1
|
Beltrán-Matas P, Hartveit E, Veruki ML. Functional properties of GABA A receptors of AII amacrine cells of the rat retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1134765. [PMID: 38983040 PMCID: PMC11182327 DOI: 10.3389/fopht.2023.1134765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/08/2023] [Indexed: 07/11/2024]
Abstract
Amacrine cells are a highly diverse group of inhibitory retinal interneurons that sculpt the responses of bipolar cells, ganglion cells, and other amacrine cells. They integrate excitatory inputs from bipolar cells and inhibitory inputs from other amacrine cells, but for most amacrine cells, little is known about the specificity and functional properties of their inhibitory inputs. Here, we have investigated GABAA receptors of the AII amacrine, a critical neuron in the rod pathway microcircuit, using patch-clamp recording in rat retinal slices. Puffer application of GABA evoked robust responses, but, surprisingly, spontaneous GABAA receptor-mediated postsynaptic currents were not observed, neither under control conditions nor following application of high-K+ solution to facilitate release. To investigate the biophysical and pharmacological properties of GABAA receptors in AIIs, we therefore used nucleated patches and a fast application system. Both brief and long pulses of GABA (3 mM) evoked GABAA receptor-mediated currents with slow, multi-exponential decay kinetics. The average weighted time constant (τw) of deactivation was ~163 ms. Desensitization was even slower, with τw ~330 ms. Non-stationary noise analysis of patch responses and directly observed channel gating yielded a single-channel conductance of ~23 pS. Pharmacological investigation suggested the presence of α2 and/or α3 subunits, as well as the γ2 subunit. Such subunit combinations are typical of GABAA receptors with slow kinetics. If synaptic GABAA receptors of AII amacrines have similar functional properties, the slow deactivation and desensitization kinetics will facilitate temporal summation of GABAergic inputs, allowing effective summation and synaptic integration to occur even for relatively low frequencies of inhibitory inputs.
Collapse
Affiliation(s)
| | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
2
|
Beltrán-Matas P, Castilho Á, Tencer B, Veruki ML, Hartveit E. Inhibitory inputs to an inhibitory interneuron: Spontaneous postsynaptic currents and GABA A receptors of A17 amacrine cells in the rat retina. Eur J Neurosci 2022; 55:1442-1470. [PMID: 35236011 PMCID: PMC9314042 DOI: 10.1111/ejn.15634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
Abstract
Amacrine cells constitute a large and heterogenous group of inhibitory interneurons in the retina. The A17 amacrine plays an important role for visual signaling in the rod pathway microcircuit of the mammalian retina. It receives excitatory input from rod bipolar cells and provides feedback inhibition to the same cells. However, from ultrastructural investigations, there is evidence for input to A17s from other types of amacrine cells, presumably inhibitory, but there is a lack of information about the identity and functional properties of the synaptic receptors and how inhibition contributes to the integrative properties of A17s. Here, we studied the biophysical and pharmacological properties of GABAergic spontaneous inhibitory postsynaptic currents (spIPSCs) and GABAA receptors of A17 amacrines, using whole-cell and outside-out patch recordings from rat retinal slices. The spIPSCs displayed fast onsets (10-90% rise time ~740 μs) and double-exponential decays (τfast ~4.5 ms [43% of amplitude]; τslow ~22 ms). Ultrafast application of brief pulses of GABA (3 mM) to patches evoked responses with deactivation kinetics best fitted by a triple-exponential function (τ1 ~5.3 ms [55% of amplitude]; τ2 ~48 ms [32% amplitude]; τ3 ~187 ms). Non-stationary noise analysis of spIPSCs and patch responses yielded single-channel conductances of ~21 and ~25 pS, respectively. Pharmacological analysis suggested that the spIPSCs are mediated by receptors with an α1βγ2 subunit composition and the somatic receptors have an α2βγ2 and/or α3βγ2 composition. These results demonstrate the presence of synaptic GABAA receptors on A17s, which may play an important role in signal integration in these cells.
Collapse
Affiliation(s)
| | - Áurea Castilho
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Barbora Tencer
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Indrieri A, Pizzarelli R, Franco B, De Leonibus E. Dopamine, Alpha-Synuclein, and Mitochondrial Dysfunctions in Parkinsonian Eyes. Front Neurosci 2020; 14:567129. [PMID: 33192254 PMCID: PMC7604532 DOI: 10.3389/fnins.2020.567129] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by motor dysfunctions including bradykinesia, tremor at rest and motor instability. These symptoms are associated with the progressive degeneration of dopaminergic neurons originating in the substantia nigra pars compacta and projecting to the corpus striatum, and by accumulation of cytoplasmic inclusions mainly consisting of aggregated alpha-synuclein, called Lewy bodies. PD is a complex, multifactorial disorder and its pathogenesis involves multiple pathways and mechanisms such as α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport, and neuroinflammation. Motor symptoms manifest when there is already an extensive dopamine denervation. There is therefore an urgent need for early biomarkers to apply disease-modifying therapeutic strategies. Visual defects and retinal abnormalities, including decreased visual acuity, abnormal spatial contrast sensitivity, color vision defects, or deficits in more complex visual tasks are present in the majority of PD patients. They are being considered for early diagnosis together with retinal imaging techniques are being considered as non-invasive biomarkers for PD. Dopaminergic cells can be found in the retina in a subpopulation of amacrine cells; however, the molecular mechanisms leading to visual deficits observed in PD patients are still largely unknown. This review provides a comprehensive analysis of the retinal abnormalities observed in PD patients and animal models and of the molecular mechanisms underlying neurodegeneration in parkinsonian eyes. We will review the role of α-synuclein aggregates in the retina pathology and/or in the onset of visual symptoms in PD suggesting that α-synuclein aggregates are harmful for the retina as well as for the brain. Moreover, we will summarize experimental evidence suggesting that the optic nerve pathology observed in PD resembles that seen in mitochondrial optic neuropathies highlighting the possible involvement of mitochondrial abnormalities in the development of PD visual defects. We finally propose that the eye may be considered as a complementary experimental model to identify possible novel disease’ pathways or to test novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Institute for Genetic and Biomedical Research, National Research Council, Milan, Italy
| | - Rocco Pizzarelli
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Institute of Biochemistry and Cellular Biology, National Research Council, Rome, Italy
| |
Collapse
|
4
|
Everington EA, Gibbard AG, Swinny JD, Seifi M. Molecular Characterization of GABA-A Receptor Subunit Diversity within Major Peripheral Organs and Their Plasticity in Response to Early Life Psychosocial Stress. Front Mol Neurosci 2018; 11:18. [PMID: 29467616 PMCID: PMC5807923 DOI: 10.3389/fnmol.2018.00018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Gamma aminobutyric acid (GABA) subtype A receptors (GABAARs) are integral membrane ion channels composed of five individual proteins or subunits. Up to 19 different GABAAR subunits (α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3) have been identified, resulting in anatomically, physiologically, and pharmacologically distinct multiple receptor subtypes, and therefore GABA-mediated inhibition, across the central nervous system (CNS). Additionally, GABAAR-modulating drugs are important tools in clinical medicine, although their use is limited by adverse effects. While significant advances have been made in terms of characterizing the GABAAR system within the brain, relatively less is known about the molecular phenotypes within the peripheral nervous system of major organ systems. This represents a potentially missed therapeutic opportunity in terms of utilizing or repurposing clinically available GABAAR drugs, as well as promising research compounds discarded due to their poor CNS penetrance, for the treatment of peripheral disorders. In addition, a broader understanding of the peripheral GABAAR subtype repertoires will contribute to the design of therapies which minimize peripheral side-effects when treating CNS disorders. We have recently provided a high resolution molecular and function characterization of the GABAARs within the enteric nervous system of the mouse colon. In this study, the aim was to determine the constituent GABAAR subunit expression profiles of the mouse bladder, heart, liver, kidney, lung, and stomach, using reverse transcription polymerase chain reaction and western blotting with brain as control. The data indicate that while some subunits are expressed widely across various organs (α3–5), others are restricted to individual organs (γ2, only stomach). Furthermore, we demonstrate complex organ-specific developmental expression plasticity of the transporters which determine the chloride gradient within cells, and therefore whether GABAAR activation has a depolarizing or hyperpolarizing effect. Finally, we demonstrate that prior exposure to early life psychosocial stress induces significant changes in peripheral GABAAR subunit expression and chloride transporters, in an organ- and subunit-specific manner. Collectively, the data demonstrate the molecular diversity of the peripheral GABAAR system and how this changes dynamically in response to life experience. This provides a molecular platform for functional analyses of the GABA–GABAAR system in health, and in diseases affecting various peripheral organs.
Collapse
Affiliation(s)
- Ethan A Everington
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Adina G Gibbard
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jerome D Swinny
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Mohsen Seifi
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
5
|
Hirasawa H, Contini M, Raviola E. Extrasynaptic release of GABA and dopamine by retinal dopaminergic neurons. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0186. [PMID: 26009765 DOI: 10.1098/rstb.2014.0186] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release-synaptic or extrasynaptic-exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a 'GABAergic tone' in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA Department of Physiology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan
| | - Massimo Contini
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA Dipartimento di Medicina Sperimentale e Clinica, Viale Morgagni, 63, Firenze 50134, Italy
| | - Elio Raviola
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
6
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Newkirk GS, Hoon M, Wong RO, Detwiler PB. Inhibitory inputs tune the light response properties of dopaminergic amacrine cells in mouse retina. J Neurophysiol 2013; 110:536-52. [PMID: 23636722 DOI: 10.1152/jn.00118.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) is a neuromodulator that in the retina adjusts the circuitry for visual processing in dim and bright light conditions. It is synthesized and released from retinal interneurons called dopaminergic amacrine cells (DACs), whose basic physiology is not yet been fully characterized. To investigate their cellular and input properties as well as light responses, DACs were targeted for whole cell recording in isolated retina using two-photon fluorescence microscopy in a mouse line where the dopamine receptor 2 promoter drives green fluorescent protein (GFP) expression. Differences in membrane properties gave rise to cell-to-cell variation in the pattern of resting spontaneous spike activity ranging from silent to rhythmic to periodic burst discharge. All recorded DACs were light sensitive and generated responses that varied with intensity. The threshold response to light onset was a hyperpolarizing potential change initiated by rod photoreceptors that was blocked by strychnine, indicating a glycinergic amacrine input onto DACs at light onset. With increasing light intensity, the ON response acquired an excitatory component that grew to dominate the response to the strongest stimuli. Responses to bright light (photopic) stimuli also included an inhibitory OFF response mediated by GABAergic amacrine cells driven by the cone OFF pathway. DACs expressed GABA (GABA(A)α1 and GABA(A)α3) and glycine (α2) receptor clusters on soma, axon, and dendrites consistent with the light response being shaped by dual inhibitory inputs that may serve to tune spike discharge for optimal DA release.
Collapse
Affiliation(s)
- G S Newkirk
- Department of Physiology & Biophysics and Program in Neurobiology & Behavior, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Amacrine cells are a morphologically and functionally diverse group of inhibitory interneurons. Morphologically, they have been divided into approximately 30 types. Although this diversity is probably important to the fine structure and function of the retinal circuit, the amacrine cells have been more generally divided into two subclasses. Glycinergic narrow-field amacrine cells have dendrites that ramify close to their somas, cross the sublaminae of the inner plexiform layer, and create cross talk between its parallel ON and OFF pathways. GABAergic wide-field amacrine cells have dendrites that stretch long distances from their soma but ramify narrowly within an inner plexiform layer sublamina. These wide-field cells are thought to mediate inhibition within a sublamina and thus within the ON or OFF pathway. The postsynaptic targets of all amacrine cell types include bipolar, ganglion, and other amacrine cells. Almost all amacrine cells use GABA or glycine as their primary neurotransmitter, and their postsynaptic receptor targets include the most common GABA(A), GABA(C), and glycine subunit receptor configurations. This review addresses the diversity of amacrine cells, the postsynaptic receptors on their target cells in the inner plexiform layer of the retina, and some of the inhibitory mechanisms that arise as a result. When possible, the effects of GABAergic and glycinergic inputs on the visually evoked responses of their postsynaptic targets are discussed.
Collapse
|
9
|
Abstract
AbstractTheir unique patterns of size, numbers, and stratification indicate that amacrine cells have diverse functions. These are mostly unknown, as studies using imaging and electrophysiological methods have only recently begun. However, some of the events that occur within the amacrine cell population—and some important unresolved puzzles—can be stated purely from structural reasoning.
Collapse
|
10
|
Fox DA, Hamilton WR, Johnson JE, Xiao W, Chaney S, Mukherjee S, Miller DB, O'Callaghan JP. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice. Toxicol Appl Pharmacol 2011; 256:258-67. [PMID: 21703292 DOI: 10.1016/j.taap.2011.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was ≤ 1, ≤ 10, ~25 and ~40 μg/dL, respectively, on PN10 and by PN30 all were ≤ 1 μg/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity.
Collapse
Affiliation(s)
- Donald A Fox
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ring H, Boije H, Daniel C, Ohlson J, Ohman M, Hallböök F. Increased A-to-I RNA editing of the transcript for GABAA receptor subunit α3 during chick retinal development. Vis Neurosci 2010; 27:149-57. [PMID: 20843408 DOI: 10.1017/s0952523810000180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a cotranscriptional or posttranscriptional gene regulatory mechanism that increases the diversity of the proteome in the nervous system. Recently, the transcript for GABA type A receptor subunit α3 was found to be subjected to RNA editing. The aim of this study was to determine if editing of the chicken α3 subunit transcript occurs in the retina and if the editing is temporally regulated during development. We also raised the question if editing of the α3 transcript was temporally associated with the suggested developmental shift from excitation to inhibition in the GABA system. The editing frequency was studied by using Sanger and Pyrosequencing, and to monitor the temporal aspects, we studied the messenger RNA expression of the GABAA receptor subunits and chloride pumps, known to be involved in the switch. The results showed that the chick α3 subunit was subjected to RNA editing, and its expression was restricted to cells in the inner nuclear and ganglion cell layer in the retina. The extent of editing increased during development (after embryonic days 8-9) concomitantly with an increase of expression of the chloride pump KCC2. Expression of several GABAA receptor subunits known to mediate synaptic GABA actions was upregulated at this time. We conclude that editing of the chick GABAA subunit α3 transcript in chick retina gives rise to an amino acid change that may be of importance in the switch from excitatory to inhibitory receptors.
Collapse
Affiliation(s)
- Henrik Ring
- Department of Neuroscience, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Contini M, Lin B, Kobayashi K, Okano H, Masland RH, Raviola E. Synaptic input of ON-bipolar cells onto the dopaminergic neurons of the mouse retina. J Comp Neurol 2010; 518:2035-50. [PMID: 20394057 DOI: 10.1002/cne.22320] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the retina, dopamine fulfills a crucial role in neural adaptation to photopic illumination, but the pathway that carries cone signals to the dopaminergic amacrine (DA) cells was controversial. We identified the site of ON-cone bipolar input onto DA cells in transgenic mice in which both types of catecholaminergic amacrine (CA) cells were labeled with green fluorescent protein or human placental alkaline phosphatase (PLAP). In confocal Z series of retinal whole mounts stained with antibodies to tyrosine hydroxylase (TH), DA cells gave rise to varicose processes that descended obliquely through the scleral half of the inner plexiform layer (IPL) and formed a loose, tangential plexus in the middle of this layer. Comparison with the distribution of the dendrites of type 2 CA cells and examination of neurobiotin-injected DA cells proved that their vitreal processes were situated in stratum S3 of the IPL. Electron microscope demonstration of PLAP activity showed that bipolar cell endings in S3 established ribbon synapses onto a postsynaptic dyad in which one or both processes were labeled by a precipitate of lead phosphate and therefore belonged to DA cells. In places, the postsynaptic DA cell processes returned a reciprocal synapse onto the bipolar endings. Confocal images of sections stained with antibodies to TH, kinesin Kif3a, which labels synaptic ribbons, and glutamate or GABA(A) receptors, confirmed that ribbon-containing endings made glutamatergic synapses onto DA cells processes in S3 and received from them GABAergic synapses. The presynaptic ON-bipolar cells most likely belonged to the CB3 (type 5) variety.
Collapse
Affiliation(s)
- Massimo Contini
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
13
|
Jiang Z, Shen W. Role of neurotransmitter receptors in mediating light-evoked responses in retinal interplexiform cells. J Neurophysiol 2009; 103:924-33. [PMID: 20018830 DOI: 10.1152/jn.00876.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interplexiform (IP) cells are a long-neglected group of retinal neurons the function of which is yet to be determined. Anatomical study indicates that IP cells are located in the inner nuclear layer, juxtaposed with the third-order neurons. However, the synaptic transmission of IP cells in the inner retina is poorly understood. Using whole cell patch-clamp and pharmacological techniques, we extensively studied synaptic receptors in IP cells. The IP cells in amphibian retinal slices were identified by electrical and morphological properties with voltage-clamp recording and Lucifer yellow dialysis. We find that light-evoked excitatory postsynaptic currents (L-EPSCs) are mediated by AMPA and N-methyl-d-aspartate receptors in IP cells. Although both receptors contributed to the amplitude and kinetics of L-EPSCs, AMPA receptor desensitization substantially shaped L-EPSCs in the neurons, similar to those found in the third-order neurons. The light-evoked inhibitory postsynaptic currents (L-IPSCs) in IP cells were primarily mediated by strychnine-sensitive glycine receptors with a small component of GABA(C) receptors. GABA(C) receptor rho2 subunits were detected in IP cells with single-cell RT-PCR assays. Expression of GABA(C) receptors is one of the special features for IP cells, distinct from most of the third-order neurons that depend on GABA(A) and glycine receptors to relay the inhibitory signals. However, GABA(A) receptors in IP cells acted like nonsynaptic receptors that were activated by exogenous GABA application. Furthermore, L-IPSCs in IP cells were inhibited by the serial inhibitions between amacrine cells in the inner retina. In addition, application of neurotransmitters on the axon terminals of IP cells had no significant current generated in the cells, indicating that the synaptic inputs of IP cells are mainly from the inner retina. This study demonstrates the important role that light signals are encoded by both experiment of inhibitory receptors in IP cells.
Collapse
Affiliation(s)
- Zheng Jiang
- College of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, USA
| | | |
Collapse
|
14
|
Hirasawa H, Puopolo M, Raviola E. Extrasynaptic release of GABA by retinal dopaminergic neurons. J Neurophysiol 2009; 102:146-58. [PMID: 19403749 DOI: 10.1152/jn.00130.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA release by dopaminergic amacrine (DA) cells of the mouse retina was detected by measuring Cl- currents generated by isolated perikarya in response to their own neurotransmitter. The possibility that the Cl- currents were caused by GABA release from synaptic endings that had survived the dissociation of the retina was ruled out by examining confocal Z series of the surface of dissociated tyrosine hydroxylase-positive perikarya after staining with antibodies to pre and postsynaptic markers. GABA release was caused by exocytosis because 1) the current events were transient on the millisecond time scale and thus resembled miniature synaptic currents; 2) they were abolished by treatment with a blocker of the vesicular proton pump, bafilomycin A1; and 3) their frequency was controlled by the intracellular Ca2+ concentration. Because DA cell perikarya do not contain presynaptic active zones, release was by necessity extrasynaptic. A range of depolarizing stimuli caused GABA exocytosis, showing that extrasynaptic release of GABA is controlled by DA cell electrical activity. With all modalities of stimulation, including long-lasting square pulses, segments of pacemaker activity delivered by the action-potential-clamp method and high-frequency trains of ramps, discharge of GABAergic currents exhibited considerable variability in latency and duration, suggesting that coupling between Ca2+ influx and transmitter exocytosis is extremely loose in comparison with the synapse. Paracrine signaling based on extrasynaptic release of GABA by DA cells and other GABAergic amacrines may participate in controlling the excitability of the neuronal processes that interact synaptically in the inner plexiform layer.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
15
|
Abstract
As a more complete picture of the clinical phenotype of Parkinson's disease emerges, non-motor symptoms have become increasingly studied. Prominent among these non-motor phenomena are mood disturbance, cognitive decline and dementia, sleep disorders, hyposmia and autonomic failure. In addition, visual symptoms are common, ranging from complaints of dry eyes and reading difficulties, through to perceptual disturbances (feelings of presence and passage) and complex visual hallucinations. Such visual symptoms are a considerable cause of morbidity in Parkinson's disease and, with respect to visual hallucinations, are an important predictor of cognitive decline as well as institutional care and mortality. Evidence exists of visual dysfunction at several levels of the visual pathway in Parkinson's disease. This includes psychophysical, electrophysiological and morphological evidence of disruption of retinal structure and function, in addition to disorders of 'higher' (cortical) visual processing. In this review, we will draw together work from animal and human studies in an attempt to provide an insight into how Parkinson's disease affects the retina and how these changes might contribute to the visual symptoms experienced by patients.
Collapse
Affiliation(s)
- Neil K Archibald
- Clinical Research Fellow, Clinical Ageing Research Unit, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | | | | | | |
Collapse
|
16
|
Meng S, Ryu S, Zhao B, Zhang DQ, Driever W, McMahon DG. Targeting retinal dopaminergic neurons in tyrosine hydroxylase-driven green fluorescent protein transgenic zebrafish. Mol Vis 2008; 14:2475-83. [PMID: 19112533 PMCID: PMC2610293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 12/12/2008] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Dopamine plays key roles in a variety of basic functions in the central nervous system. To study developmental and functional roles of dopaminergic cells in zebrafish, we have generated a transgenic line of zebrafish expressing green fluorescent protein (GFP) under the control of the tyrosine hydroxylase (th1) promoter. METHODS A 12 kb gene fragment that contains the th1 promoter was isolated and ligated to the MmGFP coding sequence, linearized, microinjected into 1-2 cell stage embryos and the founders crossed with wild-type fish to screen for transgenic lines. Tg(-12th:MmGFP) embryos were visualized under fluorescence microscopy for GFP expression during development. Confocal microscopy was used to visualize GFP-labeled cells in the living whole mount retina and immunostained vertical sections of adult zebrafish retina. Single-cell reverse transcription polymerase chain reaction (RT-PCR) was performed on individual GFP+ cells collected from dispersed retinal cell cultures for th1 and dopamine transporter (dat). Loose-patch recordings of spike activity of GFP+ neurons were made in isolated whole mount retinas. RESULTS th1 promoter-driven GFP exhibited robust expression in the brain and retina during zebrafish development. In juvenile and adult fish retinas, GFP was expressed in cells located in the inner nuclear layer. Immunocytochemistry with antibodies for GFP and TH showed that 29+/-2% of GFP-labeled cells also expressed TH. Two subpopulations of GFP-labeled cells were identified by fluorescent microscopy: bright GFP-expressing cells and dim GFP-expressing cells. Seminested single-cell RT-PCR showed that 71% of dim GFP-expressing cells expressed both th and dat mRNA. Loose-patch voltage-clamp recording from dim GFP-labeled cells in retinal whole mounts revealed that many of these dopaminergic neurons are spontaneously active in darkness. CONCLUSIONS Although this Tg(-12th:MmGFP) line is not a completely specific reporter for dopaminergic neurons, using relative GFP intensity we are able to enrich for the selection of retinal dopaminergic cells in vitro and in situ in molecular and electrophysiological experiments. This transgenic line provides a useful tool for studying retinal dopaminergic cells in the zebrafish.
Collapse
Affiliation(s)
- Shi Meng
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Soojin Ryu
- Developmental Biology, Institute of Biology 1, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bin Zhao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Dao-Qi Zhang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Wolfgang Driever
- Developmental Biology, Institute of Biology 1, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
17
|
Bailey SJ, Ravier MA, Rutter GA. Glucose-dependent regulation of gamma-aminobutyric acid (GABA A) receptor expression in mouse pancreatic islet alpha-cells. Diabetes 2007; 56:320-7. [PMID: 17259375 DOI: 10.2337/db06-0712] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanism(s) by which glucose regulates glucagon secretion both acutely and in the longer term remain unclear. Added to isolated mouse islets in the presence of 0.5 mmol/l glucose, gamma-aminobutyric acid (GABA) inhibited glucagon release to a similar extent (46%) as 10 mmol/l glucose (55%), and the selective GABA(A) receptor (GABA(A)R) antagonist SR95531 substantially reversed the inhibition of glucagon release by high glucose. GABA(A)R alpha4, beta3, and gamma2 subunit mRNAs were detected in mouse islets and clonal alphaTC1-9 cells, and immunocytochemistry confirmed the presence of GABA(A)Rs at the plasma membrane of primary alpha-cells. Glucose dose-dependently increased GABA(A)R expression in both islets and alphaTC1-9 cells such that mRNA levels at 16 mmol/l glucose were approximately 3.0-fold (alpha4), 2.0-fold (beta3), or 1.5-fold (gamma2) higher than at basal glucose concentrations (2.5 or 1.0 mmol/l, respectively). These effects were mimicked by depolarizing concentrations of K(+) and reversed by the L-type Ca(2+) channel blocker nimodipine. We conclude that 1) release of GABA from neighboring beta-cells contributes substantially to the acute inhibition of glucagon secretion from mouse islets by glucose and 2) that changes in GABA(A)R expression, mediated by changes in intracellular free Ca(2+) concentration, may modulate this response in the long term.
Collapse
Affiliation(s)
- Sarah J Bailey
- Henry Wellcome Laboratories for Integrated Cell Signaling, and Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
18
|
Johnson DA, Donovan SL, Dyer MA. Mosaic deletion of Rb arrests rod differentiation and stimulates ectopic synaptogenesis in the mouse retina. J Comp Neurol 2006; 498:112-28. [PMID: 16856163 DOI: 10.1002/cne.21059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The retinoblastoma gene (Rb) regulates neural progenitor cell proliferation and cell fate specification and differentiation. For the developing mouse retina, two distinct functions of Rb have been described: regulation of retinal progenitor cell proliferation and rod photoreceptor development. Cells that would normally become rods fail to mature and remain as immature cells in the outer nuclear layer in the adult. By using Chx10-Cre;Rb(Lox/-) mice, we generated a chimeric retina with alternating apical-basal stripes of wild-type and Rb-deficient tissue. This provides a unique model with which to study synaptogenesis at the outer plexiform layer within regions that lack differentiated rods. In regions where rods failed to differentiate, the outer plexiform layer (OPL) was disrupted. Horizontal cells formed, and their somata were appropriately aligned, but their neurites did not project laterally. Instead many horizonal cell neurites extended apically, forming ectopic synapses with photoreceptors at all levels of the outer nuclear layer. These ectopic photoreceptor terminals contained synaptic ribbons, horizontal cell processes with synaptic vesicles, and a single mitochrondrion characteristic of rod spherules. Rb-deficient bipolar cells differentiated normally, extended dendrites to the OPL, and formed synapses that were indistinguishable from adjacent wild-type cells. In contrast to OPL-positioned synapses, ectopic synapses did not contain bipolar dendrites. This finding suggests that horizontal cells and photoreceptors can form stable synapses that are devoid of bipolar dendrites outside the normal boundaries of the OPL. Finally, analysis of P4, P7, P12, and P15 retinae suggests that the apical horizontal cell processes result from their failure to establish their normal lateral projections during development.
Collapse
Affiliation(s)
- Dianna A Johnson
- Department of Ophthalmology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
19
|
Ruan GX, Zhang DQ, Zhou T, Yamazaki S, McMahon DG. Circadian organization of the mammalian retina. Proc Natl Acad Sci U S A 2006; 103:9703-8. [PMID: 16766660 PMCID: PMC1480470 DOI: 10.1073/pnas.0601940103] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian retina contains an endogenous circadian pacemaker that broadly regulates retinal physiology and function, yet the cellular origin and organization of the mammalian retinal circadian clock remains unclear. Circadian clock neurons generate daily rhythms via cell-autonomous autoregulatory clock gene networks, and, thus, to localize circadian clock neurons within the mammalian retina, we have studied the cell type-specific expression of six core circadian clock genes in individual, identified mouse retinal neurons, as well as characterized the clock gene expression rhythms in photoreceptor degenerate rd mouse retinas. Individual photoreceptors, horizontal, bipolar, dopaminergic (DA) amacrines, catecholaminergic (CA) amacrines, and ganglion neurons were identified either by morphology or by a tyrosine hydroxylase (TH) promoter-driven red fluorescent protein (RFP) fluorescent reporter. Cells were collected, and their transcriptomes were subjected to multiplex single-cell RT-PCR for the core clock genes Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1. Individual horizontal, bipolar, DA, CA, and ganglion neurons, but not photoreceptors, were found to coordinately express all six core clock genes, with the lowest proportion of putative clock cells in photoreceptors (0%) and the highest proportion in DA neurons (30%). In addition, clock gene rhythms were found to persist for >25 days in isolated, cultured rd mouse retinas in which photoreceptors had degenerated. Our results indicate that multiple types of retinal neurons are potential circadian clock neurons that express key elements of the circadian autoregulatory gene network and that the inner nuclear and ganglion cell layers of the mammalian retina contain functionally autonomous circadian clocks.
Collapse
Affiliation(s)
- Guo-Xiang Ruan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Dao-Qi Zhang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Tongrong Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Shin Yamazaki
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Douglas G. McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
- *To whom correspondence should be addressed at:
Department of Biological Sciences, Vanderbilt University, VU Station B, Box 35-1634, Nashville, TN 37235-1634. E-mail:
| |
Collapse
|
20
|
Kouvidi E, Papadopoulou-Daifoti Z, Thermos K. Somatostatin modulates dopamine release in rat retina. Neurosci Lett 2006; 391:82-6. [PMID: 16183196 DOI: 10.1016/j.neulet.2005.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/02/2005] [Accepted: 08/04/2005] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to determine the possible role of somatostatin as a modulator of dopamine release in rat retina. Basal release of dopamine, and how this is influenced by somatostatin receptor (sst) selective ligands, was examined ex vivo in rat retinal explants. Dopamine levels were quantified by high-pressure liquid chromatography (HPLC) with electrochemical detection. Basal levels of dopamine were measured over 120 min of tissue incubation and found to be 1.17+/-0.35 ng/ml. Somatostatin (10(-6), 10(-5), 10(-4)M) increased dopamine levels in a concentration-dependent manner, while the sst(2) antagonist CYN154806 (10(-4)M) reversed its actions. BIM23014 (sst(2) agonist) increased dopamine levels in a statistically significant manner only at the concentration of 10(-5)M. The sst(1) agonist L797.591 (10(-5), 10(-4)M) also increased dopamine levels, while activation of the sst(3) receptor (sst(3) agonist, L796.778, 10(-4)M) had no effect. These data substantiate a neuromodulatory role for sst(1) and sst(2) somatostatin receptors in the retina and show for the first time somatostatin's influence on dopamine release.
Collapse
Affiliation(s)
- Evangelia Kouvidi
- University of Crete, Faculty of Medicine, Department of Basic Sciences, Laboratory of Pharmacology, Heraklion, Crete 71110, Greece
| | | | | |
Collapse
|
21
|
Abstract
We surveyed wide-field amacrine cells in the mouse, using a large series of retinas from a transgenic strain that expresses the green fluorescent protein (GFP) in isolated retinal cells. Wide-field cells were present in surprising diversity and number. They formed groups that could be defined by arbor depth, arbor size, and soma size. By conventional criteria, these populations of cells make up 11 amacrine cell "types." Five additional types have been reported by others in the mouse. Roughly two-thirds of the wide-field amacrine cells are axon-bearing cells, which have separate dendritic and axonal arbors. The axonal arbor of a single cell sometimes covers the majority of the retinal surface. The axon-bearing cells appear to be centrifugally conducting neurons similar to those studied electrophysiologically in some other species. Although they are classified as independent morphological types, it seems likely that their physiological functions represent variations on a single organizational plan. These cells are present at every level of the inner plexiform layer, which suggests that they affect most of the mouse retina's final outputs to the brain and, by implication, almost all visual function.
Collapse
Affiliation(s)
- Bin Lin
- Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
22
|
Kong JH, Fish DR, Rockhill RL, Masland RH. Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits. J Comp Neurol 2005; 489:293-310. [PMID: 16025455 DOI: 10.1002/cne.20631] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The dendritic structures of retinal ganglion cells in the mouse retina were visualized by particle-mediated transfer of DiI, microinjection of Lucifer yellow, or visualization of green fluorescent protein expressed in a transgenic strain. The cells were imaged in three dimensions and the morphologies of a series of 219 cells were analyzed quantitatively. A total of 26 parameters were studied and automated cluster analysis was carried out using the k-means methods. An effective clustering, judged by silhouette analysis, was achieved using three parameters: level of stratification, extent of the dendritic field, and density of branching. An 11-cluster solution is illustrated. The cells within each cluster are visibly similar along morphological dimensions other than those used statistically to form the clusters. They could often be matched to ganglion cell types defined by previous studies. For reasons that are discussed, however, this classification must remain provisional. Some steps toward more definitive methods of unsupervised classification are pointed out.
Collapse
Affiliation(s)
- Jee-Hyun Kong
- Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
23
|
Overstreet Wadiche L, Bromberg DA, Bensen AL, Westbrook GL. GABAergic signaling to newborn neurons in dentate gyrus. J Neurophysiol 2005; 94:4528-32. [PMID: 16033936 DOI: 10.1152/jn.00633.2005] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurogenesis in the dentate gyrus begins before birth but then continues into adulthood. Consequently, many newborn granule cells must integrate into a preexisting hippocampal network. Little is known about the timing of this process or the characteristics of the first established synapses. We used mice that transiently express enhanced green fluorescent protein in newborn granule cells to examine their synaptic input. Although newborn granule cells had functional glutamate receptors, evoked and spontaneous synaptic currents were exclusively GABAergic with immature characteristics including slow rise and decay phases and depolarized reversal potentials. Synaptic currents in newborn granule cells were relatively insensitive to the GABA(A) receptor modulator zolpidem compared with neighboring mature granule cells. Consistent with the kinetics and pharmacology, newborn granule cells isolated by fluorescent cell sorting lacked the alpha1 GABA(A) receptor subunit. Our results indicate that newborn granule cells initially receive only GABAergic synapses even in the adult.
Collapse
|
24
|
Jomphe C, Bourque MJ, Fortin GD, St-Gelais F, Okano H, Kobayashi K, Trudeau LE. Use of TH-EGFP transgenic mice as a source of identified dopaminergic neurons for physiological studies in postnatal cell culture. J Neurosci Methods 2005; 146:1-12. [PMID: 15935217 DOI: 10.1016/j.jneumeth.2005.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/10/2004] [Accepted: 10/14/2004] [Indexed: 11/25/2022]
Abstract
The physiological and pharmacological properties of dopaminergic neurons in the brain are of major interest. Although much has been learned from cell culture studies, the physiological properties of these neurons remain difficult to study in such models because they are usually in minority and are difficult to distinguish from other non-dopaminergic neurons. Here we have taken advantage of a recently engineered transgenic mouse model expressing enhanced green fluorescence protein (EGFP) under the control of the tyrosine hydroxylase promoter to establish a more effective dopaminergic neuron cell culture model. We first evaluated the specificity of the EGFP expression. Although ectopic expression of EGFP was found in cultures derived from postnatal day 0 pups, this decreased over time in culture such that after 2 weeks, approximately 70% of EGFP-expressing neurons were dopaminergic. We next sought to validate this dopaminergic neuron culture model. We evaluated whether EGFP-expressing dopaminergic neurons displayed some of the well-established properties of dopaminergic neurons. Autoreceptor stimulation inhibited the activity of dopaminergic neurons while neurotensin receptor activation produced the opposite effect. Confocal imaging of the synaptic vesicle optical tracer FM4-64 in EGFP-expressing dopaminergic neurons demonstrated the feasibility of high resolution monitoring of the activity of single terminals established by these neurons. Together, this work provides evidence that primary cultures of postnatal TH-EGFP mice currently represent an excellent model to study the properties of these cells in culture.
Collapse
Affiliation(s)
- C Jomphe
- Department of Pharmacology, Faculty of Medicine, Centre de Recherche en Sciences Neurologiques, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montréal, Que., Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
25
|
Partida GJ, Lee SC, Haft-Candell L, Nichols GS, Ishida AT. DARPP-32-like immunoreactivity in AII amacrine cells of rat retina. J Comp Neurol 2005; 480:251-63. [PMID: 15515184 PMCID: PMC3232744 DOI: 10.1002/cne.20330] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous studies demonstrated that the dopamine- and adenosine 3',5'-monophosphate-regulated phosphatase inhibitor known as "DARPP-32" is present in rat, cat, monkey, and human retinas. We have followed up these studies by asking what specific cell subtypes contain DARPP-32. Using a polyclonal antibody directed against a peptide sequence of human DARPP-32, we immunostained adult rat retinas that were either transretinally sectioned or flat mounted and found DARPP-32-like immunoreactivity in some cells of the amacrine cell layer across the entire retinal surface. We report here, based on the shape and spatial distribution of these cells, their staining by an anti-parvalbumin antibody, and their juxtaposition with processes containing tyrosine hydroxylase, that DARPP-32-like immunoreactivity is present in AII amacrine cells of rat retina. These results suggest that the response of AII amacrine cells to dopamine is not mediated as simply as previously supposed.
Collapse
Affiliation(s)
| | | | | | | | - Andrew T. Ishida
- Correspondence to: Andrew Ishida at the address given above, tel & fax: (530) 752-3569,
| |
Collapse
|
26
|
Okada H, Matsushita N, Kobayashi K, Kobayashi K. Identification of GABAA receptor subunit variants in midbrain dopaminergic neurons. J Neurochem 2004; 89:7-14. [PMID: 15030384 DOI: 10.1111/j.1471-4159.2004.02271.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Modulation of the activity of dopamine (DA)-producing neurons by GABA plays an important role in the control of DA-mediated brain functions. Ionotropic GABA(A) receptors exist as heteropentametric structures assembling different subunits composed of various subtypes. However, the expression pattern of these subunits in DA neurons in the ventral midbrain has not been fully defined. In the present study, we investigated the subunit composition of GABA(A) receptors in DA neurons in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA). We isolated DA neurons from the ventral midbrain of transgenic mice that express green fluorescent protein under the control of the tyrosine hydroxylase (TH) gene promoter and analyzed expression of various GABA(A) receptor subunits in single cells by using the reverse transcription-polymerase chain reaction. This analysis showed the presence of the transcripts encoding alpha2, alpha3, alpha4, beta1, beta3 and gamma2 subunits in the isolated DA neurons. Double fluorescence in situ hybridization with probes for TH and GABA(A) receptor subunit mRNAs revealed the expression of these six subunits in the majority of DA neurons in the SNc and the VTA.
Collapse
Affiliation(s)
- Hideki Okada
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | | | | |
Collapse
|
27
|
Gustincich S, Contini M, Gariboldi M, Puopolo M, Kadota K, Bono H, LeMieux J, Walsh P, Carninci P, Hayashizaki Y, Okazaki Y, Raviola E. Gene discovery in genetically labeled single dopaminergic neurons of the retina. Proc Natl Acad Sci U S A 2004; 101:5069-74. [PMID: 15047890 PMCID: PMC387375 DOI: 10.1073/pnas.0400913101] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the retina, dopamine plays a central role in neural adaptation to light. Progress in the study of dopaminergic amacrine (DA) cells has been limited because they are very few (450 in each mouse retina, 0.005% of retinal neurons). Here, we applied transgenic technology, single-cell global mRNA amplification, and cDNA microarray screening to identify transcripts present in DA cells. To profile gene expression in single neurons, we developed a method (SMART7) that combines a PCR-based initial step (switching mechanism at the 5' end of the RNA transcript or SMART) with T7 RNA polymerase amplification. Single-cell targets were synthesized from genetically labeled DA cells to screen the RIKEN 19k mouse cDNA microarrays. Seven hundred ninety-five transcripts were identified in DA cells at a high level of confidence, and expression of the most interesting genes was confirmed by immunocytochemistry. Twenty-one previously undescribed proteins were found in DA cells, including a chloride channel, receptors and other membrane glycoproteins, kinases, transcription factors, and secreted neuroactive molecules. Thirty-eight percent of transcripts were ESTs or coding for hypothetical proteins, suggesting that a large portion of the DA cell proteome is still uncharacterized. Because cryptochrome-1 mRNA was found in DA cells, immunocytochemistry was extended to other components of the circadian clock machinery. This analysis showed that DA cells contain the most common clock-related proteins.
Collapse
Affiliation(s)
- Stefano Gustincich
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Klooster J, Nunes Cardozo B, Yazulla S, Kamermans M. Postsynaptic localization of ?-aminobutyric acid transporters and receptors in the outer plexiform layer of the goldfish retina: An ultrastructural study. J Comp Neurol 2004; 474:58-74. [PMID: 15156579 DOI: 10.1002/cne.20114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The gamma-aminobutyric acid (GABA)-ergic system in the outer plexiform layer (OPL) of the goldfish retina was studied via light and electron immunohistochemistry. The subcellular distributions of immunoreactivity (-IR) of plasma membrane GABA transporters GAT2 and GAT3, the alpha1 and alpha3 subunits of the ionotropic GABA(A) receptor, and the rho1 subunit of the ionotropic GABA(C) receptor were determined. The localization of the GAT2-IR and GAT3-IR to horizontal cell dendrites at the base of the cone synaptic complex was the main characteristic at the ultrastructural level. Very rarely, GAT2-IR and GAT3-IR were found in horizontal cell dendrites innervating rod spherules. alpha1-IR and alpha3-IR were seen in wide bands in the OPL, whereas rho1-IR appeared as a narrow band in the OPL. Most alpha1-IR was intracellular in rod and cone terminals. Membrane-associated alpha1-IR was observed in cone pedicles but not in rod spherules; postsynaptic elements were also labeled. alpha3-IR was concentrated in the lateral elements of horizontal cell dendrites in cone pedicles. In contrast, rho1-IR was found mainly on the spinules of the horizontal cell dendrites in cone pedicles. In addition, in another type of cone pedicle, rho1-IR was found at the position of OFF-bipolar cell dendrites. alpha3-IR and rho1-IR were rarely found in horizontal cell dendrites innervating rods. We suggest that two GABAergic pathways exist in the outer retina- first, a GABAergic positive loop with GABA receptors mainly on the horizontal cell dendrites and spinules and, second, a GABAergic feedback pathway involving GABA receptors on cone pedicles and GABA transporters on horizontal cells and that this pathway presumably modulates feedback strength from horizontal cells to cones.
Collapse
Affiliation(s)
- Jan Klooster
- Department of Retinal Signal Processing, Netherlands Ophthalmic Research Institute-KNAW, 1105 BA Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Usala M, Thompson SA, Whiting PJ, Wafford KA. Activity of chlormethiazole at human recombinant GABA(A) and NMDA receptors. Br J Pharmacol 2003; 140:1045-50. [PMID: 14530209 PMCID: PMC1574126 DOI: 10.1038/sj.bjp.0705540] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 08/28/2003] [Accepted: 09/12/2003] [Indexed: 11/09/2022] Open
Abstract
1. Investigation into the modulatory effects of chlormethiazole at human recombinant gamma-aminobutyric acid A receptor (GABAA) and N-methyl-d-aspartate (NMDA) receptors was undertaken to gain insight into its mechanism of action and determine if the drug exhibited any subtype-selective activity. 2. Despite a structural similarity to the beta-subunit-selective compound loreclezole, chlormethiazole did not show any difference in maximum efficacy and only a slight difference in EC50 in its potentiating action at alpha1beta1gamma2 and alpha1beta2gamma2 GABAA receptor subtypes with preference for alpha1beta1gamma2. 3. Similar to the previously reported subtype-dependent activity of pentobarbital, chlormethiazole elicited a significantly greater degree of maximum potentiation on receptors lacking a gamma2 subunit, and also those receptors containing an alpha4 or alpha6 subunit. This also demonstrates that chlormethiazole does not act via the benzodiazepine binding site. 4. Unlike pentobarbital and propofol, chlormethiazole elicited only a slight direct GABAA receptor activation at concentrations up to 1 mm. In addition, the drug did not potentiate anaesthetic-mediated currents elicited by pentobarbital or propofol, suggesting that chlormethiazole may be acting via an anaesthetic binding site. 5. Chlormethiazole produced weak nonselective inhibition of human NMDA NR1a+NR2A and NR1a+NR2B receptors. IC50's were approximately 500 microm that likely exceed the therapeutic dose range for chlormethiazole, indicating that the primary mechanism of the compounds in vivo activity is via GABAA receptors.
Collapse
Affiliation(s)
- Marcello Usala
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR
| | - Sally Anne Thompson
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR
| | - Paul J Whiting
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR
| | - Keith A Wafford
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR
| |
Collapse
|
30
|
Feinstein N, Fritschy JM, Parnas I. Presynaptic membrane of inhibitory crayfish axon terminals is stained by antibodies raised against mammalian GABA(A) receptor subunits alpha3 and beta(2/3). J Comp Neurol 2003; 465:250-62. [PMID: 12949785 DOI: 10.1002/cne.10847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The opener muscle of the dactyl of the walking leg of crayfish is innervated by one excitatory axon releasing glutamate and one inhibitory axon releasing GABA. Functional GABA(A) receptors are present postsynaptically on the muscle and presynaptically on terminals and release boutons of the excitatory axon, whereas presynaptic GABA(A) autoreceptors have not been reported on terminals or release boutons of the inhibitory axon. Using antibodies raised against mammalian GABA(A) receptor subunits alpha3 and beta(2/3), we obtained highly specific staining of the presynaptic membrane of the inhibitory bouton and of the postsynaptic membrane of the muscle. Using pre- and postembedding techniques, staining was localized to only presynaptic and postsynaptic membranes of synaptic active zones. We also found extrasynaptic receptor subunit immunoreactivity near (up to 100 nm) to the active zones. Staining with antibodies for the alpha3 and beta(2/3) subunits showed colocalization of particles of the two subunits. We suggest that presynaptic inhibitory boutons of the crayfish possess GABA(A)-like autoreceptors composed of at least the alpha3 and beta(2/3) subunits.
Collapse
Affiliation(s)
- N Feinstein
- The Otto Loewi Minerva Center for Cellular and Molecular Neurobiology, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
31
|
Bennis M, Versaux-Botteri C, Repérant J, Armengol JA, Ward R. Gamma-aminobutyric acid-synthesizing cells in the retina of the chameleon Chamaeleo chameleon. J Neurosci Res 2003; 73:410-5. [PMID: 12868074 DOI: 10.1002/jnr.10665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibodies directed against gamma-aminobutyric acid (GABA) and L-glutamic acid decarboxylases 65 and 67 kDa (GAD65 and -67) were used to study the GABAergic cell populations of the chameleon retina. GABA immunoreactivity was found in the two main types of retinal interneurons, amacrine and horizontal cells. Amacrine, displaced amacrine, and intra- and interplexiform cells displayed the strongest GABA immunoreactivity of all the retinal cell types. Horizontal cells formed a continuous GABA-immunoreactive cell layer lying against the outermost portion of the inner nuclear layer. In contrast to previous studies (Quesada et al. [1996] Cell Biol. Int. 20:395-400; [1999] Eur. J. Anat. 3:13-25), the present results demonstrate that the horizontal cells of the chameleon retina are GABA immunoreactive and that a subpopulation of these is immunolabelled by an antibody against GAD65. These results indicate that GABAergic synaptic transmission plays a key role in the outer plexiform layer of the vertebrate retina.
Collapse
Affiliation(s)
- M Bennis
- Unité de Neurobiologie, Faculté des Sciences de Marrakech, Marrakech, Morocco.
| | | | | | | | | |
Collapse
|
32
|
Abstract
In the retina, dopaminergic amacrine (interplexiform) cells establish multiple synapses on the perikarya of AII amacrines, the neurons that distribute rod signals to on- and off-cone bipolars. We used triple-label immunocytochemistry and confocal microscopy to identify the receptors contained within the postsynaptic active zone of these synapses in both mouse and rat retinas. We found that at the interface between the dendrites of the dopaminergic neurons and the AII amacrine cell perikarya clusters of postsynaptic gamma-aminobutyric acid type A (GABA(A)) receptors are situated in register with aggregates of presynaptic organelles immunoreactive for GABA, the GABA vesicular transporter, and the vesicular monoamine transporter-2. D1 and D23 dopamine receptors, on the other hand, do not form clusters on the surface of the perikarya of AII amacrine cells. We suggest that the synapses between retinal dopaminergic neurons and AII amacrine cells are GABAergic and that both GABA and dopamine are released by the presynaptic endings. GABA acts on the ionotropic receptors clustered at the postsynaptic active zone, whereas dopamine diffuses to more distant, slower-acting metabotropic receptors.
Collapse
Affiliation(s)
- Massimo Contini
- Department of Neurobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
33
|
McIntyre KL, Porter DM, Henderson LP. Anabolic androgenic steroids induce age-, sex-, and dose-dependent changes in GABA(A) receptor subunit mRNAs in the mouse forebrain. Neuropharmacology 2002; 43:634-45. [PMID: 12367608 DOI: 10.1016/s0028-3908(02)00154-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic exposure to anabolic androgenic steroids (AAS) has deleterious effects on reproductive health in both human and animal subjects. Neurotransmission mediated by the gamma-aminobutyric acid type A (GABA(A)) receptor in the medial amygdala (MeA), the medial preoptic area (mPOA), and the ventromedial nucleus (VMN) of the hypothalamus plays a critical role in mediating sexual behaviors. Here we used semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) to examine levels of alpha(1), alpha(2), alpha(5), gamma(1), gamma(2), and epsilon subunit mRNAs in these three regions of the brain. Our results demonstrate that chronic exposure to either a high or a moderate dose of the AAS, 17alpha-methyltestosterone (17alpha-MeT), significantly decreased the levels of specific alpha and gamma subunit mRNAs in a manner that depended on the dose of AAS and age and sex of the animals. Specifically, the moderate dose of AAS elicited significant changes only in pubertal females and the majority of changes observed in pubertal animals with the high dose also occurred in females. In contrast, the moderate dose of AAS induced no significant changes in adult mice of either sex, while the high dose had effects in both males and females. In addition to determining the effects of chronic AAS treatment, a developmental analysis of drug-naïve animals demonstrated that GABA(A) receptor subunit mRNA levels in these regions of the forebrain undergo significant changes as animals proceed through puberty. These data demonstrate that the effects of AAS exposure on GABA(A) receptor expression are superimposed upon dynamic developmental changes that accompany the transition from puberty to adulthood.
Collapse
Affiliation(s)
- K L McIntyre
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
34
|
Jorge JC, McIntyre KL, Henderson LP. The function and the expression of forebrain GABA(A) receptors change with hormonal state in the adult mouse. JOURNAL OF NEUROBIOLOGY 2002; 50:137-49. [PMID: 11793360 DOI: 10.1002/neu.10021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurotransmission mediated by gamma-aminobutyric acid type A (GABA(A)) receptors in the mammalian medial preoptic area (mPOA) plays a pivotal role in the expression of hormone-sensitive behaviors. Hand in hand with GABAergic control of reproduction, hormone treatments that activate gonadal steroid signaling pathways in gonadectomized rats are known to regulate the expression of specific GABA(A) receptor subunit mRNAs. While the effects of exogenous hormone treatments have been well documented, little information is available as to how GABA(A) receptor-mediated transmission in the mPOA is altered by endogenous changes in hormonal state in gonadally-intact adult animals or if those changes can be ascribed to hormone-dependent changes in receptor subunit composition. In the present study, we found that both the peak amplitudes of GABA(A) receptor-mediated synaptic currents in the mPOA, as well as the ability of the endogenous neurosteroids to modulate those currents, varied as a function of the estrous cycle. Moreover, we found that the degree of neurosteroid modulation was also significantly different between wild-type and the androgen-insensitive testicular feminization (Tfm) mutant male mice. Semiquantitative RT-PCR analysis performed to assess levels of GABA(A) receptor subunit mRNAs indicated that levels of specific subunits varied over the course of the estrous cycle and between wild-type and Tfm male mice. The variations in GABA(A) receptor expression and function in the mPOA that are associated with differences in gonadal steroid signaling may contribute to the dynamic nature of GABAergic control of neuroendocrine pathways.
Collapse
Affiliation(s)
- Juan Carlos Jorge
- Department of Anatomy, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | | | | |
Collapse
|
35
|
Frech MJ, Pérez-León J, Wässle H, Backus KH. Characterization of the spontaneous synaptic activity of amacrine cells in the mouse retina. J Neurophysiol 2001; 86:1632-43. [PMID: 11600626 DOI: 10.1152/jn.2001.86.4.1632] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amacrine cells are a heterogeneous class of interneurons that modulate the transfer of the light signals through the retina. In addition to ionotropic glutamate receptors, amacrine cells express two types of inhibitory receptors, GABA(A) receptors (GABA(A)Rs) and glycine receptors (GlyRs). To characterize the functional contribution of these different receptors, spontaneous postsynaptic currents (sPSCs) were recorded with the whole cell configuration of the patch-clamp technique in acutely isolated slices of the adult mouse retina. All amacrine cells investigated (n = 47) showed spontaneous synaptic activity. In six amacrine cells, spontaneous excitatory postsynaptic currents could be identified by their sensitivity to kynurenic acid. They were characterized by small amplitudes [mean: -13.7 +/- 1.5 (SE) pA] and rapid decay kinetics (mean tau: 1.35 +/- 0.16 ms). In contrast, the reversal potential of sPSCs characterized by slow decay kinetics (amplitude-weighted time constant, tau(w), >4 ms) was dependent on the intracellular Cl(-) concentration (n = 7), indicating that they were spontaneous inhibitory postsynaptic currents (sIPSCs). In 14 of 34 amacrine cells sIPSCs were blocked by bicuculline (10 microM), indicating that they were mediated by GABA(A)Rs. Only four amacrine cells showed glycinergic sIPSCs that were inhibited by strychnine (1 microM). In one amacrine cell, sIPSCs mediated by GABA(A)Rs and GlyRs were found simultaneously. GABAergic sIPSCs could be subdivided into one group best fit by a monoexponential decay function and another biexponentially decaying group. The mean amplitude of GABAergic sIPSCs (-42.1 +/- 5.8 pA) was not significantly different from that of glycinergic sIPSCs (-28.0 +/- 8.5 pA). However, GlyRs (mean T10/90: 2.4 +/- 0.08 ms) activated significantly slower than GABA(A)Rs (mean T10/90: 1.2 +/- 0.03 ms). In addition, the decay kinetics of monoexponentially decaying GABA(A)Rs (mean tau(w): 20.3 +/- 0.50), biexponentially decaying GABA(A)Rs (mean tau(w): 30.7 +/- 0.95), and GlyRs (mean tau(w) = 25.3 +/- 1.94) were significantly different. These differences in the activation and decay kinetics of sIPSCs indicate that amacrine cells of the mouse retina express at least three types of functionally different inhibitory receptors: GlyRs and possibly two subtypes of GABA(A)Rs.
Collapse
Affiliation(s)
- M J Frech
- Max-Planck-Institut für Hirnforschung, Neuroanatomische Abteilung, D-60528 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
36
|
Puopolo M, Hochstetler SE, Gustincich S, Wightman RM, Raviola E. Extrasynaptic release of dopamine in a retinal neuron: activity dependence and transmitter modulation. Neuron 2001; 30:211-25. [PMID: 11343656 DOI: 10.1016/s0896-6273(01)00274-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extrasynaptic release of dopamine is well documented, but its relation to the physiological activity of the neuron is unclear. Here we show that in absence of presynaptic active zones, solitary cell bodies of retinal dopaminergic neurons release by exocytosis packets of approximately 40,000 molecules of dopamine at irregular intervals and low frequency. The release is triggered by the action potentials that the neurons generate in a rhythmic fashion upon removal of all synaptic influences and therefore depends upon the electrical events at the neuronal surface. Furthermore, it is stimulated by kainate and abolished by GABA and quinpirole, an agonist at the D(2) dopamine receptor. Since the somatic receptors for these ligands are extrasynaptic, we suggest that the composition of the extracellular fluid directly modulates extrasynaptic release.
Collapse
Affiliation(s)
- M Puopolo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
37
|
Feigenspan A, Gustincich S, Raviola E. Pharmacology of GABA(A) receptors of retinal dopaminergic neurons. J Neurophysiol 2000; 84:1697-707. [PMID: 11024062 DOI: 10.1152/jn.2000.84.4.1697] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When the vertebrate retina is stimulated by light, a class of amacrine or interplexiform cells release dopamine, a modulator responsible for neural adaptation to light. In the intact retina, dopamine release can be pharmacologically manipulated with agonists and antagonists at GABA(A) receptors, and dopaminergic (DA) cells receive input from GABAergic amacrines. Because there are only 450 DA cells in each mouse retina and they cannot be distinguished in the living state from other cells on the basis of their morphology, we used transgenic technology to label DA cells with human placental alkaline phosphatase, an enzyme that resides on the outer surface of the cell membrane. We could therefore identify DA cells in vitro after dissociation of the retina and investigate their activity with whole cell voltage clamp. We describe here the pharmacological properties of the GABA(A) receptors of solitary DA cells. GABA application induces a large inward current carried by chloride ions. The receptors are of the GABA(A) type because the GABA-evoked current is blocked by bicuculline. Their affinity for GABA is very high with an EC(50) value of 7.4 microM. Co-application of benzodiazepine receptor ligands causes a strong increase in the peak current induced by GABA (maximal enhancement: CL-218872 220%; flunitrazepam 214%; zolpidem 348%) proving that DA cells express a type I benzodiazepine-receptor (BZ1). GABA-evoked currents are inhibited by Zn(2+) with an IC(50) of 58.9 +/- 8.9 microM. Furthermore, these receptors are strongly potentiated by the modulator alphaxalone with an EC(50) of 340 +/- 4 nM. The allosteric modulator loreclezole increases GABA receptor currents by 43% (1 microM) and by 107% (10 microM). Using outside-out patches, we measured in single-channel recordings a main conductance (29 pS) and two subconductance (20 and 9 pS) states. We have previously shown by single-cell RT-PCR and immunocytochemistry that DA cells express seven different GABA(A) receptor subunits (alpha1, alpha3, alpha4, beta1, beta3, gamma1, gamma2(S), and gamma2(L)) and by immunocytochemistry that all subunits are expressed in the intact retina. We show here that at least alpha1, beta3 and gamma2 subunits are assembled into functional receptors.
Collapse
Affiliation(s)
- A Feigenspan
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
38
|
Simonian SX, Skynner MJ, Sieghart W, Essrich C, Luscher B, Herbison AE. Role of the GABA(A) receptor gamma2 subunit in the development of gonadotropin-releasing hormone neurons in vivo. Eur J Neurosci 2000; 12:3488-96. [PMID: 11029618 DOI: 10.1046/j.1460-9568.2000.00225.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have employed transgenic mouse models to examine the functional significance of the gamma2 subunit of the GABA(A) (gamma-aminobutyric acid) receptor to the correct development of gonadotropin-releasing hormone (GnRH) neurons in vivo. In the first experiment, the expression of gamma2 subunit protein by the GnRH phenotype was determined using transgenic mice in which GnRH gene sequences direct the expression of the LacZ reporter to the nucleus of the GnRH neurons. This greatly facilitates the immunocytochemical identification of non-nuclear-located antigens within GnRH neurons and revealed that approximately 25% of juvenile GnRH neurons were immunoreactive for the gamma2 subunit and that this increased to 40% in pubertal mice. In the second experiment, GnRH mRNA expression was examined in the brains of gamma2 subunit knockout mice (gamma2(0/0)) and their wild-type (gamma2+/+) littermates at embryonic day 15 and postnatal days (P) 0 and 11-16 using in situ hybridization. The distribution and numbers of cells expressing GnRH mRNA in gamma2+/+ and gamma2(0/0) mice were not found to differ at any age. However, the GnRH mRNA content of medial septal cells was significantly lower in gamma2(0/0) compared with gamma2+/+ mice at P11-16 (P<0.05) and the same trend was observed for preoptic area neurons. These results demonstrate that while the gamma2 subunit of the GABA(A) receptor is expressed by postnatal GnRH neurons, their embryonic development does not require a functional gamma2 subunit. In contrast, postnatal GnRH mRNA expression was found to be dependent upon signalling through the GABA(A) receptor.
Collapse
MESH Headings
- Animals
- Cell Count
- Female
- Fetus
- Genes, Reporter/genetics
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Hypothalamus, Anterior/cytology
- Hypothalamus, Anterior/metabolism
- Lac Operon/genetics
- Mice
- Mice, Knockout/genetics
- Mice, Knockout/metabolism
- Mice, Transgenic/genetics
- Mice, Transgenic/metabolism
- Neurons/cytology
- Neurons/metabolism
- Phenotype
- Preoptic Area/cytology
- Preoptic Area/metabolism
- Prosencephalon/cytology
- Prosencephalon/embryology
- Prosencephalon/metabolism
- RNA, Messenger/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Septal Nuclei/cytology
- Septal Nuclei/metabolism
Collapse
Affiliation(s)
- S X Simonian
- Laboratory of Neuroendocrinology, The Babraham Institute, Babraham, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
39
|
Masland RH, Raviola E. Confronting complexity: strategies for understanding the microcircuitry of the retina. Annu Rev Neurosci 2000; 23:249-84. [PMID: 10845065 DOI: 10.1146/annurev.neuro.23.1.249] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mammalian retina contains upward of 50 distinct functional elements, each carrying out a specific task. Such diversity is not rare in the central nervous system, but the retina is privileged because its physical location, the distinctive morphology of its neurons, the regularity of its architecture, and the accessibility of its inputs and outputs permit a unique variety of experiments. Recent strategies for confronting the retina's complexity attempt to marry genetic approaches to new kinds of anatomical and electrophysiological techniques.
Collapse
Affiliation(s)
- R H Masland
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston 02114, USA.
| | | |
Collapse
|