1
|
Radahmadi M, Halabian A, Halabian A. An overview of extracellular field potentials: Different potentiation and measurable components, interpretations, and hippocampal synaptic activity models. Methods 2025; 239:50-63. [PMID: 40147603 DOI: 10.1016/j.ymeth.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
The hippocampus and some other brain regions are critically involved in synaptic plasticity. Electrophysiological recordings using extracellular field potentials (EFPs) reveal diverse synaptic activity within the hippocampus, including input/output functions (reflecting neural excitability), paired-pulse responses (reflecting short-term plasticity), and long-term potentiation (reflecting long-term plasticity). EFP techniques offer various measurable components for assessing multiple neural functions. These include fEPSP slope, amplitude, and area under curve (AUC), as well as latency (fEPSP onset or peak after stimulation), width at half amplitude, fiber volley, decay time, time-course (fEPSP rise and decay time constants; tau), initial slope/initial area and -/late area derived from a fEPSP waveform sample. Each of these parameters is separately evaluated and provides distinct electrophysiological interpretations. Despite the rich data offered by EFP techniques, many studies adopt a limited approach, focusing solely on fEPSP slope, amplitude, and occasionally AUC, thereby neglecting the potential insights provided by other parameters. Given the inherent variability of fEPSP components within a single recording and timeframe, a comprehensive analysis of synaptic activity within a specific hippocampal region is necessary for obtaining the full spectrum of fEPSP-related data. Researchers should consider the potential influence of additional factors contributing to the variability of synaptic activity magnitude. A detailed analysis considering different parts of extracellular fEPSP recordings and their properties is crucial for a deeper understanding of synaptic activity changes within the brain. Therefore, this review aims to provide a comprehensive overview of diverse forms of hippocampal synaptic activity, measurable components of EFP recordings, and their corresponding interpretations.
Collapse
Affiliation(s)
- Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Alireza Halabian
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Arshia Halabian
- Department of Electrical Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Wilson P, Kim N, Cotter R, Parkes M, Cmelak L, Reed MN, Gramlich MW. Presynaptic recycling pool density regulates spontaneous synaptic vesicle exocytosis rate and is upregulated in the presence of β-amyloid. Cell Rep 2025; 44:115410. [PMID: 40146773 DOI: 10.1016/j.celrep.2025.115410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
Synapses represent a fundamental unit of information transfer during cognition via presynaptic vesicle exocytosis. It has been established that evoked release is probabilistic, but the mechanisms behind spontaneous release are less clear. Understanding spontaneous release is vital, as it plays a key role in maintaining synaptic connections. We propose a model framework for spontaneous release where the reserve pool geometrically constrains recycling pool vesicles, creating an entropic force that drives spontaneous release rate. We experimentally support this framework using SEM, fluorescence microscopy, computational modeling, and pharmacological approaches. Our model correctly predicts the spontaneous release rate as a function of presynapse size. Finally, we use our approach to show how β-amyloid mutations linked to Alzheimer's disease lead to increased spontaneous release rates. These results indicate that synapses regulate the density of the recycling pool to control the spontaneous release rate and may serve as an early indicator of Alzheimer's disease.
Collapse
Affiliation(s)
- Paxton Wilson
- Department of Physics, Auburn University, Auburn, AL, USA
| | - Noah Kim
- Department of Physics, Auburn University, Auburn, AL, USA
| | - Rachel Cotter
- Department of Physics, Auburn University, Auburn, AL, USA
| | - Mason Parkes
- Department of Physics, Auburn University, Auburn, AL, USA
| | - Luca Cmelak
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Michael W Gramlich
- Department of Physics, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA.
| |
Collapse
|
3
|
Yang X, Huang YWA, Marshall J. Targeting TrkB-PSD-95 coupling to mitigate neurological disorders. Neural Regen Res 2025; 20:715-724. [PMID: 38886937 PMCID: PMC11433911 DOI: 10.4103/nrr.nrr-d-23-02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Tropomyosin receptor kinase B (TrkB) signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory. The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre- or postsynaptic TrkB resulting in the strengthening of synapses, reflected by long-term potentiation. Postsynaptically, the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca2+/calmodulin-dependent protein kinase II and phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation. In this review, we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders. A reduction of TrkB signaling has been observed in neurodegenerative disorders, such as Alzheimer's disease and Huntington's disease, and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression. Treatment with brain-derived neurotrophic factor is problematic, due to poor pharmacokinetics, low brain penetration, and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform. Although TrkB agonists and antibodies that activate TrkB are being intensively investigated, they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions. Targeting TrkB-postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.
Collapse
Affiliation(s)
- Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
4
|
Cigliano L, De Palma F, Petecca N, Fasciolo G, Panico G, Venditti P, Lombardi A, Spagnuolo MS. 1,3-butanediol administration as an alternative strategy to calorie restriction for neuroprotection - Insights into modulation of stress response in hippocampus of healthy rats. Biomed Pharmacother 2025; 182:117774. [PMID: 39693909 DOI: 10.1016/j.biopha.2024.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/24/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024] Open
Abstract
Ketogenic diet has a wide range of beneficial effects but presents practical limitations due to its low compliance, hence dietary supplements have been developed to induce ketosis without nutrient deprivation. The alcohol 1,3-butanediol (BD) is a promising molecule for its ability to induce ketosis, but its effects on brain have been investigated so far only in disease models, but never in physiological conditions. To support BD use to preserve brain health, the analysis of its activity is mandatory. Therefore, we investigated, in healthy rats, the effect of a fourteen-days BD-administration on the hippocampus, an area particularly vulnerable to oxidative and inflammatory damage. Since BD treatment has been reported to reduce energy intake, results were compared with those obtained from rats undergoing a restricted dietary regimen, isoenergetic with BD group (pair fed, PF). Reduced pro-inflammatory signaling pathways and glial activation were revealed in hippocampus of BD treated rats in comparison to control (C) and PF groups. ROS content and the extent of protein oxidative damage were lower in BD and PF groups than in C. Interestingly, higher amounts of nuclear factor erythroid 2-related factor 2 (Nrf2), decreased level of lipid hydroperoxides, lower susceptibility to oxidative insult, higher amounts of superoxide dismutase-2, glutathione reductase and glutathione peroxidase (GPx), and increased GPx activity were observed in BD animals. BD administration, but not dietary restriction, attenuated endoplasmic reticulum stress, reduced autophagic response activation, and was associated with an increase of both the neurotrophin BDNF and pre-synaptic proteins synaptophysin and synaptotagmin. Our results highlight that BD plays a neuroprotective role in healthy conditions, thus emerging as an effective strategy to support brain function without the need of implementing ketogenic nutritional interventions.
Collapse
Affiliation(s)
- Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Francesca De Palma
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Natasha Petecca
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Gianluca Fasciolo
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Giuliana Panico
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Paola Venditti
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Maria Stefania Spagnuolo
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Portici, 80055, Italy.
| |
Collapse
|
5
|
Suematsu N, Vazquez AL, Kozai TDY. Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. J Neural Eng 2024; 21:026033. [PMID: 38537268 PMCID: PMC11002944 DOI: 10.1088/1741-2552/ad3853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Objective. Intracortical microstimulation (ICMS) can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site.Approach. Different microstimulation frequencies were investigatedin vivoon Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging.Main results. Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies.Significance. These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by ICMS and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.
Collapse
Affiliation(s)
- Naofumi Suematsu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Alberto L Vazquez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
6
|
Suematsu N, Vazquez AL, Kozai TD. Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573814. [PMID: 38260671 PMCID: PMC10802282 DOI: 10.1101/2024.01.01.573814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Objective . Intracortical microstimulation can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site. Approach . Different microstimulation frequencies were investigated in vivo on Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging. Main results . Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies. Significance . These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by intracortical microstimulation and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.
Collapse
|
7
|
Lau KA, Yang X, Rioult-Pedotti MS, Tang S, Appleman M, Zhang J, Tian Y, Marino C, Yao M, Jiang Q, Tsuda AC, Huang YWA, Cao C, Marshall J. A PSD-95 peptidomimetic mitigates neurological deficits in a mouse model of Angelman syndrome. Prog Neurobiol 2023; 230:102513. [PMID: 37536482 DOI: 10.1016/j.pneurobio.2023.102513] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Angelman Syndrome (AS) is a severe cognitive disorder caused by loss of neuronal expression of the E3 ubiquitin ligase UBE3A. In an AS mouse model, we previously reported a deficit in brain-derived neurotrophic factor (BDNF) signaling, and set out to develop a therapeutic that would restore normal signaling. We demonstrate that CN2097, a peptidomimetic compound that binds postsynaptic density protein-95 (PSD-95), a TrkB associated scaffolding protein, mitigates deficits in PLC-CaMKII and PI3K/mTOR pathways to restore synaptic plasticity and learning. Administration of CN2097 facilitated long-term potentiation (LTP) and corrected paired-pulse ratio. As the BDNF-mTORC1 pathway is critical for inhibition of autophagy, we investigated whether autophagy was disrupted in AS mice. We found aberrantly high autophagic activity attributable to a concomitant decrease in mTORC1 signaling, resulting in decreased levels of synaptic proteins, including Synapsin-1 and Shank3. CN2097 increased mTORC1 activity to normalize autophagy and restore hippocampal synaptic protein levels. Importantly, treatment mitigated cognitive and motor dysfunction. These findings support the use of neurotrophic therapeutics as a valuable approach for treating AS pathology.
Collapse
Affiliation(s)
- Kara A Lau
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mengia S Rioult-Pedotti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Stephen Tang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mark Appleman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Jianan Zhang
- Institute of Neuroscience, Soochow University, Suzhou 215000, China.
| | - Yuyang Tian
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Caitlin Marino
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mudi Yao
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Qin Jiang
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Ayumi C Tsuda
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Cong Cao
- Institute of Neuroscience, Soochow University, Suzhou 215000, China.
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
8
|
Choi GY, Kim HB, Cho JM, Sreelatha I, Lee IS, Kweon HS, Sul S, Kim SA, Maeng S, Park JH. Umbelliferone Ameliorates Memory Impairment and Enhances Hippocampal Synaptic Plasticity in Scopolamine-Induced Rat Model. Nutrients 2023; 15:nu15102351. [PMID: 37242234 DOI: 10.3390/nu15102351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by memory loss and cognitive decline. Among the suggested pathogenic mechanisms of AD, the cholinergic hypothesis proposes that AD symptoms are a result of reduced synthesis of acetylcholine (ACh). A non-selective antagonist of the muscarinic ACh receptor, scopolamine (SCOP) induced cognitive impairment in rodents. Umbelliferone (UMB) is a Apiaceae-family-derived 7-hydeoxycoumarin known for its antioxidant, anti-tumor, anticancer, anti-inflammatory, antibacterial, antimicrobial, and antidiabetic properties. However, the effects of UMB on the electrophysiological and ultrastructure morphological aspects of learning and memory are still not well-established. Thus, we investigated the effect of UMB treatment on cognitive behaviors and used organotypic hippocampal slice cultures for long-term potentiation (LTP) and the hippocampal synaptic ultrastructure. A hippocampal tissue analysis revealed that UMB attenuated a SCOP-induced blockade of field excitatory post-synaptic potential (fEPSP) activity and ameliorated the impairment of LTP by the NMDA and AMPA receptor antagonists. UMB also enhanced the hippocampal synaptic vesicle density on the synaptic ultrastructure. Furthermore, behavioral tests on male SD rats (7-8 weeks old) using the Y-maze test, passive avoidance test (PA), and Morris water maze test (MWM) showed that UMB recovered learning and memory deficits by SCOP. These cognitive improvements were in association with the enhanced expression of BDNF, TrkB, and the pCREB/CREB ratio and the suppression of acetylcholinesterase activity. The current findings indicate that UMB may be an effective neuroprotective reagent applicable for improving learning and memory against AD.
Collapse
Affiliation(s)
- Ga-Young Choi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Hyun-Bum Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jae-Min Cho
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Inturu Sreelatha
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - In-Seo Lee
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Sehyun Sul
- Undergraduate Programs, Rutgers University, 100 Rockafeller Road, Suite 1008, Piscataway, NJ 08854, USA
| | - Sun Ae Kim
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sungho Maeng
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ji-Ho Park
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
9
|
Lalonde C, Sreetharan S, Murray A, Stoa L, Cybulski ME, Kennedy A, Landry N, Stillar A, Khurana S, Tharmalingam S, Wilson J, Khaper N, Lees SJ, Boreham D, Tai TC. Absence of Depressive and Anxious Behavior with Genetic Dysregulation in Adult C57Bl/6J Mice after Prenatal Exposure to Ionizing Radiation. Int J Mol Sci 2023; 24:ijms24108466. [PMID: 37239811 DOI: 10.3390/ijms24108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
The exposure of ionizing radiation during early gestation often leads to deleterious and even lethal effects; however, few extensive studies have been conducted on late gestational exposures. This research examined the behavior al effects of C57Bl/6J mouse offspring exposed to low dose ionizing gamma irradiation during the equivalent third trimester. Pregnant dams were randomly assigned to sham or exposed groups to either low dose or sublethal dose radiation (50, 300, or 1000 mGy) at gestational day 15. Adult offspring underwent a behavioral and genetic analysis after being raised under normal murine housing conditions. Our results indicate very little change in the behavioral tasks measuring general anxiety, social anxiety, and stress-management in animals exposed prenatally across the low dose radiation conditions. Quantitative real-time polymerase chain reactions were conducted on the cerebral cortex, hippocampus, and cerebellum of each animal; results indicate some dysregulation in markers of DNA damage, synaptic activity, reactive oxygen species (ROS) regulation, and methylation pathways in the offspring. Together, our results provide evidence in the C57Bl/6J strain, that exposure to sublethal dose radiation (<1000 mGy) during the last period of gestation leads to no observable changes in behaviour when assessed as adults, although some changes in gene expression were observed for specific brain regions. These results indicate that the level of oxidative stress occurring during late gestation for this mouse strain is not sufficient for a change in the assessed behavioral phenotype, but results in some modest dysregulation of the genetic profile of the brain.
Collapse
Affiliation(s)
- Christine Lalonde
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Shayenthiran Sreetharan
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
- Department of Biology, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Alyssa Murray
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Lisa Stoa
- Department of Biology, McMaster University, Hamilton, ON L8S4L8, Canada
| | | | - Allison Kennedy
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Nicholas Landry
- Department of Psychology, Nipissing University, North Bay, ON P1B8L7, Canada
| | - Amy Stillar
- Department of Psychology, Nipissing University, North Bay, ON P1B8L7, Canada
| | - Sandhya Khurana
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Sujeenthar Tharmalingam
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Joanna Wilson
- Department of Biology, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Neelam Khaper
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Simon J Lees
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Douglas Boreham
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - T C Tai
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| |
Collapse
|
10
|
Xin J, Zhu B, Wang H, Zhang Y, Sun N, Cao X, Zheng L, Zhou Y, Fang J, Jing B, Pan K, Zeng Y, Zeng D, Li F, Xia Y, Xu P, Ni X. Prolonged fluoride exposure induces spatial-memory deficit and hippocampal dysfunction by inhibiting small heat shock protein 22 in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131595. [PMID: 37224709 DOI: 10.1016/j.jhazmat.2023.131595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/08/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Millions of residents in areas with high-fluoride drinking water supply ingest excessive levels of fluoride for long periods. This study investigated the mechanisms and impacts of lifelong exposure to naturally occurring moderate-high-fluoride drinking water on spatial-memory function by studying mice in controlled experiments. Spatial-memory deficits and disorders of hippocampal neuronal electrical activity were observed in mice exposed to 25-ppm or 50-ppm-fluoride drinking water for 56 weeks, but not in adult or old mice exposed to 50 ppm fluoride for 12 weeks. Ultrastructural analysis showed severely damaged hippocampal mitochondria, evidenced by reduced mitochondrial membrane potential and ATP content. Mitochondrial biogenesis was impaired in fluoride-exposed mice, manifesting as a significantly reduced mtDNA content, mtDNA-encoded subunits mtND6 and mtCO1, and respiratory complex activities. Fluoride reduced expression of Hsp22, a beneficial mediator of mitochondrial homeostasis, and decreased levels of signaling for the PGC-1α/TFAM pathway-which regulates mitochondrial biogenesis-and the NF-κβ/STAT3 pathway-which regulates mitochondrial respiratory chain enzyme activity. Hippocampus-specific Hsp22-overexpression improved fluoride-induced spatial-memory deficits by activating the PGC-1α/TFAM and STAT3 signaling pathways, while Hsp22-silencing aggravated the deficits by inhibiting both pathways. Downregulation of Hsp22 plays a vital role in fluoride-induced spatial-memory deficits by impacting mtDNA-encoding subsets and mitochondrial respiratory chain enzyme activity.
Collapse
Affiliation(s)
- Jinge Xin
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Zhu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xi Cao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liqin Zheng
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yanxi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Fang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fali Li
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Xia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Peng Xu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:5945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples “Federico II”, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Hemby SE, McIntosh S. Chronic haloperidol administration downregulates select BDNF transcript and protein levels in the dorsolateral prefrontal cortex of rhesus monkeys. Front Psychiatry 2023; 14:1054506. [PMID: 36816400 PMCID: PMC9932326 DOI: 10.3389/fpsyt.2023.1054506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Post-mortem studies in the prefrontal cortex and hippocampal formation from schizophrenia patients have revealed significant disruptions in the expression molecules associated with cytoarchitecture, synaptic structure, function, and plasticity, known to be regulated in part by brain derived neurotrophic factor (BDNF). Interestingly, several studies using postmortem brain tissue from individuals diagnosed with schizophrenia have revealed a significant reduction in BDNF mRNA and protein levels in the dorsolateral prefrontal cortex (DLPFC), hippocampus and related areas; however, differentiating the effects of illness from antipsychotic history has remained difficult. We hypothesized that chronic antipsychotic treatment may contribute to the altered BDNF mRNA and protein expression observed in post-mortem brains of individuals diagnosed with schizophrenia. To address the influence of antipsychotic administration on BDNF expression in the primate brain, rhesus monkeys orally administered haloperidol, clozapine, or vehicle twice daily for 180 days. We found BDNF splice variants 4 and 5 in the DLPFC and variant 2 in the EC were significantly down-regulated following chronic administration of haloperidol. In addition, proBDNF and mature BDNF expression in the DLPFC, but not the EC, were significantly reduced. Based on the known regulation of BDNF expression by BDNF-AS, we assessed the expression of this lncRNA and found expression was significantly upregulated in the DLPFC, but not EC. The results of the present study provide evidence of haloperidol-induced regulation of BDNF mRNA and protein expression in the DLFPC and suggest an important role for BDNF-AS in this regulation. Given the role of BDNF in synaptic plasticity, neuronal survival and maintenance, aberrant expression induced by haloperidol likely has significant ramifications for neuronal populations and circuits in primate cortex.
Collapse
Affiliation(s)
- Scott E Hemby
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, United States
| | - Scot McIntosh
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, United States
| |
Collapse
|
13
|
He RH, Fan JZ, Qian FF, He YH, Du XH, Lu HX. Repetitive transcranial magnetic stimulation promotes neurological functional recovery in rats with traumatic brain injury by upregulating synaptic plasticity-related proteins. Neural Regen Res 2023; 18:368-374. [PMID: 35900432 PMCID: PMC9396518 DOI: 10.4103/1673-5374.346548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies have shown that repetitive transcranial magnetic stimulation (rTMS) can enhance synaptic plasticity and improve neurological dysfunction. However, the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood. In this study, we established rat models of moderate traumatic brain injury using Feeney’s weight-dropping method and treated them using rTMS. To help determine the mechanism of action, we measured levels of several important brain activity-related proteins and their mRNA. On the injured side of the brain, we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor, tropomyosin receptor kinase B, N-methyl-D-aspartic acid receptor 1, and phosphorylated cAMP response element binding protein, which are closely associated with the occurrence of long-term potentiation. rTMS also partially reversed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure. These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury.
Collapse
|
14
|
Lucon-Xiccato T, Montalbano G, Gatto E, Frigato E, D'Aniello S, Bertolucci C. Individual differences and knockout in zebrafish reveal similar cognitive effects of BDNF between teleosts and mammals. Proc Biol Sci 2022; 289:20222036. [PMID: 36541170 PMCID: PMC9768640 DOI: 10.1098/rspb.2022.2036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
The remarkable similarities in cognitive performance between teleosts and mammals suggest that the underlying cognitive mechanisms might also be similar in these two groups. We tested this hypothesis by assessing the effects of the brain-derived neurotrophic factor (BDNF), which is critical for mammalian cognitive functioning, on fish's cognitive abilities. We found that individual differences in zebrafish's learning abilities were positively correlated with bdnf expression. Moreover, a CRISPR/Cas9 mutant zebrafish line that lacks the BDNF gene (bdnf-/-) showed remarkable learning deficits. Half of the mutants failed a colour discrimination task, whereas the remaining mutants learned the task slowly, taking three times longer than control bdnf+/+ zebrafish. The mutants also took twice as long to acquire a T-maze task compared to control zebrafish and showed difficulties exerting inhibitory control. An analysis of habituation learning revealed that cognitive impairment in mutants emerges early during development, but could be rescued with a synthetic BDNF agonist. Overall, our study indicates that BDNF has a similar activational effect on cognitive performance in zebrafish and in mammals, supporting the idea that its function is conserved in vertebrates.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elia Gatto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
15
|
Cutuli D, Sampedro-Piquero P. BDNF and its Role in the Alcohol Abuse Initiated During Early Adolescence: Evidence from Preclinical and Clinical Studies. Curr Neuropharmacol 2022; 20:2202-2220. [PMID: 35748555 PMCID: PMC9886842 DOI: 10.2174/1570159x20666220624111855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial brain signaling protein that is integral to many signaling pathways. This neurotrophin has shown to be highly involved in brain plastic processes such as neurogenesis, synaptic plasticity, axonal growth, and neurotransmission, among others. In the first part of this review, we revise the role of BDNF in different neuroplastic processes within the central nervous system. On the other hand, its deficiency in key neural circuits is associated with the development of psychiatric disorders, including alcohol abuse disorder. Many people begin to drink alcohol during adolescence, and it seems that changes in BDNF are evident after the adolescent regularly consumes alcohol. Therefore, the second part of this manuscript addresses the involvement of BDNF during adolescent brain maturation and how this process can be negatively affected by alcohol abuse. Finally, we propose different BNDF enhancers, both behavioral and pharmacological, which should be considered in the treatment of problematic alcohol consumption initiated during the adolescence.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Medicine and Psychology Faculty, University Sapienza of Rome, Rome, Italy; ,I.R.C.C.S. Fondazione Santa Lucia, Laboratorio di Neurofisiologia Sperimentale e del Comportamento, Via del Fosso di Fiorano 64, 00143 Roma, Italy; ,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| | - Piquero Sampedro-Piquero
- Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| |
Collapse
|
16
|
Williams RA, Johnson KW, Lee FS, Hemmings HC, Platholi J. A Common Human Brain-Derived Neurotrophic Factor Polymorphism Leads to Prolonged Depression of Excitatory Synaptic Transmission by Isoflurane in Hippocampal Cultures. Front Mol Neurosci 2022; 15:927149. [PMID: 35813074 PMCID: PMC9260310 DOI: 10.3389/fnmol.2022.927149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple presynaptic and postsynaptic targets have been identified for the reversible neurophysiological effects of general anesthetics on synaptic transmission and neuronal excitability. However, the synaptic mechanisms involved in persistent depression of synaptic transmission resulting in more prolonged neurological dysfunction following anesthesia are less clear. Here, we show that brain-derived neurotrophic factor (BDNF), a growth factor implicated in synaptic plasticity and dysfunction, enhances glutamate synaptic vesicle exocytosis, and that attenuation of vesicular BDNF release by isoflurane contributes to transient depression of excitatory synaptic transmission in mice. This reduction in synaptic vesicle exocytosis by isoflurane was acutely irreversible in neurons that release less endogenous BDNF due to a polymorphism (BDNF Val66Met; rs6265) compared to neurons from wild-type mice. These effects were prevented by exogenous application of BDNF. Our findings identify a role for a common human BDNF single nucleotide polymorphism in persistent changes of synaptic function following isoflurane exposure. These short-term persistent alterations in excitatory synaptic transmission indicate a role for human genetic variation in anesthetic effects on synaptic plasticity and neurocognitive function.
Collapse
Affiliation(s)
- Riley A. Williams
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Kenneth W. Johnson
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Francis S. Lee
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States,Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, United States,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Hugh C. Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Jimcy Platholi
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Jimcy Platholi,
| |
Collapse
|
17
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
18
|
Brichko R, Soldan A, Zhu Y, Wang MC, Faria A, Albert M, Pettigrew C, The BIOCARD Research Team. Age-Dependent Association Between Cognitive Reserve Proxy and Longitudinal White Matter Microstructure in Older Adults. Front Psychol 2022; 13:859826. [PMID: 35756247 PMCID: PMC9226781 DOI: 10.3389/fpsyg.2022.859826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/12/2022] [Indexed: 01/26/2023] Open
Abstract
Objective This study examined the association of lifetime experiences, measured by a cognitive reserve (CR) composite score composed of years of education, literacy, and vocabulary measures, to level and rate of change in white matter microstructure, as assessed by diffusion tensor imaging (DTI) measures. We also examined whether the relationship between the proxy CR composite score and white matter microstructure was modified by participant age, APOE-ε4 genetic status, and level of vascular risk. Methods A sample of 192 non-demented (n = 166 cognitively normal, n = 26 mild cognitive impairment) older adults [mean age = 70.17 (SD = 8.5) years] from the BIOCARD study underwent longitudinal DTI (mean follow-up = 2.5 years, max = 4.7 years). White matter microstructure was quantified by fractional anisotropy (FA) and radial diffusivity (RD) values in global white matter tracts and medial temporal lobe (MTL) white matter tracts. Results Using longitudinal linear mixed effect models, we found that FA decreased over time and RD increased over time in both the global and MTL DTI composites, but the rate of change in these DTI measures was not related to level of CR. However, there were significant interactions between the CR composite score and age for global RD in the full sample, and for global FA, global RD, and MTL RD among those with normal cognition. These interactions indicated that among participants with a lower baseline age, higher CR composite scores were associated with higher FA and lower RD values, while among participants with higher age at baseline, higher CR composite scores were associated with lower FA and higher RD values. Furthermore, these relationships were not modified by APOE-ε4 genotype or level of vascular risk. Conclusion The association between level of CR and DTI measures differs by age, suggesting a possible neuroprotective effect of CR among late middle-aged adults that shifts to a compensatory effect among older adults.
Collapse
Affiliation(s)
- Rostislav Brichko
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Anja Soldan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yuxin Zhu
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Mei-Cheng Wang
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Andreia Faria
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Marilyn Albert
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Corinne Pettigrew
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Corinne Pettigrew,
| | | |
Collapse
|
19
|
Maffioli E, Angiulli E, Nonnis S, Grassi Scalvini F, Negri A, Tedeschi G, Arisi I, Frabetti F, D’Aniello S, Alleva E, Cioni C, Toni M. Brain Proteome and Behavioural Analysis in Wild Type, BDNF +/- and BDNF -/- Adult Zebrafish ( Danio rerio) Exposed to Two Different Temperatures. Int J Mol Sci 2022; 23:ijms23105606. [PMID: 35628418 PMCID: PMC9146406 DOI: 10.3390/ijms23105606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Experimental evidence suggests that environmental stress conditions can alter the expression of BDNF and that the expression of this neurotrophin influences behavioural responses in mammalian models. It has been recently demonstrated that exposure to 34 °C for 21 days alters the brain proteome and behaviour in zebrafish. The aim of this work was to investigate the role of BDNF in the nervous system of adult zebrafish under control and heat treatment conditions. For this purpose, zebrafish from three different genotypes (wild type, heterozygous BDNF+/- and knock out BDNF-/-) were kept for 21 days at 26 °C or 34 °C and then euthanized for brain molecular analyses or subjected to behavioural tests (Y-maze test, novel tank test, light and dark test, social preference test, mirror biting test) for assessing behavioural aspects such as boldness, anxiety, social preference, aggressive behaviour, interest for the novel environment and exploration. qRT-PCR analysis showed the reduction of gene expression of BDNF and its receptors after heat treatment in wild type zebrafish. Moreover, proteomic analysis and behavioural tests showed genotype- and temperature-dependent effects on brain proteome and behavioural responding. Overall, the absent expression of BDNF in KO alters (1) the brain proteome by reducing the expression of proteins involved in synapse functioning and neurotransmitter-mediated transduction; (2) the behaviour, which can be interpreted as bolder and less anxious and (3) the cellular and behavioural response to thermal treatment.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
| | - Elisa Angiulli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Via Alfonso Borelli 50, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, 00161 Rome, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00131 Rome, Italy
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40136 Bologna, Italy;
| | - Salvatore D’Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Napoli, Italy;
| | - Enrico Alleva
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Cioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Via Alfonso Borelli 50, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Mattia Toni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Via Alfonso Borelli 50, 00161 Rome, Italy; (E.A.); (C.C.)
- Correspondence:
| |
Collapse
|
20
|
Rowe RK, Griesbach GS. Immune-endocrine interactions in the pathophysiology of sleep-wake disturbances following traumatic brain injury: A narrative review. Brain Res Bull 2022; 185:117-128. [DOI: 10.1016/j.brainresbull.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/16/2022]
|
21
|
Keifer J. Regulation of AMPAR trafficking in synaptic plasticity by BDNF and the impact of neurodegenerative disease. J Neurosci Res 2022; 100:979-991. [PMID: 35128708 DOI: 10.1002/jnr.25022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Research demonstrates that the neural mechanisms underlying synaptic plasticity and learning and memory involve mobilization of AMPA-type neurotransmitter receptors at glutamatergic synaptic contacts, and that these mechanisms are targeted during neurodegenerative disease. Strengthening neural transmission occurs with insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into synapses while weakening results from receptor withdrawal. A key player in the trafficking of AMPARs during plasticity and learning is the brain-derived neurotrophic factor (BDNF) signaling system. BDNF is a neurotrophic factor that supports neuronal growth and is required for learning and memory. Significantly, a primary feature of many neurodegenerative diseases is a reduction in BDNF protein as well as disrupted neuronal surface expression of synaptic AMPARs. The resulting weakening of synaptic contacts leads to synapse loss and neuronal degeneration that underlies the cognitive impairment and dementia observed in patients with progressive neurodegenerative disease such as Alzheimer's. In the face of these data, one therapeutic approach is to increase BDNF bioavailability in brain. While this has been met with significant challenges, the results of the research have been promising. In spite of this, there are currently no clinical trials to test many of these findings on patients. Here, research showing that BDNF drives AMPARs to synapses, AMPAR trafficking is essential for synaptic plasticity and learning, and that neurodegenerative disease results in a significant decline in BDNF will be reviewed. The aim is to draw attention to the need for increasing patient-directed clinical studies to test the possible benefits of increasing levels of neurotrophins, specifically BDNF, to treat brain disorders. Much is known about the cellular mechanisms that underlie learning and memory in brain. It can be concluded that signaling by neurotrophins like BDNF and AMPA-type glutamate receptor synaptic trafficking are fundamental to these processes. Data from animal models and patients reveal that these mechanisms are adversely targeted during neurodegenerative disease and results in memory loss and cognitive decline. A brief summary of our understanding of these mechanisms indicates that it is time to apply this knowledge base directly to development of therapeutic treatments that enhance neurotrophins for brain disorders in patient populations.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
22
|
Petkova-Tuffy A, Gödecke N, Viotti J, Korte M, Dresbach T. Neuroligin-1 mediates presynaptic maturation through brain-derived neurotrophic factor signaling. BMC Biol 2021; 19:215. [PMID: 34579720 PMCID: PMC8474808 DOI: 10.1186/s12915-021-01145-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Maturation is a process that allows synapses to acquire full functionality, optimizing their activity to diverse neural circuits, and defects in synaptic maturation may contribute to neurodevelopmental disorders. Neuroligin-1 (NL1) is a postsynaptic cell adhesion molecule essential for synapse maturation, a role typically attributed to binding to pre-synaptic ligands, the neurexins. However, the pathways underlying the action of NL1 in synaptic maturation are incompletely understood, and some of its previously observed effects seem reminiscent of those described for the neurotrophin brain-derived neurotrophic factor (BDNF). Here, we show that maturational increases in active zone stability and synaptic vesicle recycling rely on the joint action of NL1 and brain-derived neurotrophic factor (BDNF). Results Applying BDNF to hippocampal neurons in primary cultures or organotypical slice cultures mimicked the effects of overexpressing NL1 on both structural and functional maturation. Overexpressing a NL1 mutant deficient in neurexin binding still induced presynaptic maturation. Like NL1, BDNF increased synaptic vesicle recycling and the augmentation of transmitter release by phorbol esters, both hallmarks of presynaptic maturation. Mimicking the effects of NL1, BDNF also increased the half-life of the active zone marker bassoon at synapses, reflecting increased active zone stability. Overexpressing NL1 increased the expression and synaptic accumulation of BDNF. Inhibiting BDNF signaling pharmacologically or genetically prevented the effects of NL1 on presynaptic maturation. Applying BDNF to NL1-knockout mouse cultures rescued defective presynaptic maturation, indicating that BDNF acts downstream of NL1 and can restore presynaptic maturation at late stages of network development. Conclusions Our data introduce BDNF as a novel and essential component in a transsynaptic pathway linking NL1-mediated cell adhesion, neurotrophin action, and presynaptic maturation. Our findings connect synaptic cell adhesion and neurotrophin signaling and may provide a therapeutic approach to neurodevelopmental disorders by targeting synapse maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01145-7.
Collapse
Affiliation(s)
- Andonia Petkova-Tuffy
- Institute for Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Nina Gödecke
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Julio Viotti
- Institute for Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,Helmholtz Centre for Infection Research, Research group Neuroinflammation and Neurodegeneration, Imhoffenstr. 7, 38104, Braunschweig, Germany
| | - Thomas Dresbach
- Institute for Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany.
| |
Collapse
|
23
|
Miao HH, Miao Z, Pan JG, Li XH, Zhuo M. Brain-derived neurotrophic factor produced long-term synaptic enhancement in the anterior cingulate cortex of adult mice. Mol Brain 2021; 14:140. [PMID: 34526080 PMCID: PMC8442386 DOI: 10.1186/s13041-021-00853-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/04/2021] [Indexed: 12/04/2022] Open
Abstract
Previous studies have demonstrated that brain-derived neurotrophic factor (BDNF) is one of the diffusible messengers for enhancing synaptic transmission in the hippocampus. Less information is available about the possible roles of BDNF in the anterior cingulate cortex (ACC). In the present study, we used 64-electrode array field recording system to investigate the effect of BDNF on ACC excitatory transmission. We found that BDNF enhanced synaptic responses in a dose-dependent manner in the ACC in C57/BL6 mice. The enhancement was long-lasting, and persisted for at least 3 h. In addition to the enhancement, BDNF also recruited inactive synaptic responses in the ACC. Bath application of the tropomyosin receptor kinase B (TrkB) receptor antagonist K252a blocked BDNF-induced enhancement. L-type voltage-gated calcium channels (L-VGCC), metabotropic glutamate receptors (mGluRs), but not NMDA receptors were required for BDNF-produced enhancement. Moreover, calcium-stimulated adenylyl cyclase subtype 1 (AC1) but not AC8 was essential for the enhancement. A selective AC1 inhibitor NB001 completely blocked the enhancement. Furthermore, BDNF-produced enhancement occluded theta burst stimulation (TBS) induced long-term potentiation (LTP), suggesting that they may share similar signaling mechanisms. Finally, the expression of BDNF-induced enhancement depends on postsynaptic incorporation of calcium-permeable AMPA receptors (CP-AMPARs) and protein kinase Mζ (PKMζ). Our results demonstrate that cortical BDNF may contribute to synaptic potentiation in the ACC.
Collapse
Affiliation(s)
- Hui-Hui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Institute for Brain Research, QingDao International Academician Park, Qing Dao, Shandong, People's Republic of China
| | - Zhuang Miao
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Ji-Gang Pan
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Xu-Hui Li
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China. .,Institute for Brain Research, QingDao International Academician Park, Qing Dao, Shandong, People's Republic of China.
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China. .,Institute for Brain Research, QingDao International Academician Park, Qing Dao, Shandong, People's Republic of China.
| |
Collapse
|
24
|
Woo E, Sansing LH, Arnsten AFT, Datta D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. CHRONIC STRESS 2021; 5:24705470211029254. [PMID: 34485797 PMCID: PMC8408896 DOI: 10.1177/24705470211029254] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Chronic exposure to uncontrollable stress causes loss of spines and dendrites in the prefrontal cortex (PFC), a recently evolved brain region that provides top-down regulation of thought, action, and emotion. PFC neurons generate top-down goals through recurrent excitatory connections on spines. This persistent firing is the foundation for higher cognition, including working memory, and abstract thought. However, exposure to acute uncontrollable stress drives high levels of catecholamine release in the PFC, which activates feedforward calcium-cAMP signaling pathways to open nearby potassium channels, rapidly weakening synaptic connectivity to reduce persistent firing. Chronic stress exposures can further exacerbate these signaling events leading to loss of spines and resulting in marked cognitive impairment. In this review, we discuss how stress signaling mechanisms can lead to spine loss, including changes to BDNF-mTORC1 signaling, calcium homeostasis, actin dynamics, and mitochondrial actions that engage glial removal of spines through inflammatory signaling. Stress signaling events may be amplified in PFC spines due to cAMP magnification of internal calcium release. As PFC dendritic spine loss is a feature of many cognitive disorders, understanding how stress affects the structure and function of the PFC will help to inform strategies for treatment and prevention.
Collapse
Affiliation(s)
- Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA.,Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Lauren H Sansing
- Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| |
Collapse
|
25
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
26
|
Quinlan C, Rattray B, Pryor D, Northey JM, Coxon J, Cherbuin N, Andrews SC. A Short-Term Intervention of High-Intensity Exercise and Anodal-tDCS on Motor Learning in Middle-Aged Adults: An RCT. Front Hum Neurosci 2021; 15:661079. [PMID: 34220470 PMCID: PMC8241928 DOI: 10.3389/fnhum.2021.661079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022] Open
Abstract
High-intensity exercise has enhanced motor learning in healthy young adults. Anodal-transcranial direct current stimulation (a-tDCS) may optimize these effects. This study aimed to determine the effects of a short-term high-intensity interval exercise intervention either with or without a-tDCS on the learning and retention of a novel motor task in middle-aged adults. Forty-two healthy middle-aged adults (age = 44.6 ± 6.3, female = 76%) were randomized into three groups: exercise and active a-tDCS, exercise and sham a-tDCS, and a non-exercise and sham a-tDCS control. Participants completed a baseline testing session, followed by three intervention sessions 48-h apart. The exercise groups completed 20-min of high-intensity exercise followed by a novel sequential visual isometric pinch task (SVIPT) while receiving 20-min of 1.5 mA a-tDCS, or sham tDCS. The control group completed 20-min of reading before receiving sham a-tDCS during the SVIPT. Learning was assessed by skill change within and between intervention sessions. Participants returned 5–7 days after the final intervention session and performed the SVIPT task to assess retention. All three groups showed evidence of learning on the SVIPT task. Neither group displayed enhanced overall learning or retention when compared to the control group. High-intensity exercise with or without a-tDCS did not improve learning or retention of a novel motor task in middle-aged adults. The methodological framework provides direction for future research to investigate the potential of differing exercise intensity effects on learning and retention.
Collapse
Affiliation(s)
- Clare Quinlan
- UC Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia.,Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Ben Rattray
- UC Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia.,Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia.,Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Disa Pryor
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Joseph M Northey
- UC Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia.,Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia.,Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - James Coxon
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Sophie C Andrews
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia.,School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
27
|
Sumiyoshi E, Hashimoto M, Hossain S, Matsuzaki K, Islam R, Tanabe Y, Maruyama K, Kajima K, Arai H, Ohizumi Y, Shido O. Anredera cordifolia extract enhances learning and memory in senescence-accelerated mouse-prone 8 (SAMP8) mice. Food Funct 2021; 12:3992-4004. [PMID: 33977955 DOI: 10.1039/d0fo03272g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Learning and memory impairment may result from age-related decline in synaptic plasticity-related proteins in the hippocampus. Therefore, exploration of functional foods capable of ameliorating memory and cognition decline is an interesting endeavor in neuroscience research. We report the effects of Anredera cordifolia (AC) extract on learning and memory deficits in a senescence-accelerated mouse-prone 8 (SAMP8) mouse model, which demonstrate age-related memory deficits and related pathological changes in the brain. After 8 weeks of oral administration of AC extract, the mice were trained in the Novel Object Recognition (NOR) task, and after 7 more weeks, in the Morris Water Maze (MWM) task. Following the completion of behavioral testing, the blood biochemistry parameters, the hippocampal levels of brain-derived neurotropic factor (BDNF), PSD95, and NR2A, and the p-cAMP-response element binding (p-CREB)/CREB ratio were measured. The AC-treated group spent more time exploring the novel objects in the NOR task, and showed faster acquisition and better retention in the MWM task than the negative control (CN) group. In addition, AC enhanced the levels of the aforementioned neuronal plasticity-related proteins, and did not affect the blood biochemistry parameters. Therefore, our data suggest that the AC extract may improve learning and memory without causing any noticeable side effects in the body.
Collapse
Affiliation(s)
- Eri Sumiyoshi
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| | - Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| | - Shahdat Hossain
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan. and Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| | - Rafiad Islam
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| | - Yoko Tanabe
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| | - Koji Maruyama
- Sankyo Holdings Co., Ltd, Fuji, Shizuoka 417-0061, Japan
| | - Koji Kajima
- Sankyo Holdings Co., Ltd, Fuji, Shizuoka 417-0061, Japan
| | - Hiroyuki Arai
- Department of Geriatrics & Gerontology Division of Brain Science Institute of Development, Aging and Cancer (IDAC) Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai, Miyagi 989-3201, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
28
|
Siomek-Gorecka A, Dlugosz A, Czarnecki D. The Molecular Basis of Alcohol Use Disorder (AUD). Genetics, Epigenetics, and Nutrition in AUD: An Amazing Triangle. Int J Mol Sci 2021; 22:ijms22084262. [PMID: 33924016 PMCID: PMC8072802 DOI: 10.3390/ijms22084262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol use disorder (AUD) is a very common and complex disease, as alcohol is the most widely used addictive drug in the world. This disorder has an enormous impact on public health and social and private life, and it generates a huge number of social costs. Alcohol use stimulates hypothalamic-pituitary-adrenal (HPA) axis responses and is the cause of many physical and social problems (especially liver disease and cancer), accidental injury, and risky sexual behavior. For years, researchers have been trying to identify the genetic basis of alcohol use disorder, the molecular mechanisms responsible for its development, and an effective form of therapy. Genetic and environmental factors are known to contribute to the development of AUD, and the expression of genes is a complicated process that depends on epigenetic modulations. Dietary nutrients, such as vitamins, may serve as one these modulators, as they have a direct impact on epigenomes. In this review, we connect gathered knowledge from three emerging fields-genetics, epigenetics, and nutrition-to form an amazing triangle relating to alcohol use disorder.
Collapse
Affiliation(s)
- Agnieszka Siomek-Gorecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-585-37-48
| | - Anna Dlugosz
- Department of Engineering and Chemical and Food Analytics, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Damian Czarnecki
- Department of Preventive Nursing, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-821 Bydgoszcz, Poland;
| |
Collapse
|
29
|
Zulu SS, Abboussi O, Simola N, Mabandla MV, Daniels WMU. Effects of combination antiretroviral drugs (cART) on hippocampal neuroplasticity in female mice. J Neurovirol 2021; 27:325-333. [PMID: 33710598 DOI: 10.1007/s13365-021-00967-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 10/21/2022]
Abstract
The incidence of HIV-associated neurocognitive disorder (HAND) continues despite the introduction of combination antiretroviral drugs (cART). Several studies have reported the neurotoxicity of individual antiretroviral drugs (monotherapy), while the common approach for HIV treatment is through cART. Hence, the current study investigated the effects of long-term exposure to cART on cognitive function, oxidative damage, autophagy, and neuroplasticity in the hippocampus of mice. Female Balb/c mice received a once-a-day oral dose of cART composed of emtricitabine + tenofovir disoproxil fumarate or vehicle for 8 weeks. On week 7 of drug administration, all mice were assessed for spatial learning in the Morris water maze (MWM), and then on week 8, mice were sacrificed, and hippocampal tissue dissected from the brain. For biochemical analyses, we measured the concentration of 4-hydroxynonenal, and the expression of autophagic marker LC3B, synaptophysin, and brain-derived neurotrophic factor (BDNF) in the hippocampus. Our results showed that cART exposure increased escape latency in the MWM test. The cART-treated mice also showed increased 4-hydroxynonenal concentration and expression of LC3B. Furthermore, cART treatment decreased the expression of synaptophysin and BDNF. These findings further support the evidence that cART may be neurotoxic and therefore may play a role in the neuropathogenesis of HAND.
Collapse
Affiliation(s)
- Simo Siyanda Zulu
- School of Laboratory Medicine , and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa. .,Department of Human Biology, Faculty of Health Sciences, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Musa Vuyisile Mabandla
- School of Laboratory Medicine , and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - William Mark Uren Daniels
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Miao B, Yin Y, Mao G, Zhao B, Wu J, Shi H, Fei S. The implication of transient receptor potential canonical 6 in BDNF-induced mechanical allodynia in rat model of diabetic neuropathic pain. Life Sci 2021; 273:119308. [PMID: 33667520 DOI: 10.1016/j.lfs.2021.119308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/01/2023]
Abstract
AIMS Brain-derived neurotrophic factor (BDNF) is vital in the pathogenesis of mechanical allodynia with a paucity of reports available regarding diabetic neuropathy pain (DNP). Herein we identified the involvement of BDNF in driving mechanical allodynia in DNP rats via the activation of transient receptor potential canonical 6 (TRPC6) channel. MATERIALS AND METHODS The DNP rat model was established via streptozotocin (STZ) injection, and allodynia was assessed by paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). The expression profiles of BDNF and TRPC6 in dorsal root ganglia (DRG) and spinal cord were illustrated by immunofluorescence and Western blotting. Intrathecal administration of K252a or TrkB-Fc was performed to inhibit BNDF/TrkB expression, and respective injection of GsMTX-4, BTP2 and TRPC6 antisense oligodeoxynucleotides (TRPC6-AS) was likewise conducted to inhibit TRPC6 expression in DNP rats. Calcium influx in DRG was monitored by calcium imaging. KEY FINDINGS The time-dependent increase of BDNF and TRPC6 expression in DRG and spinal cord was observed since the 7th post-STZ day, correlated with the development of mechanical allodynia in DNP rats. Intrathecal administration of K252a, TrkB-Fc, GsMTX-4 and BTP2 prevented mechanical allodynia in DNP rats. Pre-treatment of TRPC6-AS reversed the BDNF-induced pain-like responses in DNP rats rather than the naïve rats. In addition, the TRPC6-AS reversed BDNF-induced increase of calcium influx in DRG neurons in DNP rats. SIGNIFICANCE The intrathecal inhibition of TRPC6 alleviated the BDNF-induced mechanical allodynia in DNP rat model. This finding may validate the application of TRPC6 antagonists as interesting strategy for DNP management.
Collapse
Affiliation(s)
- Bei Miao
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Yue Yin
- Department of Anesthesiology, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou 221009, Jiangsu Province, China
| | - Guangtong Mao
- Department of Pathology, Xinyi People's Hospital, 16 Renmin Road, Xinyi 221400, Jiangsu Province, China
| | - Benhuo Zhao
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Jiaojiao Wu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Hengliang Shi
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| | - Sujuan Fei
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| |
Collapse
|
31
|
McPhee GM, Downey LA, Stough C. Neurotrophins as a reliable biomarker for brain function, structure and cognition: A systematic review and meta-analysis. Neurobiol Learn Mem 2020; 175:107298. [PMID: 32822863 DOI: 10.1016/j.nlm.2020.107298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/02/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
Abstract
Neurotrophins are signalling molecules involved in the formation and maintenance of synapses in the brain. They can cross the blood-brain barrier and be detected in peripheral blood, suggesting they may be a potential biomarker for brain health and function. In this review, the available literature was systematically searched for studies comparing peripheral neurotrophins levels with MRI and cognitive measures in healthy adults. Twenty-four studies were identified, six of which included a neuroimaging outcome. Fifteen studies measuring cognition were eligible for meta-analysis. The majority of studies measured levels of brain-derived neurotrophic factor (BDNF), with few assessing other neurotrophins. Results revealed BDNF is related to some neuroimaging outcomes, with some studies suggesting older age may be an important factor. A higher proportion of studies who had older samples observed significant effects between cognition and neurotrophin levels. When cognitive studies were pooled together in a meta-analysis, there was a weak non-significant effect between BDNF and cognitive outcomes. There was also a high level of heterogeneity between cognitive studies. Results indicated that gender was a notable source of the heterogeneity, but additional studies employing relevant covariates are necessary to better characterise the inter-relationship between circulating neurotrophins and cognition.
Collapse
Affiliation(s)
- Grace M McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia; Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
32
|
Liu P, Du J. Oridonin is an antidepressant molecule working through the PPAR-γ/AMPA receptor signaling pathway. Biochem Pharmacol 2020; 180:114136. [PMID: 32628930 DOI: 10.1016/j.bcp.2020.114136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Oridonin is a diterpene compound that regulates the activity of PPAR-γ (peroxisome proliferator-activated receptor gamma) transcription factor. Cumulative evidence indicates that AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs) play an important role in the treatment of depression. In the article, we found that after treatment with oridonin, the immobility time of mice was significantly reduced in the tail suspension test (TST) and the forced-swim test (FST). After five consecutive days of treatment in mice, oridonin significantly enhanced the expression of PPAR-γ, GluA1 (Ser845) phosphorylation, and GluA1 in the total protein extract of the prefrontal cortex (PFC). Blocking PPAR-γ was able to block antidepressant effects of oridonin. In synaptosome fractions of the PFC, oridonin treatment also significantly increased the GluA1 (Ser845) phosphorylation and GluA1 levels. Moreover, antidepressant actions of oridonin were blocked by AMPA receptor-specific antagonist GYKI 52466. This study demonstrates that oridonin regulates PPAR-γ/AMPA receptor signaling in the prefrontal cortex, and that oridonin can be identified as a novel antidepressant with clinical potential.
Collapse
Affiliation(s)
- Ping Liu
- School of Medicine, Yunnan University, Kunming, Yunnan, PR China
| | - Jing Du
- School of Medicine, Yunnan University, Kunming, Yunnan, PR China.
| |
Collapse
|
33
|
Arora S, Sharma D, Singh J. GLUT-1: An Effective Target To Deliver Brain-Derived Neurotrophic Factor Gene Across the Blood Brain Barrier. ACS Chem Neurosci 2020; 11:1620-1633. [PMID: 32352752 DOI: 10.1021/acschemneuro.0c00076] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, inflicts enormous suffering to patients and their family members. It is the third deadliest disease, affecting 46.8 million people worldwide. Brain-derived neurotrophic factor (BDNF) is involved in the development, maintenance, and plasticity of the central nervous system. This crucial protein is significantly reduced in AD patients leading to reduced plasticity and neuronal death. In this study, we demonstrate the targeted delivery of the BDNF gene to the brain using liposome nanoparticles. These liposomes were surface modified with glucose transporter-1 targeting ligand (mannose) and cell penetrating peptides (penetratin or rabies virus glycoprotein) to promote selective and enhanced delivery to the brain. Surface modified liposomes showed significantly higher transfection of BDNF in primary astrocytes and neurons, compared to unmodified (plain) liposomes. BDNF transfection via dual modified liposomes resulted in an increase in presynaptic marker synaptophysin protein in primary neuronal cells, which is usually found to be reduced in AD patients. Liposomes surface modified with mannose and cell penetrating peptides demonstrated ∼50% higher transport across the in vitro blood brain barrier (BBB) model and showed significantly higher transfection efficiency in primary neuronal cells compared to plain liposomes. These results were correlated with significantly higher transport of surface modified liposomes (∼7% of injected dose/gram of tissue) and BDNF transfection (∼1.7 times higher than baseline level) across BBB following single intravenous administration in C57BL/6 mice without any signs of inflammation or toxicity. Overall, this study suggests a safe and targeted strategy to increase BDNF protein in the brain, which has the potential to reverse AD pathophysiology.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
34
|
Gudasheva TA, Povarnina P, Tarasiuk AV, Seredenin SB. The Low Molecular Weight Brain-derived Neurotrophic Factor Mimetics with Antidepressant-like Activity. Curr Pharm Des 2020; 25:729-737. [PMID: 30931847 DOI: 10.2174/1381612825666190329122852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
The search for new highly-effective, fast-acting antidepressant drugs is extremely relevant. Brain derived neurotrophic factor (BDNF) and signaling through its tropomyosin-related tyrosine kinase B (TrkB) receptor, represents one of the most promising therapeutic targets for treating depression. BDNF is a key regulator of neuroplasticity in the hippocampus and the prefrontal cortex, the dysfunction of which is considered to be the main pathophysiological hallmark of this disorder. BDNF itself has no favorable drug-like properties due to poor pharmacokinetics and possible adverse effects. The design of small, proteolytically stable BDNF mimetics might provide a useful approach for the development of therapeutic agents. Two small molecule BDNF mimetics with antidepressant-like activity have been reported, 7,8-dihydroxyflavone and the dimeric dipeptide mimetic of BDNF loop 4, GSB-106. The article reflects on the current literature on the role of BDNF as a promising therapeutic target in the treatment of depression and on the current advances in the development of small molecules on the base of this neurotrophin as potential antidepressants.
Collapse
Affiliation(s)
- Tatiana A Gudasheva
- Medicinal Chemistry Department, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| | - Polina Povarnina
- Medicinal Chemistry Department, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| | - Alexey V Tarasiuk
- Medicinal Chemistry Department, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| | - Sergey B Seredenin
- Department of Pharmacogenetics, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| |
Collapse
|
35
|
Lin PY, Kavalali ET, Monteggia LM. Genetic Dissection of Presynaptic and Postsynaptic BDNF-TrkB Signaling in Synaptic Efficacy of CA3-CA1 Synapses. Cell Rep 2020; 24:1550-1561. [PMID: 30089265 PMCID: PMC7176480 DOI: 10.1016/j.celrep.2018.07.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/31/2018] [Accepted: 07/05/2018] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin receptor kinase B (TrkB), regulate long-term potentiation (LTP) in the hippocampus, although the sites of BDNF-TrkB receptors in this process are controversial. We used a viral-mediated approach to delete BDNF or TrkB specifically in CA1 and CA3 regions of the Schaffer collateral pathway. Deletion of BDNF in CA3 or CA1 revealed that presynaptic BDNF is involved in LTP induction, while postsynaptic BDNF contributes to LTP maintenance. Similarly, loss of presynaptic or postsynaptic TrkB receptors leads to distinct LTP deficits, with presynaptic TrkB required to maintain LTP, while postsynaptic TrkB is essential for LTP formation. In addition, loss of TrkB in CA3 significantly diminishes release probability, uncovering a role for presynaptic TrkB receptors in basal neurotransmission. Taken together, this direct comparison of presynaptic and postsynaptic BDNF-TrkB reveals insight into BDNF release and TrkB activation sites in hippocampal LTP. Lin et al. directly compare a role for presynaptic and postsynaptic BDNF and TrkB receptors in hippocampal LTP. They find that LTP induction is mediated by anterograde BDNF-TrkB signaling, while both anterograde and retrograde BDNFTrkB signaling persists presynaptically and postsynaptically for LTP maintenance.
Collapse
Affiliation(s)
- Pei-Yi Lin
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Lisa M Monteggia
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
36
|
Pérez V, Bermedo-Garcia F, Zelada D, Court FA, Pérez MÁ, Fuenzalida M, Ábrigo J, Cabello-Verrugio C, Moya-Alvarado G, Tapia JC, Valenzuela V, Hetz C, Bronfman FC, Henríquez JP. The p75 NTR neurotrophin receptor is required to organize the mature neuromuscular synapse by regulating synaptic vesicle availability. Acta Neuropathol Commun 2019; 7:147. [PMID: 31514753 PMCID: PMC6739937 DOI: 10.1186/s40478-019-0802-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023] Open
Abstract
The coordinated movement of organisms relies on efficient nerve-muscle communication at the neuromuscular junction. After peripheral nerve injury or neurodegeneration, motor neurons and Schwann cells increase the expression of the p75NTR pan-neurotrophin receptor. Even though p75NTR targeting has emerged as a promising therapeutic strategy to delay peripheral neuronal damage progression, the effects of long-term p75NTR inhibition at the mature neuromuscular junction have not been elucidated. We performed quantitative neuroanathomical analyses of the neuromuscular junction in p75NTR null mice by laser confocal and electron microscopy, which were complemented with electromyography, locomotor tests, and pharmacological intervention studies. Mature neuromuscular synapses of p75NTR null mice show impaired postsynaptic organization and ultrastructural complexity, which correlate with altered synaptic function at the levels of nerve activity-induced muscle responses, muscle fiber structure, force production, and locomotor performance. Our results on primary myotubes and denervated muscles indicate that muscle-derived p75NTR does not play a major role on postsynaptic organization. In turn, motor axon terminals of p75NTR null mice display a strong reduction in the number of synaptic vesicles and active zones. According to the observed pre and postsynaptic defects, pharmacological acetylcholinesterase inhibition rescued nerve-dependent muscle response and force production in p75NTR null mice. Our findings revealing that p75NTR is required to organize mature neuromuscular junctions contribute to a comprehensive view of the possible effects caused by therapeutic attempts to target p75NTR.
Collapse
Affiliation(s)
- Viviana Pérez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Francisca Bermedo-Garcia
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Diego Zelada
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Miguel Ángel Pérez
- Laboratory of Neural Plasticity, Center for Neurobiology and Integrative Physiology, Faculty of Sciences, Institute of Physiology, Universidad de Valparaíso, Valparaíso, Chile
- Present Address: Health Sciences School, Universidad de Viña del Mar, Viña del Mar, Chile
| | - Marco Fuenzalida
- Laboratory of Neural Plasticity, Center for Neurobiology and Integrative Physiology, Faculty of Sciences, Institute of Physiology, Universidad de Valparaíso, Valparaíso, Chile
| | - Johanna Ábrigo
- Laboratory of Muscle Pathologies, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathologies, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Guillermo Moya-Alvarado
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Carlos Tapia
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Vicente Valenzuela
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Francisca C Bronfman
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Center for Aging and Regeneration (CARE), Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile.
| | - Juan Pablo Henríquez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
37
|
Pradhan J, Noakes PG, Bellingham MC. The Role of Altered BDNF/TrkB Signaling in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2019; 13:368. [PMID: 31456666 PMCID: PMC6700252 DOI: 10.3389/fncel.2019.00368] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) is well recognized for its neuroprotective functions, via activation of its high affinity receptor, tropomysin related kinase B (TrkB). In addition, BDNF/TrkB neuroprotective functions can also be elicited indirectly via activation of adenosine 2A receptors (A2aRs), which in turn transactivates TrkB. Evidence suggests that alterations in BDNF/TrkB, including TrkB transactivation by A2aRs, can occur in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although enhancing BDNF has been a major goal for protection of dying motor neurons (MNs), this has not been successful. Indeed, there is emerging in vitro and in vivo evidence suggesting that an upregulation of BDNF/TrkB can cause detrimental effects on MNs, making them more vulnerable to pathophysiological insults. For example, in ALS, early synaptic hyper-excitability of MNs is thought to enhance BDNF-mediated signaling, thereby causing glutamate excitotoxicity, and ultimately MN death. Moreover, direct inhibition of TrkB and A2aRs has been shown to protect MNs from these pathophysiological insults, suggesting that modulation of BDNF/TrkB and/or A2aRs receptors may be important in early disease pathogenesis in ALS. This review highlights the relevance of pathophysiological actions of BDNF/TrkB under certain circumstances, so that manipulation of BDNF/TrkB and A2aRs may give rise to alternate neuroprotective therapeutic strategies in the treatment of neural diseases such as ALS.
Collapse
Affiliation(s)
- Jonu Pradhan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Peter G Noakes
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Tulke S, Haas CA, Häussler U. Expression of brain‐derived neurotrophic factor and structural plasticity in the dentate gyrus and
CA
2 region correlate with epileptiform activity. Epilepsia 2019; 60:1234-1247. [DOI: 10.1111/epi.15540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Susanne Tulke
- Experimental Epilepsy Research Department of Neurosurgery Medical Center - University of Freiburg Faculty of Medicine University of Freiburg Freiburg im Breisgau Germany
- Faculty of Biology University of Freiburg Freiburg im Breisgau Germany
| | - Carola A. Haas
- Experimental Epilepsy Research Department of Neurosurgery Medical Center - University of Freiburg Faculty of Medicine University of Freiburg Freiburg im Breisgau Germany
- BrainLinks‐BrainTools Cluster of Excellence University of Freiburg Freiburg im Breisgau Germany
| | - Ute Häussler
- Experimental Epilepsy Research Department of Neurosurgery Medical Center - University of Freiburg Faculty of Medicine University of Freiburg Freiburg im Breisgau Germany
- BrainLinks‐BrainTools Cluster of Excellence University of Freiburg Freiburg im Breisgau Germany
| |
Collapse
|
39
|
The effect of exercise on memory and BDNF signaling is dependent on intensity. Brain Struct Funct 2019; 224:1975-1985. [DOI: 10.1007/s00429-019-01889-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/04/2019] [Indexed: 12/14/2022]
|
40
|
Hippocampal BDNF signaling is required for the antidepressant effects of perillaldehyde. Pharmacol Rep 2019; 71:430-437. [PMID: 31003153 DOI: 10.1016/j.pharep.2019.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Perillaldehyde is one of the main components in perilla. Previous studies have shown that perillaldehyde exerted an antidepressant effect in mice, some of which is mediated through regulation of the anti-inflammatory system and the monoamine system. The primary objective of this study was to investigate the possible effects of perillaldehyde on the neurotrophic system and to elucidate whether its antidepressant effect requires brain-derived neurotrophic factor (BDNF) signaling. METHODS Mice were exposed to chronic unpredictable mild stress (CUMS) and orally administrated with perillaldehyde for 4 weeks for behavioral testing. RESULTS Perillaldehyde not only reversed the decrease in sucrose preference but also attenuated the increase in feeding latency. In addition, perillaldehyde can attenuate the reduction of CUMS-induced hippocampal BDNF levels. Our further study found that the BDNF receptor tropomyosin receptor kinase B (TrkB) antagonist K252a completely blocked the antidepressant effect of perillaldehyde in mice. Biochemical analysis showed that K252a pretreatment completely prevented the improvement of BDNF, extracellular signal-regulated kinase (ERK) phosphorylation and synaptic protein. CONCLUSIONS These results indicated that activation of BDNF-ERK signaling in the hippocampus was required, at least in part for the antidepressant effects of perillaldehyde.
Collapse
|
41
|
Jang M, Gould E, Xu J, Kim EJ, Kim JH. Oligodendrocytes regulate presynaptic properties and neurotransmission through BDNF signaling in the mouse brainstem. eLife 2019; 8:42156. [PMID: 30998186 PMCID: PMC6504230 DOI: 10.7554/elife.42156] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Neuron–glia communication contributes to the fine-tuning of synaptic functions. Oligodendrocytes near synapses detect and respond to neuronal activity, but their role in synapse development and plasticity remains largely unexplored. We show that oligodendrocytes modulate neurotransmitter release at presynaptic terminals through secretion of brain-derived neurotrophic factor (BDNF). Oligodendrocyte-derived BDNF functions via presynaptic tropomyosin receptor kinase B (TrkB) to ensure fast, reliable neurotransmitter release and auditory transmission in the developing brain. In auditory brainstem slices from Bdnf+/– mice, reduction in endogenous BDNF significantly decreased vesicular glutamate release by reducing the readily releasable pool of glutamate vesicles, without altering presynaptic Ca2+ channel activation or release probability. Using conditional knockout mice, cell-specific ablation of BDNF in oligodendrocytes largely recapitulated this effect, which was recovered by BDNF or TrkB agonist application. This study highlights a novel function for oligodendrocytes in synaptic transmission and their potential role in the activity-dependent refinement of presynaptic properties.
Collapse
Affiliation(s)
- Miae Jang
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| | - Elizabeth Gould
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| | - Jie Xu
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States.,Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Eun Jung Kim
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| | - Jun Hee Kim
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, United States
| |
Collapse
|
42
|
Solinas SMG, Edelmann E, Leßmann V, Migliore M. A kinetic model for Brain-Derived Neurotrophic Factor mediated spike timing-dependent LTP. PLoS Comput Biol 2019; 15:e1006975. [PMID: 31017891 PMCID: PMC6502438 DOI: 10.1371/journal.pcbi.1006975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/06/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022] Open
Abstract
Across the mammalian nervous system, neurotrophins control synaptic plasticity, neuromodulation, and neuronal growth. The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) is known to promote structural and functional synaptic plasticity in the hippocampus, the cerebral cortex, and many other brain areas. In recent years, a wealth of data has been accumulated revealing the paramount importance of BDNF for neuronal function. BDNF signaling gives rise to multiple complex signaling pathways that mediate neuronal survival and differentiation during development, and formation of new memories. These different roles of BDNF for neuronal function have essential consequences if BDNF signaling in the brain is reduced. Thus, BDNF knock-out mice or mice that are deficient in BDNF receptor signaling via TrkB and p75 receptors show deficits in neuronal development, synaptic plasticity, and memory formation. Accordingly, BDNF signaling dysfunctions are associated with many neurological and neurodegenerative conditions including Alzheimer's and Huntington's disease. However, despite the widespread implications of BDNF-dependent signaling in synaptic plasticity in healthy and pathological conditions, the interplay of the involved different biochemical pathways at the synaptic level remained mostly unknown. In this paper, we investigated the role of BDNF/TrkB signaling in spike-timing dependent plasticity (STDP) in rodent hippocampus CA1 pyramidal cells, by implementing the first subcellular model of BDNF regulated, spike timing-dependent long-term potentiation (t-LTP). The model is based on previously published experimental findings on STDP and accounts for the observed magnitude, time course, stimulation pattern and BDNF-dependence of t-LTP. It allows interpreting the main experimental findings concerning specific biomolecular processes, and it can be expanded to take into account more detailed biochemical reactions. The results point out a few predictions on how to enhance LTP induction in such a way to rescue or improve cognitive functions under pathological conditions.
Collapse
Affiliation(s)
- Sergio M. G. Solinas
- Institute of Biophysics, National Research Council, Palermo, Italy
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elke Edelmann
- Institute of Physiology, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
43
|
Lee YI, Kim YG, Pyeon HJ, Ahn JC, Logan S, Orock A, Joo KM, Lőrincz A, Deák F. Dysregulation of the SNARE-binding protein Munc18-1 impairs BDNF secretion and synaptic neurotransmission: a novel interventional target to protect the aging brain. GeroScience 2019; 41:109-123. [PMID: 31041658 PMCID: PMC6544690 DOI: 10.1007/s11357-019-00067-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a central role in maintaining and strengthening neuronal connections and to stimulate neurogenesis in the adult brain. Decreased levels of BDNF in the aging brain are thought to usher cognitive impairment. BDNF is stored in dense core vesicles and released through exocytosis from the neurites. The exact mechanism for the regulation of BDNF secretion is not well understood. Munc18-1 (STXBP1) was found to be essential for the exocytosis of synaptic vesicles, but its involvement in BDNF secretion is not known. Interestingly, neurons lacking munc18-1 undergo severe degeneration in knock-out mice. Here, we report the effects of BDNF treatment on the presynaptic terminal using munc18-1-deficient neurons. Reduced expression of munc18-1 in heterozygous (+/-) neurons diminishes synaptic transmitter release, as tested here on individual synaptic connections with FM1-43 fluorescence imaging. Transduction of cultured neurons with BDNF markedly increased BDNF secretion in wild-type but was less effective in munc18-1 +/- cells. In turn, BDNF enhanced synaptic functions and restored the severe synaptic dysfunction induced by munc18-1 deficiency. The role of munc18-1 in the synaptic effect of BDNF is highlighted by the finding that BDNF upregulated the expression of munc18-1 in neurons, consistent with enhanced synaptic functions. Accordingly, this is the first evidence showing the functional effect of BDNF in munc18-1 deficient synapses and about the direct role of munc18-1 in the regulation of BDNF secretion. We propose a molecular model of BDNF secretion and discuss its potential as therapeutic target to prevent cognitive decline in the elderly.
Collapse
Affiliation(s)
- Young Il Lee
- Department of Anatomy, College of Medicine, Dankook University, Cheonan, 330-714, South Korea
| | - Yun Gi Kim
- Department of Anatomy, College of Medicine, Dankook University, Cheonan, 330-714, South Korea
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, 330-714, South Korea
| | - Hee Jang Pyeon
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, 330-714, South Korea
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Chul Ahn
- Department of Biomedical Science, Dankook University, Cheonan, 330-714, South Korea
- Biomedical Translational Research Institute, Dankook University, Cheonan, 330-714, South Korea
| | - Sreemathi Logan
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA
| | - Albert Orock
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Andrea Lőrincz
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Florida State College at Jacksonville, 4500 Capper Rd, Jacksonville, FL, 32218, USA
| | - Ferenc Deák
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA.
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, 975 N. E. 10th Street/SLY-BRC 1309-B, Oklahoma City, OK, 73104-5419, USA.
| |
Collapse
|
44
|
Konan LM, Song H, Pentecost G, Fogwe D, Ndam T, Cui J, Johnson CE, Grant D, White T, Chen M, Xia W, Cernak I, DePalma RG, Gu Z. Multi-Focal Neuronal Ultrastructural Abnormalities and Synaptic Alterations in Mice after Low-Intensity Blast Exposure. J Neurotrauma 2019; 36:2117-2128. [PMID: 30667346 DOI: 10.1089/neu.2018.6260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Service members during military actions or combat training are exposed frequently to primary blast generated by explosive weaponry. The majority of military-related neurotrauma are classified as mild and designated as "invisible injuries" that are prevalent during current conflicts. While the previous experimental blast injury studies using moderate- to high-intensity exposures focused mainly on gross and microscopic neuropathology, our previous studies have shown that low-intensity blast (LIB) exposures resulted in nanoscale subcellular myelin and mitochondrial damages and subsequent behavioral disorders in the absence of gross or detectable cellular damage. In this study, we used transmission electron microscopy to delineate the LIB effects at the ultrastructural level specifically focusing on the neuron perikaryon, axons, and synapses in the cortex and hippocampus of mice at seven and 30 days post-injury (DPI). We found dysmorphic dark neuronal perikaryon and "cytoplasmic aeration" of dendritic processes, as well as increased microtubular fragmentation of the myelinated axons along with biochemically measured elevated tau/phosphorylated tau/Aβ levels. The number of cortical excitatory synapses decreased along with a compensatory increase of the post-synaptic density (PSD) thickness both at seven and 30 DPI, while the amount of hippocampal CA1 synapses increased with the reduced PSD thickness. In addition, we observed a significant increase in protein levels of PSD95 and synaptophysin mainly at seven DPI indicating potential synaptic reorganization. These results demonstrated that a single LIB exposure can lead to ultrastructural brain injury with accompanying multi-focal neuronal organelle alterations. This pre-clinical study provides key insights into disease pathogenesis related to primary blast exposure.
Collapse
Affiliation(s)
- Landry M Konan
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Hailong Song
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Genevieve Pentecost
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Delvise Fogwe
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Tina Ndam
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Jiankun Cui
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri.,7 Truman VA Hospital Research Service, Columbia, Missouri
| | - Catherine E Johnson
- 2 Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, Missouri
| | - DeAna Grant
- 3 Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri
| | - Tommi White
- 3 Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri
| | - Mei Chen
- 4 Bedford VA Medical Center, Bedford, Massachusetts; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Weiming Xia
- 4 Bedford VA Medical Center, Bedford, Massachusetts; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Ibolja Cernak
- 5 STARR-C (Stress, Trauma and Resilience Research Consulting) LLC, Philadelphia, Pennsylvania
| | - Ralph G DePalma
- 6 Norman Rich Department of Surgery, Uniformed University of the Health Sciences, Bethesda, Maryland; Office of Research and Development, Department of Veterans Affairs, Washington, DC
| | - Zezong Gu
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri.,7 Truman VA Hospital Research Service, Columbia, Missouri
| |
Collapse
|
45
|
TrkB Regulates N-Methyl-D-Aspartate Receptor Signaling by Uncoupling and Recruiting the Brain-Specific Guanine Nucleotide Exchange Factor, RasGrf1. J Mol Neurosci 2018; 67:97-110. [DOI: 10.1007/s12031-018-1214-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/11/2018] [Indexed: 01/26/2023]
|
46
|
More JY, Bruna BA, Lobos PE, Galaz JL, Figueroa PL, Namias S, Sánchez GL, Barrientos GC, Valdés JL, Paula-Lima AC, Hidalgo C, Adasme T. Calcium Release Mediated by Redox-Sensitive RyR2 Channels Has a Central Role in Hippocampal Structural Plasticity and Spatial Memory. Antioxid Redox Signal 2018; 29:1125-1146. [PMID: 29357673 DOI: 10.1089/ars.2017.7277] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Previous studies indicate that hippocampal synaptic plasticity and spatial memory processes entail calcium release from intracellular stores mediated by ryanodine receptor (RyR) channels. In particular, RyR-mediated Ca2+ release is central for the dendritic spine remodeling induced by brain-derived neurotrophic factor (BDNF), a neurotrophin that stimulates complex signaling pathways leading to memory-associated protein synthesis and structural plasticity. To examine if upregulation of ryanodine receptor type-2 (RyR2) channels and the spine remodeling induced by BDNF entail reactive oxygen species (ROS) generation, and to test if RyR2 downregulation affects BDNF-induced spine remodeling and spatial memory. RESULTS Downregulation of RyR2 expression (short hairpin RNA [shRNA]) in primary hippocampal neurons, or inhibition of nitric oxide synthase (NOS) or NADPH oxidase, prevented agonist-mediated RyR-mediated Ca2+ release, whereas BDNF promoted cytoplasmic ROS generation. RyR2 downregulation or inhibitors of N-methyl-d-aspartate (NMDA) receptors, or NOS or of NADPH oxidase type-2 (NOX2) prevented RyR2 upregulation and the spine remodeling induced by BDNF, as did incubation with the antioxidant agent N-acetyl l-cysteine. In addition, intrahippocampal injection of RyR2-directed antisense oligodeoxynucleotides, which caused significant RyR2 downregulation, caused conspicuous defects in a memorized spatial memory task. INNOVATION The present novel results emphasize the key role of redox-sensitive Ca2+ release mediated by RyR2 channels for hippocampal structural plasticity and spatial memory. CONCLUSION Based on these combined results, we propose (i) that BDNF-induced RyR2-mediated Ca2+ release and ROS generation via NOS/NOX2 are strictly required for the dendritic spine remodeling and the RyR2 upregulation induced by BDNF, and (ii) that RyR2 channel expression is crucial for spatial memory processes. Antioxid. Redox Signal. 29, 1125-1146.
Collapse
Affiliation(s)
- Jamileth Y More
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Barbara A Bruna
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pedro E Lobos
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Galaz
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula L Figueroa
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Silvia Namias
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina L Sánchez
- 2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Genaro C Barrientos
- 2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Valdés
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,3 Department of Neuroscience, Faculty of Medicine, Universidad de Chile , Santiago, Chile
| | - Andrea C Paula-Lima
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,4 Institute for Research in Dental Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile .,3 Department of Neuroscience, Faculty of Medicine, Universidad de Chile , Santiago, Chile .,5 Center for Exercise , Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,6 Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins , Santiago, Chile
| |
Collapse
|
47
|
Coppi E, Lana D, Cherchi F, Fusco I, Buonvicino D, Urru M, Ranieri G, Muzzi M, Iovino L, Giovannini MG, Pugliese AM, Chiarugi A. Dexpramipexole enhances hippocampal synaptic plasticity and memory in the rat. Neuropharmacology 2018; 143:306-316. [PMID: 30291939 DOI: 10.1016/j.neuropharm.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 01/22/2023]
Abstract
Even though pharmacological approaches able to counteract age-dependent cognitive impairment have been highly investigated, drugs improving cognition and memory are still an unmet need. It has been hypothesized that sustaining energy dynamics within the aged hippocampus can boost memory storage by sustaining synaptic functioning and long term potentiation (LTP). Dexpramipexole (DEX) is the first-in-class compound able to sustain neuronal bioenergetics by interacting with mitochondrial F1Fo-ATP synthase. In the present study, for the first time we evaluated the effects of DEX on synaptic fatigue, LTP induction, learning and memory retention. We report that DEX improved LTP maintenance in CA1 neurons of acute hippocampal slices from aged but not young rats. However, we found no evidence that DEX counteracted two classic parameters of synaptic fatigue such as fEPSP reduction or the train area during the high frequency stimulation adopted to induce LTP. Interestingly, patch-clamp recordings in rat hippocampal neurons revealed that DEX dose-dependently inhibited (IC50 814 nM) the IA current, a rapidly-inactivating K+ current that negatively regulates neuronal excitability as well as cognition and memory processes. In keeping with this, DEX counteracted both scopolamine-induced spatial memory loss in rats challenged in Morris Water Maze test and memory retention in rats undergoing Novel Object Recognition. Overall, the present study discloses the ability of DEX to boost hippocampal synaptic plasticity, learning and memory. In light of the good safety profile of DEX in humans, our findings may have a realistic translational potential to treatment of cognitive disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy.
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Federica Cherchi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy
| | - Irene Fusco
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Matteo Urru
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Mirko Muzzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Ludovica Iovino
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Anna Maria Pugliese
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| |
Collapse
|
48
|
Govindaraj V, Shridharan RN, Rao AJ. Proteomic changes during adult stage in pre-optic, hypothalamus, hippocampus and pituitary regions of female rat brain following neonatal exposure to estradiol-17β. Gen Comp Endocrinol 2018; 266:126-134. [PMID: 29777688 DOI: 10.1016/j.ygcen.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/14/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023]
Abstract
Although neonatal exposure to estrogen or estrogenic compounds results in irreversible changes in the brain function and reproductive abnormalities during adulthood but the underlying mechanisms are still largely unknown. The present study has attempted to compare the protein profiles of sexually dimorphic brain regions of adult female rats which were exposed to estradiol- 17β during neonatal period. The total proteins extracted from pre-optic area (POA), hypothalamus, hippocampus and pituitary of control and neonatally E2 treated female rats was subjected to 2D-SDS-PAGE and differentially expressed proteins were identified by MALDI TOF/TOF-MS. Our results revealed that a total of 21 protein spots which were identified as differentially expressed in all the four regions analyzed; the differential expression was further validated by RT-PCR and western blotting. The differentially expressed proteins such as 14-3-3 zeta/delta (POA), LMNA (hippocampus), Axin2 (hypothalamus), Syntaxin-7 (hippocampus), prolactin and somatotropin (pituitary) which have very important functions in the process of neuronal differentiation, migration, axon outgrowth, formation of dendritic spine density and synaptic plasticity and memory have not been previously reported in association with neonatal estrogen exposure. The affected brain functions are very important for the establishment of sex specific brain morphology and behavior. Our results suggest that the differentially expressed proteins may play an important role in irreversible changes in the brain function as well as reproductive abnormalities observed in the female rats during adulthood.
Collapse
Affiliation(s)
- Vijayakumar Govindaraj
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India.
| | | | | |
Collapse
|
49
|
Lv C, Ma Q, Han B, Li J, Geng Y, Zhang X, Wang M. Long-Term DL-3- n-Butylphthalide Treatment Alleviates Cognitive Impairment Correlate With Improving Synaptic Plasticity in SAMP8 Mice. Front Aging Neurosci 2018; 10:200. [PMID: 30026693 PMCID: PMC6041467 DOI: 10.3389/fnagi.2018.00200] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia worldwide. AD is characterized by mild cognitive impairment at onset, irreversibly progressing with age to severe neurodegeneration and cognitive deficits in the late stages. Unfortunately, no effective treatments exist to prevent or delay the cognitive symptoms of AD. Studies have shown that DL-3-n-butylphthalide (DL-NBP) alleviates cognitive impairment induced by amyloid-β in mice by reducing oxidative stress, inhibiting apoptosis, and decreasing tau phosphorylation. In this study, we examined the effects of DL-NBP administration on cognitive function in the senescence-accelerated mouse prone 8 (SAMP8) model of age-related dementia. DL-NBP treatment for 3 months alleviated cognitive impairment in SAMP8 mice as assessed by performance in the Morris water maze test. Moreover, DL-NBP significantly increased the expression of synaptophysin and postsynaptic density protein 95 in the hippocampus of SAMP8 mice, indicative of a protective effect on hippocampal structural synaptic plasticity. In addition, brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling, previously shown to promote synaptic plasticity, was significantly enhanced by the DL-NBP administration. Our findings suggest that DL-NBP is a potential drug candidate for the treatment of cognitive impairment in AD and may serve as the foundation for further research into the development of AD drugs.
Collapse
Affiliation(s)
- Chaonan Lv
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, China
| | - Qinying Ma
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, China
| | - Bing Han
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, China
| | - Jing Li
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, China
| | - Yuan Geng
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, China
| | - Xiaoman Zhang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, China
| | - Mingwei Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
50
|
Loprinzi PD, Frith E. A brief primer on the mediational role of BDNF in the exercise-memory link. Clin Physiol Funct Imaging 2018; 39:9-14. [PMID: 29719116 DOI: 10.1111/cpf.12522] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain-derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF-induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC-y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Emily Frith
- Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| |
Collapse
|