1
|
Morris PG, Taylor JD, Paton JFR, Nogaret A. Single shot detection of alterations across multiple ionic currents from assimilation of cell membrane dynamics. Sci Rep 2024; 14:6031. [PMID: 38472404 DOI: 10.1038/s41598-024-56576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
The dysfunction of ion channels is a causative factor in a variety of neurological diseases, thereby defining the implicated channels as key drug targets. The detection of functional changes in multiple specific ionic currents currently presents a challenge, particularly when the neurological causes are either a priori unknown, or are unexpected. Traditional patch clamp electrophysiology is a powerful tool in this regard but is low throughput. Here, we introduce a single-shot method for detecting alterations amongst a range of ion channel types from subtle changes in membrane voltage in response to a short chaotically driven current clamp protocol. We used data assimilation to estimate the parameters of individual ion channels and from these we reconstructed ionic currents which exhibit significantly lower error than the parameter estimates. Such reconstructed currents thereby become sensitive predictors of functional alterations in biological ion channels. The technique correctly predicted which ionic current was altered, and by approximately how much, following pharmacological blockade of BK, SK, A-type K+ and HCN channels in hippocampal CA1 neurons. We anticipate this assay technique could aid in the detection of functional changes in specific ionic currents during drug screening, as well as in research targeting ion channel dysfunction.
Collapse
Affiliation(s)
- Paul G Morris
- Department of Physics, University of Bath, Claverton Down, Bath, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Joseph D Taylor
- Department of Physics, University of Bath, Claverton Down, Bath, UK
| | - Julian F R Paton
- Manaaki Manawa - the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| | - Alain Nogaret
- Department of Physics, University of Bath, Claverton Down, Bath, UK.
| |
Collapse
|
2
|
Gu S, Tzingounis AV, Lykotrafitis G. Differential Control of Small-conductance Calcium-activated Potassium Channel Diffusion by Actin in Different Neuronal Subcompartments. FUNCTION 2023; 4:zqad018. [PMID: 37168495 PMCID: PMC10165553 DOI: 10.1093/function/zqad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Small-conductance calcium-activated potassium (SK) channels show a ubiquitous distribution on neurons, in both somatodendritic and axonal regions. SK channels are associated with neuronal activity regulating action potential frequency, dendritic excitability, and synaptic plasticity. Although the physiology of SK channels and the mechanisms that control their surface expression levels have been investigated extensively, little is known about what controls SK channel diffusion in the neuronal plasma membrane. This aspect is important, as the diffusion of SK channels at the surface may control their localization and proximity to calcium channels, hence increasing the likelihood of SK channel activation by calcium. In this study, we successfully investigated the diffusion of SK channels labeled with quantum dots on human embryonic kidney cells and dissociated hippocampal neurons by combining a single-particle tracking method with total internal reflection fluorescence microscopy. We observed that actin filaments interfere with SK mobility, decreasing their diffusion coefficient. We also found that during neuronal maturation, SK channel diffusion was gradually inhibited in somatodendritic compartments. Importantly, we observed that axon barriers formed at approximately days in vitro 6 and restricted the diffusion of SK channels on the axon initial segment (AIS). However, after neuron maturation, SK channels on the AIS were strongly immobilized, even after disruption of the actin network, suggesting that crowding may cause this effect. Altogether, our work provides insight into how SK channels diffuse on the neuronal plasma membrane and how actin and membrane crowding impacts SK channel diffusion.
Collapse
Affiliation(s)
- Shiju Gu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Anastasios V Tzingounis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - George Lykotrafitis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Nam YW, Kong D, Wang D, Orfali R, Sherpa RT, Totonchy J, Nauli SM, Zhang M. Differential modulation of SK channel subtypes by phosphorylation. Cell Calcium 2021; 94:102346. [PMID: 33422768 PMCID: PMC8415101 DOI: 10.1016/j.ceca.2020.102346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
Small-conductance Ca2+-activated K+ (SK) channels are voltage-independent and are activated by Ca2+ binding to the calmodulin constitutively associated with the channels. Both the pore-forming subunits and the associated calmodulin are subject to phosphorylation. Here, we investigated the modulation of different SK channel subtypes by phosphorylation, using the cultured endothelial cells as a tool. We report that casein kinase 2 (CK2) negatively modulates the apparent Ca2+ sensitivity of SK1 and IK channel subtypes by more than 5-fold, whereas the apparent Ca2+ sensitivity of the SK3 and SK2 subtypes is only reduced by ∼2-fold, when heterologously expressed on the plasma membrane of cultured endothelial cells. The SK2 channel subtype exhibits limited cell surface expression in these cells, partly as a result of the phosphorylation of its C-terminus by cyclic AMP-dependent protein kinase (PKA). SK2 channels expressed on the ER and mitochondria membranes may protect against cell death. This work reveals the subtype-specific modulation of the apparent Ca2+ sensitivity and subcellular localization of SK channels by phosphorylation in cultured endothelial cells.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Dezhi Kong
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Dong Wang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Rinzhin T Sherpa
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Jennifer Totonchy
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA.
| |
Collapse
|
4
|
Sun AX, Yuan Q, Fukuda M, Yu W, Yan H, Lim GGY, Nai MH, D'Agostino GA, Tran HD, Itahana Y, Wang D, Lokman H, Itahana K, Lim SWL, Tang J, Chang YY, Zhang M, Cook SA, Rackham OJL, Lim CT, Tan EK, Ng HH, Lim KL, Jiang YH, Je HS. Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science 2020; 366:1486-1492. [PMID: 31857479 DOI: 10.1126/science.aav5386] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 09/29/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
Disruptions in the ubiquitin protein ligase E3A (UBE3A) gene cause Angelman syndrome (AS). Whereas AS model mice have associated synaptic dysfunction and altered plasticity with abnormal behavior, whether similar or other mechanisms contribute to network hyperactivity and epilepsy susceptibility in AS patients remains unclear. Using human neurons and brain organoids, we demonstrate that UBE3A suppresses neuronal hyperexcitability via ubiquitin-mediated degradation of calcium- and voltage-dependent big potassium (BK) channels. We provide evidence that augmented BK channel activity manifests as increased intrinsic excitability in individual neurons and subsequent network synchronization. BK antagonists normalized neuronal excitability in both human and mouse neurons and ameliorated seizure susceptibility in an AS mouse model. Our findings suggest that BK channelopathy underlies epilepsy in AS and support the use of human cells to model human developmental diseases.
Collapse
Affiliation(s)
- Alfred Xuyang Sun
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore. .,Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Qiang Yuan
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.,Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Masahiro Fukuda
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Weonjin Yu
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Haidun Yan
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Grace Gui Yin Lim
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, Singapore 117576, Singapore
| | | | - Hoang-Dai Tran
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Yoko Itahana
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Danlei Wang
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Hidayat Lokman
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Koji Itahana
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Stephanie Wai Lin Lim
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiong Tang
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Ya Yin Chang
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Menglan Zhang
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Stuart A Cook
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Eng King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.,Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Huck Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Kah Leong Lim
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Yong-Hui Jiang
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
5
|
Zhang J, Jones SM, Lykotrafitis G, Andemariam B. Valsartan impedes epinephrine-induced ICAM-4 activation on normal, sickle cell trait and sickle cell disease red blood cells. PLoS One 2019; 14:e0216467. [PMID: 31083675 PMCID: PMC6513067 DOI: 10.1371/journal.pone.0216467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Abnormal red blood cell (RBC) adhesion to endothelial αvβ3 plays a crucial role in triggering vaso-occlusive episodes in sickle cell disease (SCD). It is known that epinephrine, a β-adrenergic receptor (β-AR) stimulator, increases the RBC surface density of active intercellular adhesion molecule-4 (ICAM-4) which binds to the endothelial αvβ3. It has also been demonstrated that in human embryonic kidney 293 cells, mouse cardiomyocytes, and COS-7 cell lines, the β-adrenergic and renin-angiotensin systems are interrelated and that there is a direct interaction and cross-regulation between β-AR and angiotensin II type 1 receptor (AT1R). Selective blockade of AT1R reciprocally inhibits the downstream signaling of β-ARs, similar to the inhibition observed in the presence of a β-AR-blocker. However, it is not known if this mechanism is active in human RBCs. Here, we studied the effect of valsartan, an AT1R blocker, on the surface density of active ICAM-4 receptors in normal, sickle cell trait, and homozygous sickle RBCs. We applied single molecule force spectroscopy to detect active ICAM-4 receptors on the RBC plasma membrane with and without the presence of valsartan and epinephrine. We found that epinephrine significantly increased whereas valsartan decreased their surface density. Importantly, we found that pretreatment of RBCs with valsartan significantly impeded the activation of ICAM-4 receptors induced by epinephrine. The observed reduced expression of active ICAM-4 receptors on the RBC plasma membrane leads us to conjecture that valsartan may be used as a supporting remedy for the prevention and treatment of vaso-occlusive crisis in SCD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Sasia-Marie Jones
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut, United States of America
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (GL); (BA)
| | - Biree Andemariam
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut, United States of America
- * E-mail: (GL); (BA)
| |
Collapse
|
6
|
Abiraman K, Tzingounis AV, Lykotrafitis G. K Ca2 channel localization and regulation in the axon initial segment. FASEB J 2018; 32:1794-1805. [PMID: 29180442 DOI: 10.1096/fj.201700605r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Small conductance calcium-activated potassium (KCa2) channels are expressed throughout the CNS and play a critical role in synaptic and neuronal excitability. KCa2 channels have a somatodendritic distribution with their highest expression in distal dendrites. It is unclear whether KCa2 channels are specifically present on the axon initial segment (AIS), the site at which action potentials are initiated in neurons. Through a powerful combination of toxin pharmacology, single-molecule atomic force microscopy, and dual-color fluorescence microscopy, we report here that KCa2 channels-predominantly the KCa2.3 subtype-are indeed present on the AIS. We also report that cAMP-PKA controls the axonal KCa2 channel surface expression. Surprisingly, and in contrast to KCa2 channels that were observed in the soma and dendrites, the inhibition of cAMP-PKA increased the surface expression of KCa2 channels without promoting nanoclustering. Lastly, we found that axonal KCa2 channels seem to undergo endocytosis in a dynamin-independent manner, unlike KCa2 channels in the soma and dendrites. Together, these novel results demonstrate that the distribution and membrane recycling of KCa2 channels differs among various neuronal subcompartments.-Abiraman, K., Tzingounis, A. V., Lykotrafitis, G. KCa2 channel localization and regulation in the axon initial segment.
Collapse
Affiliation(s)
- Krithika Abiraman
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Anastasios V Tzingounis
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - George Lykotrafitis
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Beining M, Mongiat LA, Schwarzacher SW, Cuntz H, Jedlicka P. T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells. eLife 2017; 6:e26517. [PMID: 29165247 PMCID: PMC5737656 DOI: 10.7554/elife.26517] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Compartmental models are the theoretical tool of choice for understanding single neuron computations. However, many models are incomplete, built ad hoc and require tuning for each novel condition rendering them of limited usability. Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. This work sets a new benchmark for detailed compartmental modeling. T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. We discuss possible T2N application in degeneracy studies.
Collapse
Affiliation(s)
- Marcel Beining
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Frankfurt Institute for Advanced StudiesFrankfurtGermany
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe UniversityFrankfurtGermany
- Faculty of BiosciencesGoethe UniversityFrankfurtGermany
| | - Lucas Alberto Mongiat
- Instituto de Investigación en Biodiversidad y MedioambienteUniversidad Nacional del Comahue-CONICETSan Carlos de BarilocheArgentina
| | | | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Frankfurt Institute for Advanced StudiesFrankfurtGermany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe UniversityFrankfurtGermany
| |
Collapse
|
8
|
Zhang J, Abiraman K, Jones SM, Lykotrafitis G, Andemariam B. Regulation of Active ICAM-4 on Normal and Sickle Cell Disease RBCs via AKAPs Is Revealed by AFM. Biophys J 2017; 112:143-152. [PMID: 28076805 DOI: 10.1016/j.bpj.2016.11.3204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 11/15/2022] Open
Abstract
Human healthy (wild-type (WT)) and homozygous sickle (SS) red blood cells (RBCs) express a large number of surface receptors that mediate cell adhesion between RBCs, and between RBCs and white blood cells, platelets, and the endothelium. In sickle cell disease (SCD), abnormal adhesion of RBCs to endothelial cells is mediated by the intercellular adhesion molecule-4 (ICAM-4), which appears on the RBC membrane and binds to the endothelial αvβ3 integrin. This is a key factor in the initiation of vaso-occlusive episodes, the hallmark of SCD. A better understanding of the mechanisms that control RBC adhesion to endothelium may lead to novel approaches to both prevention and treatment of vaso-occlusive episodes in SCD. One important mechanism of ICAM-4 activation occurs via the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA)-dependent signaling pathway. Here, we employed an in vitro technique called single-molecule force spectroscopy to study the effect of modulation of the cAMP-PKA-dependent pathway on ICAM-4 receptor activation. We quantified the frequency of active ICAM-4 receptors on WT-RBC and SS-RBC membranes, as well as the median unbinding force between ICAM-4 and αvβ3. We showed that the collective frequency of unbinding events in WT-RBCs is not significantly different from that of SS-RBCs. This result was confirmed by confocal microscopy experiments. In addition, we showed that incubation of normal RBCs and SS-RBCs with epinephrine, a catecholamine that binds to the β-adrenergic receptor and activates the cAMP-PKA-dependent pathway, caused a significant increase in the frequency of active ICAM-4 receptors in both normal RBCs and SS-RBCs. However, the unbinding force between ICAM-4 and the corresponding ligand αvβ3 remained the same. Furthermore, we demonstrated that forskolin, an adenylyl cyclase activator, significantly increased the frequency of ICAM-4 receptors in WT-RBCs and SS-RBCs, confirming that the activation of ICAM-4 is regulated by the cAMP-PKA pathway. Finally, we showed that A-kinase anchoring proteins play an essential role in ICAM-4 activation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Krithika Abiraman
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Sasia-Marie Jones
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut; Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut.
| | - Biree Andemariam
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut.
| |
Collapse
|
9
|
Luu P, Essaki Arumugam EM, Anderson E, Gunn A, Rech D, Turovets S, Tucker DM. Slow-Frequency Pulsed Transcranial Electrical Stimulation for Modulation of Cortical Plasticity Based on Reciprocity Targeting with Precision Electrical Head Modeling. Front Hum Neurosci 2016. [PMID: 27531976 DOI: 10.3339/fnhum.2016.00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In pain management as well as other clinical applications of neuromodulation, it is important to consider the timing parameters influencing activity-dependent plasticity, including pulsed versus sustained currents, as well as the spatial action of electrical currents as they polarize the complex convolutions of the cortical mantle. These factors are of course related; studying temporal factors is not possible when the spatial resolution of current delivery to the cortex is so uncertain to make it unclear whether excitability is increased or decreased with anodal vs. cathodal current flow. In the present study we attempted to improve the targeting of specific cortical locations by applying current through flexible source-sink configurations of 256 electrodes in a geodesic array. We constructed a precision electric head model for 12 healthy individuals. Extraction of the individual's cortical surface allowed computation of the component of the induced current that is normal to the target cortical surface. In an effort to replicate the long-term depression (LTD) induced with pulsed protocols in invasive animal research and transcranial magnetic stimulation studies, we applied 100 ms pulses at 1.9 s intervals either in cortical-surface-anodal or cortical-surface-cathodal directions, with a placebo (sham) control. The results showed significant LTD of the motor evoked potential as a result of the cortical-surface-cathodal pulses in contrast to the placebo control, with a smaller but similar LTD effect for anodal pulses. The cathodal LTD after-effect was sustained over 90 min following current injection. These results support the feasibility of pulsed protocols with low total charge in non-invasive neuromodulation when the precision of targeting is improved with a dense electrode array and accurate head modeling.
Collapse
Affiliation(s)
- Phan Luu
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| | | | | | | | | | - Sergei Turovets
- Electrical Geodesics, Inc., EugeneOR, USA; NeuroInformatics Center, University of Oregon, EugeneOR, USA
| | - Don M Tucker
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| |
Collapse
|
10
|
Luu P, Essaki Arumugam EM, Anderson E, Gunn A, Rech D, Turovets S, Tucker DM. Slow-Frequency Pulsed Transcranial Electrical Stimulation for Modulation of Cortical Plasticity Based on Reciprocity Targeting with Precision Electrical Head Modeling. Front Hum Neurosci 2016; 10:377. [PMID: 27531976 PMCID: PMC4969286 DOI: 10.3389/fnhum.2016.00377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
In pain management as well as other clinical applications of neuromodulation, it is important to consider the timing parameters influencing activity-dependent plasticity, including pulsed versus sustained currents, as well as the spatial action of electrical currents as they polarize the complex convolutions of the cortical mantle. These factors are of course related; studying temporal factors is not possible when the spatial resolution of current delivery to the cortex is so uncertain to make it unclear whether excitability is increased or decreased with anodal vs. cathodal current flow. In the present study we attempted to improve the targeting of specific cortical locations by applying current through flexible source-sink configurations of 256 electrodes in a geodesic array. We constructed a precision electric head model for 12 healthy individuals. Extraction of the individual's cortical surface allowed computation of the component of the induced current that is normal to the target cortical surface. In an effort to replicate the long-term depression (LTD) induced with pulsed protocols in invasive animal research and transcranial magnetic stimulation studies, we applied 100 ms pulses at 1.9 s intervals either in cortical-surface-anodal or cortical-surface-cathodal directions, with a placebo (sham) control. The results showed significant LTD of the motor evoked potential as a result of the cortical-surface-cathodal pulses in contrast to the placebo control, with a smaller but similar LTD effect for anodal pulses. The cathodal LTD after-effect was sustained over 90 min following current injection. These results support the feasibility of pulsed protocols with low total charge in non-invasive neuromodulation when the precision of targeting is improved with a dense electrode array and accurate head modeling.
Collapse
Affiliation(s)
- Phan Luu
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| | | | | | | | | | - Sergei Turovets
- Electrical Geodesics, Inc., EugeneOR, USA; NeuroInformatics Center, University of Oregon, EugeneOR, USA
| | - Don M Tucker
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| |
Collapse
|
11
|
Abiraman K, Sah M, Walikonis RS, Lykotrafitis G, Tzingounis AV. Tonic PKA Activity Regulates SK Channel Nanoclustering and Somatodendritic Distribution. J Mol Biol 2016; 428:2521-2537. [PMID: 27107637 DOI: 10.1016/j.jmb.2016.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/28/2016] [Accepted: 04/07/2016] [Indexed: 01/02/2023]
Abstract
Small-conductance calcium-activated potassium (SK) channels mediate a potassium conductance in the brain and are involved in synaptic plasticity, learning, and memory. SK channels show a distinct subcellular localization that is crucial for their neuronal functions. However, the mechanisms that control this spatial distribution are unknown. We imaged SK channels labeled with fluorophore-tagged apamin and monitored SK channel nanoclustering at the single molecule level by combining atomic force microscopy and toxin (i.e., apamin) pharmacology. Using these two complementary approaches, we found that native SK channel distribution in pyramidal neurons, across the somatodendritic domain, depends on ongoing cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) levels, strongly limiting SK channel expression at the pyramidal neuron soma. Furthermore, tonic cAMP-PKA levels also controlled whether SK channels were expressed in nanodomains as single entities or as a group of multiple channels. Our study reveals a new level of regulation of SK channels by cAMP-PKA and suggests that ion channel topography and nanoclustering might be under the control of second messenger cascades.
Collapse
Affiliation(s)
- Krithika Abiraman
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Megha Sah
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Randall S Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - George Lykotrafitis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Anastasios V Tzingounis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
12
|
The Nanoscale Observation of the Three-Dimensional Structures of Neurosynapses, Membranous Conjunctions Between Cultured Hippocampal Neurons and Their Significance in the Development of Epilepsy. Mol Neurobiol 2015; 53:7137-7157. [DOI: 10.1007/s12035-015-9588-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
|
13
|
AKAP-dependent modulation of BCAM/Lu adhesion on normal and sickle cell disease RBCs revealed by force nanoscopy. Biophys J 2014; 106:1258-67. [PMID: 24655501 DOI: 10.1016/j.bpj.2014.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 02/02/2023] Open
Abstract
Human normal and sickle red blood cells (RBCs) adhere with high affinity to the alpha5 chain of laminin (LAMA5) via the basal cell adhesion molecule/Lutheran (BCAM/Lu) receptor, which is implicated in vasoocclusive episodes in sickle cell disease and activated through the cyclic adenosine monophosphate (cAMP) signaling pathway. However, the effect of the cAMP pathway on the expression of active BCAM/Lu receptors at the single-molecule level is unknown. We established an in vitro technique, based on atomic force microscopy, which enables detection of single BCAM/Lu proteins on the RBC surface and measures the unbinding force between BCAM/Lu and LAMA5. We showed that the expression of active BCAM/Lu receptors is higher in homozygous sickle RBCs (SS-RBCs) than normal RBCs and that it is critically dependent on the cAMP signaling pathway on both normal and SS-RBCs. Of importance, we illustrated that A-kinase anchoring proteins are crucial for BCAM/Lu receptor activation. Furthermore, we found that SS-RBCs from hydroxyurea-treated patients show a lower expression of active BCAM/Lu receptors, a lower unbinding force to LAMA5, and insignificant stimulation by epinephrine as compared to SS-RBCs from untreated patients. To our knowledge, these findings may lead to novel antiadhesive targets for vasoocclusive episodes in sickle cell disease.
Collapse
|
14
|
Pi J, Jin H, Yang F, Chen ZW, Cai J. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine. NANOSCALE 2014; 6:12229-12249. [PMID: 25227707 DOI: 10.1039/c4nr04195j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In this review, we attempt to summarize the characteristics of these advanced techniques for use in the in situ single molecule imaging of cell membranes. We believe that this work will help to promote the technological and methodological developments of super-resolution techniques for the single molecule imaging of cell membranes and help researchers better understand which technique is most suitable for their future exploring of membrane biomolecules; ultimately promoting further developments in cell biology, immunology and medicine.
Collapse
Affiliation(s)
- Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technique, Macau, China.
| | | | | | | | | |
Collapse
|
15
|
Maciaszek JL, Partola K, Zhang J, Andemariam B, Lykotrafitis G. Single-cell force spectroscopy as a technique to quantify human red blood cell adhesion to subendothelial laminin. J Biomech 2014; 47:3855-61. [PMID: 25458578 DOI: 10.1016/j.jbiomech.2014.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 09/18/2014] [Accepted: 10/11/2014] [Indexed: 01/16/2023]
Abstract
Single-cell force spectroscopy (SCFS), an atomic force microscopy (AFM)-based assay, enables quantitative study of cell adhesion while maintaining the native state of surface receptors in physiological conditions. Human healthy and pathological red blood cells (RBCs) express a large number of surface proteins which mediate cell-cell interactions, or cell adhesion to the extracellular matrix. In particular, RBCs adhere with high affinity to subendothelial matrix laminin via the basal cell adhesion molecule and Lutheran protein (BCAM/Lu). Here, we established SCFS as an in vitro technique to study human RBC adhesion at baseline and following biochemical treatment. Using blood obtained from healthy human subjects, we recorded adhesion forces from single RBCs attached to AFM cantilevers as the cell was pulled-off of substrates coated with laminin protein. We found that an increase in the overall cell adhesion measured via SCFS is correlated with an increase in the resultant total force measured on 1 µm(2) areas of the RBC membrane. Further, we showed that SCFS can detect significant changes in the adhesive response of RBCs to modulation of the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) pathway. Lastly, we identified variability in the RBC adhesion force to laminin amongst the human subjects, suggesting that RBCs maintain diverse levels of active BCAM/Lu adhesion receptors. By using single-cell measurements, we established a powerful new method for the quantitative measurement of single RBC adhesion with specific receptor-mediated binding.
Collapse
Affiliation(s)
- Jamie L Maciaszek
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Hematology, Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kostyantyn Partola
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA
| | - Jing Zhang
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA
| | - Biree Andemariam
- Adult Sickle Cell Disease Center, University of Connecticut Health Center, Farmington, CT, USA
| | - George Lykotrafitis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
16
|
Alford ST, Alpert MH. A synaptic mechanism for network synchrony. Front Cell Neurosci 2014; 8:290. [PMID: 25278839 PMCID: PMC4166887 DOI: 10.3389/fncel.2014.00290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/31/2014] [Indexed: 01/06/2023] Open
Abstract
Within neural networks, synchronization of activity is dependent upon the synaptic connectivity of embedded microcircuits and the intrinsic membrane properties of their constituent neurons. Synaptic integration, dendritic Ca2+ signaling, and non-linear interactions are crucial cellular attributes that dictate single neuron computation, but their roles promoting synchrony and the generation of network oscillations are not well understood, especially within the context of a defined behavior. In this regard, the lamprey spinal central pattern generator (CPG) stands out as a well-characterized, conserved vertebrate model of a neural network (Smith et al., 2013a), which produces synchronized oscillations in which neural elements from the systems to cellular level that control rhythmic locomotion have been determined. We review the current evidence for the synaptic basis of oscillation generation with a particular emphasis on the linkage between synaptic communication and its cellular coupling to membrane processes that control oscillatory behavior of neurons within the locomotor network. We seek to relate dendritic function found in many vertebrate systems to the accessible lamprey central nervous system in which the relationship between neural network activity and behavior is well understood. This enables us to address how Ca2+ signaling in spinal neuron dendrites orchestrate oscillations that drive network behavior.
Collapse
Affiliation(s)
- Simon T Alford
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Michael H Alpert
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
17
|
Rudolph S, Thanawala MS. Location matters: somatic and dendritic SK channels answer to distinct calcium signals. J Neurophysiol 2014; 114:1-5. [PMID: 25185803 DOI: 10.1152/jn.00181.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/26/2014] [Indexed: 11/22/2022] Open
Abstract
Voltage-dependent calcium channels (VDCCs) couple neuronal activity to diverse intracellular signals with exquisite spatiotemporal specificity. Using calcium imaging and electrophysiology, Jones and Stuart (J Neurosci 33: 19396-19405, 2013) examined the intimate relationship between distinct types of VDCCs and small-conductance calcium-activated potassium (SK) channels that contribute to the compartmentalized control of excitability in the soma and dendrites of cortical pyramidal neurons. Here we discuss the importance of calcium domains for signal specificity, explore the possible functions and mechanisms for local control of SK channels, and highlight technical considerations for the optical detection of calcium signals.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Monica S Thanawala
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Role of small conductance Ca²⁺-activated K⁺ channels in controlling CA1 pyramidal cell excitability. J Neurosci 2014; 34:8219-30. [PMID: 24920626 DOI: 10.1523/jneurosci.0936-14.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Small-conductance Ca(2+)-activated K(+) (SK or K(Ca)2) channels are widely expressed in the CNS. In several types of neurons, these channels were shown to become activated during repetitive firing, causing early spike frequency adaptation. In CA1 pyramidal cells, SK channels in dendritic spines were shown to regulate synaptic transmission. However, the presence of functional SK channels in the somata and their role in controlling the intrinsic firing of these neurons has been controversial. Using whole-cell voltage-clamp and current-clamp recordings in acute hippocampal slices and focal applications of irreversible and reversible SK channel blockers, we provide evidence that functional SK channels are expressed in the somata and proximal dendrites of adult rat CA1 pyramidal cells. Although these channels can generate a medium duration afterhyperpolarizing current, they play only an auxiliary role in controlling the intrinsic excitability of these neurons, secondary to the low voltage-activating, noninactivating K(V)7/M channels. As long as K(V)7/M channels are operative, activation of SK channels during repetitive firing does not notably affect the spike output of CA1 pyramidal cells. However, when K(V)7/M channel activity is compromised, SK channel activation significantly and uniquely reduces spike output of these neurons. Therefore, proximal SK channels provide a "second line of defense" against intrinsic hyperexcitability, which may play a role in multiple conditions in which K(V)7/M channels activity is compromised, such as hyposmolarity.
Collapse
|
19
|
Pachuau J, Li DP, Chen SR, Lee HA, Pan HL. Protein kinase CK2 contributes to diminished small conductance Ca2+-activated K+ channel activity of hypothalamic pre-sympathetic neurons in hypertension. J Neurochem 2014; 130:657-67. [PMID: 24806793 DOI: 10.1111/jnc.12758] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/29/2022]
Abstract
Small conductance calcium-activated K(+) (SK) channels regulate neuronal excitability. However, little is known about changes in SK channel activity of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) in essential hypertension. SK channels, calmodulin, and casein kinase II (CK2) form a molecular complex. Because CK2 is up-regulated in the PVN in spontaneously hypertensive rats (SHRs), we hypothesized that CK2 increases calmodulin phosphorylation and contributes to diminished SK channel activity in PVN pre-sympathetic neurons in SHRs. Perforated whole-cell recordings were performed on retrogradely labeled spinally projecting PVN neurons in Wistar-Kyoto (WKY) rats and SHRs. Blocking SK channels with apamin significantly increased the firing rate of PVN neurons in WKY rats but not in SHRs. CK2 inhibition restored the stimulatory effect of apamin on the firing activity of PVN neurons in SHRs. Furthermore, apamin-sensitive SK currents and depolarization-induced medium after-hyperpolarization potentials of PVN neurons were significantly larger in WKY rats than in SHRs. CK2 inhibition significantly increased the SK channel current and medium after-depolarization potential of PVN neurons in SHRs. In addition, CK2-mediated calmodulin phosphorylation level in the PVN was significantly higher in SHRs than in WKY rats. Although SK3 was detected in the PVN, its expression level did not differ significantly between SHRs and WKY rats. Our findings suggest that CK2-mediated calmodulin phosphorylation is increased and contributes to diminished SK channel function of PVN pre-sympathetic neurons in SHRs. This information advances our understanding of the mechanisms underlying hyperactivity of PVN pre-sympathetic neurons and increased sympathetic vasomotor tone in hypertension. Small conductance calcium-activated K(+) (SK) channels, calmodulin, and protein kinase CK2 form a molecular complex and regulate neuronal excitability. Our study suggests that augmented CK2 activity in hypertension can increase calmodulin (CaM) phosphorylation, which leads to diminished SK channel function in pre-sympathetic neurons. Diminished SK channel activity plays a role in hyperactivity of pre-sympathetic neurons in the hypothalamus in hypertension.
Collapse
Affiliation(s)
- Judith Pachuau
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
20
|
Clarysse L, Guéguinou M, Potier-Cartereau M, Vandecasteele G, Bougnoux P, Chevalier S, Chantôme A, Vandier C. cAMP-PKA inhibition of SK3 channel reduced both Ca2+ entry and cancer cell migration by regulation of SK3-Orai1 complex. Pflugers Arch 2014; 466:1921-32. [PMID: 24458591 DOI: 10.1007/s00424-013-1435-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 02/02/2023]
Abstract
SK3 channel mediates the migration of various cancer cells. When expressed in breast cancer cells, SK3 channel forms a complex with Orai1, a voltage-independent Ca(2+) channel. This SK3-Orai1 complex associates within lipid rafts where it controls a constitutive Ca(2+) entry leading to cancer cell migration and bone metastases development. Since cAMP was found to modulate breast cancer cell migration, we hypothesized that this could be explained by a modulation of SK3 channel activity. Herein, we study the regulation of SK3 channel by the cAMP-PKA pathway and the consequences for SK3-dependent Ca(2+) entry and cancer cell migration. We established that the beta-adrenergic receptor agonist, isoprenaline, or the direct adenylyl cyclase activator forskolin alone or in combination with the PDE4 inhibitor, CI-1044, decreased SK3 channel activity without modifying the expression of SK3 protein at the plasma membrane. Forskolin and CI-1044 reduced the SK3-dependent constitutive Ca(2+) entry and the SK3-dependent migration of MDA-MB-435s cells. PKA inhibition with KT 5720 reduced: (1) the effect of forskolin and CI-1044 by 50 % on Ca(2+) entry and (2) SK3 activity by inhibiting the serine phosphorylation of SK3. These cAMP-elevating agents displaced Orai1 protein outside lipid rafts in contrast to SK3, which remained in the lipid rafts fractions. All together, these results show that activation of the cAMP-PKA pathway decreases SK3 channel and SK3-Orai1 complex activities, leading to a decrease in both Ca(2+) entry and cancer cell migration. This work supports the potential use of cAMP-elevating agents to reduce cancer cell migration and may provide novel opportunities to address/prevent bone metastasis.
Collapse
Affiliation(s)
- Lucie Clarysse
- Inserm, UMR1069 "Nutrition, Croissance et Cancer", Tours, 37032, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Whited AM, Park PSH. Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:56-68. [PMID: 23603221 DOI: 10.1016/j.bbamem.2013.04.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Membrane proteins are embedded in lipid bilayers and facilitate the communication between the external environment and the interior of the cell. This communication is often mediated by the binding of ligands to the membrane protein. Understanding the nature of the interaction between a ligand and a membrane protein is required to both understand the mechanism of action of these proteins and for the development of novel pharmacological drugs. The highly hydrophobic nature of membrane proteins and the requirement of a lipid bilayer for native function have hampered the structural and molecular characterizations of these proteins under physiologically relevant conditions. Atomic force microscopy offers a solution to studying membrane proteins and their interactions with ligands under physiologically relevant conditions and can provide novel insights about the nature of these critical molecular interactions that facilitate cellular communication. In this review, we provide an overview of the atomic force microscopy technique and discuss its application in the study of a variety of questions related to the interaction between a membrane protein and a ligand. This article is part of a Special Issue entitled: Structural and biophysical characterization of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Allison M Whited
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|