1
|
Hernandez DE, Ciuparu A, Garcia da Silva P, Velasquez CM, Rebouillat B, Gross MD, Davis MB, Chae H, Muresan RC, Albeanu DF. Fast updating feedback from piriform cortex to the olfactory bulb relays multimodal identity and reward contingency signals during rule-reversal. Nat Commun 2025; 16:937. [PMID: 39843439 PMCID: PMC11754465 DOI: 10.1038/s41467-025-56023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigate whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engage head-fixed male mice in a multimodal rule-reversal task guided by olfactory and auditory cues. Both odor and, surprisingly, the sound cues trigger responses in the cortical bulbar feedback axons which precede the behavioral report. Responses to the same sensory cue are strongly modulated upon changes in stimulus-reward contingency (rule-reversals). The re-shaping of individual bouton responses occurs within seconds of the rule-reversal events and is correlated with changes in behavior. Optogenetic perturbation of cortical feedback within the bulb disrupts the behavioral performance. Our results indicate that the piriform-to-olfactory bulb feedback axons carry stimulus identity and reward contingency signals which are rapidly re-formatted according to changes in the behavioral context.
Collapse
Affiliation(s)
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Pedro Garcia da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Champalimaud Neuroscience Program, Lisbon, Portugal
| | - Cristina M Velasquez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- University of Oxford, Oxford, UK
| | - Benjamin Rebouillat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- École Normale Supérieure, Paris, France
| | | | - Martin B Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Raul C Muresan
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania.
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania.
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- School for Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
2
|
Leung LS, Gill RS, Shen B, Chu L. Cholinergic and behavior-dependent beta and gamma waves are coupled between olfactory bulb and hippocampus. Hippocampus 2024; 34:464-490. [PMID: 38949057 DOI: 10.1002/hipo.23622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
Olfactory oscillations may enhance cognitive processing through coupling with beta (β, 15-30 Hz) and gamma (γ, 30-160 Hz) activity in the hippocampus (HPC). We hypothesize that coupling between olfactory bulb (OB) and HPC oscillations is increased by cholinergic activation in control rats and is reduced in kainic-acid-treated epileptic rats, a model of temporal lobe epilepsy. OB γ2 (63-100 Hz) power was higher during walking and immobility-awake (IMM) compared to sleep, while γ1 (30-57 Hz) power was higher during grooming than other behavioral states. Muscarinic cholinergic agonist pilocarpine (25 mg/kg ip) with peripheral muscarinic blockade increased OB power and OB-HPC coherence at β and γ1 frequency bands. A similar effect was found after physostigmine (0.5 mg/kg ip) but not scopolamine (10 mg/kg ip). Pilocarpine increased bicoherence and cross-frequency coherence (CFC) between OB slow waves (SW, 1-5 Hz) and hippocampal β, γ1 and γ2 waves, with stronger coherence at CA1 alveus and CA3c than CA1 stratum radiatum. Bicoherence further revealed a nonlinear interaction of β waves in OB with β waves at the CA1-alveus. Beta and γ1 waves in OB or HPC were segregated at one phase of the OB-SW, opposite to the phase of γ2 and γ3 (100-160 Hz) waves, suggesting independent temporal processing of β/γ1 versus γ2/γ3 waves. At CA1 radiatum, kainic-acid-treated epileptic rats compared to control rats showed decreased theta power, theta-β and theta-γ2 CFC during baseline walking, decreased CFC of HPC SW with γ2 and γ3 waves during baseline IMM, and decreased coupling of OB SW with β and γ2 waves at CA1 alveus after pilocarpine. It is concluded that β and γ waves in the OB and HPC are modulated by a slow respiratory rhythm, in a cholinergic and behavior-dependent manner, and OB-HPC functional connectivity at β and γ frequencies may enhance cognitive functions.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Ravnoor Singh Gill
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Bixia Shen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Liangwei Chu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Huang L, Zhang W, Han Y, Tang Y, Zhou W, Liu G, Shi W. Anti-Depressant Fluoxetine Hampers Olfaction of Goldfish by Interfering with the Initiation, Transmission, and Processing of Olfactory Signals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15848-15859. [PMID: 36260920 DOI: 10.1021/acs.est.2c02987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ubiquitous presence of fluoxetine (FLX) in aquatic environments poses great threat to fish species. However, little is known about its deleterious impacts on fish olfaction. In this study, the olfactory toxicity of FLX at environmentally realistic levels was assessed by monitoring the behavioral and electroolfactogram (EOG) responses to olfactory stimuli with goldfish (Carassius auratus), and the toxification mechanisms underlying the observed olfaction dysfunction were also investigated. Our results showed that the behavioral and EOG responses of goldfish to olfactory stimuli were significantly weakened by FLX, indicating an evident toxicity of FLX to olfaction. Moreover, FLX exposure led to significant alterations in olfactory initiation-related genes, suppression of ion pumps (Ca2+-ATPase and Na+/K+-ATPase), tissue lesions, and fewer olfactory sensory neurons in olfactory epithelium. In addition to altering the expression of olfactory transmission-related genes, comparative metabolomic analysis found that olfaction-related neurotransmitters (i.e., l-glutamate and acetylcholine) and the olfactory transduction pathway were significantly affected by FLX. Furthermore, evident tissue lesions, aggravated lipid peroxidation and apoptosis, and less neuropeptide Y were observed in the olfactory bulbs of FLX-exposed goldfish. Our findings indicate that FLX may hamper goldfish olfaction by interfering with the initiation, transmission, and processing of olfactory signals.
Collapse
Affiliation(s)
- Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
4
|
De Saint Jan D. Target-specific control of olfactory bulb periglomerular cells by GABAergic and cholinergic basal forebrain inputs. eLife 2022; 11:71965. [PMID: 35225232 PMCID: PMC8901171 DOI: 10.7554/elife.71965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
The olfactory bulb (OB), the first relay for odor processing in the brain, receives dense GABAergic and cholinergic long-range projections from basal forebrain (BF) nuclei that provide information about the internal state and behavioral context of the animal. However, the targets, impact, and dynamic of these afferents are still unclear. How BF synaptic inputs modulate activity in diverse subtypes of periglomerular (PG) interneurons using optogenetic stimulation and loose cell-attached or whole-cell patch-clamp recording in OB slices from adult mice were studied in this article. GABAergic BF inputs potently blocked PG cells firing except in a minority of calretinin-expressing cells in which GABA release elicited spiking. Parallel cholinergic projections excited a previously overlooked PG cell subtype via synaptic activation of M1 muscarinic receptors. Low-frequency stimulation of the cholinergic axons drove persistent firing in these PG cells, thereby increasing tonic inhibition in principal neurons. Taken together, these findings suggest that modality-specific BF inputs can orchestrate synaptic inhibition in OB glomeruli using multiple, potentially independent, inhibitory or excitatory target-specific pathways.
Collapse
Affiliation(s)
- Didier De Saint Jan
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
5
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Huang Z, Tatti R, Loeven AM, Landi Conde DR, Fadool DA. Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks. Front Cell Neurosci 2021; 15:662184. [PMID: 34239417 PMCID: PMC8259627 DOI: 10.3389/fncel.2021.662184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromodulation influences neuronal processing, conferring neuronal circuits the flexibility to integrate sensory inputs with behavioral states and the ability to adapt to a continuously changing environment. In this original research report, we broadly discuss the basis of neuromodulation that is known to regulate intrinsic firing activity, synaptic communication, and voltage-dependent channels in the olfactory bulb. Because the olfactory system is positioned to integrate sensory inputs with information regarding the internal chemical and behavioral state of an animal, how olfactory information is modulated provides flexibility in coding and behavioral output. Herein we discuss how neuronal microcircuits control complex dynamics of the olfactory networks by homing in on a special class of local interneurons as an example. While receptors for neuromodulation and metabolic peptides are widely expressed in the olfactory circuitry, centrifugal serotonergic and cholinergic inputs modulate glomerular activity and are involved in odor investigation and odor-dependent learning. Little is known about how metabolic peptides and neuromodulators control specific neuronal subpopulations. There is a microcircuit between mitral cells and interneurons that is comprised of deep-short-axon cells in the granule cell layer. These local interneurons express pre-pro-glucagon (PPG) and regulate mitral cell activity, but it is unknown what initiates this type of regulation. Our study investigates the means by which PPG neurons could be recruited by classical neuromodulators and hormonal peptides. We found that two gut hormones, leptin and cholecystokinin, differentially modulate PPG neurons. Cholecystokinin reduces or increases spike frequency, suggesting a heterogeneous signaling pathway in different PPG neurons, while leptin does not affect PPG neuronal firing. Acetylcholine modulates PPG neurons by increasing the spike frequency and eliciting bursts of action potentials, while serotonin does not affect PPG neuron excitability. The mechanisms behind this diverse modulation are not known, however, these results clearly indicate a complex interplay of metabolic signaling molecules and neuromodulators that may fine-tune neuronal microcircuits.
Collapse
Affiliation(s)
- Zhenbo Huang
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Roberta Tatti
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Ashley M Loeven
- Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Daniel R Landi Conde
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Debra Ann Fadool
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
7
|
Suyama H, Egger V, Lukas M. Top-down acetylcholine signaling via olfactory bulb vasopressin cells contributes to social discrimination in rats. Commun Biol 2021; 4:603. [PMID: 34021245 PMCID: PMC8140101 DOI: 10.1038/s42003-021-02129-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/19/2021] [Indexed: 02/04/2023] Open
Abstract
Social discrimination in rats requires activation of the intrinsic bulbar vasopressin system, but it is unclear how this system comes into operation, as olfactory nerve stimulation primarily inhibits bulbar vasopressin cells (VPCs). Here we show that stimulation with a conspecific can activate bulbar VPCs, indicating that VPC activation depends on more than olfactory cues during social interaction. A series of in vitro electrophysiology, pharmacology and immunohistochemistry experiments implies that acetylcholine, probably originating from centrifugal projections, can enable olfactory nerve-evoked action potentials in VPCs. Finally, cholinergic activation of the vasopressin system contributes to vasopressin-dependent social discrimination, since recognition of a known rat was blocked by bulbar infusion of the muscarinic acetylcholine receptor antagonist atropine and rescued by additional bulbar application of vasopressin. Thus, our results implicate that top-down cholinergic modulation of bulbar VPC activity is involved in social discrimination in rats.
Collapse
Affiliation(s)
- Hajime Suyama
- Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany
| | - Veronica Egger
- Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany
| | - Michael Lukas
- Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
8
|
Multiple Roles for Cholinergic Signaling from the Perspective of Stem Cell Function. Int J Mol Sci 2021; 22:ijms22020666. [PMID: 33440882 PMCID: PMC7827396 DOI: 10.3390/ijms22020666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/11/2023] Open
Abstract
Stem cells have extensive proliferative potential and the ability to differentiate into one or more mature cell types. The mechanisms by which stem cells accomplish self-renewal provide fundamental insight into the origin and design of multicellular organisms. These pathways allow the repair of damage and extend organismal life beyond that of component cells, and they probably preceded the evolution of complex metazoans. Understanding the true nature of stem cells can only come from discovering how they are regulated. The concept that stem cells are controlled by particular microenvironments, also known as niches, has been widely accepted. Technical advances now allow characterization of the zones that maintain and control stem cell activity in several organs, including the brain, skin, and gut. Cholinergic neurons release acetylcholine (ACh) that mediates chemical transmission via ACh receptors such as nicotinic and muscarinic receptors. Although the cholinergic system is composed of organized nerve cells, the system is also involved in mammalian non-neuronal cells, including stem cells, embryonic stem cells, epithelial cells, and endothelial cells. Thus, cholinergic signaling plays a pivotal role in controlling their behaviors. Studies regarding this signal are beginning to unify our understanding of stem cell regulation at the cellular and molecular levels, and they are expected to advance efforts to control stem cells therapeutically. The present article reviews recent findings about cholinergic signaling that is essential to control stem cell function in a cholinergic niche.
Collapse
|
9
|
Böhm E, Brunert D, Rothermel M. Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Sci Rep 2020; 10:10696. [PMID: 32612119 PMCID: PMC7329849 DOI: 10.1038/s41598-020-67276-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Basal forebrain modulation of central circuits is associated with active sensation, attention, and learning. While cholinergic modulations have been studied extensively the effect of non-cholinergic basal forebrain subpopulations on sensory processing remains largely unclear. Here, we directly compare optogenetic manipulation effects of two major basal forebrain subpopulations on principal neuron activity in an early sensory processing area, i.e. mitral/tufted cells (MTCs) in the olfactory bulb. In contrast to cholinergic projections, which consistently increased MTC firing, activation of GABAergic fibers from basal forebrain to the olfactory bulb leads to differential modulation effects: while spontaneous MTC activity is mainly inhibited, odor-evoked firing is predominantly enhanced. Moreover, sniff-triggered averages revealed an enhancement of maximal sniff evoked firing amplitude and an inhibition of firing rates outside the maximal sniff phase. These findings demonstrate that GABAergic neuromodulation affects MTC firing in a bimodal, sensory-input dependent way, suggesting that GABAergic basal forebrain modulation could be an important factor in attention mediated filtering of sensory information to the brain.
Collapse
Affiliation(s)
- Erik Böhm
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany.
| |
Collapse
|
10
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
11
|
Gallegos CE, Bartos M, Gumilar F, Raisman-Vozari R, Minetti A, Baier CJ. Intranasal glyphosate-based herbicide administration alters the redox balance and the cholinergic system in the mouse brain. Neurotoxicology 2020; 77:205-215. [PMID: 31991143 DOI: 10.1016/j.neuro.2020.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
Pesticide exposure is associated with cognitive and psychomotor disorders. Glyphosate-based herbicides (GlyBH) are among the most used agrochemicals, and inhalation of GlyBH sprays may arise from frequent aerial pulverizations. Previously, we described that intranasal (IN) administration of GlyBH in mice decreases locomotor activity, increases anxiety, and impairs recognition memory. Then, the aim of the present study was to investigate the mechanisms involved in GlyBH neurotoxicity after IN administration. Adult male CF-1 mice were exposed to GlyBH IN administration (equivalent to 50 mg/kg/day of Gly acid, 3 days a week, during 4 weeks). Total thiol content and the activity of the enzymes catalase, acetylcholinesterase and transaminases were evaluated in different brain areas. In addition, markers of the cholinergic and the nigrostriatal pathways, as well as of astrocytes were evaluated by fluorescence microscopy in coronal brain sections. The brain areas chosen for analysis were those seen to be affected in our previous study. GlyBH IN administration impaired the redox balance of the brain and modified the activities of enzymes involved in cholinergic and glutamatergic pathways. Moreover, GlyBH treatment decreased the number of cholinergic neurons in the medial septum as well as the expression of the α7-acetylcholine receptor in the hippocampus. Also, the number of astrocytes increased in the anterior olfactory nucleus of the exposed mice. Taken together, these disturbances may contribute to the neurobehavioural impairments reported previously by us after IN GlyBH administration in mice.
Collapse
Affiliation(s)
- Cristina Eugenia Gallegos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Mariana Bartos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Rita Raisman-Vozari
- INSERM UMR 1127, CNRS UMR 7225, UPMC, ThérapeutiqueExpérimentale de la Neurodégénérescence, Hôpital de la Salpetrière-ICM (Institut du cerveau et de la moelleépinière), Paris, France
| | - Alejandra Minetti
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina
| | - Carlos Javier Baier
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, San Juan 670, 8000 Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Schilit Nitenson A, Manzano Nieves G, Poeta DL, Bahar R, Rachofsky C, Mandairon N, Bath KG. Acetylcholine Regulates Olfactory Perceptual Learning through Effects on Adult Neurogenesis. iScience 2019; 22:544-556. [PMID: 31855767 PMCID: PMC6926271 DOI: 10.1016/j.isci.2019.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/23/2019] [Accepted: 11/06/2019] [Indexed: 01/27/2023] Open
Abstract
Learning to perceptually discriminate between chemical signals in the environment (olfactory perceptual learning [OPL]) is critical for survival. Multiple mechanisms have been implicated in OPL, including modulation of neurogenesis and manipulation of cholinergic activity. However, whether these represent distinct processes regulating OPL or if cholinergic effects on OPL depend upon neurogenesis has remained an unresolved question. Using a combination of pharmacological and optogenetic approaches, cholinergic activity was shown to be both necessary and sufficient to drive OPL, and this process was dependent on the presence of newly born cells in the olfactory bulb (OB). This study is the first to directly demonstrate that cholinergic effects on OPL require adult OB neurogenesis. Acetylcholine modulates olfactory perceptual learning Cholinergic modulation alters olfactory bulb neurogenesis Cholinergic effects on olfactory perceptual learning require adult neurogenesis Cholinergic excitation does not alter the phenotype of newborn olfactory bulb cells
Collapse
Affiliation(s)
| | | | - Devon Lynn Poeta
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Box 1821, Providence, RI 02912, USA
| | - Ryan Bahar
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carolyn Rachofsky
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Nathalie Mandairon
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Lyon 69000, France
| | - Kevin G Bath
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Box 1821, Providence, RI 02912, USA.
| |
Collapse
|
13
|
Ross JM, Bendahmane M, Fletcher ML. Olfactory Bulb Muscarinic Acetylcholine Type 1 Receptors Are Required for Acquisition of Olfactory Fear Learning. Front Behav Neurosci 2019; 13:164. [PMID: 31379534 PMCID: PMC6659260 DOI: 10.3389/fnbeh.2019.00164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
The olfactory bulb (OB) receives significant cholinergic innervation and widely expresses cholinergic receptors. While acetylcholine (ACh) is essential for olfactory learning, the exact mechanisms by which ACh modulates olfactory learning and whether it is specifically required in the OB remains unknown. Using behavioral pharmacology and optogenetics, we investigated the role of OB ACh in a simple olfactory fear learning paradigm. We find that antagonizing muscarinic ACh receptors (mAChRs) in the OB during fear conditioning but not testing significantly reduces freezing to the conditioned odor, without altering olfactory abilities. Additionally, we demonstrate that m1 mAChRs, rather than m2, are required for acquisition of olfactory fear. Finally, using mice expressing channelrhodopsin in cholinergic neurons, we show that stimulating ACh release specifically in the OB during odor-shock pairing can strengthen olfactory fear learning. Together these results define a role for ACh in olfactory associative learning and OB glomerular plasticity.
Collapse
Affiliation(s)
- Jordan M. Ross
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Mounir Bendahmane
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Max L. Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| |
Collapse
|
14
|
Sanz Diez A, Najac M, De Saint Jan D. Basal forebrain GABAergic innervation of olfactory bulb periglomerular interneurons. J Physiol 2019; 597:2547-2563. [PMID: 30920662 DOI: 10.1113/jp277811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Basal forebrain long-range projections to the olfactory bulb are important for olfactory sensitivity and odour discrimination. Using optogenetics, it was confirmed that basal forebrain afferents mediate IPSCs on granule and deep short axon cells. It was also shown that they selectively innervate specific subtypes of periglomerular (PG) cells. Three different subtypes of type 2 PG cells receive GABAergic IPSCs from the basal forebrain but not from other PG cells. Type 1 PG cells, in contrast, do not receive inputs from the basal forebrain but do receive inhibition from other PG cells. These results shed new light on the complexity and specificity of glomerular inhibitory circuits, as well as on their modulation by the basal forebrain. ABSTRACT Olfactory bulb circuits are dominated by multiple inhibitory pathways that finely tune the activity of mitral and tufted cells, the principal neurons, and regulate odour discrimination. Granule cells mediate interglomerular lateral inhibition between mitral and tufted cells' lateral dendrites whereas diverse subtypes of periglomerular (PG) cells mediate intraglomerular lateral inhibition between their apical dendrites. Deep short axon cells form broad intrabulbar inhibitory circuits that regulate both populations of interneurons. Little is known about the extrabulbar GABAergic circuits that control the activity of these various interneurons. We examined this question using patch-clamp recordings and optogenetics in olfactory bulb slices from transgenic mice. We showed that axonal projections emanating from diverse basal forebrain GABAergic neurons densely project in all layers of the olfactory bulb. These long-range GABAergic projections provide a prominent synaptic input on granule and short axon cells in deep layers as well as on selective subtypes of PG cells. Specifically, three different subclasses of type 2 PG cells receive robust and target-specific basal forebrain inputs but have little local interactions with other PG cells. In contrast, type 1 PG cells are not innervated by basal forebrain fibres but do interact with other PG cells. Thus, attention-regulated basal forebrain inputs regulate inhibition in all layers of the olfactory bulb with a previously overlooked synaptic complexity that further defines interneuron subclasses.
Collapse
Affiliation(s)
- Alvaro Sanz Diez
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3212, Université de Strasbourg, 67084, Strasbourg, France
| | - Marion Najac
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Didier De Saint Jan
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3212, Université de Strasbourg, 67084, Strasbourg, France
| |
Collapse
|
15
|
Zhou FW, Puche AC, Shipley MT. Short-Term Plasticity at Olfactory Cortex to Granule Cell Synapses Requires Ca V2.1 Activation. Front Cell Neurosci 2018; 12:387. [PMID: 30416429 PMCID: PMC6212651 DOI: 10.3389/fncel.2018.00387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022] Open
Abstract
Output projections of the olfactory bulb (OB) to the olfactory cortex (OCX) and reciprocal feedback projections from OCX provide rapid regulation of OB circuit dynamics and odor processing. Short-term synaptic plasticity (STP), a feature of many synaptic connections in the brain, can modulate the strength of feedback based on preceding network activity. We used light-gated cation channel channelrhodopsin-2 (ChR2) to investigate plasticity of excitatory synaptic currents (EPSCs) evoked at the OCX to granule cell (GC) synapse in the OB. Selective activation of OCX glutamatergic axons/terminals in OB generates strong, frequency-dependent STP in GCs. This plasticity was critically dependent on activation of CaV2.1 channels. As acetylcholine (ACh) modulates CaV2.1 channels in other brain regions and as cholinergic projections from the basal forebrain heavily target the GC layer (GCL) in OB, we investigated whether ACh modulates STP at the OCX→GC synapse. ACh decreases OCX→GC evoked EPSCs, it had no effect on STP. Thus, ACh impact on cortical feedback is independent of CaV2.1-mediated STP. Modulation of OCX feedback to the bulb by modulatory transmitters, such as ACh, or by frequency-dependent STP could regulate the precise balance of excitation and inhibition of GCs. As GCs are a major inhibitory source for OB output neurons, plasticity at the cortical feedback synapse can differentially impact OB output to higher-order networks in situations where ACh inputs are activated or by active sniff sampling of odors.
Collapse
Affiliation(s)
- Fu-Wen Zhou
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Adam C Puche
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michael T Shipley
- Department of Anatomy and Neurobiology, Program in Neurosciences, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Osinski BL, Kim A, Xiao W, Mehta NM, Kay LM. Pharmacological manipulation of the olfactory bulb modulates beta oscillations: testing model predictions. J Neurophysiol 2018; 120:1090-1106. [PMID: 29847235 DOI: 10.1152/jn.00090.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian olfactory bulb (OB) generates gamma (40-100 Hz) and beta (15-30 Hz) local field potential (LFP) oscillations. Gamma oscillations arise at the peak of inhalation supported by dendrodendritic interactions between glutamatergic mitral cells (MCs) and GABAergic granule cells (GCs). Beta oscillations are induced by odorants in learning or odor sensitization paradigms, but their mechanism and function are still poorly understood. When centrifugal OB inputs are blocked, beta oscillations disappear, but gamma oscillations persist. Centrifugal inputs target primarily GABAergic interneurons in the GC layer (GCL) and regulate GC excitability, suggesting a causal link between beta oscillations and GC excitability. Our previous modeling work predicted that convergence of excitatory/inhibitory inputs onto MCs and centrifugal inputs onto GCs increase GC excitability sufficiently to produce beta oscillations primarily through voltage dependent calcium channel-mediated GABA release, independently of NMDA channels. We test some of the predictions of this model by examining the influence of NMDA and muscarinic acetylcholine (ACh) receptors, which affect GC excitability in different ways, on beta oscillations. A few minutes after intrabulbar infusion, scopolamine (muscarinic antagonist) suppressed odor-evoked beta in response to a strong stimulus but increased beta power in response to a weak stimulus, as predicted by our model. Pyriform cortex (PC) beta power was unchanged. Oxotremorine (muscarinic agonist) suppressed all oscillations, likely from overinhibition. APV, an NMDA receptor antagonist, suppressed gamma oscillations selectively (in OB and PC), lending support to the model's prediction that beta oscillations can be supported independently of NMDA receptors. NEW & NOTEWORTHY Olfactory bulb local field potential beta oscillations appear to be gated by GABAergic granule cell excitability. Reducing excitability with scopolamine reduces beta induced by strong odors but increases beta induced by weak odors. Beta oscillations rely on the same synapse as gamma oscillations but, unlike gamma, can persist in the absence of NMDA receptor activation. Pyriform cortex beta oscillations maintain power when olfactory bulb beta power is low, and the system maintains beta band coherence.
Collapse
Affiliation(s)
- Bolesław L Osinski
- Graduate Program in Biophysical Sciences, The University of Chicago , Chicago, Illinois.,Institute for Mind and Biology, The University of Chicago , Chicago, Illinois
| | - Alex Kim
- The College, The University of Chicago , Chicago, Illinois
| | - Wenxi Xiao
- Masters Program in Computational Social Sciences, The University of Chicago , Chicago, Illinois
| | - Nisarg M Mehta
- Institute for Mind and Biology, The University of Chicago , Chicago, Illinois
| | - Leslie M Kay
- Institute for Mind and Biology, The University of Chicago , Chicago, Illinois.,Department of Psychology, The University of Chicago , Chicago, Illinois
| |
Collapse
|
17
|
Olfactory bulb acetylcholine release dishabituates odor responses and reinstates odor investigation. Nat Commun 2018; 9:1868. [PMID: 29760390 PMCID: PMC5951802 DOI: 10.1038/s41467-018-04371-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/25/2018] [Indexed: 11/08/2022] Open
Abstract
Habituation and dishabituation modulate the neural resources and behavioral significance allocated to incoming stimuli across the sensory systems. We characterize these processes in the mouse olfactory bulb (OB) and uncover a role for OB acetylcholine (ACh) in physiological and behavioral olfactory dishabituation. We use calcium imaging in both awake and anesthetized mice to determine the time course and magnitude of OB glomerular habituation during a prolonged odor presentation. In addition, we develop a novel behavioral investigation paradigm to determine how prolonged odor input affects odor salience. We find that manipulating OB ACh release during prolonged odor presentations using electrical or optogenetic stimulation rapidly modulates habituated glomerular odor responses and odor salience, causing mice to suddenly investigate a previously ignored odor. To demonstrate the ethological validity of this effect, we show that changing the visual context can lead to dishabituation of odor investigation behavior, which is blocked by cholinergic antagonists in the OB.
Collapse
|
18
|
Tong O, Delfiner L, Herskovitz S. Pain, Headache, and Other Non-motor Symptoms in Myasthenia Gravis. Curr Pain Headache Rep 2018; 22:39. [DOI: 10.1007/s11916-018-0687-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Liu X, Liu S. Cholecystokinin selectively activates short axon cells to enhance inhibition of olfactory bulb output neurons. J Physiol 2018; 596:2185-2207. [PMID: 29572837 DOI: 10.1113/jp275511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/15/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cholecystokinin (CCK) via CCK-B receptors significantly enhances the GABAA receptor-mediated synaptic inhibition of principal olfactory bulb (OB) output neurons. This CCK action requires action potentials in presynaptic neurons. The enhanced inhibition of OB output neurons is a result of CCK-elevated inhibitory input from the glomerular circuit. CCK modulation of the glomerular circuit also leads to potentiated presynaptic inhibition of olfactory nerve terminals and postsynaptic inhibition of glomerular neurons. Selective excitation of short axon cells underlies the CCK-potentiated glomerular inhibition. ABSTRACT Neuropeptides such as cholecystokinin (CCK) are important for many brain functions, including sensory processing. CCK is predominantly present in a subpopulation of excitatory neurons and activation of CCK receptors is implicated in olfactory signal processing in the olfactory bulb (OB). However, the cellular and circuit mechanisms underlying the actions of CCK in the OB remain elusive. In the present study, we characterized the effects of CCK on synaptic inhibition of the principal OB output neurons mitral/tufted cells (MTCs) followed by mechanistic analyses at both circuit and cellular levels. First, we found that CCK via CCK-B receptors enhances the GABAA receptor-mediated spontaneous IPSCs in MTCs. Second, CCK does not affect the action potential independent miniature IPSCs in MTCs. Third, CCK potentiates glomerular inhibition resulting in increased GABAB receptor-mediated presynaptic inhibition of olfactory nerve terminals and enhanced spontaneous IPSCs in MTCs and glomerular neurons. Fourth, CCK enhances miniature IPSCs in the excitatory external tufted cells, although neither in the inhibitory short axon cells (SACs) nor in periglomerular cells (PGCs). Finally, CCK excites all tested SACs and a very small minority of GABAergic neurons in the granule cell layer or in periglomerular cells, but not in deep SACs. These results demonstrate that CCK selectively activates SACs to engage the SAC-formed interglomerular circuit and thus elevates inhibition broadly in the OB glomerular layer. This modulation may prevent the system from saturating in response to a high concentration of odourants or facilitate the detection of weak stimuli by increasing signal-to-noise ratio.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaolin Liu
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Li WL, Chu MW, Wu A, Suzuki Y, Imayoshi I, Komiyama T. Adult-born neurons facilitate olfactory bulb pattern separation during task engagement. eLife 2018; 7:e33006. [PMID: 29533179 PMCID: PMC5912906 DOI: 10.7554/elife.33006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
The rodent olfactory bulb incorporates thousands of newly generated inhibitory neurons daily throughout adulthood, but the role of adult neurogenesis in olfactory processing is not fully understood. Here we adopted a genetic method to inducibly suppress adult neurogenesis and investigated its effect on behavior and bulbar activity. Mice without young adult-born neurons (ABNs) showed normal ability in discriminating very different odorants but were impaired in fine discrimination. Furthermore, two-photon calcium imaging of mitral cells (MCs) revealed that the ensemble odor representations of similar odorants were more ambiguous in the ablation animals. This increased ambiguity was primarily due to a decrease in MC suppressive responses. Intriguingly, these deficits in MC encoding were only observed during task engagement but not passive exposure. Our results indicate that young olfactory ABNs are essential for the enhancement of MC pattern separation in a task engagement-dependent manner, potentially functioning as a gateway for top-down modulation.
Collapse
Affiliation(s)
- Wankun L Li
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - Monica W Chu
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - An Wu
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - Yusuke Suzuki
- Medical Innovation Center/SK Project, Graduate School of MedicineKyoto UniversityKyotoJapan
| | | | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| |
Collapse
|
21
|
Case DT, Burton SD, Gedeon JY, Williams SPG, Urban NN, Seal RP. Layer- and cell type-selective co-transmission by a basal forebrain cholinergic projection to the olfactory bulb. Nat Commun 2017; 8:652. [PMID: 28935940 PMCID: PMC5608700 DOI: 10.1038/s41467-017-00765-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/26/2017] [Indexed: 11/24/2022] Open
Abstract
Cholinergic neurons in the basal forebrain project heavily to the main olfactory bulb, the first processing station in the olfactory pathway. The projections innervate multiple layers of the main olfactory bulb and strongly influence odor discrimination, detection, and learning. The precise underlying circuitry of this cholinergic input to the main olfactory bulb remains unclear, however. Here, we identify a specific basal forebrain cholinergic projection that innervates select neurons concentrated in the internal plexiform layer of the main olfactory bulb. Optogenetic activation of this projection elicits monosynaptic nicotinic and GABAergic currents in glomerular layer-projecting interneurons. Additionally, we show that the projection co-expresses markers for GABAergic neurotransmission. The data thus implicate neurotransmitter co-transmission in the basal forebrain regulation of this inhibitory olfactory microcircuit. Cholinergic neurons innervate multiple layers in the main olfactory bulb but the precise circuitry of this input is not known. Here the authors show that VGLUT3+ cholinergic neurons selectively innervate deep short axon cells in specific layers and elicit robust monosynaptic GABAergic and nicotinic postsynaptic currents.
Collapse
Affiliation(s)
- Daniel T Case
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, USA
| | - Shawn D Burton
- Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, USA.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeremy Y Gedeon
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sean-Paul G Williams
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nathaniel N Urban
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, USA.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA. .,Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
22
|
Chan W, Singh S, Keshav T, Dewan R, Eberly C, Maurer R, Nunez-Parra A, Araneda RC. Mice Lacking M1 and M3 Muscarinic Acetylcholine Receptors Have Impaired Odor Discrimination and Learning. Front Synaptic Neurosci 2017; 9:4. [PMID: 28210219 PMCID: PMC5288360 DOI: 10.3389/fnsyn.2017.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/18/2017] [Indexed: 01/27/2023] Open
Abstract
The cholinergic system has extensive projections to the olfactory bulb (OB) where it produces a state-dependent regulation of sensory gating. Previous work has shown a prominent role of muscarinic acetylcholine (ACh) receptors (mAChRs) in regulating the excitability of OB neurons, in particular the M1 receptor. Here, we examined the contribution of M1 and M3 mAChR subtypes to olfactory processing using mice with a genetic deletion of these receptors, the M1−/− and the M1/M3−/− knockout (KO) mice. Genetic ablation of the M1 and M3 mAChRs resulted in a significant deficit in odor discrimination of closely related molecules, including stereoisomers. However, the discrimination of dissimilar molecules, social odors (e.g., urine) and novel object recognition was not affected. In addition the KO mice showed impaired learning in an associative odor-learning task, learning to discriminate odors at a slower rate, indicating that both short and long-term memory is disrupted by mAChR dysfunction. Interestingly, the KO mice exhibited decreased olfactory neurogenesis at younger ages, a deficit that was not maintained in older animals. In older animals, the olfactory deficit could be restored by increasing the number of new born neurons integrated into the OB after exposing them to an olfactory enriched environment, suggesting that muscarinic modulation and adult neurogenesis could be two different mechanism used by the olfactory system to improve olfactory processing.
Collapse
Affiliation(s)
- Wilson Chan
- Department of Biology, University of Maryland College Park, MD, USA
| | - Sanmeet Singh
- Department of Biology, University of Maryland College Park, MD, USA
| | - Taj Keshav
- Department of Biology, University of Maryland College Park, MD, USA
| | - Ramita Dewan
- Department of Biology, University of Maryland College Park, MD, USA
| | - Christian Eberly
- Department of Biology, University of Maryland College Park, MD, USA
| | - Robert Maurer
- Department of Biology, University of Maryland College Park, MD, USA
| | - Alexia Nunez-Parra
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago, Chile
| | | |
Collapse
|
23
|
de Almeida L, Idiart M, Dean O, Devore S, Smith DM, Linster C. Internal Cholinergic Regulation of Learning and Recall in a Model of Olfactory Processing. Front Cell Neurosci 2016; 10:256. [PMID: 27877112 PMCID: PMC5099168 DOI: 10.3389/fncel.2016.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/18/2016] [Indexed: 12/02/2022] Open
Abstract
In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC) and horizontal limb of the diagonal band of Broca (HDB) to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system. In the model, cholinergic neurons reduce their firing in response to familiar odors—reducing plasticity in the PC, but increase their firing in response to novel odor—increasing PC plasticity. Recordings from HDB neurons in awake behaving rats reflect predictions from the model by showing that a subset of neurons decrease their firing as an odor becomes familiar.
Collapse
Affiliation(s)
- Licurgo de Almeida
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | - Marco Idiart
- Physics Institute Federal University of Rio Grande do Sul (UFRGS) Porto Alegre, Brazil
| | - Owen Dean
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | - Sasha Devore
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | - David M Smith
- Department of Psychology, Cornell University Ithaca, NY, USA
| | - Christiane Linster
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| |
Collapse
|
24
|
The effect of bilirubin on the excitability of mitral cells in the olfactory bulb of the rat. Sci Rep 2016; 6:32872. [PMID: 27611599 PMCID: PMC5017196 DOI: 10.1038/srep32872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
Olfactory dysfunction is a common clinical phenomenon observed in various liver diseases. Previous studies have shown a correlation between smell disorders and bilirubin levels in patients with hepatic diseases. Bilirubin is a well-known neurotoxin; however, its effect on neurons in the main olfactory bulb (MOB), the first relay in the olfactory system, has not been examined. We investigated the effect of bilirubin (>3 μM) on mitral cells (MCs), the principal output neurons of the MOB. Bilirubin increased the frequency of spontaneous firing and the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). TTX completely blocked sEPSCs in almost all of the cells tested. Bilirubin activity was partially blocked by N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepro pionic acid (AMPA) receptor antagonists. Furthermore, we found that bilirubin increased the frequency of intrinsic firing independent of synaptic transmission in MCs. Our findings suggest that bilirubin enhances glutamatergic transmission and strengthens intrinsic firing independent of synaptic transmission, all of which cause hyperexcitability in MCs. Our findings provide the basis for further investigation into the mechanisms underlying olfactory dysfunction that are often observed in patients with severe liver disease.
Collapse
|
25
|
Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol 2016; 525:574-591. [PMID: 27491021 DOI: 10.1002/cne.24088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 01/10/2023]
Abstract
Odor information is regulated by olfactory inputs, bulbar interneurons, and centrifugal inputs in the olfactory bulb (OB). Cholinergic neurons projecting from the nucleus of the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus are one of the primary centrifugal inputs to the OB. In this study, we focused on cholinergic regulation of the OB and analyzed neural morphology with a particular emphasis on the projection pathways of cholinergic neurons. Single-cell imaging of a specific neuron within dense fibers is critical to evaluate the structure and function of the neural circuits. We labeled cholinergic neurons by infection with virus vector and then reconstructed them three-dimensionally. We also examined the ultramicrostructure of synapses by electron microscopy tomography. To further clarify the function of cholinergic neurons, we performed confocal laser scanning microscopy to investigate whether other neurotransmitters are present within cholinergic axons in the OB. Our results showed the first visualization of complete cholinergic neurons, including axons projecting to the OB, and also revealed frequent axonal branching within the OB where it innervated multiple glomeruli in different areas. Furthermore, electron tomography demonstrated that cholinergic axons formed asymmetrical synapses with a morphological variety of thicknesses of the postsynaptic density. Although we have not yet detected the presence of other neurotransmitters, the range of synaptic morphology suggests multiple modes of transmission. The present study elucidates the ways that cholinergic neurons could contribute to the elaborate mechanisms involved in olfactory processing in the OB. J. Comp. Neurol. 525:574-591, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masakazu Hamamoto
- Department of Anatomy, Kawasaki Medical School, Okayama, 701-0192, Japan.,Department of Otolaryngology, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Emi Kiyokage
- Department of Anatomy, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Jaerin Sohn
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Division of Cerebral Circuitry, National Institute for Physiological Sciences, Aichi, 444-8787, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Tamotsu Harada
- Department of Otolaryngology, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Okayama, 701-0192, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, 567-0047, Japan
| |
Collapse
|
26
|
Bendahmane M, Ogg MC, Ennis M, Fletcher ML. Increased olfactory bulb acetylcholine bi-directionally modulates glomerular odor sensitivity. Sci Rep 2016; 6:25808. [PMID: 27165547 PMCID: PMC4863144 DOI: 10.1038/srep25808] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/20/2016] [Indexed: 11/09/2022] Open
Abstract
The glomerular layer of the olfactory bulb (OB) receives heavy cholinergic input from the horizontal limb of the diagonal band of Broca (HDB) and expresses both muscarinic and nicotinic acetylcholine (ACh) receptors. However, the effects of ACh on OB glomerular odor responses remain unknown. Using calcium imaging in transgenic mice expressing the calcium indicator GCaMP2 in the mitral/tufted cells, we investigated the effect of ACh on the glomerular responses to increasing odor concentrations. Using HDB electrical stimulation and in vivo pharmacology, we find that increased OB ACh leads to dynamic, activity-dependent bi-directional modulation of glomerular odor response due to the combinatorial effects of both muscarinic and nicotinic activation. Using pharmacological manipulation to reveal the individual receptor type contributions, we find that m2 muscarinic receptor activation increases glomerular sensitivity to weak odor input whereas nicotinic receptor activation decreases sensitivity to strong input. Overall, we found that ACh in the OB increases glomerular sensitivity to odors and decreases activation thresholds. This effect, along with the decreased responses to strong odor input, reduces the response intensity range of individual glomeruli to increasing concentration making them more similar across the entire concentration range. As a result, odor representations are more similar as concentration increases.
Collapse
Affiliation(s)
- Mounir Bendahmane
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - M Cameron Ogg
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Matthew Ennis
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Max L Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
27
|
Malt EA, Juhasz K, Malt UF, Naumann T. A Role for the Transcription Factor Nk2 Homeobox 1 in Schizophrenia: Convergent Evidence from Animal and Human Studies. Front Behav Neurosci 2016; 10:59. [PMID: 27064909 PMCID: PMC4811959 DOI: 10.3389/fnbeh.2016.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a highly heritable disorder with diverse mental and somatic symptoms. The molecular mechanisms leading from genes to disease pathology in schizophrenia remain largely unknown. Genome-wide association studies (GWASs) have shown that common single-nucleotide polymorphisms associated with specific diseases are enriched in the recognition sequences of transcription factors that regulate physiological processes relevant to the disease. We have used a “bottom-up” approach and tracked a developmental trajectory from embryology to physiological processes and behavior and recognized that the transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of particular interest for schizophrenia. NKX2-1 is selectively expressed from prenatal development to adulthood in the brain, thyroid gland, parathyroid gland, lungs, skin, and enteric ganglia, and has key functions at the interface of the brain, the endocrine-, and the immune system. In the developing brain, NKX2-1-expressing progenitor cells differentiate into distinct subclasses of forebrain GABAergic and cholinergic neurons, astrocytes, and oligodendrocytes. The transcription factor is highly expressed in mature limbic circuits related to context-dependent goal-directed patterns of behavior, social interaction and reproduction, fear responses, responses to light, and other homeostatic processes. It is essential for development and mature function of the thyroid gland and the respiratory system, and is involved in calcium metabolism and immune responses. NKX2-1 interacts with a number of genes identified as susceptibility genes for schizophrenia. We suggest that NKX2-1 may lie at the core of several dose dependent pathways that are dysregulated in schizophrenia. We correlate the symptoms seen in schizophrenia with the temporal and spatial activities of NKX2-1 in order to highlight promising future research areas.
Collapse
Affiliation(s)
- Eva A Malt
- Department of Adult Habilitation, Akershus University HospitalLørenskog, Norway; Institute of Clinical Medicine, Ahus Campus University of OsloOslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital Lørenskog, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of OsloOslo, Norway; Department of Research and Education, Institution of Oslo University HospitalOslo, Norway
| | - Thomas Naumann
- Centre of Anatomy, Institute of Cell Biology and Neurobiology, Charite Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
28
|
McIntyre ABR, Cleland TA. Biophysical constraints on lateral inhibition in the olfactory bulb. J Neurophysiol 2016; 115:2937-49. [PMID: 27009162 DOI: 10.1152/jn.00671.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
The mitral cells (MCs) of the mammalian olfactory bulb (OB) constitute one of two populations of principal neurons (along with middle/deep tufted cells) that integrate afferent olfactory information with top-down inputs and intrinsic learning and deliver output to downstream olfactory areas. MC activity is regulated in part by inhibition from granule cells, which form reciprocal synapses with MCs along the extents of their lateral dendrites. However, with MC lateral dendrites reaching over 1.5 mm in length in rats, the roles of distal inhibitory synapses pose a quandary. Here, we systematically vary the properties of a MC model to assess the capacity of inhibitory synaptic inputs on lateral dendrites to influence afferent information flow through MCs. Simulations using passivized models with varying dendritic morphologies and synaptic properties demonstrated that, even with unrealistically favorable parameters, passive propagation fails to convey effective inhibitory signals to the soma from distal sources. Additional simulations using an active model exhibiting action potentials, subthreshold oscillations, and a dendritic morphology closely matched to experimental values further confirmed that distal synaptic inputs along the lateral dendrite could not exert physiologically relevant effects on MC spike timing at the soma. Larger synaptic conductances representative of multiple simultaneous inputs were not sufficient to compensate for the decline in signal with distance. Reciprocal synapses on distal MC lateral dendrites may instead serve to maintain a common fast oscillatory clock across the OB by delaying spike propagation within the lateral dendrites themselves.
Collapse
Affiliation(s)
- Alexa B R McIntyre
- Tri-Institutional Program in Computational Biology and Medicine, Cornell University, Ithaca, New York; and
| | | |
Collapse
|
29
|
KCNQ potassium channels in sensory system and neural circuits. Acta Pharmacol Sin 2016; 37:25-33. [PMID: 26687932 DOI: 10.1038/aps.2015.131] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022]
Abstract
M channels, an important regulator of neural excitability, are composed of four subunits of the Kv7 (KCNQ) K(+) channel family. M channels were named as such because their activity was suppressed by stimulation of muscarinic acetylcholine receptors. These channels are of particular interest because they are activated at the subthreshold membrane potentials. Furthermore, neural KCNQ channels are drug targets for the treatments of epilepsy and a variety of neurological disorders, including chronic and neuropathic pain, deafness, and mental illness. This review will update readers on the roles of KCNQ channels in the sensory system and neural circuits as well as discuss their respective mechanisms and the implications for physiology and medicine. We will also consider future perspectives and the development of additional pharmacological models, such as seizure, stroke, pain and mental illness, which work in combination with drug-design targeting of KCNQ channels. These models will hopefully deepen our understanding of KCNQ channels and provide general therapeutic prospects of related channelopathies.
Collapse
|
30
|
Brill J, Shao Z, Puche AC, Wachowiak M, Shipley MT. Serotonin increases synaptic activity in olfactory bulb glomeruli. J Neurophysiol 2015; 115:1208-19. [PMID: 26655822 DOI: 10.1152/jn.00847.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022] Open
Abstract
Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.
Collapse
Affiliation(s)
- Julia Brill
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Zuoyi Shao
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Adam C Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Matt Wachowiak
- Department of Neurobiology and Anatomy, and Brain Institute, University of Utah, Salt Lake City, Utah
| | - Michael T Shipley
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
31
|
Li G, Linster C, Cleland TA. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells. J Neurophysiol 2015; 114:3177-200. [PMID: 26334007 DOI: 10.1152/jn.00324.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023] Open
Abstract
Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Psychology, Cornell University, Ithaca, New York;
| | - Christiane Linster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | | |
Collapse
|
32
|
Zhang S, Xiao Q, Le W. Olfactory dysfunction and neurotransmitter disturbance in olfactory bulb of transgenic mice expressing human A53T mutant α-synuclein. PLoS One 2015; 10:e0119928. [PMID: 25799501 PMCID: PMC4370499 DOI: 10.1371/journal.pone.0119928] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/17/2015] [Indexed: 12/26/2022] Open
Abstract
Parkinson disease is a multi-system neurodegenerative disease characterized by both motor and non-motor symptoms. Hyposmia is one of the early non-motor symptoms occurring in more than 90% of Parkinson disease cases, which can precede motor symptoms even several years. Up to now, the relationship between hyposmia and Parkinson disease remains elusive. Lack of proper animal models of hyposmia restricts the investigation. In this study we assessed olfactory function in Prp-A53T-α-synuclein transgenic (αSynA53T) mice which had been reported to show age-dependent motor impairments and intracytoplasmic inclusions. We also examined cholinergic and dopaminergic systems in olfactory bulb of αSynA53T mice by immunofluorescent staining, enzyme linked immunosorbent assay and western blot. We found that compared to wild type littermates, αSynA53T mice at 6 months or older displayed a deficit of odor discrimination and odor detection. No significant changes were found in olfactory memory and odor habituation. Furthermore compared to wildtype littermates, in olfactory bulb of αSynA53T mice at 10 months old we detected a marked decrease of cholinergic neurons in mitral cell layer and a decrease of acetylcholinesterase activity, while dopaminergic neurons were found increased in glomerular layer, accompanied with an increase of tyrosine hydroxylase protein. Our studies indicate that αSynA53T mice have olfactory dysfunction before motor deficits occur, and the cholinergic and dopaminergic disturbance might be responsible for the Parkinson disease-related olfactory dysfunction.
Collapse
Affiliation(s)
- Sufang Zhang
- Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Xiao
- Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Le
- Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
33
|
Liberia T, Blasco-Ibáñez JM, Nácher J, Varea E, Lanciego JL, Crespo C. Synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey. Front Neuroanat 2015; 9:28. [PMID: 25852490 PMCID: PMC4362316 DOI: 10.3389/fnana.2015.00028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/24/2015] [Indexed: 11/18/2022] Open
Abstract
The olfactory bulb (OB) of mammals receives cholinergic afferents from the horizontal limb of the diagonal band of Broca (HDB). At present, the synaptic connectivity of the cholinergic axons on the circuits of the OB has only been investigated in the rat. In this report, we analyze the synaptic connectivity of the cholinergic axons in the OB of the cynomolgus monkey (Macaca fascicularis). Our aim is to investigate whether the cholinergic innervation of the bulbar circuits is phylogenetically conserved between macrosmatic and microsmatic mammals. Our results demonstrate that the cholinergic axons form synaptic contacts on interneurons. In the glomerular layer, their main targets are the periglomerular cells, which receive axo-somatic and axo-dendritic synapses. In the inframitral region, their main targets are the granule cells, which receive synaptic contacts on their dendritic shafts and spines. Although the cholinergic boutons were frequently found in close vicinity of the dendrites of principal cells, we have not found synaptic contacts on them. From a comparative perspective, our data indicate that the synaptic connectivity of the cholinergic circuits is highly preserved in the OB of macrosmatic and microsmatic mammals.
Collapse
Affiliation(s)
- Teresa Liberia
- Faculty of Biology, Department of Cell Biology, University of Valencia Burjassot, Valencia, Spain
| | | | - Juan Nácher
- Faculty of Biology, Department of Cell Biology, University of Valencia Burjassot, Valencia, Spain
| | - Emilio Varea
- Faculty of Biology, Department of Cell Biology, University of Valencia Burjassot, Valencia, Spain
| | - José Luis Lanciego
- Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra Pamplona, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Pamplona, Navarra, Spain ; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA) Pamplona, Navarra, Spain
| | - Carlos Crespo
- Faculty of Biology, Department of Cell Biology, University of Valencia Burjassot, Valencia, Spain
| |
Collapse
|
34
|
D'Souza RD, Vijayaraghavan S. Paying attention to smell: cholinergic signaling in the olfactory bulb. Front Synaptic Neurosci 2014; 6:21. [PMID: 25309421 PMCID: PMC4174753 DOI: 10.3389/fnsyn.2014.00021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
The tractable, layered architecture of the olfactory bulb (OB), and its function as a relay between odor input and higher cortical processing, makes it an attractive model to study how sensory information is processed at a synaptic and circuit level. The OB is also the recipient of strong neuromodulatory inputs, chief among them being the central cholinergic system. Cholinergic axons from the basal forebrain modulate the activity of various cells and synapses within the OB, particularly the numerous dendrodendritic synapses, resulting in highly variable responses of OB neurons to odor input that is dependent upon the behavioral state of the animal. Behavioral, electrophysiological, anatomical, and computational studies examining the function of muscarinic and nicotinic cholinergic receptors expressed in the OB have provided valuable insights into the role of acetylcholine (ACh) in regulating its function. We here review various studies examining the modulation of OB function by cholinergic fibers and their target receptors, and provide putative models describing the role that cholinergic receptor activation might play in the encoding of odor information.
Collapse
Affiliation(s)
- Rinaldo D D'Souza
- Department of Physiology and Biophysics and the Neuroscience Program, School of Medicine, University of Colorado Aurora, CO, USA
| | - Sukumar Vijayaraghavan
- Department of Physiology and Biophysics and the Neuroscience Program, School of Medicine, University of Colorado Aurora, CO, USA
| |
Collapse
|
35
|
Imai T. Construction of functional neuronal circuitry in the olfactory bulb. Semin Cell Dev Biol 2014; 35:180-8. [PMID: 25084319 DOI: 10.1016/j.semcdb.2014.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022]
Abstract
Recent studies using molecular genetics, electrophysiology, in vivo imaging, and behavioral analyses have elucidated detailed connectivity and function of the mammalian olfactory circuits. The olfactory bulb is the first relay station of olfactory perception in the brain, but it is more than a simple relay: olfactory information is dynamically tuned by local olfactory bulb circuits and converted to spatiotemporal neural code for higher-order information processing. Because the olfactory bulb processes ∼1000 discrete input channels from different odorant receptors, it serves as a good model to study neuronal wiring specificity, from both functional and developmental aspects. This review summarizes our current understanding of the olfactory bulb circuitry from functional standpoint and discusses important future studies with particular focus on its development and plasticity.
Collapse
Affiliation(s)
- Takeshi Imai
- Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
36
|
A population of glomerular glutamatergic neurons controls sensory information transfer in the mouse olfactory bulb. Nat Commun 2014; 5:3791. [PMID: 24804702 PMCID: PMC4028618 DOI: 10.1038/ncomms4791] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/02/2014] [Indexed: 12/29/2022] Open
Abstract
In sensory systems, peripheral organs convey sensory inputs to relay networks where information is shaped by local microcircuits before being transmitted to cortical areas. In the olfactory system, odorants evoke specific patterns of sensory neuron activity which are transmitted to output neurons in olfactory bulb glomeruli. How sensory information is transferred and shaped at this level remains still unclear. Here we employ mouse genetics, 2-photon microscopy, electrophysiology and optogenetics, to identify a novel population of glutamatergic neurons (VGLUT3+) in the glomerular layer of the adult mouse olfactory bulb as well as several of their synaptic targets. Both peripheral and serotoninergic inputs control VGLUT3+ neurons firing. Furthermore, we show that VGLUT3+ neurons photostimulation in vivo strongly suppresses both spontaneous and odor-evoked firing of bulbar output neurons. In conclusion, we identify and characterize here a microcircuit controlling the transfer of sensory information at an early stage of the olfactory pathway.
Collapse
|
37
|
Cleland TA. Construction of Odor Representations by Olfactory Bulb Microcircuits. PROGRESS IN BRAIN RESEARCH 2014; 208:177-203. [DOI: 10.1016/b978-0-444-63350-7.00007-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
D'Souza RD, Parsa PV, Vijayaraghavan S. Nicotinic receptors modulate olfactory bulb external tufted cells via an excitation-dependent inhibitory mechanism. J Neurophysiol 2013; 110:1544-53. [PMID: 23843430 DOI: 10.1152/jn.00865.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Olfactory bulb (OB) glomeruli, the initial sites of synaptic processing of odor information, exhibit high levels of nicotinic acetylcholine receptor (nAChR) expression and receive strong cholinergic input from the basal forebrain. The role of glomerular nAChRs in olfactory processing, however, remains to be elucidated. External tufted (ET) cells are a major source of excitation in the glomerulus and an important component of OB physiology. We have examined the role of nAChRs in modulating ET cell activity using whole-cell electrophysiology in mouse OB slices. We show here that the activation of glomerular nAChRs leads to direct ET cell excitation, as well as an increase in the frequency of spontaneous postsynaptic GABAergic currents. β2-containing nAChRs, likely the α4β2*-nAChR subtype (* represents the possible presence of other subunits), were significant contributors to these effects. The nAChR-mediated increase in spontaneous postsynaptic GABAergic current frequency on ET cells was, for the most part, dependent on glutamate receptor activation, thus implicating a role for excitation-dependent inhibition within the glomerulus. β2-containing nAChRs also regulate the frequency of miniature inhibitory postsynaptic currents on ET cells, implying nicotinic modulation of dendrodendritic signaling between ET and periglomerular cells. Our data also indicate that nAChR activation does not affect spontaneous or evoked transmission at the olfactory nerve-to-ET cell synapse. The results from this study suggest that ET cells, along with mitral cells, play an important role in the nicotinic modulation of glomerular inhibition.
Collapse
Affiliation(s)
- Rinaldo D D'Souza
- Department of Physiology and Biophysics and Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado
| | | | | |
Collapse
|
39
|
de Almeida L, Idiart M, Linster C. A model of cholinergic modulation in olfactory bulb and piriform cortex. J Neurophysiol 2012; 109:1360-77. [PMID: 23221406 DOI: 10.1152/jn.00577.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this work we investigate in a computational model how cholinergic inputs to the olfactory bulb (OB) and piriform cortex (PC) modulate odor representations. We use experimental data derived from different physiological studies of ACh modulation of the bulbar and cortical circuitry and the interaction between these two areas. The results presented here indicate that cholinergic modulation in the OB significantly increases contrast and synchronization in mitral cell output. Each of these effects is derived from distinct neuronal interactions, with different groups of interneurons playing different roles. Both bulbar modulation effects contribute to more stable learned representations in PC, with pyramidal networks trained with cholinergic-modulated inputs from the bulb exhibiting more robust learning than those trained with unmodulated bulbar inputs. This increased robustness is evidenced as better recovery of memories from corrupted patterns and lower-concentration inputs as well as increased memory capacity.
Collapse
Affiliation(s)
- Licurgo de Almeida
- Dept. of Neurobiology and Behavior, Cornell Univ., Ithaca, NY 14853, USA
| | | | | |
Collapse
|
40
|
Sharma G. The dominant functional nicotinic receptor in progenitor cells in the rostral migratory stream is the α3β4 subtype. J Neurophysiol 2012; 109:867-72. [PMID: 23136348 DOI: 10.1152/jn.00886.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Addition of newly generated neurons into mature neural circuits in the adult CNS responds to changes in neurotransmitter levels and is tightly coupled to the activity of specific brain regions. This postnatal neurogenesis contributes to plasticity of the olfactory bulb and hippocampus and is thought to play a role in learning and memory, context and odor discrimination, as well as perceptual learning. While acetylcholine plays an important role in odor discrimination and perceptual learning, its role in adult neurogenesis in the olfactory bulb has not been elucidated. In this study, I have examined the functional expression of nAChRs in progenitor cells of the rostral migratory stream (RMS) in the adult olfactory bulb of mice. I show that most of these cells in the RMS exhibit large nAChR-mediated calcium transients upon application of acetylcholine (ACh). Unlike in the hippocampus, the predominant functional nAChRs on progenitor cells are of α3β4 subtype. Interestingly, functional receptor expression is lost once progenitor cells mature, and are incorporated into the granule cell layer. Instead, nAChRs are now expressed on some presynaptic terminals and modulate glutamate release onto granule cells. My results imply that ACh is a part of the permissive niche and likely plays a role in development of progenitor cells.
Collapse
Affiliation(s)
- Geeta Sharma
- Department of Cell and Developmental Biology, University of Colorado,School of Medicine, Aurora, CO, USA.
| |
Collapse
|
41
|
Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiol Dis 2012; 46:527-52. [PMID: 22192366 PMCID: PMC3429117 DOI: 10.1016/j.nbd.2011.10.026] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
Olfactory dysfunction is an early 'pre-clinical' sign of Parkinson's disease (PD). The present review is a comprehensive and up-to-date assessment of such dysfunction in PD and related disorders. The olfactory bulb is implicated in the dysfunction, since only those syndromes with olfactory bulb pathology exhibit significant smell loss. The role of dopamine in the production of olfactory system pathology is enigmatic, as overexpression of dopaminergic cells within the bulb's glomerular layer is a common feature of PD and most animal models of PD. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with the most smell loss. When compromised, these systems, which regulate microglial activity, can influence the induction of localized brain inflammation, oxidative damage, and cytosolic disruption of cellular processes. In monogenetic forms of PD, olfactory dysfunction is rarely observed in asymptomatic gene carriers, but is present in many of those that exhibit the motor phenotype. This suggests that such gene-related influences on olfaction, when present, take time to develop and depend upon additional factors, such as those from aging, other genes, formation of α-synuclein- and tau-related pathology, or lowered thresholds to oxidative stress from toxic insults. The limited data available suggest that the physiological determinants of the early changes in PD-related olfactory function are likely multifactorial and may include the same determinants as those responsible for a number of other non-motor symptoms of PD, such as dysautonomia and sleep disturbances.
Collapse
Affiliation(s)
- Richard L Doty
- Smell & Taste Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Schofield PW, Ebrahimi H, Jones AL, Bateman GA, Murray SR. An olfactory 'stress test' may detect preclinical Alzheimer's disease. BMC Neurol 2012; 12:24. [PMID: 22551361 PMCID: PMC3403955 DOI: 10.1186/1471-2377-12-24] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 05/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The olfactory bulb (OB) receives extensive cholinergic input from the basal forebrain and is affected very early in Alzheimer's disease (AD). We speculated that an olfactory 'stress test' (OST), targeting the OB, might be used to unmask incipient AD. We investigated if change in olfactory performance following intranasal atropine was associated with several known antecedents or biomarkers of AD. METHODS We measured change in performance on the University of Pennsylvania Smell Identification Test (UPSIT) in the left nostril before (20-items) and after (remaining 20-items) intranasal administration of 1 mg of atropine. We administered cognitive tests, measured hippocampal volume from MRI scans and recorded Apolipoprotein E genotype as indices relevant to underlying AD. RESULTS In a convenience sample of 56 elderly individuals (14 probable AD, 13 cognitive impairment no dementia, 29 cognitively intact) the change in UPSIT score after atropine ('atropine effect' = AE) correlated significantly with demographically scaled episodic memory score (r = 0.57, p < 0.001) and left hippocampal volume (LHCV) (r = 0.53, p < 0.001). Among non-demented individuals (n = 42), AE correlated with episodic memory (r = 0.52, p < 0.001) and LHCV (r = 0.49, p < 0.001) and hierarchical linear regression models adjusted for age, gender, education, and baseline UPSIT showed that the AE explained more variance in memory performance (24%) than did LHCV (15%). The presence of any APOE ϵ4 allele was associated with a more negative AE (p = 0.014). CONCLUSIONS The OST using atropine as an olfactory probe holds promise as a simple, inexpensive screen for early and preclinical AD and further work, including longitudinal studies, is needed to explore this possibility.
Collapse
Affiliation(s)
- Peter W Schofield
- Neuropsychiatry service, Hunter New England Area Health, Newcastle, Australia.
| | | | | | | | | |
Collapse
|
43
|
Krosnowski K, Ashby S, Sathyanesan A, Luo W, Ogura T, Lin W. Diverse populations of intrinsic cholinergic interneurons in the mouse olfactory bulb. Neuroscience 2012; 213:161-78. [PMID: 22525133 DOI: 10.1016/j.neuroscience.2012.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Cholinergic activities affect olfactory bulb (OB) information processing and associated learning and memory. However, the presence of intrinsic cholinergic interneurons in the OB remains controversial. As a result, morphological and functional properties of these cells are largely undetermined. We characterized cholinergic interneurons using transgenic mice that selectively mark choline acetyltransferase (ChAT)-expressing cells and immunolabeling. We found a significant number of intrinsic cholinergic interneurons in the OB. These interneurons reside primarily in the glomerular layer (GL) and external plexiform layer (EPL) and exhibit diverse distribution patterns of nerve processes, indicating functional heterogeneity. Further, we found these neurons express ChAT and vesicular acetylcholine transporter (VAChT), but do not immunoreact to glutamatergic, GABAergic or dopaminergic markers and are distinct from calretinin-expressing interneurons. Interestingly, the cholinergic population partially overlaps with the calbindin D28K-expressing interneuron population, revealing the neurotransmitter identity of this sub-population. Additionally, we quantitatively determined the density of VAChT labeled cholinergic nerve fibers in various layers of the OB, as well as the intensity of VAChT immunoreactivity within the GL, suggesting primary sites of cholinergic actions. Taken together, our results provide clear evidence showing the presence of a significant number of cholinergic interneurons and that these morphologically and distributionally diverse interneurons make up complex local cholinergic networks in the OB. Thus, our results suggest that olfactory information processing is modulated by dual cholinergic systems of local interneuron networks and centrifugal projections.
Collapse
Affiliation(s)
- K Krosnowski
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|
44
|
Chow SF, Wick SD, Riecke H. Neurogenesis drives stimulus decorrelation in a model of the olfactory bulb. PLoS Comput Biol 2012; 8:e1002398. [PMID: 22442645 PMCID: PMC3305347 DOI: 10.1371/journal.pcbi.1002398] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/09/2012] [Indexed: 01/25/2023] Open
Abstract
The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability, storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb--the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells--are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures.
Collapse
Affiliation(s)
- Siu-Fai Chow
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
| | - Stuart D. Wick
- Department of Physics, North Central College, Naperville, Illinois, United States of America
| | - Hermann Riecke
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
45
|
Simoes de Souza FM, Busquet N, Blatner M, Maclean KN, Restrepo D. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome. Sci Rep 2011; 1:137. [PMID: 22355654 PMCID: PMC3216618 DOI: 10.1038/srep00137] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/28/2011] [Indexed: 11/20/2022] Open
Abstract
Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.
Collapse
Affiliation(s)
- Fabio M. Simoes de Souza
- Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A.
- These authors contributed equally to this work
| | - Nicolas Busquet
- Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A.
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
- These authors contributed equally to this work
| | | | - Kenneth N. Maclean
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Diego Restrepo
- Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A.
| |
Collapse
|
46
|
Bovetti S, Gribaudo S, Puche AC, De Marchis S, Fasolo A. From progenitors to integrated neurons: role of neurotransmitters in adult olfactory neurogenesis. J Chem Neuroanat 2011; 42:304-16. [PMID: 21641990 DOI: 10.1016/j.jchemneu.2011.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Adult neurogenesis is due to the persistence of pools of constitutive stem cells able to give rise to a progeny of proliferating progenitors. In rodents, adult neurogenic niches have been found in the subventricular zone (SVZ) along the lateral ventricles and in the subgranular zone of the dentate gyrus in the hippocampus. SVZ progenitors undergo a unique process of tangential migration from the lateral ventricle to the olfactory bulb (OB) where they differentiate mainly into GABAergic interneurons in the granule and glomerular layers. SVZ progenitor proliferation, migration and differentiation into fully integrated neurons, are strictly related processes regulated by complex interactions between cell intrinsic and extrinsic influences. Numerous observations demonstrate that neurotrasmitters are involved in all steps of the adult neurogenic process, but the understanding of their role is hampered by their intricate mechanism of action and by the highly complex network in which neurotransmitters work. By considering the three main steps of olfactory adult neurogenesis (proliferation, migration and integration), this review will discuss recent advances in the study of neurotransmitters, highlighting the regulatory mechanisms upstream and downstream their action.
Collapse
Affiliation(s)
- Serena Bovetti
- Department of Animal & Human Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | | | | | | | | |
Collapse
|
47
|
Smith RS, Araneda RC. Cholinergic modulation of neuronal excitability in the accessory olfactory bulb. J Neurophysiol 2010; 104:2963-74. [PMID: 20861438 DOI: 10.1152/jn.00446.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The accessory olfactory bulb (AOB), the first relay of chemosensory information in the Vomeronasal system, receives extensive cholinergic innervation from the basal forebrain. Cholinergic modulation of neuronal activity in the olfactory bulb has been hypothesized to play an important role in olfactory processing; however, little is known about the cellular actions of acetylcholine (ACh) within the AOB. Here using in vitro slice preparation, we show that muscarinic acetylcholine receptor (mAChR) activation increases neuronal excitability of granule and mitral/tufted cells (GCs and MCs) in the AOB. Activation of mAChRs increased excitability of GCs by three distinct mechanisms: induction of a long-lasting depolarization, activation of a slow afterdepolarization (sADP), and an increase in excitatory glutamatergic input due to MC depolarization. The depolarization and sADP were elicited by the selective agonist 4-[[[(3-chlorophenyl)amino]carbonyl]oxy]-N,N,N-trimethyl-2-butyn-1-aminium chloride (100 μM) and blocked by low concentrations of pirenzepine (300 nM), indicating that they result from activation of M1-like mAChRs. In contrast, cholinergic stimulation increased the excitability of MCs via recruitment of nicotinic AChRs (nAChRs) and M1-like mAChRs. Submaximal activation of these receptors, however, decreased the excitability of MCs. Surprisingly, we found that unlike GCs in the main olfactory bulb, GCs in the AOB are excited by mAChR activation in young postnatal neurons, suggesting marked differences in cholinergic regulation of development between these two regions of the olfactory bulb.
Collapse
Affiliation(s)
- Richard S Smith
- Dept. of Biology, Bioscience Research Bldg. R-1239, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
48
|
Matsutani S. Trajectory and terminal distribution of single centrifugal axons from olfactory cortical areas in the rat olfactory bulb. Neuroscience 2010; 169:436-48. [DOI: 10.1016/j.neuroscience.2010.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 04/27/2010] [Accepted: 05/01/2010] [Indexed: 11/26/2022]
|
49
|
Takahashi Y, Kaba H. Muscarinic receptor type 1 (M1) stimulation, probably through KCNQ/Kv7 channel closure, increases spontaneous GABA release at the dendrodendritic synapse in the mouse accessory olfactory bulb. Brain Res 2010; 1339:26-40. [PMID: 20385108 DOI: 10.1016/j.brainres.2010.03.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/28/2010] [Accepted: 03/30/2010] [Indexed: 01/10/2023]
Abstract
Cholinergic modulation of spontaneous GABAergic currents (mIPSC) was studied using whole-cell patch methods in mouse accessory olfactory bulb slices. Carbachol (above 100 microM) administration produced an increase in the mIPSC frequency in mitral cells, but did not affect the responses of mitral cells to GABA. The carbachol effect persisted in the presence of combined ionotropic and metabotropic glutamatergic receptor antagonists. The carbachol effect was reduced by the muscarinic receptor type-1 and -4 (M1 and M4) antagonist pirenzepine (10 microM), but not by the M2 and M4 antagonist himbacine (10 microM). The KCNQ/Kv7 potassium channel openers retigabine (80 microM) and diclofenac (300 microM) blocked the carbachol action, while the KCNQ potassium channel blocker XE-911 (20 microM) increased the mIPSC frequency. XE-911's action persisted in the presence of glutamate receptor blockers. In the presence of carbachol, mIPSCs were abolished by Ni (200 microM), while being insensitive to the calcium channel blocker nimodipine (30 microM), suggesting a role for R-type calcium channels in the GABA release. These results suggest that carbachol closed KCNQ channels by stimulating M1 receptors on granule cell dendrites, and the resulting depolarized and unstable membrane promoted calcium influx, thus increasing the GABA release. The possible role of acetylcholine in facilitating formation of a pheromone memory in mice is also discussed.
Collapse
Affiliation(s)
- Yoshito Takahashi
- Department of Physiology, Kochi Medical School, Nankoku, Kochi, Japan.
| | | |
Collapse
|
50
|
Abstract
The neural basis of olfactory information processing and olfactory percept formation is a topic of intense investigation as new genetic, optical, and psychophysical tools are brought to bear to identify the sites and interaction modes of cortical areas involved in the central processing of olfactory information. New methods for recording cellular interactions and network events in the awake, behaving brain during olfactory processing and odor-based decision making have shown remarkable new properties of neuromodulation and synaptic interactions distinct from those observed in anesthetized brains. Psychophysical, imaging, and computational studies point to the orbitofrontal cortex as the likely locus of odor percept formation in mammals, but further work is needed to identify a causal link between perceptual and neural events in this area.
Collapse
Affiliation(s)
- Alan Gelperin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|