1
|
Bellon A, Feuillet V, Cortez-Resendiz A, Mouaffak F, Kong L, Hong LE, De Godoy L, Jay TM, Hosmalin A, Krebs MO. Dopamine-induced pruning in monocyte-derived-neuronal-like cells (MDNCs) from patients with schizophrenia. Mol Psychiatry 2022; 27:2787-2802. [PMID: 35365810 PMCID: PMC9156413 DOI: 10.1038/s41380-022-01514-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023]
Abstract
The long lapse between the presumptive origin of schizophrenia (SCZ) during early development and its diagnosis in late adolescence has hindered the study of crucial neurodevelopmental processes directly in living patients. Dopamine, a neurotransmitter consistently associated with the pathophysiology of SCZ, participates in several aspects of brain development including pruning of neuronal extensions. Excessive pruning is considered the cause of the most consistent finding in SCZ, namely decreased brain volume. It is therefore possible that patients with SCZ carry an increased susceptibility to dopamine's pruning effects and that this susceptibility would be more obvious in the early stages of neuronal development when dopamine pruning effects appear to be more prominent. Obtaining developing neurons from living patients is not feasible. Instead, we used Monocyte-Derived-Neuronal-like Cells (MDNCs) as these cells can be generated in only 20 days and deliver reproducible results. In this study, we expanded the number of individuals in whom we tested the reproducibility of MDNCs. We also deepened the characterization of MDNCs by comparing its neurostructure to that of human developing neurons. Moreover, we studied MDNCs from 12 controls and 13 patients with SCZ. Patients' cells differentiate more efficiently, extend longer secondary neurites and grow more primary neurites. In addition, MDNCs from medicated patients expresses less D1R and prune more primary neurites when exposed to dopamine. Haloperidol did not influence our results but the role of other antipsychotics was not examined and thus, needs to be considered as a confounder.
Collapse
Affiliation(s)
- Alfredo Bellon
- Department of Psychiatry and Behavioral Health, Penn State Hershey Medical Center, Hershey, PA, USA.
- Department of Pharmacology, Penn State Hershey Medical Center, Hershey, PA, USA.
| | - Vincent Feuillet
- Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014, Paris, France
| | - Alonso Cortez-Resendiz
- Department of Psychiatry and Behavioral Health, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Faycal Mouaffak
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Pathophysiology of Psychiatric Disorders, Université de Paris, Paris, France
- Pôle de Psychiatrie d'Adultes 93G04, EPS Ville Evrard, Saint Denis, France
| | - Lan Kong
- Department of Public Health Sciences, Penn State Hershey Medical Center, Hershey, PA, USA
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Therese M Jay
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Pathophysiology of Psychiatric Disorders, Université de Paris, Paris, France
| | - Anne Hosmalin
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014, Paris, France
| | - Marie-Odile Krebs
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Pathophysiology of Psychiatric Disorders, Université de Paris, Paris, France
- Groupe-Hospitalo-Universitaire de Paris, Psychiatrie et Neuroscience, Pôle PEPIT, University of Paris, Paris, France
| |
Collapse
|
2
|
Yazdanfar N, Ali Mard S, Mahmoudi J, Bakhtiari N, Sarkaki A, Farnam A. Maternal Morphine Exposure and Post-Weaning Social Isolation Impair Memory and Ventral Striatum Dopamine System in Male Offspring: Is an Enriched Environment Beneficial? Neuroscience 2021; 461:80-90. [PMID: 33662528 DOI: 10.1016/j.neuroscience.2021.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Maternal opioids abuse has some deleterious consequences on next generations. Besides, children's rearing conditions can affect the behavioral states and brain plasticity in their later life. In the present study, we investigated the effects of maternal morphine (MOR) treatment and post-weaning rearing conditions on memory, pain threshold, and the ventral striatum dopaminergic activity in male offspring. Female Wistar rats were treated twice daily either with escalating doses of MOR or with normal saline (NS) one week before mating, during pregnancy and lactation. After weaning, the male pups were assigned to six groups and then raised for an 8-week period under three different conditions: standard (STD), isolated (ISO) or enriched environment (EE). The behavioral tests, including passive avoidance task, novel object recognition, and tail-flick test, were also performed. Moreover, the ventral striatum dopamine's content (DA), mRNA expressions of dopamine receptor 1(D1R) and dopamine receptor 2 (D2R), and dopamine transporter (DAT) were evaluated. The obtained data showed that maternal MOR exposure and post-weaning social isolation could dramatically impair memory in offspring, while EE could reverse these adverse outcomes. Moreover, results of tail flick latency indicated the increased pain threshold in EE animals. At molecular level, maternal MOR injections and social isolation reduced DA levels and altered expressions of D1R, D2R, and DAT within the ventral striatum of these male offspring. However, post-weaning EE partially buffered these changes. Our finding signified the effects of maternal MOR exposure and social isolation on the behaviors and neurochemistry of brain in next generation, and it also provided evidence on reversibility of these alterations following EE.
Collapse
Affiliation(s)
- Neda Yazdanfar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Mard
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Alireza Farnam
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Delva NC, Stanwood GD. Dysregulation of brain dopamine systems in major depressive disorder. Exp Biol Med (Maywood) 2021; 246:1084-1093. [PMID: 33593109 DOI: 10.1177/1535370221991830] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder (MDD or depression) is a debilitating neuropsychiatric syndrome with genetic, epigenetic, and environmental contributions. Depression is one of the largest contributors to chronic disease burden; it affects more than one in six individuals in the United States. A wide array of cellular and molecular modifications distributed across a variety of neuronal processes and circuits underlie the pathophysiology of depression-no established mechanism can explain all aspects of the disease. MDD suffers from a vast treatment gap worldwide, and large numbers of individuals who require treatment do not receive adequate care. This mini-review focuses on dysregulation of brain dopamine (DA) systems in the pathophysiology of MDD and describing new cellular targets for potential medication development focused on DA-modulated micro-circuits. We also explore how neurodevelopmental factors may modify risk for later emergence of MDD, possibly through dopaminergic substrates in the brain.
Collapse
Affiliation(s)
- Nella C Delva
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Gregg D Stanwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.,Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
5
|
Landeira BS, Santana TTDS, Araújo JADM, Tabet EI, Tannous BA, Schroeder T, Costa MR. Activity-Independent Effects of CREB on Neuronal Survival and Differentiation during Mouse Cerebral Cortex Development. Cereb Cortex 2019; 28:538-548. [PMID: 27999124 DOI: 10.1093/cercor/bhw387] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/01/2016] [Indexed: 11/14/2022] Open
Abstract
Neuronal survival and morphological maturation depends on the action of the transcription factor calcium responsive element binding protein (CREB), which regulates expression of several target genes in an activity-dependent manner. However, it remains largely unknown whether CREB-mediated transcription could play a role at early stages of neuronal differentiation, prior to the establishment of functional synaptic contacts. Here, we show that CREB is phosphorylated at very early stages of neuronal differentiation in vivo and in vitro, even in the absence of depolarizing agents. Using genetic tools, we also show that inhibition of CREB-signaling affects neuronal growth and survival in vitro without affecting cell proliferation and neurogenesis. Expression of A-CREB or M-CREB, 2 dominant-negative inhibitors of CREB, decreases cell survival and the complexity of neuronal arborization. Similar changes are observed in neurons treated with protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitors, which also show decreased levels of pCREBSer133. Notably, expression of CREB-FY, a Tyr134Phe CREB mutant with a lower Km for phosphorylation, partly rescues the effects of PKA and CaMKII inhibition. Our data indicate that CREB-mediated signaling play important roles at early stages of cortical neuron differentiation, prior to the establishment of fully functional synaptic contacts.
Collapse
Affiliation(s)
| | | | | | - Elie I Tabet
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstr. 26, 4058 Basel, Switzerland
| | - Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59056-450, Brazil
| |
Collapse
|
6
|
Souza BOF, Abou Rjeili M, Quintana C, Beaulieu JM, Casanova C. Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice. Front Integr Neurosci 2018; 11:41. [PMID: 29379422 PMCID: PMC5775240 DOI: 10.3389/fnint.2017.00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023] Open
Abstract
Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p < 0.01) were higher in D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development.
Collapse
Affiliation(s)
| | - Mira Abou Rjeili
- Laboratory of Visual Neuroscience, Optometry School, University of Montreal, Montreal, QC, Canada
| | - Clémentine Quintana
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jean M Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Christian Casanova
- Laboratory of Visual Neuroscience, Optometry School, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
7
|
Adolescence is the starting point of sex-dichotomous COMT genetic effects. Transl Psychiatry 2017; 7:e1141. [PMID: 28556830 PMCID: PMC5584523 DOI: 10.1038/tp.2017.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023] Open
Abstract
The catechol-o-methyltransferase (COMT) genetic variations produce pleiotropic behavioral/neuroanatomical effects. Some of these effects may vary among sexes. However, the developmental trajectories of COMT-by-sex interactions are unclear. Here we found that extreme COMT reduction, in both humans (22q11.2 deletion syndrome COMT Met) and mice (COMT-/-), was associated to cortical thinning only after puberty and only in females. Molecular biomarkers, such as tyrosine hydroxylase, Akt and neuronal/cellular counting, confirmed that COMT-by-sex divergent effects started to appear at the cortical level during puberty. These biochemical differences were absent in infancy. Finally, developmental cognitive assessment in 22q11DS and COMT knockout mice established that COMT-by-sex-dichotomous effects in executive functions were already apparent in adolescence. These findings uncover that genetic variations severely reducing COMT result in detrimental cortical and cognitive development selectively in females after their sexual maturity. This highlights the importance of taking into account the combined effect of genetics, sex and developmental stage.
Collapse
|
8
|
Stucky A, Bakshi KP, Friedman E, Wang HY. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling. PLoS One 2016; 11:e0160585. [PMID: 27494324 PMCID: PMC4975466 DOI: 10.1371/journal.pone.0160585] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022] Open
Abstract
Prenatal cocaine exposure causes profound changes in neurobehavior as well as synaptic function and structure with compromised glutamatergic transmission. Since synaptic health and glutamatergic activity are tightly regulated by brain-derived neurotrophic factor (BDNF) signaling through its cognate tyrosine receptor kinase B (TrkB), we hypothesized that prenatal cocaine exposure alters BDNF-TrkB signaling during brain development. Here we show prenatal cocaine exposure enhances BDNF-TrkB signaling in hippocampus and prefrontal cortex (PFCX) of 21-day-old rats without affecting the expression levels of TrkB, P75NTR, signaling molecules, NMDA receptor—NR1 subunit as well as proBDNF and BDNF. Prenatal cocaine exposure reduces activity-dependent proBDNF and BDNF release and elevates BDNF affinity for TrkB leading to increased tyrosine-phosphorylated TrkB, heightened Phospholipase C-γ1 and N-Shc/Shc recruitment and higher downstream PI3K and ERK activation in response to ex vivo BDNF. The augmented BDNF-TrkB signaling is accompanied by increases in association between activated TrkB and NMDARs. These data suggest that cocaine exposure during gestation upregulates BDNF-TrkB signaling and its interaction with NMDARs by increasing BDNF affinity, perhaps in an attempt to restore the diminished excitatory neurotransmission.
Collapse
Affiliation(s)
- Andres Stucky
- Departments of Physiology, Pharmacology and Neuroscience, School of Medicine at CCNY, The City University of New York, New York, New York, 10031, United States of America
- Department of Biology, Neuroscience Program, Graduate School of The City University of New York, New York, New York, 10061, United States of America
| | - Kalindi P. Bakshi
- Departments of Physiology, Pharmacology and Neuroscience, School of Medicine at CCNY, The City University of New York, New York, New York, 10031, United States of America
| | - Eitan Friedman
- Departments of Physiology, Pharmacology and Neuroscience, School of Medicine at CCNY, The City University of New York, New York, New York, 10031, United States of America
| | - Hoau-Yan Wang
- Departments of Physiology, Pharmacology and Neuroscience, School of Medicine at CCNY, The City University of New York, New York, New York, 10031, United States of America
- * E-mail:
| |
Collapse
|
9
|
Martin MM, Graham DL, McCarthy DM, Bhide PG, Stanwood GD. Cocaine-induced neurodevelopmental deficits and underlying mechanisms. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:147-73. [PMID: 27345015 PMCID: PMC5538582 DOI: 10.1002/bdrc.21132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/06/2016] [Indexed: 11/06/2022]
Abstract
Exposure to drugs early in life has complex and long-lasting implications for brain structure and function. This review summarizes work to date on the immediate and long-term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with mechanistic preclinical studies, to define our current knowledge base and identify gaps for future investigation. Birth Defects Research (Part C) 108:147-173, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Melissa M. Martin
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Devon L. Graham
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Deirdre M. McCarthy
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Pradeep G. Bhide
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Gregg D. Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| |
Collapse
|
10
|
Hallgren S, Viberg H. Postnatal exposure to PFOS, but not PBDE 99, disturb dopaminergic gene transcription in the mouse CNS. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:121-6. [PMID: 26686188 DOI: 10.1016/j.etap.2015.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 05/03/2023]
Abstract
The CNS of breast feeding infants and toddlers may be exposed to persistent organic pollutants via lactational transfer. Here, 10 days old mice were exposed to single oral doses of either PFOS, PBDE99 or vehicle control and were examined for changes in dopaminergic gene transcription in CNS tissue collected at 24h or 2 months post exposure.qPCR analyses of brain tissue from mice euthanized 24h post exposure revealed that PFOS affected transcription of Dopamine receptor-D5 (DRD5) in cerebral cortex and Tyrosine hydroxylase (TH) in the hippocampus. At 2 months of age, mice neonatally exposed to PFOS displayed decreased transcription of Dopamine receptor-D2 (DRD2) and TH in hippocampus. No significant changes in any of the tested genes were observed in PBDE99 exposed mice. This indicates that PFOS, but not PBDE99, affects the developing cerebral dopaminergic system at gene transcriptional level in cortex and hippocampus, which may account for some of the mechanistic effects behind the aetiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Stefan Hallgren
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden.
| | - Henrik Viberg
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| |
Collapse
|
11
|
Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area. Proc Natl Acad Sci U S A 2015; 112:E1498-506. [PMID: 25675529 DOI: 10.1073/pnas.1500450112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There is strong evidence that the core deficits of schizophrenia result from dysfunction of the dopamine (DA) system, but details of this dysfunction remain unclear. We previously reported a model of transgenic mice that selectively and reversibly overexpress DA D2 receptors (D2Rs) in the striatum (D2R-OE mice). D2R-OE mice display deficits in cognition and motivation that are strikingly similar to the deficits in cognition and motivation observed in patients with schizophrenia. Here, we show that in vivo, both the firing rate (tonic activity) and burst firing (phasic activity) of identified midbrain DA neurons are impaired in the ventral tegmental area (VTA), but not in the substantia nigra (SN), of D2R-OE mice. Normalizing striatal D2R activity by switching off the transgene in adulthood recovered the reduction in tonic activity of VTA DA neurons, which is concordant with the rescue in motivation that we previously reported in our model. On the other hand, the reduction in burst activity was not rescued, which may be reflected in the observed persistence of cognitive deficits in D2R-OE mice. We have identified a potential molecular mechanism for the altered activity of DA VTA neurons in D2R-OE mice: a reduction in the expression of distinct NMDA receptor subunits selectively in identified mesolimbic DA VTA, but not nigrostriatal DA SN, neurons. These results suggest that functional deficits relevant for schizophrenia symptoms may involve differential regulation of selective DA pathways.
Collapse
|
12
|
Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 2015; 40:61-87. [PMID: 24938210 PMCID: PMC4262892 DOI: 10.1038/npp.2014.147] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023]
Abstract
Most drugs of abuse easily cross the placenta and can affect fetal brain development. In utero exposures to drugs thus can have long-lasting implications for brain structure and function. These effects on the developing nervous system, before homeostatic regulatory mechanisms are properly calibrated, often differ from their effects on mature systems. In this review, we describe current knowledge on how alcohol, nicotine, cocaine, amphetamine, Ecstasy, and opiates (among other drugs) produce alterations in neurodevelopmental trajectory. We focus both on animal models and available clinical and imaging data from cross-sectional and longitudinal human studies. Early studies of fetal exposures focused on classic teratological methods that are insufficient for revealing more subtle effects that are nevertheless very behaviorally relevant. Modern mechanistic approaches have informed us greatly as to how to potentially ameliorate the induced deficits in brain formation and function, but conclude that better delineation of sensitive periods, dose-response relationships, and long-term longitudinal studies assessing future risk of offspring to exhibit learning disabilities, mental health disorders, and limited neural adaptations are crucial to limit the societal impact of these exposures.
Collapse
Affiliation(s)
- Emily J Ross
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Devon L Graham
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Gregg D Stanwood
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
13
|
London ED, Kohno M, Morales AM, Ballard ME. Chronic methamphetamine abuse and corticostriatal deficits revealed by neuroimaging. Brain Res 2014; 1628:174-85. [PMID: 25451127 DOI: 10.1016/j.brainres.2014.10.044] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023]
Abstract
Despite aggressive efforts to contain it, methamphetamine use disorder continues to be major public health problem; and with generic behavioral therapies still the mainstay of treatment for methamphetamine abuse, rates of attrition and relapse remain high. This review summarizes the findings of structural, molecular, and functional neuroimaging studies of methamphetamine abusers, focusing on cortical and striatal abnormalities and their potential contributions to cognitive and behavioral phenotypes that can serve to promote compulsive drug use. These studies indicate that individuals with a history of chronic methamphetamine abuse often display several signs of corticostriatal dysfunction, including abnormal gray- and white-matter integrity, monoamine neurotransmitter system deficiencies, neuroinflammation, poor neuronal integrity, and aberrant patterns of brain connectivity and function, both when engaged in cognitive tasks and at rest. More importantly, many of these neural abnormalities were found to be linked with certain addiction-related phenotypes that may influence treatment response (e.g., poor self-control, cognitive inflexibility, maladaptive decision-making), raising the possibility that they may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Edythe D London
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024; Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90024; Departments of Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90024.
| | - Milky Kohno
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| | - Angelica M Morales
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| | - Michael E Ballard
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| |
Collapse
|
14
|
Sannino S, Gozzi A, Cerasa A, Piras F, Scheggia D, Managò F, Damiano M, Galbusera A, Erickson LC, De Pietri Tonelli D, Bifone A, Tsaftaris SA, Caltagirone C, Weinberger DR, Spalletta G, Papaleo F. COMT Genetic Reduction Produces Sexually Divergent Effects on Cortical Anatomy and Working Memory in Mice and Humans. Cereb Cortex 2014; 25:2529-41. [PMID: 24658585 DOI: 10.1093/cercor/bhu053] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic variations in catechol-O-methyltransferase (COMT) that modulate cortical dopamine have been associated with pleiotropic behavioral effects in humans and mice. Recent data suggest that some of these effects may vary among sexes. However, the specific brain substrates underlying COMT sexual dimorphisms remain unknown. Here, we report that genetically driven reduction in COMT enzyme activity increased cortical thickness in the prefrontal cortex (PFC) and postero-parieto-temporal cortex of male, but not female adult mice and humans. Dichotomous changes in PFC cytoarchitecture were also observed: reduced COMT increased a measure of neuronal density in males, while reducing it in female mice. Consistent with the neuroanatomical findings, COMT-dependent sex-specific morphological brain changes were paralleled by divergent effects on PFC-dependent working memory in both mice and humans. These findings emphasize a specific sex-gene interaction that can modulate brain morphological substrates with influence on behavioral outcomes in healthy subjects and, potentially, in neuropsychiatric populations.
Collapse
Affiliation(s)
- Sara Sannino
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Alessandro Gozzi
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Science @UNITN, 38068, Rovereto, Italy
| | - Antonio Cerasa
- IBFM Institute of Bioimaging and Molecular Physiology, National Research Council (CNR), 88100, Germaneto (CZ), Italy
| | | | - Diego Scheggia
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Francesca Managò
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Mario Damiano
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Science @UNITN, 38068, Rovereto, Italy
| | - Alberto Galbusera
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Science @UNITN, 38068, Rovereto, Italy
| | | | - Davide De Pietri Tonelli
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Angelo Bifone
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Science @UNITN, 38068, Rovereto, Italy
| | | | | | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, 21205, Baltimore, MD, USA
| | | | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy Dipartimento di Scienze del Farmaco, Università Degli Studi di Padova, 35131 Padova, Italy
| |
Collapse
|
15
|
Bakshi K, Parihar R, Goswami SK, Walsh M, Friedman E, Wang HY. Prenatal cocaine exposure uncouples mGluR1 from Homer1 and Gq Proteins. PLoS One 2014; 9:e91671. [PMID: 24626340 PMCID: PMC3953582 DOI: 10.1371/journal.pone.0091671] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 02/14/2014] [Indexed: 11/18/2022] Open
Abstract
Cocaine exposure during gestation causes protracted neurobehavioral changes consistent with a compromised glutamatergic system. Although cocaine profoundly disrupts glutamatergic neurotransmission and in utero cocaine exposure negatively affects metabotropic glutamate receptor-type 1 (mGluR1) activity, the effect of prenatal cocaine exposure on mGluR1 signaling and the underlying mechanism responsible for the prenatal cocaine effect remain elusive. Using brains of the 21-day-old (P21) prenatal cocaine-exposed rats, we show that prenatal cocaine exposure uncouples mGluR1s from their associated synaptic anchoring protein, Homer1 and signal transducer, Gq/11 proteins leading to markedly reduced mGluR1-mediated phosphoinositide hydrolysis in frontal cortex (FCX) and hippocampus. This prenatal cocaine-induced effect is the result of a sustained protein kinase C (PKC)-mediated phosphorylation of mGluR1 on the serine residues. In support, phosphatase treatment of prenatal cocaine-exposed tissues restores whereas PKC-mediated phosphorylation of saline-treated synaptic membrane attenuates mGluR1 coupling to both Gq/11 and Homer1. Expression of mGluR1, Homer1 or Gα proteins was not altered by prenatal cocaine exposure. Collectively, these data indicate that prenatal cocaine exposure triggers PKC-mediated hyper-phosphorylation of the mGluR1 leading to uncoupling of mGluR1 from its signaling components. Hence, blockade of excessive PKC activation may alleviate abnormalities in mGluR1 signaling and restores mGluR1-regulated brain functions in prenatal cocaine-exposed brains.
Collapse
Affiliation(s)
- Kalindi Bakshi
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
| | - Raminder Parihar
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
| | - Satindra K. Goswami
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
| | - Melissa Walsh
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
| | - Eitan Friedman
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
| | - Hoau-Yan Wang
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Krug AK, Balmer NV, Matt F, Schönenberger F, Merhof D, Leist M. Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch Toxicol 2013; 87:2215-31. [PMID: 23670202 DOI: 10.1007/s00204-013-1072-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022]
Abstract
Organ-specific in vitro toxicity assays are often highly sensitive, but they lack specificity. We evaluated here examples of assay features that can affect test specificity, and some general procedures are suggested on how positive hits in complex biological assays may be defined. Differentiating human LUHMES cells were used as potential model for developmental neurotoxicity testing. Forty candidate toxicants were screened, and several hits were obtained and confirmed. Although the cells had a definitive neuronal phenotype, the use of a general cell death endpoint in these cultures did not allow specific identification of neurotoxicants. As alternative approach, neurite growth was measured as an organ-specific functional endpoint. We found that neurite extension of developing LUHMES was specifically inhibited by diverse compounds such as colchicine, vincristine, narciclasine, rotenone, cycloheximide, or diquat. These compounds reduced neurite growth at concentrations that did not compromise cell viability, and neurite growth was affected more potently than the integrity of developed neurites of mature neurons. A ratio of the EC50 values of neurite growth inhibition and cell death of >4 provided a robust classifier for compounds associated with a developmental neurotoxic hazard. Screening of unspecific toxicants in the test system always yielded ratios <4. The assay identified also compounds that accelerated neurite growth, such as the rho kinase pathway modifiers blebbistatin or thiazovivin. The negative effects of colchicine or rotenone were completely inhibited by a rho kinase inhibitor. In summary, we suggest that assays using functional endpoints (neurite growth) can specifically identify and characterize (developmental) neurotoxicants.
Collapse
Affiliation(s)
- Anne K Krug
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Universitätsstr. 10, Box 657, 78457, Constance, Germany,
| | | | | | | | | | | |
Collapse
|
17
|
Milstein JA, Elnabawi A, Vinish M, Swanson T, Enos JK, Bailey AM, Kolb B, Frost DO. Olanzapine treatment of adolescent rats causes enduring specific memory impairments and alters cortical development and function. PLoS One 2013; 8:e57308. [PMID: 23437365 PMCID: PMC3577739 DOI: 10.1371/journal.pone.0057308] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/21/2013] [Indexed: 01/31/2023] Open
Abstract
Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug treatment. Most antipsychotic drugs are potent antagonists or partial agonists of dopamine D2 receptors; atypical antipsychotic drugs also antagonize type 2A serotonin receptors. Dopamine and serotonin regulate many neurodevelopmental processes. Thus, early life antipsychotic drug treatment can, potentially, perturb these processes, causing long-term behavioral- and neurobiological impairments. Here, we treated adolescent, male rats with olanzapine on post-natal days 28-49. As adults, they exhibited impaired working memory, but normal spatial memory, as compared to vehicle-treated control rats. They also showed a deficit in extinction of fear conditioning. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, parietal cortex, nucleus accumbens core and dentate gyrus, adolescent olanzapine treatment altered the developmental dynamics and mature values of dendritic spine density in a region-specific manner. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, D1 binding was reduced and binding of GABA(A) receptors with open Cl(-) channels was increased. In medial prefrontal cortex, D2 binding was also increased. The persistence of these changes underscores the importance of improved understanding of the enduring sequelae of pediatric APD treatment as a basis for weighing the benefits and risks of adolescent antipsychotic drug therapy, especially prophylactic treatment in high risk, asymptomatic patients. The long-term changes in neurotransmitter receptor binding and neural circuitry induced by adolescent APD treatment may also cause enduring changes in behavioral- and neurobiological responses to other therapeutic- or illicit psychotropic drugs.
Collapse
Affiliation(s)
- Jean A. Milstein
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ahmed Elnabawi
- Dept. of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Monika Vinish
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas Swanson
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer K. Enos
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Aileen M. Bailey
- Dept. of Psychology, St. Mary's College of Maryland, St. Mary's, Maryland, United States of America
| | - Bryan Kolb
- University of Lethbridge, Canadian Center for Behavioral Neuroscience, Lethbridge, Alberta, Canada
| | - Douglas O. Frost
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Dept. of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
18
|
Modulation by cocaine of dopamine receptors through miRNA-133b in zebrafish embryos. PLoS One 2012; 7:e52701. [PMID: 23285158 PMCID: PMC3528707 DOI: 10.1371/journal.pone.0052701] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 11/19/2012] [Indexed: 01/11/2023] Open
Abstract
The use of cocaine during pregnancy can affect the mother and indirectly might alter the development of the embryo/foetus. Accordingly, in the present work our aim was to study in vivo (in zebrafish embryos) the effects of cocaine on the expression of dopamine receptors and on miR-133b. These embryos were exposed to cocaine hydrochloride (HCl) at 5 hours post-fertilization (hpf) and were then collected at 8, 16, 24, 48 and 72 hpf to study the expression of dopamine receptors, drd1, drd2a, drd2b and drd3, by quantitative real time PCR (qPCR) and in situ hybridization (ISH, only at 24 hpf). Our results indicate that cocaine alters the expression of the genes studied, depending on the stage of the developing embryo and the type of dopamine receptor. We found that cocaine reduced the expression of miR-133b at 24 and 48 hpf in the central nervous system (CNS) and at the periphery by qPCR and also that the spatial distribution of miR-133b was mainly seen in somites, a finding that suggests the involvement of miR-133b in the development of the skeletal muscle. In contrast, at the level of the CNS miR-133b had a weak and moderate expression at 24 and 48 hpf. We also analysed the interaction of miR-133b with the Pitx3 and Pitx3 target genes drd2a and drd2b, tyrosine hydroxylase (th) and dopamine transporter (dat) by microinjection of the Pitx3-3'UTR sequence. Microinjection of Pitx3-3'UTR affected the expression of pitx3, drd2a, drd2b, th and dat. In conclusion, in the present work we describe a possible mechanism to account for cocaine activity by controlling miR-133b transcription in zebrafish. Via miR-133b cocaine would modulate the expression of pitx3 and subsequently of dopamine receptors, dat and th. These results indicate that miRNAs can play an important role during embryogenesis and in drug addiction.
Collapse
|
19
|
Li F, Ohtani A, Senzaki K, Shiga T. Receptor-dependent regulation of dendrite formation of noradrenaline and dopamine in non-GABAergic cerebral cortical neurons. Dev Neurobiol 2012; 73:370-83. [PMID: 23135899 DOI: 10.1002/dneu.22065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/18/2012] [Accepted: 10/31/2012] [Indexed: 12/12/2022]
Abstract
The present study characterized the receptor-dependent regulation of dendrite formation of noradrenaline (NA) and dopamine (DA) in cultured neurons obtained from embryonic day 16 rat cerebral cortex. Morphological diversity of cortical dendrites was analyzed on various features: dendrite initiation, dendrite outgrowth, and dendrite branching. Using a combination of immunocytochemical markers of dendrites and GABAergic neurons, we focused on the dendrite morphology of non-GABAergic neurons. Our results showed that (1) NA inhibited the dendrite branching, (2) β adrenergic receptor (β-AR) agonist inhibited the dendrite initiation, while promoted the dendrite outgrowth, (3) β1-AR and β2-AR were present in all the cultured neurons, and both agonists inhibited the dendrite initiation, while only β1-AR agonist induced the dendrite branching; (4) DA inhibited the dendrite outgrowth, (5) D1 receptor agonist inhibited the dendrite initiation, while promoted the dendrite branching. In conclusion, this study compared the effects of NA, DA and their receptors and showed that NA and DA regulate different features on the dendrite formation of non-GABAergic cortical neurons, depending on the receptors.
Collapse
Affiliation(s)
- Fei Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Ibaraki, Japan
| | | | | | | |
Collapse
|
20
|
Lu R, Liu X, Long H, Ma L. Effects of prenatal cocaine and heroin exposure on neuronal dendrite morphogenesis and spatial recognition memory in mice. Neurosci Lett 2012; 522:128-33. [PMID: 22732446 DOI: 10.1016/j.neulet.2012.06.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/18/2022]
Abstract
Cocaine and heroin are psychoactive substances frequently used by woman abusers of childbearing age. In this study, we used in utero electroporation labeling technique and novelty recognition models to evaluate the effects of prenatal exposure of mice to cocaine or heroin on the morphological development of cortical neurons and postnatal cognitive functions. Our results showed that prenatal cocaine exposure increased dendrite outgrowth, and prenatal heroin exposure decreased dendrite length and branch number in pyramidal neurons in the somatosensory cortex. Furthermore, although no effects of prenatal cocaine or heroin exposure on novel object recognition were observed, offspring prenatally exposed to cocaine exhibited no exploration preference for objects placed in novel locations, and mice prenatally exposed to heroin showed a reduced tendency of exploration for objects in novel locations. These data demonstrate that maternal cocaine or heroin administration during pregnancy causes morphological alterations in pyramidal neurons in the somatosensory cortex and suggest that prenatal administration of addictive substances may impair short-term spatial memory in adult offspring.
Collapse
Affiliation(s)
- Ruhui Lu
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | | | | | | |
Collapse
|
21
|
Carpenter AC, Saborido TP, Stanwood GD. Development of hyperactivity and anxiety responses in dopamine transporter-deficient mice. Dev Neurosci 2012; 34:250-7. [PMID: 22572477 DOI: 10.1159/000336824] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/17/2012] [Indexed: 02/01/2023] Open
Abstract
Dopamine (DA) is a catecholamine neurotransmitter that regulates many aspects of motivated behavior in animals. Extracellular DA is highly regulated by the presynaptic high-affinity dopamine transporter (DAT), and drug- or genetically induced deficiencies in DAT function result in loss of DA reuptake. Mice in which DAT expression has been ablated have been previously proposed to be a relevant model of attention deficit hyperactivity disorder and have led to mechanistic insights regarding psychostimulant drug actions. However, very little previous work has emphasized the biobehavioral development of DAT-deficient mice. We therefore examined motoric, emotional and cognitive phenotypes in preadolescent (P22-26) DAT mutant mice. Consistent with previous reports in adult DAT(-/-) mice, we observed a hyperlocomotive phenotype in preadolescent mice across multiple assays. Somewhat surprisingly, spatial working memory in a Y-maze appeared intact, suggesting that cognitive phenotypes may emerge relatively late in development following hyperdopaminergia. Anxiety levels appeared to be reduced in DAT(-/-) mice, as defined by elevated plus maze and light-dark preference assays. No significant differences were observed between wild-type and heterozygous mice, suggesting a minimal impact of DAT haploinsufficiency on neurobehavioral status. Taken together, these data for the first time establish behavioral phenotypes of DAT mutant mice during development and suggest complex developmental stage-dependent effects of DA signaling on cognitive and emotional behaviors.
Collapse
Affiliation(s)
- Alex C Carpenter
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
22
|
Manent JB, Beguin S, Ganay T, Represa A. Cell-autonomous and cell-to-cell signalling events in normal and altered neuronal migration. Eur J Neurosci 2012; 34:1595-608. [PMID: 22103417 DOI: 10.1111/j.1460-9568.2011.07867.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cerebral cortex is a complex six-layered structure that contains an important diversity of neurons, and has rich local and extrinsic connectivity. Among the mechanisms governing the cerebral cortex construction, neuronal migration is perhaps the most crucial as it ensures the timely formation of specific and selective neuronal circuits. Here, we review the main extrinsic and extrinsic factors involved in regulating neuronal migration in the cortex and describe some environmental factors interfering with their actions.
Collapse
|
23
|
Neckameyer WS, Bhatt P. Neurotrophic actions of dopamine on the development of a serotonergic feeding circuit in Drosophila melanogaster. BMC Neurosci 2012; 13:26. [PMID: 22413901 PMCID: PMC3364880 DOI: 10.1186/1471-2202-13-26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/13/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the fruit fly, Drosophila melanogaster, serotonin functions both as a neurotransmitter to regulate larval feeding, and in the development of the stomatogastric feeding circuit. There is an inverse relationship between neuronal serotonin levels during late embryogenesis and the complexity of the serotonergic fibers projecting from the larval brain to the foregut, which correlate with perturbations in feeding, the functional output of the circuit. Dopamine does not modulate larval feeding, and dopaminergic fibers do not innervate the larval foregut. Since dopamine can function in central nervous system development, separate from its role as a neurotransmitter, the role of neuronal dopamine was assessed on the development, and mature function, of the 5-HT larval feeding circuit. RESULTS Both decreased and increased neuronal dopamine levels in late embryogenesis during development of this circuit result in depressed levels of larval feeding. Perturbations in neuronal dopamine during this developmental period also result in greater branch complexity of the serotonergic fibers innervating the gut, as well as increased size and number of the serotonin-containing vesicles along the neurite length. This neurotrophic action for dopamine is modulated by the D2 dopamine receptor expressed during late embryogenesis in central 5-HT neurons. Animals carrying transgenic RNAi constructs to knock down both dopamine and serotonin synthesis in the central nervous system display normal feeding and fiber architecture. However, disparate levels of neuronal dopamine and serotonin during development of the circuit result in abnormal gut fiber architecture and feeding behavior. CONCLUSIONS These results suggest that dopamine can exert a direct trophic influence on the development of a specific neural circuit, and that dopamine and serotonin may interact with each other to generate the neural architecture necessary for normal function of the circuit.
Collapse
Affiliation(s)
- Wendi S Neckameyer
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, USA
| | - Parag Bhatt
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, USA
| |
Collapse
|
24
|
Bakshi K, Kosciuk M, Nagele RG, Friedman E, Wang HY. Prenatal cocaine exposure increases synaptic localization of a neuronal RasGEF, GRASP-1 via hyperphosphorylation of AMPAR anchoring protein, GRIP. PLoS One 2011; 6:e25019. [PMID: 21980374 PMCID: PMC3181332 DOI: 10.1371/journal.pone.0025019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/23/2011] [Indexed: 11/18/2022] Open
Abstract
Prenatal cocaine exposure causes sustained phosphorylation of the synaptic anchoring protein, glutamate receptor interacting protein (GRIP1/2), preventing synaptic targeting of the GluR2/3-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs; J. Neurosci. 29: 6308–6319, 2009). Because overexpression of GRIP-associated neuronal rasGEF protein (GRASP-1) specifically reduces the synaptic targeting of AMPARs, we hypothesized that prenatal cocaine exposure enhances GRASP-1 synaptic membrane localization leading to hyper-activation of ras family proteins and heightened actin polymerization. Our results show a markedly increased GRIP1-associated GRASP-1 content with approximately 40% reduction in its rasGEF activity in frontal cortices (FCX) of 21-day-old (P21) prenatal cocaine-exposed rats. This cocaine effect is the result of a persistent protein kinase C (PKC)- and downstream Src tyrosine kinase-mediated GRIP phosphorylation. The hyperactivated PKC also increased membrane-associated GRASP-1 and activated small G-proteins RhoA, cdc42/Rac1 and Rap1 as well as filamentous actin (F-actin) levels without an effect on the phosphorylation state of actin. Since increased F-actin facilitates protein transport, our results suggest that increased GRASP-1 synaptic localization in prenatal cocaine-exposed brains is an adaptive response to restoring the synaptic expression of AMPA-GluR2/3. Our earlier data demonstrated that persistent PKC-mediated GRIP phosphorylation reduces GluR2/3 synaptic targeting in prenatal cocaine-exposed brains, we now show that the increased GRIP-associated GRASP-1 may contribute to the reduction in GluR2/3 synaptic expression and AMPAR signaling defects.
Collapse
Affiliation(s)
- Kalindi Bakshi
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
- Department of Biology & Neuroscience, Graduate Center of the City University of New York, New York, New York, United States of America
- Center for Developmental Neuroscience/Institute for Basic Research/City University of New York Graduate School, Staten Island, New York, United States of America
| | - Mary Kosciuk
- New Jersey Institute for Successful Aging, University of Medicine and Dentistry New Jersey-School of Osteopathic Medicine, Stratford, New Jersey, United States of America
| | - Robert G. Nagele
- New Jersey Institute for Successful Aging, University of Medicine and Dentistry New Jersey-School of Osteopathic Medicine, Stratford, New Jersey, United States of America
| | - Eitan Friedman
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
- Department of Biology & Neuroscience, Graduate Center of the City University of New York, New York, New York, United States of America
| | - Hoau-Yan Wang
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
- Department of Biology & Neuroscience, Graduate Center of the City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Daws SE, Black YD, Naydenov AV, Vassoler FR, Hanlin RP, Konradi C. Binge cocaine administration in adolescent rats affects amygdalar gene expression patterns and alters anxiety-related behavior in adulthood. Biol Psychiatry 2011; 70:583-92. [PMID: 21571252 PMCID: PMC3159046 DOI: 10.1016/j.biopsych.2011.03.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Administration of cocaine during adolescence alters neurotransmission and behavioral sensitization in adulthood, but the effect on the acquisition of fear memories and the development of emotion-based neuronal circuits is unknown. METHODS We examined fear learning and anxiety-related behaviors in adult male rats that were subjected to binge cocaine treatment during adolescence. We furthermore conducted gene expression analyses of the amygdala 22 hours after the last cocaine injection to identify molecular patterns that might lead to altered emotional processing. RESULTS Rats injected with cocaine during adolescence displayed less anxiety in adulthood than their vehicle-injected counterparts. In addition, cocaine-exposed animals were deficient in their ability to develop contextual fear responses. Cocaine administration caused transient gene expression changes in the Wnt signaling pathway, of axon guidance molecules, and of synaptic proteins, suggesting that cocaine perturbs dendritic structures and synapses in the amygdala. Phosphorylation of glycogen synthase kinase 3 beta, a kinase in the Wnt signaling pathway, was altered immediately following the binge cocaine paradigm and returned to normal levels 22 hours after the last cocaine injection. CONCLUSIONS Cocaine exposure during adolescence leads to molecular changes in the amygdala and decreases fear learning and anxiety in adulthood.
Collapse
Affiliation(s)
- Stephanie E. Daws
- Neuroscience Graduate Program, Vanderbilt University, Nashville,
Tennessee, 37232
| | - Yolanda D. Black
- Department of Neurobiology and Behavior, University of
California-Irvine, Irvine, California 92697
| | - Alipi V. Naydenov
- Departments of Pharmacology and Psychiatry, Vanderbilt University,
Nashville, Tennessee, 37232
| | - Fair R. Vassoler
- Departments of Pharmacology and Psychiatry, Vanderbilt University,
Nashville, Tennessee, 37232
| | - Ryan P. Hanlin
- Departments of Pharmacology and Psychiatry, Vanderbilt University,
Nashville, Tennessee, 37232
| | - Christine Konradi
- Departments of Pharmacology and Psychiatry, Vanderbilt University,
Nashville, Tennessee, 37232
- Center for Molecular Neuroscience, Vanderbilt University, Nashville,
Tennessee, 37232
- Kennedy Center for Research on Human Development, Vanderbilt
University, Nashville, Tennessee, 37203
| |
Collapse
|
26
|
Voulalas PJ, Schetz J, Undieh AS. Differential subcellular distribution of rat brain dopamine receptors and subtype-specific redistribution induced by cocaine. Mol Cell Neurosci 2011; 46:645-54. [PMID: 21236347 PMCID: PMC3055788 DOI: 10.1016/j.mcn.2011.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 12/07/2010] [Accepted: 01/04/2011] [Indexed: 12/01/2022] Open
Abstract
We investigated the subcellular distribution of dopamine D(1), D(2) and D(5) receptor subtypes in rat frontal cortex, and examined whether psychostimulant-induced elevation of synaptic dopamine could alter the receptor distribution. Differential detergent solubilization and density gradient centrifugation were used to separate various subcellular fractions, followed by semi-quantitative determination of the relative abundance of specific receptor proteins in each fraction. D(1) receptors were predominantly localized to detergent-resistant membranes, and a portion of these receptors also floated on sucrose gradients. These properties are characteristic of proteins found in lipid rafts and caveolae. D(2) receptors exhibited variable distribution between cytoplasmic, detergent-soluble and detergent-resistant membrane fractions, yet were not present in buoyant membranes. Most D(5) receptor immunoreactivity was distributed into the cytoplasmic fraction, failing to sediment at forces up to 300,000g, while the remainder was localized to detergent-soluble membranes in cortex. D(5) receptors were undetectable in detergent-resistant fractions or raft-like subdomains. Following daily cocaine administration for seven days, a significant portion of D(1) receptors translocated from detergent-resistant membranes to detergent-soluble membranes and the cytoplasmic fraction. The distributions of D(5) and D(2) receptor subtypes were not significantly altered by cocaine treatment. These data imply that D(5) receptors are predominantly cytoplasmic, D(2) receptors are diffusely distributed within the cell, whereas D(1) receptors are mostly localized to lipid rafts within the rat frontal cortex. Dopamine receptor subtype localization is susceptible to modulation by pharmacological manipulations that elevate synaptic dopamine, however the functional implications of such drug-induced receptor warrant further investigation.
Collapse
Affiliation(s)
- Pamela J Voulalas
- Pharmacokinetics-Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
27
|
Roussotte F, Soderberg L, Sowell E. Structural, metabolic, and functional brain abnormalities as a result of prenatal exposure to drugs of abuse: evidence from neuroimaging. Neuropsychol Rev 2010; 20:376-97. [PMID: 20978945 PMCID: PMC2988996 DOI: 10.1007/s11065-010-9150-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/06/2010] [Indexed: 12/28/2022]
Abstract
Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse.
Collapse
Affiliation(s)
- Florence Roussotte
- Developmental Cognitive Neuroimaging Group, Department of Neurology, University of California, Los Angeles, CA USA
- Interdepartmental Ph.D. Program for Neuroscience, University of California, Los Angeles, CA USA
| | - Lindsay Soderberg
- Developmental Cognitive Neuroimaging Group, Department of Neurology, University of California, Los Angeles, CA USA
| | - Elizabeth Sowell
- Developmental Cognitive Neuroimaging Group, Department of Neurology, University of California, Los Angeles, CA USA
- Interdepartmental Ph.D. Program for Neuroscience, University of California, Los Angeles, CA USA
- Developmental Cognitive Neuroimaging Group, Laboratory of Neuro Imaging, University of California, Los Angeles, 710 Westwood Plaza, Room 1-138, Los Angeles, CA 90095-7332 USA
| |
Collapse
|
28
|
Salas-Ramirez KY, Frankfurt M, Alexander A, Luine VN, Friedman E. Prenatal cocaine exposure increases anxiety, impairs cognitive function and increases dendritic spine density in adult rats: influence of sex. Neuroscience 2010; 169:1287-95. [PMID: 20553818 PMCID: PMC2927197 DOI: 10.1016/j.neuroscience.2010.04.067] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/16/2010] [Accepted: 04/28/2010] [Indexed: 11/19/2022]
Abstract
Cocaine exposure during pregnancy can impact brain development and have long-term behavioral consequences. The present study examined the lasting consequences of prenatal cocaine (PN-COC) exposure on the performance of cognitive tasks and dendritic spine density in adult male and female rats. From gestational day 8 to 20, dams were treated daily with 30 mg/kg (ip) of cocaine HCl or saline. At 62 days of age, offspring were tested consecutively for anxiety, locomotion, visual memory and spatial memory. PN-COC exposure significantly increased anxiety in both sexes. Object recognition (OR) and placement (OP) tasks were used to assess cognitive function. Behavioral tests consisted of an exploration trial (T1) and a recognition trial (T2) that were separated by an inter-trial delay of varying lengths. Male PN-COC subjects displayed significantly less time investigating new objects or object locations during T2 in both OR and OP tasks. By contrast, female PN-COC subjects exhibited impairments only in OR and only at the longest inter-trial delay interval. In addition, gestational cocaine increased dendritic spine density in the prefrontal cortex and nucleus accumbens in both genders, but only females had increased spine density in the CA1 region of the hippocampus. These data reveal that in-utero exposure to cocaine results in enduring alterations in anxiety, cognitive function and spine density in adulthood. Moreover, cognitive deficits were more profound in males than in females.
Collapse
Affiliation(s)
- K Y Salas-Ramirez
- Department of Physiology and Pharmacology, Sophie Davis School for Biomedical Education at City College of New York of the City University of New York, New York, NY 10031, USA.
| | | | | | | | | |
Collapse
|
29
|
Hamilton LR, Czoty PW, Gage HD, Nader MA. Characterization of the dopamine receptor system in adult rhesus monkeys exposed to cocaine throughout gestation. Psychopharmacology (Berl) 2010; 210:481-8. [PMID: 20401746 PMCID: PMC2878372 DOI: 10.1007/s00213-010-1847-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Cocaine use during pregnancy is associated with alterations in the dopamine (DA) system in the fetal brain. However, little is known about the effects of prenatal cocaine exposure on the postnatal dopaminergic system. OBJECTIVES The objective of the study was to examine DA receptor function in adult monkeys that were prenatally exposed to cocaine. MATERIALS AND METHODS Male and female rhesus monkeys (approximately 13 years old) that had been prenatally exposed to cocaine (n = 10) and controls (n = 10) were used in all studies. First, DA D2-like receptor availability was assessed using positron emission tomography and the D2-like receptor radiotracer [(18)F]fluoroclebopride (FCP). Next, D(3) receptor function was assessed by measuring quinpirole-induced yawning (0.03-0.3 mg/kg). Finally, D1-like receptor function was examined by measuring eye blinking elicited by the high-efficacy D1-like receptor agonist SKF81297 (0.3-3.0 mg/kg). RESULTS There were no differences between groups or sexes in D2-like receptor availability in the caudate nucleus, putamen or amygdala. However, quinpirole elicited significantly more yawns in prenatally cocaine-exposed monkeys compared with control monkeys. A significant correlation between gestational dose of cocaine and peak effects of quinpirole was observed. In all monkeys, administration of SKF81297 elicited dose-dependent increases in eye blinks that did not differ between groups. CONCLUSIONS These findings suggest that prenatal cocaine exposure can have long-term effects on DA D(3) receptor function in adults.
Collapse
Affiliation(s)
- Lindsey R. Hamilton
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, 546 NRC, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA
| | - Paul W. Czoty
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, 546 NRC, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA
| | - H. Donald Gage
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael A. Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, 546 NRC, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA. Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
30
|
Specificity of prenatal cocaine exposure effects on cortical interneurons is independent from dopamine D1 receptor co-localization. J Chem Neuroanat 2010; 39:228-34. [PMID: 20080176 DOI: 10.1016/j.jchemneu.2010.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/21/2009] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
Abstract
Gestational cocaine exposure in a rabbit model leads to a persistent increase in parvalbumin immunoreactive cells and processes, reduces dopamine D1 receptor coupling to Gsalpha by means of improper trafficking of the receptor, changes pyramidal neuron morphology, and disrupts cognitive function. Here, experiments investigated whether changes in parvalbumin neurons were specific, or extended to other subpopulations of interneurons. Additionally, we examined dopamine D1 receptor expression patterns and its overlap with specific interneuron populations in the rabbit prefrontal cortex as a possible correlate for alterations in interneuron development following prenatal cocaine exposure. Analysis of calbindin and calretinin interneuron subtypes revealed that they did not exhibit any differences in cell number or process development. Thus, specific consequences of prenatal cocaine in the rabbit appear to be limited to parvalbumin-positive interneurons. Dopamine D1 receptor expression did not correlate with the selective effects of cocaine exposure, however, as both parvalbumin and calbindin cell types expressed the receptor. The findings suggest that additional, unique properties of parvalbumin neurons contribute to their developmental sensitivity to in utero cocaine exposure.
Collapse
|
31
|
Dow-Edwards D. Sex differences in the effects of cocaine abuse across the life span. Physiol Behav 2010; 100:208-15. [PMID: 20045010 DOI: 10.1016/j.physbeh.2009.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 12/08/2009] [Accepted: 12/14/2009] [Indexed: 11/26/2022]
Abstract
Cocaine alters brain function from the early days of development throughout the entire life of an individual. Since the first preclinical research on cocaine sensitization was published, sex differences in response to the drug in adult rats have been noted. With the appearance of reports on "crack babies" during the 1980s, sex differences in response to prenatal (developmental) exposure have been identified in both clinical and preclinical reports. Cocaine administered during early development in the rat produces wide-spread alterations in function which depend on the timing of drug administration as well as the sex of the animal. In males, the response patterns following postnatal days (PND) 11-20 cocaine administration (equivalent to the late prenatal period in humans) are quite similar to those seen following prenatal exposure (equivalent to the first half of pregnancy in humans). There is a general decrease in dopaminergic (DA) markers and reactivity perhaps due to the uncoupling of the D1 receptor from its second messenger system. While similar changes in D1 uncoupling are seen in females, behavioral and metabolic responses to drug challenges generally show increases in DA responsivity (except adolescents) perhaps due to the activational effects of estrogen and/or decreases in serotonin (5-HT) mediated regulation of DA function. We have found that a significant factor in the hyper-responsivity of the female is the role of the testing environment and the responses to stress which can obscure underlying neurochemical dysregulation. Whether parallel factors are operational in adult males and females is currently under investigation.
Collapse
Affiliation(s)
- Diana Dow-Edwards
- Department of Physiology and Pharmacology, State University of New York, Health Sciences Center at Brooklyn (Downstate), Brooklyn, NY 11203, United States.
| |
Collapse
|
32
|
Goldwater DS, Pavlides C, Hunter RG, Bloss EB, Hof PR, McEwen BS, Morrison JH. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 2009; 164:798-808. [PMID: 19723561 PMCID: PMC2762025 DOI: 10.1016/j.neuroscience.2009.08.053] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 07/06/2009] [Accepted: 08/21/2009] [Indexed: 01/01/2023]
Abstract
Chronic stress has been shown in animal models to result in altered dendritic morphology of pyramidal neurons of the medial prefrontal cortex (mPFC). It has been hypothesized that the stress-induced dendritic retractions and spine loss lead to disrupted connectivity that results in stress-induced functional impairment of mPFC. While these alterations were initially viewed as a neurodegenerative event, it has recently been established that stress induced dendritic alterations are reversible if animals are given time to recover from chronic stress. However, whether spine growth accompanies dendritic extension remains to be demonstrated. It is also not known if recovery-phase dendritic extension allows for re-establishment of functional capacity. The goal of this study, therefore, was to characterize the structural and functional effects of chronic stress and recovery on the infralimbic (IL) region of the rat mPFC. We compared neuronal morphology of IL layer V pyramidal neurons from male Sprague-Dawley rats subjected to 21 days of chronic restraint stress (CRS) to those that experienced CRS followed by a 21 day recovery period. Layer V pyramidal cell functional capacity was assessed by intra-IL long-term potentiation (LTP) both in the absence and presence of SKF38393, a dopamine receptor partial agonist and a known PFC LTP modulator. We found that stress-induced IL apical dendritic retraction and spine loss co-occur with receptor-mediated impairments to catecholaminergic facilitation of synaptic plasticity. We also found that while post-stress recovery did not reverse distal dendritic retraction, it did result in over extension of proximal dendritic arbors and spine growth as well as a full reversal of CRS-induced impairments to catecholaminergic-mediated synaptic plasticity. Our results support the hypothesis that disease-related PFC dysfunction is a consequence of network disruption secondary to altered structural and functional plasticity and that circuitry reestablishment may underlie elements of recovery. Accordingly, we believe that pharmacological treatments targeted at preventing dendritic retraction and spine loss or encouraging circuitry re-establishment and stabilization may be advantageous in the prevention and treatment of mood and anxiety disorders.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Chronic Disease
- Dendrites/drug effects
- Dendrites/pathology
- Dendrites/physiology
- Dendritic Spines/drug effects
- Dendritic Spines/pathology
- Dendritic Spines/physiology
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Long-Term Potentiation/drug effects
- Male
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/pathology
- Prefrontal Cortex/physiopathology
- Pyramidal Cells/drug effects
- Pyramidal Cells/pathology
- Pyramidal Cells/physiopathology
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Restraint, Physical
- Stress, Psychological/pathology
- Stress, Psychological/physiopathology
- Time Factors
- Weight Gain
Collapse
Affiliation(s)
- Deena S. Goldwater
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029
| | - Constantine Pavlides
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021, USA
| | - Richard G. Hunter
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021, USA
| | - Erik B. Bloss
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029
- Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029
| | - Bruce S. McEwen
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021, USA
| | - John H. Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029
- Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029
| |
Collapse
|
33
|
Kubrusly RCC, Bhide PG. Cocaine exposure modulates dopamine and adenosine signaling in the fetal brain. Neuropharmacology 2009; 58:436-43. [PMID: 19765599 DOI: 10.1016/j.neuropharm.2009.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/04/2009] [Accepted: 09/09/2009] [Indexed: 11/18/2022]
Abstract
Exposure to cocaine during the fetal period can produce significant lasting changes in the structure and function of the brain. Cocaine exerts its effects on the developing brain by blocking monoamine transporters and impairing monoamine receptor signaling. Dopamine is a major central target of cocaine. In a mouse model, we show that cocaine exposure from embryonic day 8 (E8) to E14 produces significant reduction in dopamine transporter activity, attenuation of dopamine D1-receptor function and upregulation of dopamine D2-receptor function. Cocaine's effects on the D1-receptor are at the level of protein expression as well as activity. The cocaine exposure also produces significant increases in basal cAMP levels in the striatum and cerebral cortex. The increase in the basal cAMP levels was independent of dopamine receptor activity. In contrast, blocking the adenosine A2a receptor downregulated the basal cAMP levels in the cocaine-exposed brain to physiological levels, suggesting the involvement of adenosine receptors in mediating cocaine's effects on the embryonic brain. In support of this suggestion, we found that the cocaine exposure downregulated adenosine transporter function. We also found that dopamine D2- and adenosine A2a-receptors antagonize each other's function in the embryonic brain in a manner consistent with their interactions in the mature brain. Thus, our data show that prenatal cocaine exposure produces direct effects on both the dopamine and adenosine systems. Furthermore, the dopamine D2 and adenosine A2a receptor interactions in the embryonic brain discovered in this study unveil a novel substrate for cocaine's effects on the developing brain.
Collapse
Affiliation(s)
- Regina C C Kubrusly
- Developmental Neurobiology, Neurology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
34
|
Thompson BL, Levitt P, Stanwood GD. Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat Rev Neurosci 2009; 10:303-12. [PMID: 19277053 PMCID: PMC2777887 DOI: 10.1038/nrn2598] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of prenatal exposure to drugs on brain development are complex and are modulated by the timing, dose and route of drug exposure. It is difficult to assess these effects in clinical cohorts as these are beset with problems such as multiple exposures and difficulties in documenting use patterns. This can lead to misinterpretation of research findings by the general public, the media and policy makers, who may mistakenly assume that the legal status of a drug correlates with its biological impact on fetal brain development and long-term clinical outcomes. It is important to close the gap between what science tells us about the impact of prenatal drug exposure on the fetus and the mother and what we do programmatically with regard to at-risk populations.
Collapse
Affiliation(s)
- Barbara L Thompson
- Department of Pharmacology, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
35
|
Thompson BL, Stanwood GD. Pleiotropic effects of neurotransmission during development: modulators of modularity. J Autism Dev Disord 2009; 39:260-8. [PMID: 18648918 PMCID: PMC2777884 DOI: 10.1007/s10803-008-0624-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 07/04/2008] [Indexed: 11/28/2022]
Abstract
The formation and function of the mammalian cerebral cortex relies on the complex interplay of a variety of genetic and environmental factors through protracted periods of gestational and postnatal development. Biogenic amine systems are important neuromodulators, both in the adult nervous system, and during critical epochs of brain development. Abnormalities in developmental programming likely contribute to developmental delays and multiple neurological and psychiatric disorders, often with symptom onset much later than the actual induction of pathology. We review several genetic and pharmacological models of dopamine, norepinephrine and serotonin modulation during development, each of which produces permanent changes in cerebral cortical structure and function. These models clearly illustrate the ability of these neurotransmitters to function beyond their classic roles and show their involvement in the development and modulation of fine brain circuitry that is sensitive to numerous effectors. Furthermore, these studies demonstrate the need to consider not only gene by environment interactions, but also gene by environment by developmental time interactions.
Collapse
Affiliation(s)
- Barbara L. Thompson
- Department of Pharmacology; 8114 MRBIII, Nashville, TN 37232, USA; (615) 936-3865 (phone); (615) 936-3747 (fax);
| | - Gregg D. Stanwood
- Department of Pharmacology, Vanderbilt Kennedy Center for Research on Human Development, & Center for Molecular Neuroscience; 8405 MRBIV, Nashville, TN 37232, USA; (615) 936-3861 (phone); (615) 936-2202 (fax);
| |
Collapse
|
36
|
Bhide PG. Dopamine, cocaine and the development of cerebral cortical cytoarchitecture: a review of current concepts. Semin Cell Dev Biol 2009; 20:395-402. [PMID: 19560044 DOI: 10.1016/j.semcdb.2009.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
Exposure of the developing fetus to cocaine produces lasting adverse effects on brain structure and function. Animal models show that cocaine exerts its effects by interfering with monoamine neurotransmitter function and that dopamine is cocaine's principal monoamine target in the fetal brain. This review will examine the role of dopamine receptor signaling in the regulation of normal development of the cerebral cortex, the seat of higher cognitive functions, and discuss whether dopamine receptor signaling mechanisms are the principal mediators of cocaine's deleterious effects on the ontogeny of cerebral cortical cytoarchitecture.
Collapse
Affiliation(s)
- Pradeep G Bhide
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
37
|
Papadeas ST, Halloran C, McCown TJ, Breese GR, Blake BL. Changes in apical dendritic structure correlate with sustained ERK1/2 phosphorylation in medial prefrontal cortex of a rat model of dopamine D1 receptor agonist sensitization. J Comp Neurol 2008; 511:271-85. [PMID: 18785628 PMCID: PMC2587500 DOI: 10.1002/cne.21835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rats lesioned with 6-hydroxydopamine (6-OHDA) as neonates exhibit behavioral and neurochemical abnormalities in adulthood that mimic Lesch-Nyhan disease, schizophrenia, and other developmental disorders of frontostriatal circuit dysfunction. In these animals a latent sensitivity to D1 agonists is maximally exposed by repeated administration of dopamine agonists in the postpubertal period (D1 priming). In neonate-lesioned, adult rats primed with SKF-38393, we found selective, persistent alterations in the morphology of pyramidal neuron apical dendrites in the prelimbic area of the medial prefrontal cortex (mPFC). In these animals, dendrite bundling patterns and the typically straight trajectories of primary dendritic shafts were disrupted, whereas the diameter of higher-order oblique branches was increased. Although not present in neonate-lesioned rats treated with saline, these morphological changes persisted at least 21 days after repeated dosing with SKF-38393, and were not accompanied by markers of neurodegenerative change. A sustained increase in phospho-ERK immunoreactivity in wavy dendritic shafts over the same period suggested a relationship between prolonged ERK phosphorylation and dendritic remodeling in D1-primed rats. In support of this hypothesis, pretreatment with the MEK1/2-ERK1/2 pathway inhibitors PD98059 or SL327, prior to each priming dose of SKF-38393, prevented the morphological changes associated with D1 priming. Together, these findings demonstrate that repeated stimulation of D1 receptors in adulthood interacts with the developmental loss of dopamine to profoundly and persistently modify neuronal signaling and dendrite morphology in the mature prefrontal cortex. Furthermore, sustained elevation of ERK activity in mPFC pyramidal neurons may play a role in guiding these morphological changes in vivo.
Collapse
Affiliation(s)
- Sophia T. Papadeas
- GRADUATE PROGRAM IN NEUROBIOLOGY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- BOWLES CENTER FOR ALCOHOL STUDIES, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
| | - Christopher Halloran
- BOWLES CENTER FOR ALCOHOL STUDIES, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
| | - Thomas J. McCown
- BOWLES CENTER FOR ALCOHOL STUDIES, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- GENE THERAPY CENTER, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- DEPARTMENT OF PSYCHIATRY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
| | - George R. Breese
- GRADUATE PROGRAM IN NEUROBIOLOGY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- BOWLES CENTER FOR ALCOHOL STUDIES, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- DEPARTMENT OF PSYCHIATRY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- DEPARTMENT OF PHARMACOLOGY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
| | - Bonita L. Blake
- BOWLES CENTER FOR ALCOHOL STUDIES, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- DEPARTMENT OF PSYCHIATRY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- DEPARTMENT OF PHARMACOLOGY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
| |
Collapse
|
38
|
Wang H, Wu LJ, Kim SS, Lee FJS, Gong B, Toyoda H, Ren M, Shang YZ, Xu H, Liu F, Zhao MG, Zhuo M. FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 2008; 59:634-47. [PMID: 18760699 DOI: 10.1016/j.neuron.2008.06.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/14/2008] [Accepted: 06/13/2008] [Indexed: 11/17/2022]
Abstract
The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.
Collapse
Affiliation(s)
- Hansen Wang
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhao N, Wang HY, Dow-Edwards D. Cocaine exposure during the early postnatal period diminishes medial frontal cortex Gs coupling to dopamine D1-like receptors in adult rat. Neurosci Lett 2008; 438:159-62. [PMID: 18455307 PMCID: PMC2494533 DOI: 10.1016/j.neulet.2008.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 03/31/2008] [Accepted: 04/07/2008] [Indexed: 11/21/2022]
Abstract
The effect of cocaine exposure during early postnatal ages on coupling of dopamine (DA) D(1)- and D(2)-like receptors to their respective Gs/olf and Gi was examined in striatum and medial frontal cortex (MFC). Sprague-Dawley rats were subcutaneously injected with either 50 mg/kg cocaine or vehicle during postnatal day (PnD) 11-20 and dopaminergic D(1)- and D(2)-like receptor signaling was evaluated at PnD 60. Results showed that cocaine exposure did not affect the magnitude of both DA D(1)- and D(2)-like receptor coupling to their respective Gs/olf and Gi in striatum. However, in the medial frontal cortex, the basal and the DA D(1)-like receptor and Gs association were reduced in cocaine-exposed brains. However, there was no change in basal or DA D(2)-like receptor-Gi linkage in medial frontal cortex. Since frontal cortex plays a critical role in regulating cognition and working memory, disruption of DA-modulated circuits or alteration of dopaminergic activity resulting from postnatal cocaine exposure may result in abnormal responses to environmental challenges leading to long-term behavioral changes.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Animals, Newborn
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Cocaine/pharmacology
- Cocaine-Related Disorders/metabolism
- Cognition/drug effects
- Cognition/physiology
- Cognition Disorders/chemically induced
- Cognition Disorders/metabolism
- Cognition Disorders/physiopathology
- Corpus Striatum/drug effects
- Corpus Striatum/growth & development
- Corpus Striatum/metabolism
- Disease Models, Animal
- Dopamine/metabolism
- Dopamine Uptake Inhibitors/pharmacology
- Female
- Frontal Lobe/drug effects
- Frontal Lobe/growth & development
- Frontal Lobe/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Male
- Memory, Short-Term/physiology
- Mental Disorders/chemically induced
- Mental Disorders/metabolism
- Mental Disorders/physiopathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Time
Collapse
Affiliation(s)
- Ning Zhao
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | | | | |
Collapse
|
40
|
Tropea TF, Guerriero RM, Willuhn I, Unterwald EM, Ehrlich ME, Steiner H, Kosofsky BE. Augmented D1 dopamine receptor signaling and immediate-early gene induction in adult striatum after prenatal cocaine. Biol Psychiatry 2008; 63:1066-74. [PMID: 18275938 PMCID: PMC2746072 DOI: 10.1016/j.biopsych.2007.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 11/07/2007] [Accepted: 12/13/2007] [Indexed: 12/30/2022]
Abstract
BACKGROUND Prenatal exposure to cocaine can impede normal brain development, triggering a range of neuroanatomical and behavioral anomalies that are evident throughout life. Mouse models have been especially helpful in delineating neuro-teratogenic consequences after prenatal exposure to cocaine. The present study employed a mouse model to investigate alterations in D(1) dopamine receptor signaling and downstream immediate-early gene induction in the striatum of mice exposed to cocaine in utero. METHODS Basal, forskolin-, and D(1) receptor agonist-induced cyclic adenosine monophosphate (cAMP) levels were measured ex vivo in the adult male striatum in mice exposed to cocaine in utero. Further studies assessed cocaine-induced zif 268 and homer 1 expression in the striatum of juvenile (P15), adolescent (P36), and adult (P60) male mice. RESULTS The D(1) dopamine receptor agonist SKF82958 induced significantly higher levels of cAMP in adult male mice treated with cocaine in utero compared with saline control subjects. No effects of the prenatal treatment were found for cAMP formation induced by forskolin. After an acute cocaine challenge (15 mg/kg, IP), these mice showed greater induction of zif 268 and homer 1, an effect that was most robust in the medial part of the mid-level striatum and became more pronounced with increasing age. CONCLUSIONS Together these findings indicate abnormally enhanced D(1) receptor signal transduction in adult mice after prenatal cocaine exposure. Such changes in dopamine receptor signaling might underlie aspects of long-lasting neuro-teratogenic effects evident in some humans after in utero exposure to cocaine and identify the striatum as one target potentially vulnerable to gestational cocaine exposure.
Collapse
Affiliation(s)
- Thomas F. Tropea
- Laboratory of Molecular and Developmental Neuroscience, Department of Pediatrics, Division Of Pediatric Neurol ogy, New York Presbyterian Hospital/Weill-Cornell Medical College, New York, NY
| | - Réjean M. Guerriero
- Laboratory of Molecular and Developmental Neuroscience, Massachusetts General Hospital-East, Charlestown, MA, and Department of Neurol ogy, Harvard Medical School, Boston, MA
| | - Ingo Willuhn
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, North Chicago, IL
| | - Ellen M. Unterwald
- Department of Pharmacolo gy, Temple University School of Medicine, Philadelphia, PA
| | | | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, North Chicago, IL
| | - Barry E. Kosofsky
- Laboratory of Molecular and Developmental Neuroscience, Department of Pediatrics, Division Of Pediatric Neurol ogy, New York Presbyterian Hospital/Weill-Cornell Medical College, New York, NY
- Laboratory of Molecular and Developmental Neuroscience, Massachusetts General Hospital-East, Charlestown, MA, and Department of Neurol ogy, Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Connors SL, Levitt P, Matthews SG, Slotkin TA, Johnston MV, Kinney HC, Johnson WG, Dailey RM, Zimmerman AW. Fetal mechanisms in neurodevelopmental disorders. Pediatr Neurol 2008; 38:163-76. [PMID: 18279750 DOI: 10.1016/j.pediatrneurol.2007.10.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 09/20/2007] [Accepted: 10/29/2007] [Indexed: 11/25/2022]
Abstract
Normal development of the central nervous system depends on complex, dynamic mechanisms with multiple spatial and temporal components during gestation. Neurodevelopmental disorders may originate during fetal life from genetic as well as intrauterine and extrauterine factors that affect the fetal-maternal environment. Fetal neurodevelopment depends on cell programs, developmental trajectories, synaptic plasticity, and oligodendrocyte maturation, which are variously modifiable by factors such as stress and endocrine disruption, exposure to pesticides such as chlorpyrifos and to drugs such as terbutaline, maternal teratogenic alleles, and premature birth. Current research illustrates how altered fetal mechanisms may affect long-term physiological and behavioral functions of the central nervous system more significantly than they affect its form, and these effects may be transgenerational. This research emphasizes the diversity of such prenatal mechanisms and the need to expand our understanding of how, when altered, they may lead to disordered development, the signs of which may not appear until long after birth.
Collapse
Affiliation(s)
- Susan L Connors
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
McCarthy D, Lueras P, Bhide PG. Elevated dopamine levels during gestation produce region-specific decreases in neurogenesis and subtle deficits in neuronal numbers. Brain Res 2007; 1182:11-25. [PMID: 17950709 PMCID: PMC2141544 DOI: 10.1016/j.brainres.2007.08.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/22/2007] [Accepted: 08/30/2007] [Indexed: 11/21/2022]
Abstract
Dopamine levels in the fetal brain were increased by administering the dopamine precursor 3,4-dihydroxy-l-phenylalanine (l-DOPA) to pregnant mice in drinking water. The l-DOPA exposure decreased bromodeoxyuridine (BrdU) labeling in the lateral ganglionic eminence and frontal cortical neuroepithelium but not medial or caudal ganglionic eminences. The regional differences appear to reflect heterogeneity in precursor cells' responses to dopamine receptor activation. Relative numbers of E15-generated neurons were decreased at postnatal day 21 (P21) in the caudate-putamen, nucleus accumbens and frontal cortex but not globus pallidus in the l-DOPA group. TUNEL labeling did not show significant differences on P0, P7 or P14 in the caudate-putamen or frontal cortex, suggesting that cell death was not altered. Although virtually all cells in the P21 brains that were labeled with the E15 BrdU injection were NeuN-positive, stereological analyses showed no significant changes in total numbers of NeuN-positive or NeuN-negative cells in the P21 caudate-putamen or frontal cortex. Thus persisting deficits in neuronal numbers were evident in the l-DOPA group only by birth-dating analyses and not upon gross histological examination of brain sections or analysis of total numbers of neurons or glia. One explanation for this apparent discrepancy is that l-DOPA exposure decreased cell proliferation at E15 but not at E13. By E15, expansion of the neuroepithelial precursor pool is complete and any decrease in cell proliferation likely produces only marginal decreases in the total numbers of cells generated. Our l-DOPA exposure model may be pertinent to investigations of neurological dysfunction produced by developmental dopamine imbalance.
Collapse
Affiliation(s)
- Deirdre McCarthy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA
| | | | | |
Collapse
|
43
|
Ferris MJ, Mactutus CF, Silvers JM, Hasselrot U, Beaudin SA, Strupp BJ, Booze RM. Sex mediates dopamine and adrenergic receptor expression in adult rats exposed prenatally to cocaine. Int J Dev Neurosci 2007; 25:445-54. [PMID: 17933484 PMCID: PMC3184889 DOI: 10.1016/j.ijdevneu.2007.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022] Open
Abstract
The extent of catecholaminergic receptor and respective behavioral alterations associated with prenatal cocaine exposure varies according to exogenous factors such as the amount, frequency, and route of maternal exposure, as well as endogenous factors such as specific brain regions under consideration and sex of the species. The goal of the current study was to use autoradiography to delineate possible moderators of dopaminergic and adrenergic receptor expression in adult rat offspring exposed to cocaine in utero. The current study demonstrated sex-dependent D1 receptor, alpha2, and noradrenergic transporter binding alterations in prelimbic, hippocampus, and anterior cingulate regions of adult rat brains exposed to cocaine during gestational days 8-21. Of further interest was the lack of alterations in the nucleus accumbens for nearly all receptors/transporters investigated, as well as the lack of alterations in D3 receptor binding in nearly all of the regions investigated (nucleus accumbens, prelimbic region, hippocampus, and cingulate gyrus). Thus, the current investigation demonstrated persistent receptor and transporter alterations that extend well into adulthood as a result of cocaine exposure in utero. Furthermore, the demonstration that sex played a mediating role in prenatal cocaine-induced, aberrant receptor/transporter expression is of primary importance for future studies that seek to control for sex in either design or analysis.
Collapse
MESH Headings
- Adrenergic alpha-Agonists
- Animals
- Autoradiography
- Behavior, Animal/drug effects
- Benzazepines
- Brain Chemistry/drug effects
- Clonidine
- Cocaine/pharmacology
- Dopamine Antagonists
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dopamine Uptake Inhibitors/pharmacology
- Female
- Fluoxetine/analogs & derivatives
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic/biosynthesis
- Receptors, Adrenergic/drug effects
- Receptors, Adrenergic, alpha-2/biosynthesis
- Receptors, Dopamine/biosynthesis
- Receptors, Dopamine/drug effects
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D3/drug effects
- Sex Characteristics
- Tetrahydronaphthalenes
Collapse
Affiliation(s)
- Mark J Ferris
- Program in Behavioral Neuroscience, University of South Carolina, Columbia, SC 29208, United States.
| | | | | | | | | | | | | |
Collapse
|
44
|
Dey S, Snow DM. Cocaine exposure in vitro induces apoptosis in fetal locus coeruleus neurons through TNF-alpha-mediated induction of Bax and phosphorylated c-Jun NH(2)-terminal kinase. J Neurochem 2007; 103:542-56. [PMID: 17635674 DOI: 10.1111/j.1471-4159.2007.04750.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cocaine exposure results in aberrant outgrowth and decreased survival for locus coeruleus (LC), a noradrenergic population of neurons that putatively regulates attentional function; however, the underlying mechanisms for these events are not known. We previously showed that cocaine exposure in vitro activates pro-apoptotic Bax, caspase-9, and caspase-3 in LC neurons dissected from embryonic day 14 rats, implicating that apoptosis may be orchestrated via signal transduction events. In the current study in vitro, we examined upstream events to determine the role of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-alpha), on LC signal transduction, because cocaine exposure to LC neurons triggered TNF-alpha expression at 30 min as measured by ELISA. Exposure of LC neurons to recombinant-TNF-alpha resulted in decreased metabolic activity, an indicator of reduced neuron viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay], and increased apoptosis (terminal deoxynucleotidyl transferase-mediated DNA nick end labeling assay). Pro-apoptotic caspase-3 was induced by cocaine starting at 30 min. Recombinant-TNF-alpha induced caspase-3 activity earlier than cocaine (15 and 20 min). The caspase-3 levels were significantly reduced when cocaine and TNF-alpha were combined with neutralizing-TNF-alpha (nTNF-alpha), respectively. Further, cocaine alone elevated phospho-p38-mitogen-activated protein kinases that persisted when combined with nTNF-alpha. However, both cocaine and TNF-alpha independently increased phospho-c-Jun NH(2)-terminal kinase and Bax levels at concurrent time periods (30 min and 1 h), and this elevation was attenuated in the presence of nTNF-alpha. These simultaneous molecular events triggered by cocaine and TNF-alpha implicate a potential apoptotic signal transduction pathway via induction of phospho-c-Jun NH(2)-terminal kinase and Bax that may lead to caspase-3 activation and apoptosis in cocaine-exposed fetal LC neurons.
Collapse
Affiliation(s)
- Swatee Dey
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | |
Collapse
|
45
|
Parlaman JP, Thompson BL, Levitt P, Stanwood GD. Pharmacokinetic profile of cocaine following intravenous administration in the female rabbit. Eur J Pharmacol 2007; 563:124-9. [PMID: 17383635 PMCID: PMC1945095 DOI: 10.1016/j.ejphar.2007.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/19/2007] [Indexed: 11/25/2022]
Abstract
Prenatal cocaine exposure in a rabbit intravenous model has revealed selective disruption of brain development and pharmacological responsiveness. We therefore examined the pharmacokinetic properties of cocaine in this model. Dutch-belted rabbits were surgically implanted with a catheter in the carotid artery, allowed to recover, and then injected intravenously with a cocaine bolus. Cocaine and benzoylecgonine concentrations were measured in arterial blood plasma and analyzed by nonlinear regression and noncompartmental analyses. Peak cocaine concentration occurred by 30s, was transient, and distribution was rapid. The profile of cocaine in the rabbit is similar to that observed in humans using cocaine at recreational doses.
Collapse
Affiliation(s)
- Joshua P. Parlaman
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN 37232
| | - Barbara L. Thompson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN 37232
| | - Pat Levitt
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN 37232
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville TN 37203
| | - Gregg D. Stanwood
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN 37232
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville TN 37203
| |
Collapse
|
46
|
Dey S, Mactutus CF, Booze RM, Snow DM. Cocaine exposure in vitro induces apoptosis in fetal locus coeruleus neurons by altering the Bax/Bcl-2 ratio and through caspase-3 apoptotic signaling. Neuroscience 2007; 144:509-21. [PMID: 17084983 PMCID: PMC2562674 DOI: 10.1016/j.neuroscience.2006.09.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 09/19/2006] [Indexed: 01/03/2023]
Abstract
Cocaine inhibits survival and growth of rat locus coeruleus (LC) neurons, which may mediate alterations in attention, following in utero exposure to cocaine. These effects are most severe in early gestation during peak neuritogenesis. Prenatal cocaine exposure may specifically decrease LC survival through an apoptotic pathway involving caspases. Dissociated fetal LC neurons or substantia nigra (SN) neurons (control) were exposed in vitro to a pharmacologically active dose of cocaine hydrochloride (500 ng/ml) and assayed for apoptosis using terminal deoxynucleotidyl transferase mediated DNA nick end labeling and Hoechst methodologies. Cocaine exposure decreased survival and induced apoptosis in LC neurons, with no changes in survival of SN neurons. Activation of apoptotic signal transduction proteins was determined using enzyme assays and immunoblotting at 30 min, 1 h, 4 h and 24 h. In LC neurons, Bax levels were induced at 30 min and 1 h, following cocaine treatment, and Bcl-2 levels remained unchanged at all time points, altering the Bax/Bcl-2 ratio. The ratio was reversed for SN neurons (elevated Bcl-2 levels and transient reduction of Bax levels). Further, cocaine exposure significantly increased caspase-9 and caspase-3 activities at all time points, without changes in caspase-8 activity in LC neurons. In addition, cleavage of caspase-3 target proteins, alpha-fodrin and poly (ADP-ribose) polymerase (PARP) were observed following cocaine treatment. In contrast, SN neurons showed either significant reductions, or no significant changes, in caspase-3, -8 or -9 activities or caspase-3 target proteins, alpha-fodrin and PARP. Thus, cocaine exposure in vitro may preferentially induce apoptosis in fetal LC neurons putatively regulated by Bax, via activation of caspases and their downstream target proteins.
Collapse
Affiliation(s)
- S Dey
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0298, USA.
| | | | | | | |
Collapse
|
47
|
Estelles J, Rodríguez-Arias M, Maldonado C, Manzanedo C, Aguilar MA, Miñarro J. Prenatal cocaine alters later responses to morphine in adult male mice. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:1073-82. [PMID: 16737762 DOI: 10.1016/j.pnpbp.2006.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/20/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
Mice prenatally exposed to cocaine (25 mg/kg), physiological saline or non-treated during the last 6 days of pregnancy were evaluated as adults for the rewarding properties of 2 mg/kg of morphine, using the conditioned place preference (CPP) procedure. Likewise, isolated animals underwent a social interaction test with conspecifics after receiving the same morphine dose. Unlike control or animals pre-treated with saline, subjects prenatally treated with cocaine did not develop CPP with this dose of morphine. Only cocaine-exposed animals showed increased threat, avoidance and fleeing during the social encounter. No differences in motor effects of morphine were observed. Analysis of monoamines revealed effects of housing conditions, isolated animals having fewer DOPAC but higher levels of HVA than those grouped, but in both groups there was a decrease in DOPAC in cocaine- and saline-treated mice. Prenatal cocaine exposure decreases the response to the rewarding properties of drugs in mature offspring. They also implicate cocaine consumption during pregnancy could affect the response of offspring to take other drugs of abuse.
Collapse
Affiliation(s)
- Josefina Estelles
- Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Stanwood GD, Parlaman JP, Levitt P. Genetic or pharmacological inactivation of the dopamine D
1
receptor differentially alters the expression of regulator of G‐protein signalling (Rgs) transcripts. Eur J Neurosci 2006; 24:806-18. [PMID: 16930410 DOI: 10.1111/j.1460-9568.2006.04970.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysregulation of dopamine (DA) receptor signalling induces specific changes in behaviour, neuronal circuitry and gene expression in the mammalian forebrain. In order to better understand signalling adaptations at the molecular level, we used high-density oligonucleotide microarrays (Codelink Mouse 20K) to define alterations in the expression of transcripts encoding regulator of G-protein coupled receptor signalling in dopamine D1 receptor knockout mice (Drd1a-KO). Regulator of G-protein signalling (Rgs) 2, Rgs4, and Rgs9 were significantly decreased in the striatum (STR) of Drd1a-KO mice. These changes were confirmed by in situ hybridization, and were also observed in the nucleus accumbens (NAc). In contrast, analysis of the medial frontal cortex (MFC) revealed a significant decrease in Rgs17 expression exclusively, and a modest up-regulation of Rgs5 transcript. The expression of these gene products were not significantly altered in the dopamine-poor visual cortex (VC). The Drd1a-KO mouse, and a rabbit model of in utero cocaine exposure, in which D1R signalling is permanently reduced, possess analogous morphological and functional alterations in dopamine-modulated brain circuits; thus we also examined long-lasting changes in RGS transcript expression following prenatal exposure to cocaine. In sharp contrast to the Drd1a-KO, Rgs2 and Rgs4 were unchanged, and Rgs9 and Rgs17 transcripts were increased in prenatal cocaine-exposed progeny. These data suggest that an absolute absence of D1R signalling (Drd1a-KO) and hypomorphic D1R signalling (prenatal cocaine) produce common alterations in neuronal morphology, but distinct outcomes in molecular neuroadaptations.
Collapse
Affiliation(s)
- Gregg D Stanwood
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville TN 37203, USA.
| | | | | |
Collapse
|
49
|
Buxhoeveden DP, Hasselrot U, Buxhoeveden NE, Booze RM, Mactutus CF. Microanatomy in 21 day rat brains exposed prenatally to cocaine. Int J Dev Neurosci 2006; 24:335-41. [PMID: 16814973 DOI: 10.1016/j.ijdevneu.2006.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/06/2006] [Accepted: 04/06/2006] [Indexed: 11/15/2022] Open
Abstract
We examined cell minicolumns, apical dendrite bundles, and inhibitory interneurons, in prefrontal and somatosensory cortex of 21-day-old rat brains exposed to cocaine during fetal development. Cell columns and apical dendrite bundles were found to be narrower, or closer together, in all three areas following in utero cocaine exposure. The inter-rater reliability among different observers was R(2)=0.89. The number of cells stained for glutamic acid decarboxylase (GAD) was not significantly different in the prenatal cocaine exposed group compared to saline controls. The present data suggests that recreational doses of cocaine administered intravenously in early pregnancy, have the capacity to modify the maturation of the ontogenetic cell column.
Collapse
Affiliation(s)
- Daniel P Buxhoeveden
- Department of Anthropology, University of South Carolina, Columbia, SC 29803, USA.
| | | | | | | | | |
Collapse
|
50
|
Booze RM, Wallace DR, Silvers JM, Strupp BJ, Snow DM, Mactutus CF. Prenatal cocaine exposure alters alpha2 receptor expression in adolescent rats. BMC Neurosci 2006; 7:33. [PMID: 16620392 PMCID: PMC1513240 DOI: 10.1186/1471-2202-7-33] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 04/18/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prenatal cocaine exposure produces attentional deficits which to persist through early childhood. Given the role of norepinephrine (NE) in attentional processes, we examined the forebrain NE systems from prenatal cocaine exposed rats. Cocaine was administered during pregnancy via the clinically relevant intravenous route of administration. Specifically, we measured alpha2-adrenergic receptor (alpha2-AR) density in adolescent (35-days-old) rats, using [3H]RX821002 (5 nM). RESULTS Sex-specific alterations of alpha2-AR were found in the hippocampus and amygdala of the cocaine-exposed animals, as well as an upregulation of alpha2-AR in parietal cortex. CONCLUSION These data suggest that prenatal cocaine exposure results in a persistent alteration in forebrain NE systems as indicated by alterations in receptor density. These neurochemical changes may underlie behavioral abnormalities observed in offspring attentional processes following prenatal exposure to cocaine.
Collapse
Affiliation(s)
- Rosemarie M Booze
- Department of Psychology, University of South Carolina Columbia, SC 29208, USA
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina Columbia, SC 29208, USA
| | - David R Wallace
- Department of Pharmacology and Physiology, Oklahoma State University, College of Osteopathic Medicine Tulsa, OK 74017-1898, USA
| | - Janelle M Silvers
- Department of Psychology, University of South Carolina Columbia, SC 29208, USA
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina Columbia, SC 29208, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University Ithaca, NY 14853-6301, USA
| | - Diane M Snow
- Department of Anatomy and Neurobiology, The University of Kentucky, Lexington, KY 40536-0298, USA
| | - Charles F Mactutus
- Department of Psychology, University of South Carolina Columbia, SC 29208, USA
| |
Collapse
|