1
|
Park Y, Moon S, Jung H, Park S, Kim JW, Song DG, In YH, Han SW, Sohn JH, Lee CH. Mirodenafil improves cognitive function by reducing microglial activation and blood-brain barrier permeability in ApoE4 KI mice. Front Aging Neurosci 2025; 17:1579411. [PMID: 40443793 PMCID: PMC12119498 DOI: 10.3389/fnagi.2025.1579411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025] Open
Abstract
Introduction Alzheimer's disease (AD) has significant public health concerns in the aging society. AD can compromise brain function and lead to severe neurological abnormalities associated with dementia. The human Apolipoprotein E (ApoE4) gene is a strong risk factor for AD. However, comprehensive analyses and improvements of mouse models expressing ApoE4 remain largely unexplored. Methods ApoE4 knock-in (KI) mice were used to investigate the role of humanized ApoE4 in hippocampal histological changes and cognitive impairment. Cerebrovascular perfusion, blood-brain barrier (BBB) integrity, microgliosis, and amyloid-beta 42 (Aβ42) accumulation were examined. Cognitive functions were assessed using the Morris water maze, Y-maze, and novel object recognition tests. Mirodenafil, a potent and selective phosphodiesterase 5 inhibitor (PDE5i), was orally administered to ApoE4 KI mice for 4 weeks. An in vitro BBB model and BV2 microglial cells were used to investigate endothelial permeability and inflammation. Results ApoE4 KI mice exhibited not only reduced cerebrovascular perfusion and CLN-5 expression but also increased microgliosis and Aβ42 accumulation in the hippocampus. These phenomena were accompanied by impaired cognitive functions. Mirodenafil administration reversed the histological and behavioral alterations induced by ApoE4 KI. In vitro, mirodenafil treatment mitigated Aβ42-induced endothelial permeability and lipopolysaccharide-induced microglial inflammation. Discussion These findings suggest that mirodenafil enhances cerebrovascular function, preserves BBB integrity, and mitigates neuroinflammation in ApoE4 KI mice, leading to cognitive improvement. PDE5 inhibition may serve as a promising therapeutic approach for addressing ApoE4-associated cerebrovascular and cognitive dysfunction.
Collapse
Affiliation(s)
- Yejin Park
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Subin Moon
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Songyi Park
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ju Won Kim
- AriBio Co., Ltd., Seongnam-si, Gyeonggi-Do, Republic of Korea
| | - Dan-Gyeong Song
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Yong-Ho In
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Sang Won Han
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jong-Hee Sohn
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
The molecular memory code and synaptic plasticity: A synthesis. Biosystems 2023; 224:104825. [PMID: 36610586 DOI: 10.1016/j.biosystems.2022.104825] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
The most widely accepted view of memory in the brain holds that synapses are the storage sites of memory, and that memories are formed through associative modification of synapses. This view has been challenged on conceptual and empirical grounds. As an alternative, it has been proposed that molecules within the cell body are the storage sites of memory, and that memories are formed through biochemical operations on these molecules. This paper proposes a synthesis of these two views, grounded in a computational model of memory. Synapses are conceived as storage sites for the parameters of an approximate posterior probability distribution over latent causes. Intracellular molecules are conceived as storage sites for the parameters of a generative model. The model stipulates how these two components work together as part of an integrated algorithm for learning and inference.
Collapse
|
3
|
George H, Mercer GV, Stapleton D, Dawson L, MacCallum PE, Spring S, Sled JG, Blundell J, Cahill LS. Structural brain abnormalities in endothelial nitric oxide synthase-deficient mice revealed by high-resolution magnetic resonance imaging. Brain Behav 2022; 12:e2801. [PMID: 36259950 PMCID: PMC9660425 DOI: 10.1002/brb3.2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 10/08/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Endothelial nitric oxide synthase (eNOS) produces nitric oxide, which is essential for a variety of physiological functions in the brain. Previous work has demonstrated the detrimental effects of eNOS deficiency on brain function in male eNOS knockout (eNOS KO) mice. However, the effect of eNOS deficiency on brain structure and any association between these effects and sex is unknown. METHODS This study used three-dimensional high-resolution ex vivo magnetic resonance imaging and behavioral tests of anxiety and cognitive performance to investigate structure-function relationships in the brain of female and male eNOS KO mice in young adulthood. RESULTS While there were no differences in anxiety-like behavior or locomotion, there was a sex-specific deficit in contextual fear memory retention in male, but not in female, eNOS mice compared to wild-type controls. Moreover, we found that eNOS deficiency induced changes in multiple brain regions that are involved in learning and fear memory including the hippocampus, amygdala, hypothalamus, and areas of the cortex. Several of these MRI-detectable neuroanatomical changes were dependent on sex. CONCLUSION The observation that eNOS deficiency impacts brain structure at an early age demonstrates the importance of eNOS for healthy brain development.
Collapse
Affiliation(s)
- Hannah George
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Darcie Stapleton
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Laura Dawson
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada.,Translational Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada.,Discipline of Radiology, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
4
|
Liao FF, Lin G, Chen X, Chen L, Zheng W, Raghow R, Zhou FM, Shih AY, Tan XL. Endothelial Nitric Oxide Synthase-Deficient Mice: A Model of Spontaneous Cerebral Small-Vessel Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1932-1945. [PMID: 33711310 PMCID: PMC8647425 DOI: 10.1016/j.ajpath.2021.02.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Age-related cerebral small-vessel disease (CSVD) is a major cause of stroke and dementia. Despite a widespread acceptance of small-vessel arteriopathy, lacunar infarction, diffuse white matter injury, and cognitive impairment as four cardinal features of CSVD, a unifying pathologic mechanism of CSVD remains elusive. Herein, we introduce partial endothelial nitric oxide synthase (eNOS)-deficient mice as a model of age-dependent, spontaneous CSVD. These mice developed cerebral hypoperfusion and blood-brain barrier leakage at a young age, which progressively worsened with advanced age. Their brains exhibited elevated oxidative stress, astrogliosis, cerebral amyloid angiopathy, microbleeds, microinfarction, and white matter pathology. Partial eNOS-deficient mice developed gait disturbances at middle age, and hippocampus-dependent memory deficits at older ages. These mice also showed enhanced expression of bone morphogenetic protein 4 (BMP4) in brain pericytes before myelin loss and white matter pathology. Because BMP4 signaling not only promotes astrogliogenesis but also blocks oligodendrocyte differentiation, we posit that paracrine actions of BMP4, localized within the neurovascular unit, promote white matter disorganization and neurodegeneration. These observations point to BMP4 signaling pathway in the aging brain vasculature as a potential therapeutic target. Finally, because studies in partial eNOS-deficient mice corroborated recent clinical evidence that blood-brain barrier disruption is a primary cause of white matter pathology, the mechanism of impaired nitric oxide signaling-mediated CSVD warrants further investigation.
Collapse
Affiliation(s)
- Francesca-Fang Liao
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee.
| | - Geng Lin
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee; Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, China
| | - Xingyong Chen
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee; Department of Neurology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee; Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wei Zheng
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee; Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, China
| | - Rajendra Raghow
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee
| | - Fu-Ming Zhou
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Xing-Lin Tan
- Department of Pharmacology, Addiction Science, Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee; Department of Neurology, Nanhai Hospital of Southern Medical University, Foshan, China
| |
Collapse
|
5
|
Nitric oxide and the brain. Part 1: Mechanisms of regulation, transport and effects on the developing brain. Pediatr Res 2021; 89:738-745. [PMID: 32563183 DOI: 10.1038/s41390-020-1017-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022]
Abstract
Apart from its known actions as a pulmonary vasodilator, nitric oxide (NO) is a key signal mediator in the neonatal brain. Despite the extensive use of NO for pulmonary artery hypertension (PAH), its actions in the setting of brain hypoxia and ischemia, which co-exists with PAH in 20-30% of affected infants, are not well established. This review focuses on the mechanisms of actions of NO covering the basic, translational, and clinical evidence of its neuroprotective and neurotoxic properties. In this first part, we present the physiology of transport and delivery of NO to the brain and the regulation of cerebrovascular and systemic circulation by NO, as well the role of NO in the development of the immature brain. IMPACT: NO can be transferred from the site of production to the site of action rapidly and affects the central nervous system. Inhaled NO (iNO), a commonly used medication, can have significant effects on the neonatal brain. NO regulates the cerebrovascular and systemic circulation and plays a role in the development of the immature brain. This review describes the properties of NO under physiologic conditions and under stress. The impact of this review is that it describes the effects of NO, especially regarding the vulnerable neonatal brain, and helps understand the conditions that could contribute to neurotoxicity or neuroprotection.
Collapse
|
6
|
Kalinichenko LS, Abdel-Hafiz L, Wang AL, Mühle C, Rösel N, Schumacher F, Kleuser B, Smaga I, Frankowska M, Filip M, Schaller G, Richter-Schmidinger T, Lenz B, Gulbins E, Kornhuber J, Oliveira AWC, Barros M, Huston JP, Müller CP. Neutral Sphingomyelinase is an Affective Valence-Dependent Regulator of Learning and Memory. Cereb Cortex 2021; 31:1316-1333. [PMID: 33043975 DOI: 10.1093/cercor/bhaa298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids and enzymes of the sphingolipid rheostat determine synaptic appearance and signaling in the brain, but sphingolipid contribution to normal behavioral plasticity is little understood. Here we asked how the sphingolipid rheostat contributes to learning and memory of various dimensions. We investigated the role of these lipids in the mechanisms of two different types of memory, such as appetitively and aversively motivated memory, which are considered to be mediated by different neural mechanisms. We found an association between superior performance in short- and long-term appetitively motivated learning and regionally enhanced neutral sphingomyelinase (NSM) activity. An opposite interaction was observed in an aversively motivated task. A valence-dissociating role of NSM in learning was confirmed in mice with genetically reduced NSM activity. This role may be mediated by the NSM control of N-methyl-d-aspartate receptor subunit expression. In a translational approach, we confirmed a positive association of serum NSM activity with long-term appetitively motivated memory in nonhuman primates and in healthy humans. Altogether, these data suggest a new sphingolipid mechanism of de-novo learning and memory, which is based on NSM activity.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Laila Abdel-Hafiz
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Nadine Rösel
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Fabian Schumacher
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Frankowska
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Gerd Schaller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany.,Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0558, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - André W C Oliveira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil.,Primate Center, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| |
Collapse
|
7
|
Garthwaite J. NO as a multimodal transmitter in the brain: discovery and current status. Br J Pharmacol 2019; 176:197-211. [PMID: 30399649 PMCID: PMC6295412 DOI: 10.1111/bph.14532] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
NO operates throughout the brain as an intercellular messenger, initiating its varied physiological effects by activating specialized GC-coupled receptors, resulting in the formation of cGMP. In line with the widespread expression of this pathway, NO participates in numerous different brain functions. This review gives an account of the discovery of NO as a signalling molecule in the brain, experiments that originated in the search for a mysterious cGMP-stimulating factor released from central neurones when their NMDA receptors were stimulated, and summarizes the subsequent key steps that helped establish its status as a central transmitter. Currently, various modes of operation are viewed to underlie its diverse behaviour, ranging from very local signalling between synaptic partners (in the orthograde or retrograde directions) to a volume-type transmission whereby NO synthesized by multiple synchronous sources summate spatially and temporally to influence intermingled neuronal or non-neuronal cells, irrespective of anatomical connectivity. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- John Garthwaite
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| |
Collapse
|
8
|
Molecular profiling of reticular gigantocellularis neurons indicates that eNOS modulates environmentally dependent levels of arousal. Proc Natl Acad Sci U S A 2018; 115:E6900-E6909. [PMID: 29967172 DOI: 10.1073/pnas.1806123115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurons of the medullary reticular nucleus gigantocellularis (NGC) and their targets have recently been a focus of research on mechanisms supporting generalized CNS arousal (GA) required for proper cognitive functions. Using the retro-TRAP method, we characterized transcripts enriched in NGC neurons which have projections to the thalamus. The unique expression and activation of the endothelial nitric oxide (eNOS) signaling pathway in these cells and their intimate connections with blood vessels indicate that these neurons exert direct neurovascular coupling. Production of nitric oxide (NO) within eNOS-positive NGC neurons increases after environmental perturbations, indicating a role for eNOS/NO in modulating environmentally appropriate levels of GA. Inhibition of NO production causes dysregulated behavioral arousal after exposure to environmental perturbation. Further, our findings suggest interpretations for associations between psychiatric disorders and mutations in the eNOS locus.
Collapse
|
9
|
Ghasemi M, Claunch J, Niu K. Pathologic role of nitrergic neurotransmission in mood disorders. Prog Neurobiol 2018; 173:54-87. [PMID: 29890213 DOI: 10.1016/j.pneurobio.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Mood disorders are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although over the past 40 years the biogenic amine models have provided meaningful links with the clinical phenomena of, and the pharmacological treatments currently employed in, mood disorders, there is still a need to examine the contribution of other systems to the neurobiology and treatment of mood disorders. This article reviews the current literature describing the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby the treatment of mood disorders. The hypothesis has arisen from several observations including (i) altered NO levels in patients with mood disorders; (ii) antidepressant effects of NO signaling blockers in both clinical and pre-clinical studies; (iii) interaction between conventional antidepressants/mood stabilizers and NO signaling modulators in several biochemical and behavioral studies; (iv) biochemical and physiological evidence of interaction between monoaminergic (serotonin, noradrenaline, and dopamine) system and NO signaling; (v) interaction between neurotrophic factors and NO signaling in mood regulation and neuroprotection; and finally (vi) a crucial role for NO signaling in the inflammatory processes involved in pathophysiology of mood disorders. These accumulating lines of evidence have provided a new insight into novel approaches for the treatment of mood disorders.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Joshua Claunch
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kathy Niu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
10
|
Romano A, Serviddio G, Calcagnini S, Villani R, Giudetti AM, Cassano T, Gaetani S. Linking lipid peroxidation and neuropsychiatric disorders: focus on 4-hydroxy-2-nonenal. Free Radic Biol Med 2017; 111:281-293. [PMID: 28063940 DOI: 10.1016/j.freeradbiomed.2016.12.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 12/25/2022]
Abstract
4-hydroxy-2-nonenal (HNE) is considered to be a strong marker of oxidative stress; the interaction between HNE and cellular proteins leads to the formation of HNE-protein adducts able to alter cellular homeostasis and cause the development of a pathological state. By virtue of its high lipid concentration, oxygen utilization, and the presence of metal ions participating to redox reactions, the brain is highly susceptible to the formation of free radicals and HNE-related compounds. A variety of neuropsychiatric disorders have been associated with elevations of HNE concentration. For example, increased levels of HNE were found in the cortex of bipolar and schizophrenic patients, while HNE plasma concentrations resulted high in patients with major depression. On the same line, high brain concentrations of HNE were found associated with Huntington's inclusions. The incidence of high HNE levels is relevant also in the brain and cerebrospinal fluid of patients suffering from Parkinson's disease. Intriguingly, in this case the increase of HNE was associated with an accumulation of iron in the substantia nigra, a brain region highly affected by the pathology. In the present review we recapitulate the findings supporting the role of HNE in the pathogenesis of different neuropsychiatric disorders to highlight the pathogenic mechanisms ascribed to HNE accumulation. The aim of this review is to offer novel perspectives both for the understanding of etiopathogenetic mechanisms that remain still unclear and for the identification of new useful biological markers. We conclude suggesting that targeting HNE-driven cellular processes may represent a new more efficacious therapeutical intervention.
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Centro Ecotekne, sp Lecce-Monteroni 73100 Lecce, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
11
|
Descalzi G, Mitsi V, Purushothaman I, Gaspari S, Avrampou K, Loh YHE, Shen L, Zachariou V. Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression. Sci Signal 2017; 10:10/471/eaaj1549. [PMID: 28325815 DOI: 10.1126/scisignal.aaj1549] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is a complex chronic condition characterized by various sensory, cognitive, and affective symptoms. A large percentage of patients with neuropathic pain are also afflicted with depression and anxiety disorders, a pattern that is also seen in animal models. Furthermore, clinical and preclinical studies indicate that chronic pain corresponds with adaptations in several brain networks involved in mood, motivation, and reward. Chronic stress is also a major risk factor for depression. We investigated whether chronic pain and stress affect similar molecular mechanisms and whether chronic pain can affect gene expression patterns that are involved in depression. Using two mouse models of neuropathic pain and depression [spared nerve injury (SNI) and chronic unpredictable stress (CUS)], we performed next-generation RNA sequencing and pathway analysis to monitor changes in gene expression in the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the periaqueductal gray (PAG). In addition to finding unique transcriptome profiles across these regions, we identified a substantial number of signaling pathway-associated genes with similar changes in expression in both SNI and CUS mice. Many of these genes have been implicated in depression, anxiety, and chronic pain in patients. Our study provides a resource of the changes in gene expression induced by long-term neuropathic pain in three distinct brain regions and reveals molecular connections between pain and chronic stress.
Collapse
Affiliation(s)
- Giannina Descalzi
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vasiliki Mitsi
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Immanuel Purushothaman
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sevasti Gaspari
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kleopatra Avrampou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yong-Hwee Eddie Loh
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Shen
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venetia Zachariou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
12
|
Yoshihara D, Fujiwara N, Kitanaka N, Kitanaka J, Sakiyama H, Eguchi H, Takemura M, Suzuki K. The absence of the SOD1 gene causes abnormal monoaminergic neurotransmission and motivational impairment-like behavior in mice. Free Radic Res 2016; 50:1245-1256. [PMID: 27629432 DOI: 10.1080/10715762.2016.1234048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper/zinc superoxide dismutase (SOD1), a primary anti-oxidative enzyme, protects cells against oxidative stress. We report herein on a comparison of behavioral and neurobiological changes between SOD1 knockout (KO) and wild-type mice, in an attempt to assess the role of SOD1 in brain functions. SOD1 KO mice exhibited impaired motivational behavior in both shuttle-box learning and three-chamber social interaction tests. High levels of dopamine transporter protein and an acceleration of serotonin turnover were also detected in the cerebrums of the SOD1 KO mice. These findings suggest that SOD1 deficiency disturbs monoaminergic neurotransmission leading to a decrease in motivational behavior.
Collapse
Affiliation(s)
- Daisaku Yoshihara
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Noriko Fujiwara
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Nobue Kitanaka
- b Department of Pharmacology , Hyogo College of Medicine , Nishinomiya , Japan
| | - Junichi Kitanaka
- b Department of Pharmacology , Hyogo College of Medicine , Nishinomiya , Japan
| | - Haruhiko Sakiyama
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Hironobu Eguchi
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Motohiko Takemura
- b Department of Pharmacology , Hyogo College of Medicine , Nishinomiya , Japan
| | - Keiichiro Suzuki
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| |
Collapse
|
13
|
Baransel Isir A, Nacak M, Balci SO, Aynacioglu AS, Pehlivan S. Genetic contributing factors to substance abuse: an association study between eNOS gene polymorphisms and cannabis addiction in a Turkish population. AUST J FORENSIC SCI 2015. [DOI: 10.1080/00450618.2015.1112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Baranyi A, Amouzadeh-Ghadikolai O, Rothenhäusler HB, Theokas S, Robier C, Baranyi M, Koppitz M, Reicht G, Hlade P, Meinitzer A. Nitric Oxide-Related Biological Pathways in Patients with Major Depression. PLoS One 2015; 10:e0143397. [PMID: 26581044 PMCID: PMC4651499 DOI: 10.1371/journal.pone.0143397] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
Background Major depression is a well-known risk factor for cardiovascular diseases and increased mortality following myocardial infarction. However, biomarkers of depression and increased cardiovascular risk are still missing. The aim of this prospective study was to evaluate, whether nitric-oxide (NO) related factors for endothelial dysfunction, such as global arginine bioavailability, arginase activity, L-arginine/ADMA ratio and the arginine metabolites asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) might be biomarkers for depression-induced cardiovascular risk. Methods In 71 in-patients with major depression and 48 healthy controls the Global Arginine Bioavailability Ratio (GABR), arginase activity (arginine/ornithine ratio), the L-arginine/ADMA ratio, ADMA, and SDMA were determined by high-pressure liquid chromatography. Psychiatric and laboratory assessments were obtained at baseline at the time of in-patient admittance and at the time of hospital discharge. Results The ADMA concentrations in patients with major depression were significantly elevated and the SDMA concentrations were significantly decreased in comparison with the healthy controls. Even after a first improvement of depression, ADMA and SDMA levels remained nearly unchanged. In addition, after a first improvement of depression at the time of hospital discharge, a significant decrease in arginase activity, an increased L-arginine/ADMA ratio and a trend for increased global arginine bioavailability were observed. Conclusions Our study results are evidence that in patients with major depression ADMA and SDMA might be biomarkers to indicate an increased cardiovascular threat due to depression-triggered NO reduction. GABR, the L-arginine/ADMA ratio and arginase activity might be indicators of therapy success and increased NO production after remission.
Collapse
Affiliation(s)
- Andreas Baranyi
- Department of Psychiatry, Medical University of Graz, Graz, Austria
- Institute for International Management Practice at ARU Cambridge, Cambridge, United Kingdom
- * E-mail:
| | | | | | - Simon Theokas
- Department of Psychiatry, Medical University of Graz, Graz, Austria
| | - Christoph Robier
- Hospital of the Brothers of St. John of God, Graz, Austria
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Maria Baranyi
- Department of Psychiatry, Medical University of Graz, Graz, Austria
| | - Michael Koppitz
- Department of Psychiatry, Medical University of Graz, Graz, Austria
| | - Gerhard Reicht
- Hospital of the Brothers of St. John of God, Graz, Austria
| | - Peter Hlade
- Hospital of the Brothers of St. John of God, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Ehrhardt A, Wang B, Leung MJ, Schrader JW. Absence of M-Ras modulates social behavior in mice. BMC Neurosci 2015; 16:68. [PMID: 26490652 PMCID: PMC4618870 DOI: 10.1186/s12868-015-0209-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/08/2015] [Indexed: 12/23/2022] Open
Abstract
Background The molecular mechanisms that determine social behavior are poorly understood. Pheromones play a critical role in social recognition in most animals, including mice, but how these are converted into behavioral responses is largely unknown. Here, we report that the absence of the small GTPase M-Ras affects social behavior in mice. Results In their interactions with other males, Mras−/− males exhibited high levels of territorial aggression and social investigations, and increased fear-related behavior. They also showed increased mating behavior with females. Curiously, increased aggression and mating behaviors were only observed when Mras−/− males were paired with Mras−/− partners, but were significantly reduced when paired with wild-type (WT) mice. Since mice use pheromonal cues to identify other individuals, we explored the possibility that pheromone detection may be altered in Mras−/− mice. Unlike WT mice, Mras−/− did not show a preference for exploring unfamiliar urinary pheromones or unfamiliar isogenic mice. Although this could indicate that vomeronasal function and/or olfactory learning may be compromised in Mras−/− mice, these observations were not fully consistent with the differential behavioral responses to WT and Mras−/− interaction partners by Mras−/− males. In addition, induction of c-fos upon pheromone exposure or in response to mating was similar in WT and Mras−/− mice, as was the ex vivo expansion of neural progenitors with EGF. This indicated that acute pheromone detection and processing was likely intact. However, urinary metabolite profiles differed between Mras−/− and WT males. Conclusions The changes in behaviors displayed by Mras−/− mice are likely due to a complex combination of factors that may include an inherent predisposition to increased aggression and sexual behavior, and the production of distinct pheromones that could override the preference for unfamiliar social odors. Olfactory and/or social learning processes may thus be compromised in Mras−/− mice. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0209-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annette Ehrhardt
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - Bin Wang
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - Marie J Leung
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - John W Schrader
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
16
|
Viggiano A, Cacciola G, Widmer DAJ, Viggiano D. Anxiety as a neurodevelopmental disorder in a neuronal subpopulation: Evidence from gene expression data. Psychiatry Res 2015; 228:729-40. [PMID: 26089015 DOI: 10.1016/j.psychres.2015.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022]
Abstract
The relationship between genes and anxious behavior, is nor linear nor monotonic. To address this problem, we analyzed with a meta-analytic method the literature data of the behavior of knockout mice, retrieving 33 genes whose deletion was accompanied by increased anxious behavior, 34 genes related to decreased anxious behavior and 48 genes not involved in anxiety. We correlated the anxious behavior resulting from the deletion of these genes to their brain expression, using the Allen Brain Atlas and Gene Expression Omnibus (GEO) database. The main finding is that the genes accompanied, after deletion, by a modification of the anxious behavior, have lower expression in the cerebral cortex, the amygdala and the ventral striatum. The lower expression level was putatively due to their selective presence in a neuronal subpopulation. This difference was replicated also using a database of human gene expression, further showing that the differential expression pertained, in humans, a temporal window of young postnatal age (4 months up to 4 years) but was not evident at fetal or adult human stages. Finally, using gene enrichment analysis we also show that presynaptic genes are involved in the emergence of anxiety and postsynaptic genes in the reduction of anxiety after gene deletion.
Collapse
Affiliation(s)
- Adela Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | - Giovanna Cacciola
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy; Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Italy.
| |
Collapse
|
17
|
Lisboa SF, Gomes FV, Silva AL, Uliana DL, Camargo LHA, Guimarães FS, Cunha FQ, Joca SRL, Resstel LBM. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System. Int J Neuropsychopharmacol 2015; 18:pyv005. [PMID: 25618404 PMCID: PMC4571624 DOI: 10.1093/ijnp/pyv005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/12/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. METHODS We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. RESULTS Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. CONCLUSION These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Benzamides/pharmacology
- Benzoxazines/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Antagonists/pharmacology
- Carbamates/pharmacology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Endocannabinoids/metabolism
- Enzyme Inhibitors/pharmacology
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Fear/drug effects
- Fear/physiology
- Freezing Reaction, Cataleptic/drug effects
- Freezing Reaction, Cataleptic/physiology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Indazoles/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type II/antagonists & inhibitors
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Polyunsaturated Alkamides/metabolism
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Pyrazoles/pharmacology
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Sabrina F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel).
| | - Felipe V Gomes
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Andréia L Silva
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Daniela L Uliana
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Laura H A Camargo
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Francisco S Guimarães
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Fernando Q Cunha
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Sâmia R L Joca
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Leonardo B M Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| |
Collapse
|
18
|
Ambrée O, Buschert J, Zhang W, Arolt V, Dere E, Zlomuzica A. Impaired spatial learning and reduced adult hippocampal neurogenesis in histamine H1-receptor knockout mice. Eur Neuropsychopharmacol 2014; 24:1394-404. [PMID: 24862254 DOI: 10.1016/j.euroneuro.2014.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/03/2014] [Accepted: 04/27/2014] [Indexed: 01/23/2023]
Abstract
The histamine H1-receptor (H1R) is expressed in wide parts of the brain including the hippocampus, which is involved in spatial learning and memory. Previous studies in H1R knockout (H1R-KO) mice revealed deficits in a variety of learning and memory tasks. It was also proposed that H1R activation is crucial for neuronal differentiation of neural progenitors. Therefore, the aim of this study was to investigate negatively reinforced spatial learning in the water-maze and to assess survival and neuronal differentiation of newborn cells in the adult hippocampus of H1R-KO mice. H1R-KO and wild-type (WT) mice were subjected to the following sequence of tests: (a) cued version, (b) place learning, (c) spatial probe, (d) long-term retention and (e) reversal learning. Furthermore hippocampal neurogenesis in terms of survival and differentiation was assessed in H1R-KO and WT mice. H1R-KO mice showed normal cued learning, but impaired place and reversal learning as well as impaired long-term retention performance. In addition, a marked reduction of newborn neurons in the hippocampus but no changes in differentiation of neural progenitors into neuronal and glial lineage was found in H1R-KO mice. Our data suggest that H1R deficiency in mice is associated with pronounced deficits in hippocampus-dependent spatial learning and memory. Furthermore, we herein provide first evidence that H1R deficiency in the mouse leads to a reduced neurogenesis. However, the exact mechanisms for the reduced number of cells in H1R-KO mice remain elusive and might be due to a reduced survival of newborn hippocampal neurons and/or a reduction in cell proliferation.
Collapse
Affiliation(s)
- Oliver Ambrée
- Department of Psychiatry, University of Münster, Germany
| | - Jens Buschert
- Department of Psychiatry, University of Münster, Germany
| | - Weiqi Zhang
- Department of Psychiatry, University of Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Germany
| | - Ekrem Dere
- Institute of Physiological Psychology, Heinrich-Heine University, Düsseldorf, Germany; UMR 7102, Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie, Paris 6, France; Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Armin Zlomuzica
- Institute of Physiological Psychology, Heinrich-Heine University, Düsseldorf, Germany; Mental Health Research and Treatment Center, University of Bochum, Germany.
| |
Collapse
|
19
|
Asymmetric dimethylarginine responses during interferon-α-induced depression in patients with chronic hepatitis C infection. Psychosom Med 2014; 76:197-207. [PMID: 24608038 DOI: 10.1097/psy.0000000000000042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to examine the association of depressive symptoms with asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Patients with chronic hepatitis C infection were examined during interferon-α (IFN-α) treatment, which is often associated with treatment-induced depression. The associations between IFN-α-induced depressive symptoms with ADMA and SDMA levels were prospectively investigated until 3 months after treatment. METHODS Psychiatric and biological assessments were obtained at six different time points: before, during (at 1, 3, 6, and 9 months), and after the end of IFN-α treatment. RESULTS During IFN-α treatment, 22 (53.7%) patients fulfilled the criteria for a treatment-related depressive disorder at least once during treatment. The increase in ADMA levels from baseline (depression group: 0.63 [0.08] μM, no depression group: 0.69 [0.08] μM) in response to IFN-α treatment was considerably higher in patients with IFN-α treatment-induced depressive episodes compared with patients without treatment-induced depressive episodes (3 months after the start of treatment: depression group: 0.72 [0.08] μM, no depression group: 0.72 [0.11] μM; ADMA: repeated-measure design analysis of variance [time × depression]: F(5,151) = 2.446, p = .036). The increase in SDMA was not associated with treatment-induced depression. CONCLUSIONS Depression in response to IFN-α treatment is associated with elevated ADMA levels. These findings are relevant to nitric oxide-related biological pathways linking depression to increased cardiovascular disease risk. Future studies are needed to clarify the role of serotonin in these pathways and may lead to preventative treatment strategies.
Collapse
|
20
|
Griebel G, Holmes A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev Drug Discov 2013; 12:667-87. [PMID: 23989795 DOI: 10.1038/nrd4075] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anxiety disorders are the most prevalent group of psychiatric diseases, and have high personal and societal costs. The search for novel pharmacological treatments for these conditions is driven by the growing medical need to improve on the effectiveness and the side effect profile of existing drugs. A huge volume of data has been generated by anxiolytic drug discovery studies, which has led to the progression of numerous new molecules into clinical trials. However, the clinical outcome of these efforts has been disappointing, as promising results with novel agents in rodent studies have very rarely translated into effectiveness in humans. Here, we analyse the major trends from preclinical studies over the past 50 years conducted in the search for new drugs beyond those that target the prototypical anxiety-associated GABA (γ-aminobutyric acid)-benzodiazepine system, which have focused most intensively on the serotonin, neuropeptide, glutamate and endocannabinoid systems. We highlight various key issues that may have hampered progress in the field, and offer recommendations for how anxiolytic drug discovery can be more effective in the future.
Collapse
Affiliation(s)
- Guy Griebel
- Sanofi, Exploratory Unit, Chilly-Mazarin 91385, France
| | | |
Collapse
|
21
|
Austin SA, Santhanam AV, Hinton DJ, Choi DS, Katusic ZS. Endothelial nitric oxide deficiency promotes Alzheimer's disease pathology. J Neurochem 2013; 127:691-700. [PMID: 23745722 DOI: 10.1111/jnc.12334] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/10/2013] [Accepted: 06/05/2013] [Indexed: 11/29/2022]
Abstract
Aging and the presence of cerebrovascular disease are associated with increased incidence of Alzheimer's disease. A common feature of aging and cerebrovascular disease is decreased endothelial nitric oxide (NO). We studied the effect of a loss of endothelium derived NO on amyloid precursor protein (APP) related phenotype in late middle aged (LMA) (14-15 month) endothelial nitric oxide synthase deficient (eNOS(-/-) ) mice. APP, β-site APP cleaving enzyme (BACE) 1, and amyloid beta (Aβ) levels were significantly higher in the brains of LMA eNOS(-/-) mice as compared with LMA wild-type controls. APP and Aβ1-40 were increased in hippocampal tissue of eNOS(-/-) mice as compared with wild-type mice. LMA eNOS(-/-) mice displayed an increased inflammatory phenotype as compared with LMA wild-type mice. Importantly, LMA eNOS(-/-) mice performed worse in a radial arm maze test of spatial learning and memory as compared with LMA wild-type mice. These data suggest that chronic loss of endothelial NO may be an important contributor to both Aβ related pathology and cognitive decline. Cardiovascular risk factors are associated with increased incidence of Alzheimer's disease (AD). A common feature of these risk factors is decreased endothelial nitric oxide (NO). We observed, in mice deficient in endothelial nitric oxide synthase, increased amyloid precursor protein (APP), β-site APP cleaving enzyme 1, amyloid beta levels, microglial activation, and impaired spatial memory. This suggests chronic loss of endothelial NO may be an important contributor to the pathogenesis of sporadic AD.
Collapse
Affiliation(s)
- Susan A Austin
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
22
|
Role of NOS3 DNA variants in externalizing behavioral problems observed in childhood leukemia survivors. J Pediatr Hematol Oncol 2013; 35:e157-62. [PMID: 23612386 DOI: 10.1097/mph.0b013e31828e518d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Neuropsychological problems occurrence varies among childhood cancer survivors, and associated risk factors have not been fully deciphered. We wanted to study the role of genetic variants in behavioral problems in this population. STUDY DESIGN Behavioral problems in pediatric acute lymphoblastic leukemia patients (n=138) were investigated longitudinally, using the Child Behavior Checklist questionnaire and multilevel statistical modeling. Thirty-four candidate polymorphisms, related to anticancer drug effects, were investigated. RESULTS NOS3 gene functional polymorphisms showed significant association: patients homozygous for the minor allele at investigated loci showed decreased externalizing behavioral problems scores over time (t tests: T-786C n=69, P=0.003; G894T n=71, P=0.065). The effect was even more pronounced for individuals that are homozygous for the -786C844T haplotype (t test, n=69, P<0.001) and results were supported by multilevel modeling analyses (P<0.001). No such association was observed for internalizing behavioral problems. CONCLUSION NOS3 variants modulate externalizing problems individual trajectories, likely in relationship with glucocorticoid exposure.
Collapse
|
23
|
Lafferty KD, Shaw JC. Comparing mechanisms of host manipulation across host and parasite taxa. J Exp Biol 2013; 216:56-66. [DOI: 10.1242/jeb.073668] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Summary
Parasites affect host behavior in several ways. They can alter activity, microhabitats or both. For trophically transmitted parasites (the focus of our study), decreased activity might impair the ability of hosts to respond to final-host predators, and increased activity and altered microhabitat choice might increase contact rates between hosts and final-host predators. In an analysis of trophically transmitted parasites, more parasite groups altered activity than altered microhabitat choice. Parasites that infected vertebrates were more likely to impair the host’s reaction to predators, whereas parasites that infected invertebrates were more likely to increase the host’s contact with predators. The site of infection might affect how parasites manipulate their hosts. For instance, parasites in the central nervous system seem particularly suited to manipulating host behavior. Manipulative parasites commonly occupy the body cavity, muscles and central nervous systems of their hosts. Acanthocephalans in the data set differed from other taxa in that they occurred exclusively in the body cavity of invertebrates. In addition, they were more likely to alter microhabitat choice than activity. Parasites in the body cavity (across parasite types) were more likely to be associated with increased host contact with predators. Parasites can manipulate the host through energetic drain, but most parasites use more sophisticated means. For instance, parasites target four physiological systems that shape behavior in both invertebrates and vertebrates: neural, endocrine, neuromodulatory and immunomodulatory. The interconnections between these systems make it difficult to isolate specific mechanisms of host behavioral manipulation.
Collapse
Affiliation(s)
- Kevin D. Lafferty
- Western Ecological Research Center, US Geological Survey, USA
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Jenny C. Shaw
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
24
|
Huang Y, Hu Z, Liu G, Zhou W, Zhang Y. Cytokines induced by long-term potentiation (LTP) recording: a potential explanation for the lack of correspondence between learning/memory performance and LTP. Neuroscience 2012. [PMID: 23201254 DOI: 10.1016/j.neuroscience.2012.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The relationship between learning/memory performance and long-term potentiation (LTP) induction is ambiguous. Although a large body of data supports a strong correspondence between learning/memory performance and LTP, many studies have also provided evidence to the contrary. In this study, we found that 2-month-old senescence-accelerated mice/prone 8 (SAMP8 mice) displayed both impaired performance in a Morris Water Maze (MWM) and enhanced LTP compared to senescence-accelerated mice/resistance 1 (SAMR1). BALB/c mice challenged with Complete Freund's Adjuvant (CFA) performed better in the shuttle-box test but displayed impaired LTP compared to intact animals. It is interesting that BALB/c mice challenged with Incomplete Freund's Adjuvant (IFA) performed better than intact animals, with no LTP impairment. Cytokine analysis showed no significant differences between the interleukin-6 (IL-6), interleukin-10 (IL-10) or TNF-α content in the intact hippocampal tissues of either the SAMR1 and SAMP8 mice or the immune-challenged BALB/c and intact animals. Further analysis demonstrated that the increase in cytokine content was higher in the hippocampal tissues used for LTP recording in the SAMR1 and CFA-challenged animals compared to the SAMP8 and intact BALB/c mice. A correlation analysis demonstrated that pro-inflammatory cytokines (IL-6 and TNF-α) displayed a negative correlation with LTP, while an anti-inflammatory cytokine (IL-10) displayed a positive correlation with LTP. These results suggest that pro-inflammatory cytokines induced by LTP manipulation in experiments (e.g., via tissue injury caused by electrode insertion) may be one of the factors contributing to the observed lack of correspondence between memory/learning ability and LTP.
Collapse
Affiliation(s)
- Y Huang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | |
Collapse
|
25
|
Correlation between hippocampal levels of neural, epithelial and inducible NOS and spatial learning skills in rats. Behav Brain Res 2012; 235:326-33. [PMID: 22909987 DOI: 10.1016/j.bbr.2012.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/27/2012] [Accepted: 08/06/2012] [Indexed: 11/23/2022]
Abstract
In the present study, to better understand the role of different nitric oxide synthase (NOS) isoforms in hippocampus-dependent forms of learning, we examined the expression of neural, endothelial, and inducible NOS in the hippocampus of young-adult rats classified as "poor" and "good" learners on the basis of their performance in the partially baited 12-arm radial maze. Taking into consideration strain-dependent differences in learning skills and NOS expression, experiments were performed on two different lines of laboratory rats: the inbred Wistar (W) and the outcrossed Wistar/Spraque-Dawley (W/S) line. The hippocampal levels of NOS proteins were assessed by Western Blotting. In the present study, genetically more homogenous W rats showed a slower rate of learning compared to the genetically less homogenous outcrossed W/S rats. The deficient performance in the W rat group compared to outcrossed W/S rats, and in "poor" learners of both groups compared to "good" learners was due to a higher percentage of reference memory errors. The overall NOS levels were significantly higher in W group compared to outcrossed W/S rats. In both rat lines, the rate of learning positively correlated with hippocampal levels of nNOS and negatively correlated with iNOS levels. Hippocampal eNOS levels correlated negatively with animals' performance but only in the W rats. These results suggest that all 3 NOS isoforms are implemented but play different roles in neural signaling.
Collapse
|
26
|
Sartori SB, Landgraf R, Singewald N. The clinical implications of mouse models of enhanced anxiety. FUTURE NEUROLOGY 2011; 6:531-571. [PMID: 21901080 PMCID: PMC3166843 DOI: 10.2217/fnl.11.34] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying 'normal' anxiety rather than 'psychopathological' animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| | - Rainer Landgraf
- Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| |
Collapse
|
27
|
Ali AK, Banks WA, Kumar VB, Shah GN, Lynch JL, Farr SA, Fleegal-DeMotta MA, Morley JE. Nitric oxide activity and isoenzyme expression in the senescence-accelerated mouse p8 model of Alzheimer's disease: effects of anti-amyloid antibody and antisense treatments. J Gerontol A Biol Sci Med Sci 2009; 64:1025-30. [PMID: 19531769 PMCID: PMC2981455 DOI: 10.1093/gerona/glp074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 05/14/2009] [Indexed: 12/29/2022] Open
Abstract
Amyloid beta protein (Abeta) in Alzheimer's disease induces oxidative stress through several mechanisms, including stimulation of nitric oxide synthase (NOS) activity. We examined NOS activity and expression in the senescence-accelerated mouse P8 (SAMP8) line. The SAMP8 strain develops with aging cognitive impairments, increases in Abeta, and oxidative stress, all reversed by amyloid precursor protein antisense or Abeta antibody treatment. We found here that hippocampal NOS activity in 12-month-old SAMP8 mice was nearly double that of 2-month-old SAMP8 or CD-1 mice, but with no change in NOS isoenzyme mRNA and protein levels. Antisense or antibody treatment further increased NOS activity in aged SAMP8 mice. Antisense treatment increased inducible NOS (iNOS) mRNA levels, decreased neuronal NOS mRNA and protein levels, but did not affect endothelial NOS (eNOS) or iNOS protein or eNOS mRNA levels. These results suggest a complex relation between Abeta and NOS in the SAMP8 that is largely mediated through posttranslational mechanisms.
Collapse
Affiliation(s)
- Abbas K Ali
- Geriatric Research Education and Clinical Center, Veterans Affairs Medical Center-St Louis, MO 63106, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
To investigate the effects of nitric oxide (NO) on passive avoidance learning, L-NAME, D-NAME, and L-arginine were administered i.p. 30 min prior to learning trial; the effects of these substances were tested 24 h later using a passive avoidance apparatus in rats. To reveal the effect of NO on consolidation of acquired memory, L-NAME, D-NAME, and L-arginine were administered i.p. immediately after learning trials and animals were tested 24 h later. Effect of NO on retention was also investigated by injecting L-NAME, D-NAME, and L-arginine (same dosages) 30 min prior to 24 h testing (retrieval). L-NAME administered 30 min before and 24 h after learning trial significantly decreased the avoidance latency but there was no significant effect on consolidation. L-Arginine appeared to enhance the retention of acquired memory significantly, whereas D-NAME had no effect on any testing regime. The results suggest that NO may be involved in learning and retention of passive avoidance.
Collapse
Affiliation(s)
- Mehmet Yildirim
- Ondokuz Mayis University, Medical School, Department of Physiology, Samsun, Turkey.
| | | |
Collapse
|
29
|
Abstract
The age of an experimental animal can be a critical variable, yet age matters are often overlooked within neuroscience. Many studies make use of young animals, without considering possible differences between immature and mature subjects. This is especially problematic when attempting to model traits or diseases that do not emerge until adulthood. In this commentary we discuss the reasons for this apparent bias in age of experimental animals, and illustrate the problem with a systematic review of published articles on long-term potentiation. Additionally, we review the developmental stages of a rat and discuss the difficulty of using the weight of an animal as a predictor of its age. Finally, we provide original data from our laboratory and review published data to emphasize that development is an ongoing process that does not end with puberty. Developmental changes can be quantitative in nature, involving gradual changes, rapid switches, or inverted U-shaped curves. Changes can also be qualitative. Thus, phenomena that appear to be unitary may be governed by different mechanisms at different ages. We conclude that selection of the age of the animals may be critically important in the design and interpretation of neurobiological studies.
Collapse
Affiliation(s)
- James Edgar McCutcheon
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | |
Collapse
|
30
|
Anxiogenic-like effects induced by NMDA receptor activation are prevented by inhibition of neuronal nitric oxide synthase in the periaqueductal gray in mice. Brain Res 2008; 1240:39-46. [DOI: 10.1016/j.brainres.2008.08.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/21/2008] [Accepted: 08/23/2008] [Indexed: 11/21/2022]
|
31
|
Abstract
As a chemical transmitter in the mammalian central nervous system, nitric oxide (NO) is still thought a bit of an oddity, yet this role extends back to the beginnings of the evolution of the nervous system, predating many of the more familiar neurotransmitters. During the 20 years since it became known, evidence has accumulated for NO subserving an increasing number of functions in the mammalian central nervous system, as anticipated from the wide distribution of its synthetic and signal transduction machinery within it. This review attempts to probe beneath those functions and consider the cellular and molecular mechanisms through which NO evokes short- and long-term modifications in neural performance. With any transmitter, understanding its receptors is vital for decoding the language of communication. The receptor proteins specialised to detect NO are coupled to cGMP formation and provide an astonishing degree of amplification of even brief, low amplitude NO signals. Emphasis is given to the diverse ways in which NO receptor activation initiates changes in neuronal excitability and synaptic strength by acting at pre- and/or postsynaptic locations. Signalling to non-neuronal cells and an unexpected line of communication between endothelial cells and brain cells are also covered. Viewed from a mechanistic perspective, NO conforms to many of the rules governing more conventional neurotransmission, particularly of the metabotropic type, but stands out as being more economical and versatile, attributes that presumably account for its spectacular evolutionary success.
Collapse
Affiliation(s)
- John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WCIE 6BT, UK.
| |
Collapse
|
32
|
Abstract
Nitric oxide (NO) is a multifunctional messenger in the CNS that can signal both in antero- and retrograde directions across synapses. Many effects of NO are mediated through its canonical receptor, the soluble guanylyl cyclase, and the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). An increase of cGMP can also arise independently of NO via activation of membrane-bound particulate guanylyl cyclases by natriuretic peptides. The classical targets of cGMP are cGMP-dependent protein kinases (cGKs), cyclic nucleotide hydrolysing phosphodiesterases, and cyclic nucleotide-gated (CNG) cation channels. The NO/cGMP/cGK signalling cascade has been linked to the modulation of transmitter release and synaptic plasticity by numerous pharmacological and genetic studies. This review focuses on the role of NO as a retrograde messenger in long-term potentiation of transmitter release in the hippocampus. Presynaptic mechanisms of NO/cGMP/cGK signalling will be discussed with recently identified potential downstream components such as CaMKII, the vasodilator-stimulated phosphoprotein, and regulators of G protein signalling. NO has further been suggested to increase transmitter release through presynaptic clustering of a-synuclein. Alternative modes of NO/cGMP signalling resulting in inhibition of transmitter release and long-term depression of synaptic activity will also be addressed, as well as anterograde NO signalling in the cerebellum. Finally, emerging evidence for cGMP signalling through CNG channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels will be discussed.
Collapse
|
33
|
De Souza Silva MA, Marchetti L, Eisel ULM, Huston JP, Dere E. NR2C by NR2B subunit exchange in juvenile mice affects emotionality and 5-HT in the frontal cortex. GENES BRAIN AND BEHAVIOR 2007; 6:465-72. [PMID: 17054720 DOI: 10.1111/j.1601-183x.2006.00274.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDA-R) has been inter alia implicated in synaptic plasticity, brain development and emotional processes. The NMDA-R is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. We generated NR2C-2B mutant mice in which an insertion of NR2B cDNA into the gene locus of the NR2C gene replaced NR2C by NR2B expression throughout the brain. This NR2C-2B mutant was used to examine whether an NMDA-R subunit exchange in juvenile mice would affect emotional behaviors and acetylcholine (ACh), dopamine (DA) and serotonin (5-HT) content in the frontal cortex (FC) and brain structures, which are part of the brain defense system, such as the periaqueductal grey matter (PAG). Juvenile, 1-month-old NR2C-2B mice showed increased open arm avoidance in the elevated plus-maze and increased fear-induced immobility. In terms of brain neurochemistry, NR2C-2B mice showed an increase in 5-HT levels in the FC at the age of 2 months. A correlational analysis revealed that mice with low open arms avoidance had high levels of ACh in the PAG but reduced 5-HT levels in the FC. Animals which showed high levels of fear-induced immobility also had high levels of 5-HT in the FC. These results suggest that the replacement of subunit NR2C by NR2B in juvenile mice increases anxiety- and fear-related behaviors possibly due to changes in FC-5-HT and PAG-ACh levels.
Collapse
Affiliation(s)
- M A De Souza Silva
- Institute of Physiological Psychology, Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
34
|
Wultsch T, Chourbaji S, Fritzen S, Kittel S, Grünblatt E, Gerlach M, Gutknecht L, Chizat F, Golfier G, Schmitt A, Gass P, Lesch KP, Reif A. Behavioural and expressional phenotyping of nitric oxide synthase-I knockdown animals. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:69-85. [PMID: 17982880 DOI: 10.1007/978-3-211-73574-9_10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The gaseous messenger nitric oxide (NO) has been implicated in a wide range of behaviors, including aggression, anxiety, depression, and cognitive functioning. To further elucidate the physiological role of NO and its down-stream mechanisms, we conducted behavioral and expressional phenotyping of mice lacking the neuronal isoform of nitric oxide synthase (NOS-I), the major source of NO in the central nervous system. No differences were observed in activity-related parameters; in contrast to the a priori hypothesis, derived from pharmacological treatments, depression-related tests (Forced Swim Test, Learned Helplessness) also yielded no significantly different results. A subtle anxiolytic phenotype however was present, with knockdown mice displaying a higher open arm time as compared to their respective wildtypes, yet all other investigated anxiety-related parameters were unchanged. The most prominent feature however was gender-independent cognitive impairment in spatial learning and memory, as assessed by the Water Maze test and an automatized holeboard paradigm. No significant dysregulation of monoamine transporters was evidenced by qRT PCR. To further examine the underlying molecular mechanisms, the transcriptome of knockdown animals was thus examined in the hippocampus, striatum and cerebellum by microarray analysis. A set of >120 differentially expressed genes was identified, whereat the hippocampus and the striatum showed similar expressional profiles as compared to the cerebellum in hierarchical clustering. Among the most significantly up-regulated genes were Peroxiredoxon 3, Atonal homologue 1, Kcnj1, Kcnj8, CCAAT/enhancer binding protein (C/EBP), alpha, 3 genes involved in GABA(B) signalling and, intriguingly, the glucocorticoid receptor GR. While GABAergic genes might underlie reduced anxiety, dysregulation of the glucocorticoid receptor can well contribute to a blunted stress response as found in NOS1 knockdown mice. Furthermore, by CREB inhibition, glucocorticoid receptor upregulation could at least partially explain cognitive deficits in these animals. Taken together, NOS1 knockdown mice display a characteristic behavioural profile consisting of reduced anxiety and impaired learning and memory, paralleled by differential expression of the glucocorticoid receptor and GABAergic genes. Further research has to assess the value of these mice as animal models e.g. for Alzheimer's disease or attention deficit disorder, in order to clarify a possible pathophysiological role of NO therein.
Collapse
Affiliation(s)
- T Wultsch
- Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee BH, Lee SW, Yoon D, Lee HJ, Yang JC, Shim SH, Kim DH, Ryu SH, Han C, Kim YK. Increased plasma nitric oxide metabolites in suicide attempters. Neuropsychobiology 2006; 53:127-32. [PMID: 16601363 DOI: 10.1159/000092542] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 01/04/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate any correlation between plasma levels of nitric oxide metabolites (NO(x)) and suicide attempt. METHOD Plasma NO(x) levels were measured in 53 patients who had recently attempted suicide, 58 non-suicidal psychiatric patients, and 75 normal controls. The severity of suicidal behaviors was evaluated using Weisman and Worden's Risk-Rescue Rating Scale. RESULTS Plasma NO(x) levels were significantly higher in suicidal patients than non-suicidal psychiatric patients or normal control subjects (F=11.029, d.f.=2, 183, p<0.001). Among the patients with a diagnosis of major depression, suicidal depressive patients had significantly higher plasma NO(x) levels than non-suicidal depressive patients (t=-3.090, d.f.=84, p=0.003). CONCLUSION Our study suggests that increased NO production in plasma is associated with suicide attempt, especially in depressive patients.
Collapse
Affiliation(s)
- Bun-Hee Lee
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim YK, Paik JW, Lee SW, Yoon D, Han C, Lee BH. Increased plasma nitric oxide level associated with suicide attempt in depressive patients. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:1091-6. [PMID: 16725247 DOI: 10.1016/j.pnpbp.2006.04.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Nitric oxide (NO) is known to influence cerebral monoaminergic activity, including the activity of serotonin. We evaluated plasma NO metabolite (NO(x)) levels in depressive patients with and without a recent history of suicide attempt. METHOD Plasma NO(x) levels were measured in 39 depressive patients who had recently attempted suicide, 44 non-suicidal depressed patients, and 70 normal controls. The severity of depression was measured with the Hamilton's Depression Rating Scale. The lethality of the suicide attempt was scored using Weisman and Worden's risk-rescue rating scale and Lethality Suicide Attempt Rating Scale. RESULTS Plasma NO(x) levels were significantly higher in suicidal depressive patients than non-suicidal depressive patients or normal control subjects (Z=-2.472, p=0.013). However, higher plasma NO(x) levels in suicidal depressive patients were significantly related to a lower lethality of suicide attempts and lower severity of depression. CONCLUSIONS Our study suggests that increased plasma NO(x) level is associated with suicide attempts in depressive patients. Moreover, higher plasma NO(x) level is related with suicide attempts in mild depressed patients. However, further studies are required to understand the role of NO system in depression and suicidal behavior.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan City, Gojan Dong, 516, Kyunggi Province, 425-020, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 397] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
38
|
Duman CH, Duman RS. Neurobiology and treatment of anxiety: signal transduction and neural plasticity. Handb Exp Pharmacol 2005:305-34. [PMID: 16594263 DOI: 10.1007/3-540-28082-0_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The stress-dependence and chronic nature of anxiety disorders along with the anxiolytic effectiveness of antidepressant drugs suggests that neuronal plasticity may play a role in the pathophysiology of anxiety. Intracellular signaling pathways are known in many systems to be critical links in the cascades from surface signals to the molecular alterations that result in functional plasticity. Chronic antidepressant treatments can regulate intracellular signaling pathways and can induce molecular, cellular, and structural changes over time. These changes may be important to the anxiolytic effectiveness of these drugs. In addition, the signaling proteins implicated in the actions of chronic antidepressant action, such as cAMP response element binding protein (CREB), have also been implicated in conditioned fear and in anxiety. The cellular mechanisms underlying conditioned fear indicate roles for additional signaling pathways; however, less is known about such mechanisms in anxiety. The challenge to identify intracellular signaling pathways and related molecular and structural changes that are critical to the etiology and treatment of anxiety will further establish the importance of mechanisms of neuronal plasticity in functional outcome and improve treatment strategies.
Collapse
Affiliation(s)
- C H Duman
- Laboratory of Molecular Psychiatry, Departments of Psychiatry and Pharmacology, Yale University School of Medicine, 34 Park Street, New Haven CT, 06508, USA
| | | |
Collapse
|
39
|
Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F, Torres-Aleman I. Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging 2005; 27:1250-7. [PMID: 16183170 DOI: 10.1016/j.neurobiolaging.2005.06.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 06/22/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Transgenic mice expressing mutant forms of both amyloid-beta (Abeta) precursor protein (APP) and presenilin (PS) 2 develop severe brain amyloidosis and cognitive deficits, two pathological hallmarks of Alzheimer's disease (AD). One-year-old APP/PS2 mice with high brain levels of Abeta and abundant Abeta plaques show disturbances in spatial learning and memory. Treatment of these deteriorated mice with a systemic slow-release formulation of insulin-like growth factor I (IGF-I) significantly ameliorated AD-like disturbances. Thus, IGF-I enhanced cognitive performance, decreased brain Abeta load, increased the levels of synaptic proteins, and reduced astrogliosis associated to Abeta plaques. The beneficial effects of IGF-I were associated to a significant increase in brain Abeta complexed to protein carriers such as albumin, apolipoprotein J or transthyretin. Since levels of APP were not modified after IGF-I therapy, and in vitro data showed that IGF-I increases the transport of Abeta/carrier protein complexes through the choroid plexus barrier, it seems that IGF-I favors elimination of Abeta from the brain, supporting a therapeutic use of this growth factor in AD.
Collapse
Affiliation(s)
- E Carro
- Laboratory of Neuroendocrinology, Cajal Institute, CSIC, Avda. Dr. Arce 37, 28002 Madrid. Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Kanit L, Koylu EO, Erdogan O, Pogun S. Effects of laterality and sex on cognitive strategy in a water maze place learning task and modification by nicotine and nitric oxide synthase inhibition in rats. Brain Res Bull 2005; 66:189-202. [PMID: 16023916 DOI: 10.1016/j.brainresbull.2005.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 03/12/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
The aim of the present study was to investigate sex differences in learning strategies and to elucidate the mechanisms, which may underlie these differences. In two separate experiments, rats were presented with different strategies that could be employed to learn the position of a platform in a water maze (WM); furthermore, rats received treatments that could influence these strategies. In the first experiment, we demonstrated that the response-learning paradigm can be applied to the WM and can be compared with visually cued learning and reversal learning. Naïve rats of either sex could acquire this protocol relatively easily. On the probe trial, where the rats are presented with a choice between using response versus visually cued learning, initially response learning was preferred, however, during these experiments, laterality emerged as a significant factor and rats trained to turn right had difficulty in reversing the learned pattern to find the platform. The second part of our study evaluated the effects of nicotine and nitric oxide synthase (NOS) inhibition on the aforementioned parameters. Drug treatments impaired acquisition compared to saline treatments and the effect was more pronounced with NOS inhibition. During the probe trial, while NOS inhibition enhanced the right-side bias in both sexes, nicotine treatment had the same effect only in males. In conclusion, naïve rats can acquire place learning using visible cues or response learning; however, there is a right side bias in both sexes and the laterality effect is more pronounced in male rats. In drug-treated animals, while NOS inhibition enhances laterality (right bias) in both sexes similarly, nicotine modifies the cognitive strategy in a sexually dimorphic manner by augmenting the right bias only in male rats.
Collapse
Affiliation(s)
- L Kanit
- Ege University, Center for Brain Research, Bornova, Izmir, Turkey
| | | | | | | |
Collapse
|
41
|
Feil R, Hofmann F, Kleppisch T. Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 2005; 16:23-41. [PMID: 15810652 DOI: 10.1515/revneuro.2005.16.1.23] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The second messenger cyclic guanosine-3',5'-monophosphate (cGMP) mediates many effects of nitric oxide in the nervous system. cGMP may act through various intracellular receptors, among them a family of serine/threonine kinases, the cGMP-dependent protein kinases (cGKs). Hitherto, three mammalian cGKs have been identified: cGKIalpha, cGKIbeta and cGKII. Discrete functions of cGKI and cGKII are determined by their distinct expression patterns and targeting to specific substrates. This review provides an overview about the expression and functions of cGKs in the nervous system. Main emphasis is put on the discussion of phenotypes observed in cGK-deficient mouse models that lack cGKI and/or cGKII globally or selectively in brain regions of interest. Recent data demonstrate important functions of cGKI in (1) the development and sensitization of nociceptive neurons, and (2) synaptic plasticity and learning. There is also evidence suggesting that cGKII in the suprachiasmatic nucleus of the hypothalamus is involved in the regulation of circadian rhythmicity. Thus, cGKs serve key functions in the transduction of cGMP signals into cellular responses in distinct regions of the nervous system.-
Collapse
Affiliation(s)
- Robert Feil
- Institut für Pharmakologie und Toxikologie, Technische Universität München, München, Germany
| | | | | |
Collapse
|
42
|
Kaya B, Unal S, Karabulut AB, Türköz Y. Altered diurnal variation of nitric oxide production in patients with panic disorder. TOHOKU J EXP MED 2005; 204:147-54. [PMID: 15383695 DOI: 10.1620/tjem.204.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this prospective study was to investigate the diurnal change in serum nitric oxide (NO) levels in active and remission phases of patients with panic disorder. This study included 15 patients fulfilling the criteria for panic disorder of Diagnostic and Statistical Manual of Mental Disorders--Fourth Edition and 15 healthy controls matched for age and sex. All patients were receiving a selective serotonin reuptake inhibitor at therapeutic doses. The serum nitrite and nitrate levels of subjects were determined at 10:00 a.m. after overnight fasting and at 3:00 p.m. 2 hours after lunch. NO levels of all patients measured in the morning were significantly higher than those of controls. The patients were also divided into active and remission groups according to clinical status and Panic Agoraphobia Scale's cut-off point. There were no statistically significant differences in serum nitrite and nitrate levels of the active group between the 10:00 a.m. and 3:00 p.m. measurements. In contrast, statistically significant differences were found in the serum levels of nitrite (p<0.05) and nitrate (p<0.05) in the remission group. Notably, the afternoon nitrite and nitrate levels of the remission group were higher than those of the morning levels as seen in control subjects. Thus, diurnal variation of NO production is altered in patients with panic disorder but is resumed in the remission phase. The present study suggests that serum NO levels are a good marker for evaluation of panic disorder.
Collapse
Affiliation(s)
- Burhanettin Kaya
- Department of Psychiatry, Inonu University Medical School, Malatya, Turkey
| | | | | | | |
Collapse
|
43
|
Prickaerts J, Sik A, van Staveren WCG, Koopmans G, Steinbusch HWM, van der Staay FJ, de Vente J, Blokland A. Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int 2004; 45:915-28. [PMID: 15312986 DOI: 10.1016/j.neuint.2004.03.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nitric oxide (NO)-cyclic GMP (cGMP) signaling pathway is assumed to play an important role in processes underlying learning and memory. We used phosphodiesterase type 5 (PDE5) inhibitors to study the role of cGMP in object- and spatial memory. Our results and those reported in other studies indicate that elevated hippocampal cGMP levels are required to improve the memory performance of rodents in object recognition and passive avoidance learning, but not in spatial learning. The timing of treatment modulates the effects on memory and strongly supports a role for cGMP in early stages of memory formation. Alternative explanations for the improved memory performance of PDE5 inhibitors are also discussed. Immunocytochemical studies showed that in vitro slice incubations with PDE5 inhibitors increase NO-stimulated cGMP levels mainly in hippocampal varicose fibers. Reviewing the available data on the localization of the different components of the NO-cGMP signaling pathway, indicates a complex interaction between NO and cGMP, which may be independent of each other. It is discussed that further studies are needed, immunocytochemical and behavioral, to better understand the cGMP-mediated molecular mechanisms underlying memory formation.
Collapse
Affiliation(s)
- Jos Prickaerts
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abbott LC, Nahm SS. Neuronal nitric oxide synthase expression in cerebellar mutant mice. THE CEREBELLUM 2004; 3:141-51. [PMID: 15543804 DOI: 10.1080/14734220410031927] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nitric oxide (NO) is a diffusible, multifunctional signaling molecule found in many areas of the brain. NO signaling is involved in a wide array of neurophysiological functions including synaptogenesis, modulation of neurotransmitter release, synaptic plasticity, central nervous system blood flow and cell death. NO synthase (NOS) activity regulates the production of NO and the cerebellum expresses high levels of nitric oxide synthase (NOS) in granule, stellate and basket cells. Cerebellar mutant mice provide excellent opportunities to study changes of NO/NOS concentrations and activities to gain a greater understanding of the roles of NO and NOS in cerebellar function. Here, we have reviewed the current understanding of the functional roles of NO and NOS in the cerebellum and present NO/NOS activities that have been described in various cerebellar mutant mice and NOS knockout mice. NO appears to exert neuroprotective effects at low to moderate concentrations, whereas NO becomes neurotoxic as the concentration increases. Excessive NO production can cause oxidative stress to neurons, ultimately impairing neuronal function and result in neuronal cell death. Based on their genetics and cerebellar histopathology, some of cerebellar mutant mice display similarities with human neurological conditions and may prove to be valuable models to study several human neurological disorders, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Louise C Abbott
- Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | |
Collapse
|
45
|
Dere E, De Souza-Silva MA, Spieler RE, Lin JS, Ohtsu H, Haas HL, Huston JP. Changes in motoric, exploratory and emotional behaviours and neuronal acetylcholine content and 5-HT turnover in histidine decarboxylase-KO mice. Eur J Neurosci 2004; 20:1051-8. [PMID: 15305873 DOI: 10.1111/j.1460-9568.2004.03546.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histamine has been implicated, inter alia, in mechanisms underlying arousal, exploratory behaviour and emotionality. Here, we investigated behavioural and neurochemical parameters related to these concepts, including open-field activity, rotarod performance and anxiety, as well as brain acetylcholine and 5-HT concentrations of mice deficient for the histidine decarboxylase (HDC) gene. These mice are unable to synthesize histamine from its precursor histidine. The HDC-knockout mice showed reduced exploratory activity in an open-field, but normal habituation to a novel environment. They behaved more anxious than the controls, as assessed by the height-fear task and the graded anxiety test, a modified elevated plus-maze. Furthermore, motor coordination on the rotarod was superior to controls. Biochemical assessments revealed that the HDC-knockout mice had higher acetylcholine concentrations and a significantly higher 5-HT turnover in the frontal cortex, but reduced acetylcholine levels in the neostriatum. These results are suggestive of important interactions between neuronal histamine and these site-specific neurotransmitters, which may be related to the behavioural changes found in the HDC-deficient animals.
Collapse
Affiliation(s)
- E Dere
- Institute of Physiological Psychology, Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Reif A, Schmitt A, Fritzen S, Chourbaji S, Bartsch C, Urani A, Wycislo M, Mössner R, Sommer C, Gass P, Lesch KP. Differential effect of endothelial nitric oxide synthase (NOS-III) on the regulation of adult neurogenesis and behaviour. Eur J Neurosci 2004; 20:885-95. [PMID: 15305857 DOI: 10.1111/j.1460-9568.2004.03559.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although it has been postulated that adult neurogenesis, i.e. the generation of functional neurons from progenitor cells in the mammalian brain, is involved in both the pathogenesis of depressive disorders and the therapeutic effect of antidepressant drugs, its regulation is still poorly understood. Nitric oxide, a gaseous messenger molecule, represents a possible modulating agent as it is involved in learning and memory formation as well as synapto- and morphogenesis. Here we investigated whether adult neurogenesis is altered in mice lacking endothelial nitric oxide synthase (NOS-III). Compared to wild-type littermates, NOS-III-deficient mice showed a significant reduction in neuronal progenitor cell proliferation in the dentate gyrus, suggesting a role for NOS-III in the stimulation of neuroneogenesis. NeuN, beta-III-tubulin and GFAP double-immunolabelling demonstrated that proliferating progenitor cells differentiate preferentially into neurons but not into astrocytes. However, when the survival rate of newly formed cells was examined no difference between wild-type and NOS-III knockout mice was found, suggesting that NOS-III selectively exerts its effects on the proliferation of progenitor cells. This might be mediated by a decrease in vascular endothelial growth factor (VEGF) transcripts in the hippocampus of knockout animals. At the behavioural level, while NOS-III knockout mice displayed better and faster learning in a learned helplessness paradigm, no depression-like behaviours were observed. In conclusion, our results indicated that NOS-III is involved in the proliferation of neuronal progenitor cells, although behavioural analysis does not provide evidence for a pro-depressive effect of reduced neuroneogenesis.
Collapse
Affiliation(s)
- Andreas Reif
- Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy, Julius-Maximilians-University Würzburg, Füchsleinstr. 15, D-97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Koponen E, Võikar V, Riekki R, Saarelainen T, Rauramaa T, Rauvala H, Taira T, Castrén E. Transgenic mice overexpressing the full-length neurotrophin receptor trkB exhibit increased activation of the trkB-PLCgamma pathway, reduced anxiety, and facilitated learning. Mol Cell Neurosci 2004; 26:166-81. [PMID: 15121188 DOI: 10.1016/j.mcn.2004.01.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 12/20/2003] [Accepted: 01/12/2004] [Indexed: 01/19/2023] Open
Abstract
We have investigated the biochemical, physiological, and behavioral properties of transgenic mice overexpressing the full-length neurotrophin receptor trkB (trkB.TK+). The highest trkB.TK+ mRNA overexpression was achieved in the cerebral cortex and hippocampal subfields, both areas also showing strongly increased trkB.TK+ receptor protein expression and phosphorylation. Furthermore, as a result of trkB.TK+ overexpression, partial activation of trkB downstream signaling was observed. Phosphorylation of phospholipaseCgamma-1 was increased but unexpectedly, the expression and phosphorylation levels of signaling molecules Shc and mitogen-activated protein kinase (MAPK) were unaltered. Behavioral studies revealed improved learning and memory in the water maze, contextual fear conditioning, and conditioned taste aversion tests, and reduced anxiety in the elevated plus maze (EPM) and light-dark exploration tests in trkB.TK+ transgenic mice. Electrophysiological studies revealed a reduced long-term potentiation (LTP) at the Schaffer collateral-CA1 synapse in trkB.TK+ mice. Altogether, overexpression of the trkB.TK+ receptor postnatally leads to selective activation of trkB signaling pathways and enhanced learning and memory.
Collapse
Affiliation(s)
- Eija Koponen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Selley ML. Increased (E)-4-hydroxy-2-nonenal and asymmetric dimethylarginine concentrations and decreased nitric oxide concentrations in the plasma of patients with major depression. J Affect Disord 2004; 80:249-56. [PMID: 15207938 DOI: 10.1016/s0165-0327(03)00135-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 05/28/2003] [Accepted: 06/02/2003] [Indexed: 11/22/2022]
Abstract
BACKGROUND (E)-4-Hydroxy-2-nonenal (HNE) is a highly electrophilic end-product of lipid peroxidation. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide synthase (NOS). ADMA is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). DDAH contains a nucleophilic cysteine residue in its active site. There is an increase in lipid peroxidation in major depression. Major depression is associated with the development of coronary heart disease (CHD) and greatly increases morbidity and mortality. There is an increase in circulating ADMA in CHD and vascular risk factors. OBJECTIVES To determine plasma HNE, ADME and nitric oxide (NO) concentrations in patients with major depression compared to normal volunteers and to examine the effect of HNE on ADMA formation and DDAH activity in cultured endothelial cells. METHODS The study was conducted in 25 patients with major depression (DSM-IV criteria) and 25 healthy control subjects. Plasma concentrations of HNE were determined as the O-pentafluorylbenzyl oxime using capillary column GC-MS and deuterated HNE as the internal standard; ADME by LC-MS-MS using 13C6-L-arginine as the internal standard; and NO by GC-MS following reduction to nitrate and nitrite and derivatisation to the pentafluorobenzyl derivative using [15N]nitrate and [15N]nitrite as the internal standards. Human umbilical vein endothelial cells were incubated in serum-free medium in the presence of HNE. The concentration of ADMA in the medium was determined by LC-MS-MS. DDAH activity was determined by measuring L-citrulline in endothelial cell lysates using LC-MS. RESULTS There was a significant increase in the plasma concentration of HNE (P<0.0001) and ADMA (P<0.0002) in patients with major depression. There was a significant decrease in the plasma concentration of NO (P<0.0001). A significant positive correlation was found between the plasma concentrations of HNE and ADMA (r=0.63, P<0.0001). A significant negative correlation was detected between the plasma concentrations of ADMA and NO (r=-0.595, P<0.0001). HNE significantly increased ADMA formation (P<0.0001) and significantly decreased DDAH activity (P<0.0001) in cultured endothelial cells. The effects of HNE on DDAH activity were significantly attenuated by the addition of glutathione (P<0.0001). LIMITATIONS No allowance was made for the phase of the menstrual cycle which could influence plasma nitric oxide concentrations. CONCLUSIONS There is an increase in circulating HNE in major depression. HNE inactivates the cysteine residue in the active site of endothelial DDAH leading to the accumulation of ADMA in the circulation. The ADMA then decreases the production of eNOS. This could reduce the amount of NO diffusing from cerebral blood vessels to nearby neurons and influence the release of neurotransmitters. ADMA also constricts cerebral blood vessels and may contribute to the decreased regional perfusion in major depression. The accumulation of ADMA could explain the increased risk of CHD in major depression. The preservation of DDAH activity and the reduction of ADMA accumulation may represent a novel therapeutic approach to the treatment of major depression.
Collapse
Affiliation(s)
- Michael L Selley
- Angiogen Pharmaceuticals Pty. Ltd., P.O. Box 512, Turramurra, N.S.W. 2074, Australia.
| |
Collapse
|
49
|
Abstract
One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.
Collapse
Affiliation(s)
- M A Lynch
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland.
| |
Collapse
|
50
|
Rickard NS, Gibbs ME. Hemispheric dissociation of the involvement of NOS isoforms in memory for discriminated avoidance in the chick. Learn Mem 2003; 10:314-8. [PMID: 14557603 PMCID: PMC217996 DOI: 10.1101/lm.59503] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous research has indicated a role for both the neuronal (nNOS) and endothelial (eNOS) nitric oxide isoforms in memory formation. In addition, two distinct periods of activity of nitric oxide activity, dissociated by hemispheric localization, are implicated following passive avoidance training in the chick. In the present study, we trained black Australorp-white Leghorn chicks on a color discrimination avoidance task. Diphenyleneiodonium chloride (1 microM) or N-propyl-l-arginine (50 microM) was administered into either the left or right hemisphere of the chick brain in an attempt to differentiate the effects of inhibiting eNOS or nNOS, respectively. The memory loss previously observed following administration of diphenyleneiodonium chloride between 10 and 20 min posttraining was found to be lateralized to the right hemisphere, although administration of this agent into the left hemisphere around the time of training was also amnestic. In contrast, N-propyl-l-arginine caused memory loss only when administered to the left hemisphere around the time of training. These findings suggest that activation of both eNOS and nNOS isoforms may be essential for long-term memory consolidation of this task. Further, these two periods of activity are defined temporally and by hemisphere localization, although confirmation with more selective inhibitors when they become available is advised.
Collapse
Affiliation(s)
- Nikki S Rickard
- Department of Psychology, Monash University, Victoria 3145, Australia.
| | | |
Collapse
|