104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/03/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ana B Elgoyhen
- CONICET, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres (INGEBI), Buenos Aires, Argentina.,Facultad de Medicinia, Instiuto de Farmaologia, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
50
|
Uspenska K, Lykhmus O, Arias HR, Pons S, Maskos U, Komisarenko S, Skok M. Positive allosteric modulators of α7* or β2* nicotinic acetylcholine receptors trigger different kinase pathways in mitochondria. Int J Biochem Cell Biol 2018; 99:226-235. [PMID: 29704624 DOI: 10.1016/j.biocel.2018.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/12/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Abstract
Mitochondrial nicotinic acetylcholine receptors (nAChRs) regulate the early stage of mitochondria-driven apoptosis, including cytochrome c release. Mitochondrial nAChR signaling is mainly mediated by intra-mitochondrial kinases, in an ion-independent manner. To determine the relationship between specific nAChR subtypes and mitochondrial kinases, the effects of a set of nAChR subtype-selective positive allosteric modulators (PAMs) on cytochrome c release from mouse liver mitochondria stimulated by 0.9 μM Ca2+, 0.5 mM H2O2 or 1.0 μM wortmanin is studied. The results indicate that Ca2+-stimulated cytochrome c release from wild-type, but not α7-/-, mice mitochondria is attenuated by the potent agonist PNU-282987 or type II PAMs (PNU-120596, 4BP-TQS, and PAM-2-4), but not by NS-1738, a type I PAM. In contrast, wortmannin-stimulated cytochrome c release from wild-type and, to a lesser extent, α7-/- mice mitochondria is efficiently attenuated by the β2-selective PAM desformylfrustrabromine. In conclusion, the ligand-evoked α7* nAChR conformational changes required to induce intra-mitochondrial signaling can be triggered through orthosteric (agonists) and transmembrane (type II PAMs) sites, but not by the interaction with type I PAMs. The α7 and β2 nAChR subunits are responsible for the engagement of distinct kinase pathways, supporting the concept that multiple heteromeric nAChR subtypes ensure mitochondria resistance to various exogenous and endogenous apoptogenic agents.
Collapse
Affiliation(s)
- Kateryna Uspenska
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine
| | - Hugo R Arias
- CONICET, Godoy Cruz, 2290, Buenos Aires, Argentina
| | - Stephanie Pons
- Institut Pasteur, 25, rue du Dr Roux, 75015, Paris, France
| | - Uwe Maskos
- Institut Pasteur, 25, rue du Dr Roux, 75015, Paris, France
| | - Serghiy Komisarenko
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovycha str., 01030, Kyiv, Ukraine.
| |
Collapse
|