1
|
Hirano AA, Vuong HE, Kornmann HL, Schietroma C, Stella SL, Barnes S, Brecha NC. Vesicular Release of GABA by Mammalian Horizontal Cells Mediates Inhibitory Output to Photoreceptors. Front Cell Neurosci 2020; 14:600777. [PMID: 33335476 PMCID: PMC7735995 DOI: 10.3389/fncel.2020.600777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Feedback inhibition by horizontal cells regulates rod and cone photoreceptor calcium channels that control their release of the neurotransmitter glutamate. This inhibition contributes to synaptic gain control and the formation of the center-surround antagonistic receptive fields passed on to all downstream neurons, which is important for contrast sensitivity and color opponency in vision. In contrast to the plasmalemmal GABA transporter found in non-mammalian horizontal cells, there is evidence that the mechanism by which mammalian horizontal cells inhibit photoreceptors involves the vesicular release of the inhibitory neurotransmitter GABA. Historically, inconsistent findings of GABA and its biosynthetic enzyme, L-glutamate decarboxylase (GAD) in horizontal cells, and the apparent lack of surround response block by GABAergic agents diminished support for GABA's role in feedback inhibition. However, the immunolocalization of the vesicular GABA transporter (VGAT) in the dendritic and axonal endings of horizontal cells that innervate photoreceptor terminals suggested GABA was released via vesicular exocytosis. To test the idea that GABA is released from vesicles, we localized GABA and GAD, multiple SNARE complex proteins, synaptic vesicle proteins, and Cav channels that mediate exocytosis to horizontal cell dendritic tips and axonal terminals. To address the perceived relative paucity of synaptic vesicles in horizontal cell endings, we used conical electron tomography on mouse and guinea pig retinas that revealed small, clear-core vesicles, along with a few clathrin-coated vesicles and endosomes in horizontal cell processes within photoreceptor terminals. Some small-diameter vesicles were adjacent to the plasma membrane and plasma membrane specializations. To assess vesicular release, a functional assay involving incubation of retinal slices in luminal VGAT-C antibodies demonstrated vesicles fused with the membrane in a depolarization- and calcium-dependent manner, and these labeled vesicles can fuse multiple times. Finally, targeted elimination of VGAT in horizontal cells resulted in a loss of tonic, autaptic GABA currents, and of inhibitory feedback modulation of the cone photoreceptor Cai, consistent with the elimination of GABA release from horizontal cell endings. These results in mammalian retina identify the central role of vesicular release of GABA from horizontal cells in the feedback inhibition of photoreceptors.
Collapse
Affiliation(s)
- Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Helen E. Vuong
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Helen L. Kornmann
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cataldo Schietroma
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Salvatore L. Stella
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Barnes S, Grove JCR, McHugh CF, Hirano AA, Brecha NC. Horizontal Cell Feedback to Cone Photoreceptors in Mammalian Retina: Novel Insights From the GABA-pH Hybrid Model. Front Cell Neurosci 2020; 14:595064. [PMID: 33328894 PMCID: PMC7672006 DOI: 10.3389/fncel.2020.595064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
How neurons in the eye feed signals back to photoreceptors to optimize sensitivity to patterns of light appears to be mediated by one or more unconventional mechanisms. Via these mechanisms, horizontal cells control photoreceptor synaptic gain and enhance key aspects of temporal and spatial center-surround receptive field antagonism. After the transduction of light energy into an electrical signal in photoreceptors, the next key task in visual processing is the transmission of an optimized signal to the follower neurons in the retina. For this to happen, the release of the excitatory neurotransmitter glutamate from photoreceptors is carefully regulated via horizontal cell feedback, which acts as a thermostat to keep the synaptic transmission in an optimal range during changes to light patterns and intensities. Novel findings of a recently described model that casts a classical neurotransmitter system together with ion transport mechanisms to adjust the alkaline milieu outside the synapse are reviewed. This novel inter-neuronal messaging system carries feedback signals using two separate, but interwoven regulated systems. The complex interplay between these two signaling modalities, creating synaptic modulation-at-a-distance, has obscured it’s being defined. The foundations of our understanding of the feedback mechanism from horizontal cells to photoreceptors have been long established: Horizontal cells have broad receptive fields, suitable for providing surround inhibition, their membrane potential, a function of stimulus intensity and size, regulates inhibition of photoreceptor voltage-gated Ca2+ channels, and strong artificial pH buffering eliminates this action. This review compares and contrasts models of how these foundations are linked, focusing on a recent report in mammals that shows tonic horizontal cell release of GABA activating Cl− and HCO3− permeable GABA autoreceptors. The membrane potential of horizontal cells provides the driving force for GABAR-mediated HCO3− efflux, alkalinizing the cleft when horizontal cells are hyperpolarized by light or adding to their depolarization in darkness and contributing to cleft acidification via NHE-mediated H+ efflux. This model challenges interpretations of earlier studies that were considered to rule out a role for GABA in feedback to cones.
Collapse
Affiliation(s)
- Steven Barnes
- Doheny Eye Institute, Los Angeles, CA, United States.,Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James C R Grove
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | | | - Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Abstract
At the first retinal synapse, horizontal cells (HCs) contact both photoreceptor terminals and bipolar cell dendrites, modulating information transfer between these two cell types to enhance spatial contrast and mediate color opponency. The synaptic mechanisms through which these modulations occur are still debated. The initial hypothesis of a GABAergic feedback from HCs to cones has been challenged by pharmacological inconsistencies. Surround antagonism has been demonstrated to occur via a modulation of cone calcium channels through ephaptic signaling and pH changes in the synaptic cleft. GABAergic transmission between HCs and cones has been reported in some lower vertebrates, like the turtle and tiger salamander. In these reports, it was revealed that GABA is released from HCs through reverse transport and target GABA receptors are located at the cone terminals. In mammalian retinas, there is growing evidence that HCs can release GABA through conventional vesicular transmission, acting both on autaptic GABA receptors and on receptors expressed at the dendritic tips of the bipolar cells. The presence of GABA receptors on mammalian cone terminals remains equivocal. Here, we looked specifically for functional GABA receptors in mouse photoreceptors by recording in the whole-cell or amphotericin/gramicidin-perforated patch clamp configurations. Cones could be differentiated from rods through morphological criteria. Local GABA applications evoked a Cl- current in cones but not in rods. It was blocked by the GABAA receptor antagonist bicuculline methiodide and unaffected by the GABAC receptor antagonist TPMPA [(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid]. The voltage dependency of the current amplitude was as expected from a direct action of GABA on cone pedicles but not from an indirect modulation of cone currents following the activation of the GABA receptors of HCs. This supports a direct role of GABA released from HCs in the control of cone activity in the mouse retina.
Collapse
|
4
|
Phillips MJ, Jiang P, Howden S, Barney P, Min J, York NW, Chu LF, Capowski EE, Cash A, Jain S, Barlow K, Tabassum T, Stewart R, Pattnaik BR, Thomson JA, Gamm DM. A Novel Approach to Single Cell RNA-Sequence Analysis Facilitates In Silico Gene Reporting of Human Pluripotent Stem Cell-Derived Retinal Cell Types. Stem Cells 2018; 36:313-324. [PMID: 29230913 PMCID: PMC5823737 DOI: 10.1002/stem.2755] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/31/2017] [Accepted: 11/29/2017] [Indexed: 11/07/2022]
Abstract
Cell type-specific investigations commonly use gene reporters or single-cell analytical techniques. However, reporter line development is arduous and generally limited to a single gene of interest, while single-cell RNA (scRNA)-sequencing (seq) frequently yields equivocal results that preclude definitive cell identification. To examine gene expression profiles of multiple retinal cell types derived from human pluripotent stem cells (hPSCs), we performed scRNA-seq on optic vesicle (OV)-like structures cultured under cGMP-compatible conditions. However, efforts to apply traditional scRNA-seq analytical methods based on unbiased algorithms were unrevealing. Therefore, we developed a simple, versatile, and universally applicable approach that generates gene expression data akin to those obtained from reporter lines. This method ranks single cells by expression level of a bait gene and searches the transcriptome for genes whose cell-to-cell rank order expression most closely matches that of the bait. Moreover, multiple bait genes can be combined to refine datasets. Using this approach, we provide further evidence for the authenticity of hPSC-derived retinal cell types. Stem Cells 2018;36:313-324.
Collapse
Affiliation(s)
| | - Peng Jiang
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Sara Howden
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | | | | | - Li-Fang Chu
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | | | | | | | | | | | - Ron Stewart
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Bikash R Pattnaik
- McPherson Eye Research Institute
- Department of Pediatrics
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - David M Gamm
- Waisman Center
- McPherson Eye Research Institute
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. Invaginating Presynaptic Terminals in Neuromuscular Junctions, Photoreceptor Terminals, and Other Synapses of Animals. Neuromolecular Med 2017; 19:193-240. [PMID: 28612182 PMCID: PMC6518423 DOI: 10.1007/s12017-017-8445-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Typically, presynaptic terminals form a synapse directly on the surface of postsynaptic processes such as dendrite shafts and spines. However, some presynaptic terminals invaginate-entirely or partially-into postsynaptic processes. We survey these invaginating presynaptic terminals in all animals and describe several examples from the central nervous system, including giant fiber systems in invertebrates, and cup-shaped spines, electroreceptor synapses, and some specialized auditory and vestibular nerve terminals in vertebrates. We then examine mechanoreceptors and photoreceptors, concentrating on the complex of pre- and postsynaptic processes found in basal invaginations of the cell. We discuss in detail the role of vertebrate invaginating horizontal cell processes in both chemical and electrical feedback mechanisms. We also discuss the common presence of indenting or invaginating terminals in neuromuscular junctions on muscles of most kinds of animals, and especially discuss those of Drosophila and vertebrates. Finally, we consider broad questions about the advantages of possessing invaginating presynaptic terminals and describe some effects of aging and disease, especially on neuromuscular junctions. We suggest that the invagination is a mechanism that can enhance both chemical and electrical interactions at the synapse.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| |
Collapse
|
6
|
Valembois S, Krall J, Frølund B, Steffansen B. Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells. Eur J Pharm Sci 2017; 103:77-84. [DOI: 10.1016/j.ejps.2017.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|
7
|
Mei X, Chaffiol A, Kole C, Yang Y, Millet-Puel G, Clérin E, Aït-Ali N, Bennett J, Dalkara D, Sahel JA, Duebel J, Léveillard T. The Thioredoxin Encoded by the Rod-Derived Cone Viability Factor Gene Protects Cone Photoreceptors Against Oxidative Stress. Antioxid Redox Signal 2016; 24:909-23. [PMID: 27025156 DOI: 10.1089/ars.2015.6509] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Rod-derived cone viability factor long (RdCVFL) is an enzymatically active thioredoxin encoded by the nucleoredoxin-like-1 (Nxnl1) gene. The second product of the gene, RdCVF, made by alternative splicing is a novel trophic factor secreted by rods that protects cones in rodent models of retinitis pigmentosa, the most prevalent inherited retinal disease. It acts on cones by stimulating aerobic glycolysis through its interaction with a complex containing basigin-1 and the glucose transporter GLUT1. We studied the role of Nxnl1 in cones after its homologous recombination using a transgenic line expressing Cre recombinase under the control of a cone opsin promoter. RESULTS We show that the cones of these mice are dysfunctional and degenerate by 8 months of age. The age-related deficit in cones is exacerbated in young animals by exposure to high level of oxygen. In agreement with this phenotype, we found that the cones express only one of the two Nxnl1 gene products, the thioredoxin RdCVFL. Administration of RdCVFL to the mouse carrying a deletion of the Nxnl1 gene in cones reduces the damage produced by oxidative stress. Silencing the expression of RdCVFL in cone-enriched culture reduces cell viability, showing that RdCVFL is a cell-autonomous mechanism of protection. INNOVATION This novel mode of action is certainly relevant for the therapy of retinitis pigmentosa since the delivery into cones of the rd10 mouse, a recessive model of the disease, rescues cones. CONCLUSION Our work highlights the duality of the Nxnl1 gene, which protects the cones by two distinct mechanisms. Antioxid. Redox Signal. 24, 909-923.
Collapse
Affiliation(s)
- Xin Mei
- 1 INSERM , U968, Paris, France .,2 Department of Genetics, UMR_S 968, Institut de la Vision, Sorbonne Universités , Paris, France .,3 CNRS , UMR_7210, Paris, France
| | - Antoine Chaffiol
- 1 INSERM , U968, Paris, France .,2 Department of Genetics, UMR_S 968, Institut de la Vision, Sorbonne Universités , Paris, France .,3 CNRS , UMR_7210, Paris, France
| | - Christo Kole
- 1 INSERM , U968, Paris, France .,2 Department of Genetics, UMR_S 968, Institut de la Vision, Sorbonne Universités , Paris, France .,3 CNRS , UMR_7210, Paris, France
| | - Ying Yang
- 1 INSERM , U968, Paris, France .,2 Department of Genetics, UMR_S 968, Institut de la Vision, Sorbonne Universités , Paris, France .,3 CNRS , UMR_7210, Paris, France
| | - Géraldine Millet-Puel
- 1 INSERM , U968, Paris, France .,2 Department of Genetics, UMR_S 968, Institut de la Vision, Sorbonne Universités , Paris, France .,3 CNRS , UMR_7210, Paris, France
| | - Emmanuelle Clérin
- 1 INSERM , U968, Paris, France .,2 Department of Genetics, UMR_S 968, Institut de la Vision, Sorbonne Universités , Paris, France .,3 CNRS , UMR_7210, Paris, France
| | - Najate Aït-Ali
- 1 INSERM , U968, Paris, France .,2 Department of Genetics, UMR_S 968, Institut de la Vision, Sorbonne Universités , Paris, France .,3 CNRS , UMR_7210, Paris, France
| | - Jean Bennett
- 4 Scheie Eye Institute, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Deniz Dalkara
- 1 INSERM , U968, Paris, France .,2 Department of Genetics, UMR_S 968, Institut de la Vision, Sorbonne Universités , Paris, France .,3 CNRS , UMR_7210, Paris, France
| | - José-Alain Sahel
- 1 INSERM , U968, Paris, France .,2 Department of Genetics, UMR_S 968, Institut de la Vision, Sorbonne Universités , Paris, France .,3 CNRS , UMR_7210, Paris, France
| | - Jens Duebel
- 1 INSERM , U968, Paris, France .,2 Department of Genetics, UMR_S 968, Institut de la Vision, Sorbonne Universités , Paris, France .,3 CNRS , UMR_7210, Paris, France
| | - Thierry Léveillard
- 1 INSERM , U968, Paris, France .,2 Department of Genetics, UMR_S 968, Institut de la Vision, Sorbonne Universités , Paris, France .,3 CNRS , UMR_7210, Paris, France
| |
Collapse
|
8
|
Grimes WN, Zhang J, Tian H, Graydon CW, Hoon M, Rieke F, Diamond JS. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold. J Neurophysiol 2015; 114:341-53. [PMID: 25972578 DOI: 10.1152/jn.00017.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/10/2015] [Indexed: 11/22/2022] Open
Abstract
Neuronal microcircuits, small, localized signaling motifs involving two or more neurons, underlie signal processing and computation in the brain. Compartmentalized signaling within a neuron may enable it to participate in multiple, independent microcircuits. Each A17 amacrine cell in the mammalian retina contains within its dendrites hundreds of synaptic feedback microcircuits that operate independently to modulate feedforward signaling in the inner retina. Each of these microcircuits comprises a small (<1 μm) synaptic varicosity that typically receives one excitatory synapse from a presynaptic rod bipolar cell (RBC) and returns two reciprocal inhibitory synapses back onto the same RBC terminal. Feedback inhibition from the A17 sculpts the feedforward signal from the RBC to the AII, a critical component of the circuitry mediating night vision. Here, we show that the two inhibitory synapses from the A17 to the RBC express kinetically distinct populations of GABA receptors: rapidly activating GABA(A)Rs are enriched at one synapse while more slowly activating GABA(C)Rs are enriched at the other. Anatomical and electrophysiological data suggest that macromolecular complexes of voltage-gated (Cav) channels and Ca(2+)-activated K(+) channels help to regulate GABA release from A17 varicosities and limit GABA(C)R activation under certain conditions. Finally, we find that selective elimination of A17-mediated feedback inhibition reduces the signal to noise ratio of responses to dim flashes recorded in the feedforward pathway (i.e., the AII amacrine cell). We conclude that A17-mediated feedback inhibition improves the signal to noise ratio of RBC-AII transmission near visual threshold, thereby improving visual sensitivity at night.
Collapse
Affiliation(s)
- William N Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland; Department of Physiology and Biophysics, Howard Hughes Medical Institute at the University of Washington, Seattle, Washington; and
| | - Jun Zhang
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Hua Tian
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Cole W Graydon
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Fred Rieke
- Department of Physiology and Biophysics, Howard Hughes Medical Institute at the University of Washington, Seattle, Washington; and
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland;
| |
Collapse
|
9
|
Haq W, Arango-Gonzalez B, Zrenner E, Euler T, Schubert T. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina. Front Neural Circuits 2014; 8:108. [PMID: 25249942 PMCID: PMC4155782 DOI: 10.3389/fncir.2014.00108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022] Open
Abstract
During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca(2+) imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells.
Collapse
Affiliation(s)
- Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Blanca Arango-Gonzalez
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Thomas Euler
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Timm Schubert
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
| |
Collapse
|
10
|
Popova E. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses. SCIENTIFICA 2014; 2014:149187. [PMID: 25143858 PMCID: PMC4131092 DOI: 10.1155/2014/149187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/24/2014] [Accepted: 05/27/2014] [Indexed: 05/27/2023]
Abstract
In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed.
Collapse
Affiliation(s)
- E. Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| |
Collapse
|
11
|
Popova E. Effects of picrotoxin on light adapted frog electroretinogram are not due entirely to its action in proximal retina. Vision Res 2014; 101:138-50. [PMID: 24999030 DOI: 10.1016/j.visres.2014.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
In order to evaluate the site of action of picrotoxin (antagonist of ionotropic GABA receptors) on the electroretinographic (ERG) b- and d-waves, in this study we compared its effects on the intensity-response function of the ERG waves in intact light adapted frog eyecup preparations with its effects in eyecups, where the activity of proximal neurons was blocked by 1 mMN-methyl-d-aspartate (MNDA). Picrotoxin markedly enhanced the b- and d-wave amplitude and slowed the time course of the responses at all stimulus intensities in the intact eyecups. Perfusion with NMDA alone caused significant enhancement of the b-wave amplitude and diminution of the d-wave amplitude without altering their time course in the entire intensity range. When picrotoxin was applied in combination with NMDA, an enhancement of the b-wave amplitude and slowing of its time course were observed at all stimulus intensities. The increase of the b-wave amplitude was significantly higher than that seen in NMDA group. Combined application of picrotoxin and NMDA caused an enhancement of the d-wave amplitude at the lower stimulus intensities and its diminution at the higher ones, while the d-wave time course was delayed over the entire intensity range. The results obtained indicate that a part of picrotoxin effects on the amplitude and time course of the photopic ERG b- and d-waves are due to its action in the distal frog retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria.
| |
Collapse
|
12
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Villarroel-Campos D, Gonzalez-Billault C. The MAP1B case: an old MAP that is new again. Dev Neurobiol 2014; 74:953-71. [PMID: 24700609 DOI: 10.1002/dneu.22178] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/24/2022]
Abstract
The functions of microtubule-associated protein 1B (MAP1B) have historically been linked to the development of the nervous system, based on its very early expression in neurons and glial cells. Moreover, mice in which MAP1B is genetically inactivated have been used extensively to show its role in axonal elongation, neuronal migration, and axonal guidance. In the last few years, it has become apparent that MAP1B has other cellular and molecular functions that are not related to its microtubule-stabilizing properties in the embryonic and adult brain. In this review, we present a systematic review of the canonical and novel functions of MAP1B and propose that, in addition to regulating the polymerization of microtubule and actin microfilaments, MAP1B also acts as a signaling protein involved in normal physiology and pathological conditions in the nervous system.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
14
|
Grossman GH, Beight CD, Ebke LA, Pauer GJT, Hagstrom SA. Interaction of tubby-like protein-1 (Tulp1) and microtubule-associated protein (MAP) 1A and MAP1B in the mouse retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:511-8. [PMID: 24664738 DOI: 10.1007/978-1-4614-3209-8_65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tubby-like protein-1 (Tulp1) is a photoreceptor-specific protein involved in the transport of specific proteins from the inner segment (IS) to the outer segment (OS) in photoreceptor cells. Mutations in the human TULP1 gene cause an early onset form of retinitis pigmentosa. Our previous work has shown an association between Tulp1 and the microtubule-associated protein, MAP1B. An allele of Mtap1a, which encodes the MAP1A protein, significantly delays photoreceptor degeneration in Tulp1 mutant mice. MAP1 proteins are important in stabilizing microtubules in neuronal cells, but their role in photoreceptors remains obscure. To investigate the relationship between Tulp1 and MAP1 proteins, we performed western blots, immunoprecipitations (IP), immunohistochemistry and proximity ligand assays (PLA) in wild-type and tulp1-/- mouse retinas. Our IP experiments provide evidence that Tulp1 and MAP1B interact while PLA experiments localize their interaction to the outer nuclear layer and IS of photoreceptors. Although MAP1A and MAP1B protein levels are not affected in the tulp1-/- retina, they are no longer localized to the OS of photoreceptors. This may be the cause for disorganized OSs in tulp1-/- mice, and indicate that their transport to the OS is Tulp1-dependent.
Collapse
Affiliation(s)
- Gregory H Grossman
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA,
| | | | | | | | | |
Collapse
|
15
|
Buldyrev I, Taylor WR. Inhibitory mechanisms that generate centre and surround properties in ON and OFF brisk-sustained ganglion cells in the rabbit retina. J Physiol 2012; 591:303-25. [PMID: 23045347 DOI: 10.1113/jphysiol.2012.243113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lateral inhibition produces the centre-surround organization of retinal receptive fields, in which inhibition driven by the mean luminance enhances the sensitivity of ganglion cells to spatial and temporal contrast. Surround inhibition is generated in both synaptic layers; however, the synaptic mechanisms within the inner plexiform layer are not well characterized within specific classes of retinal ganglion cell. Here, we compared the synaptic circuits generating concentric centre-surround receptive fields in ON and OFF brisk-sustained ganglion cells (BSGCs) in the rabbit retina. We first characterized the synaptic inputs to the centre of ON BSGCs, for comparison with previous results from OFF BSGCs. Similar to wide-field ganglion cells, the spatial extent of the excitatory centre and inhibitory surround was larger for the ON than the OFF BSGCs. The results indicate that the surrounds of ON and OFF BSGCs are generated in both the outer and the inner plexiform layers. The inner plexiform layer surround inhibition comprised GABAergic suppression of excitatory inputs from bipolar cells. However, ON and OFF BSGCs displayed notable differences. Surround suppression of excitatory inputs was weaker in ON than OFF BSGCs, and was mediated largely by GABA(C) receptors in ON BSGCs, and by both GABA(A) and GABA(C) receptors in OFF BSGCs. Large ON pathway-mediated glycinergic inputs to ON and OFF BSGCs also showed surround suppression, while much smaller GABAergic inputs showed weak, if any, spatial tuning. Unlike OFF BSGCs, which receive strong glycinergic crossover inhibition from the ON pathway, the ON BSGCs do not receive crossover inhibition from the OFF pathway. We compare and discuss possible roles for glycinergic inhibition in the two cell types.
Collapse
Affiliation(s)
- Ilya Buldyrev
- Casey Eye Institute, Department of Ophthalmology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
16
|
Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res 2012; 31:407-41. [PMID: 22580106 PMCID: PMC3401171 DOI: 10.1016/j.preteyeres.2012.04.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (I(Ca)) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Stuart C. Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
17
|
Hirasawa H, Yamada M, Kaneko A. Acidification of the synaptic cleft of cone photoreceptor terminal controls the amount of transmitter release, thereby forming the receptive field surround in the vertebrate retina. J Physiol Sci 2012; 62:359-75. [PMID: 22773408 PMCID: PMC10717482 DOI: 10.1007/s12576-012-0220-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/18/2012] [Indexed: 02/06/2023]
Abstract
In the vertebrate retina, feedback from horizontal cells (HCs) to cone photoreceptors plays a key role in the formation of the center-surround receptive field of retinal cells, which induces contrast enhancement of visual images. The mechanism underlying surround inhibition is not fully understood. In this review, we discuss this issue, focusing on our recent hypothesis that acidification of the synaptic cleft of the cone photoreceptor terminal causes this inhibition by modulating the Ca channel of the terminals. We present evidence that the acidification is caused by proton excretion from HCs by a vacuolar type H(+) pump. Recent publications supporting or opposing our hypothesis are discussed.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Laboratory for Neuroinformatics, Riken Brain Science Institute, Wako, Saitama, 351-0198 Japan
| | - Masahiro Yamada
- Laboratory for Neuroinformatics, Riken Brain Science Institute, Wako, Saitama, 351-0198 Japan
| | - Akimichi Kaneko
- Graduate School of Health Sciences, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832 Japan
| |
Collapse
|
18
|
Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, Pinilla I, Martin JM, Tian S, Stewart R, Pattnaik B, Thomson J, Gamm DM. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 2011; 29:1206-18. [PMID: 21678528 PMCID: PMC3412675 DOI: 10.1002/stem.674] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Differentiation methods for human induced pluripotent stem cells (hiPSCs) typically yield progeny from multiple tissue lineages, limiting their use for drug testing and autologous cell transplantation. In particular, early retina and forebrain derivatives often intermingle in pluripotent stem cell cultures, owing to their shared ancestry and tightly coupled development. Here, we demonstrate that three-dimensional populations of retinal progenitor cells (RPCs) can be isolated from early forebrain populations in both human embryonic stem cell and hiPSC cultures, providing a valuable tool for developmental, functional, and translational studies. Using our established protocol, we identified a transient population of optic vesicle (OV)-like structures that arose during a time period appropriate for normal human retinogenesis. These structures were independently cultured and analyzed to confirm their multipotent RPC status and capacity to produce physiologically responsive retinal cell types, including photoreceptors and retinal pigment epithelium (RPE). We then applied this method to hiPSCs derived from a patient with gyrate atrophy, a retinal degenerative disease affecting the RPE. RPE generated from these hiPSCs exhibited a disease-specific functional defect that could be corrected either by pharmacological means or following targeted gene repair. The production of OV-like populations from human pluripotent stem cells should facilitate the study of human retinal development and disease and advance the use of hiPSCs in personalized medicine.
Collapse
Affiliation(s)
- Jason S. Meyer
- Waisman Center, University of Wisconsin, Madison WI 53705
| | - Sara E. Howden
- Department of Cell & Regenerative Biology, University of Wisconsin, Madison WI 53705
- The Genome Center of Wisconsin, University of Wisconsin, Madison WI 53705
- Morgridge Institute for Research, Madison WI 53706
| | | | | | | | | | - Isabel Pinilla
- Department of Ophthalmology, Blesa University Hospital and the Instituto Aragones de Ciencias de la Salud, Zaragoza, Spain
| | | | - Shulan Tian
- Morgridge Institute for Research, Madison WI 53706
| | - Ron Stewart
- Morgridge Institute for Research, Madison WI 53706
| | - Bikash Pattnaik
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison WI 53705
- Department of Pediatrics, University of Wisconsin, Madison WI 53705
- Eye Research Institute, University of Wisconsin, Madison WI 53705
| | - James Thomson
- Department of Cell & Regenerative Biology, University of Wisconsin, Madison WI 53705
- The Genome Center of Wisconsin, University of Wisconsin, Madison WI 53705
- Morgridge Institute for Research, Madison WI 53706
- Department of Molecular, Cellular, & Developmental Biology, University of California Santa Barbara, Santa Barbara CA 93106
| | - David M. Gamm
- Waisman Center, University of Wisconsin, Madison WI 53705
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison WI 53705
- Eye Research Institute, University of Wisconsin, Madison WI 53705
| |
Collapse
|
19
|
Gussin HA, Khasawneh FT, Xie A, Feng F, Memic A, Qian H, Le Breton GC, Pepperberg DR. Subunit-specific polyclonal antibody targeting human ρ1 GABA(C) receptor. Exp Eye Res 2011; 93:59-64. [PMID: 21536029 PMCID: PMC3138833 DOI: 10.1016/j.exer.2011.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 04/05/2011] [Accepted: 04/12/2011] [Indexed: 11/26/2022]
Abstract
The GABA(C) receptor, a postsynaptic membrane receptor expressed prominently in the retina, is a ligand-gated ion channel that consists of a combination of ρ subunits. We report characterization of a novel guinea pig polyclonal antibody, termed GABA(C) Ab N-14, directed against a 14-mer peptide (N-14) of the extracellular domain of the human ρ1 subunit. The antibody exhibits high sensitivity for N-14 by ELISA. In Western blots, GABA(C) Ab N-14 shows reactivity with the ρ1 subunit of preparations obtained from ρ1 GABA(C)-expressing neuroblastoma cells, Xenopus oocytes, and mammalian retina and brain. Flow cytometry reveals a rightward shift in mean fluorescence intensity of GABA(C)-expressing neuroblastoma cells probed with GABA(C) Ab N-14. Immunostaining of neuroblastoma cells and oocytes with GABA(C) Ab N-14 yields fluorescence only with GABA(C)-expressing cells. Antibody binding has no effect on GABA-elicited membrane current responses. Immunostaining of human retinal sections shows preferential staining within the inner plexiform layer. GABA(C) Ab N-14 appears well suited for investigative studies of GABA(C) ρ1 subunit in retina and other neural tissues.
Collapse
Affiliation(s)
- Hélène A. Gussin
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Fadi T. Khasawneh
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - An Xie
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Feng Feng
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Adnan Memic
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Haohua Qian
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Guy C. Le Breton
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - David R. Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
20
|
Deniz S, Wersinger E, Schwab Y, Mura C, Erdelyi F, Szabó G, Rendon A, Sahel JA, Picaud S, Roux MJ. Mammalian retinal horizontal cells are unconventional GABAergic neurons. J Neurochem 2010; 116:350-62. [PMID: 21091475 DOI: 10.1111/j.1471-4159.2010.07114.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lateral interactions at the first retinal synapse have been initially proposed to involve GABA by transporter-mediated release from horizontal cells, onto GABA(A) receptors expressed on cone photoreceptor terminals and/or bipolar cell dendrites. However, in the mammalian retina, horizontal cells do not seem to contain GABA systematically or to express membrane GABA transporters. We here report that mouse retinal horizontal cells express GAD65 and/or GAD67 mRNA, and were weakly but consistently immunostained for GAD65/67. While GABA was readily detected after intracardiac perfusion, it was lost during classical preparation for histology or electrophysiology. It could not be restored by incubation in a GABA-containing medium, confirming the absence of membrane GABA transporters in these cells. However, GABA was synthesized de novo from glutamate or glutamine, upon addition of pyridoxal 5'-phosphate, a cofactor of GAD65/67. Mouse horizontal cells are thus atypical GABAergic neurons, with no functional GABA uptake, but a glutamate and/or glutamine transport system allowing GABA synthesis, probably depending physiologically from glutamate released by photoreceptors. Our results suggest that the role of GABA in lateral inhibition may have been underestimated, at least in mammals, and that tissue pre-incubation with glutamine and pyridoxal 5'-phosphate should yield a more precise estimate of outer retinal processing.
Collapse
Affiliation(s)
- Sercan Deniz
- Department of Neurobiology and Genetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR_7104, Inserm U 964, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Guo C, Hirano AA, Stella SL, Bitzer M, Brecha NC. Guinea pig horizontal cells express GABA, the GABA-synthesizing enzyme GAD 65, and the GABA vesicular transporter. J Comp Neurol 2010; 518:1647-69. [PMID: 20235161 PMCID: PMC3736838 DOI: 10.1002/cne.22294] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyric acid (GABA) is likely expressed in horizontal cells of all species, although conflicting physiological findings have led to considerable controversy regarding its role as a transmitter in the outer retina. This study has evaluated key components of the GABA system in the outer retina of guinea pig, an emerging retinal model system. The presence of GABA, its rate-limiting synthetic enzyme glutamic acid decarboxylase (GAD(65) and GAD(67) isoforms), the plasma membrane GABA transporters (GAT-1 and GAT-3), and the vesicular GABA transporter (VGAT) was evaluated by using immunohistochemistry with well-characterized antibodies. The presence of GAD(65) mRNA was also evaluated by using laser capture microdissection and reverse transcriptase-polymerase chain reaction. Specific GABA, GAD(65), and VGAT immunostaining was localized to horizontal cell bodies, as well as to their processes and tips in the outer plexiform layer. Furthermore, immunostaining of retinal whole mounts and acutely dissociated retinas showed GAD(65) and VGAT immunoreactivity in both A-type and B-type horizontal cells. However, these cells did not contain GAD(67), GAT-1, or GAT-3 immunoreactivity. GAD(65) mRNA was detected in horizontal cells, and sequencing of the amplified GAD(65) fragment showed approximately 85% identity with other mammalian GAD(65) mRNAs. These studies demonstrate the presence of GABA, GAD(65), and VGAT in horizontal cells of the guinea pig retina, and support the idea that GABA is synthesized from GAD(65), taken up into synaptic vesicles by VGAT, and likely released by a vesicular mechanism from horizontal cells.
Collapse
Affiliation(s)
- Chenying Guo
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095
| | - Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095
| | - Salvatore L. Stella
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095
| | - Michaela Bitzer
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095
- Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095
- CURE-Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
| |
Collapse
|
22
|
Bai JP, Surguchev A, Ogando Y, Song L, Bian S, Santos-Sacchi J, Navaratnam D. Prestin surface expression and activity are augmented by interaction with MAP1S, a microtubule-associated protein. J Biol Chem 2010; 285:20834-43. [PMID: 20418376 DOI: 10.1074/jbc.m110.117853] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prestin is a member of the SLC26 family of anion transporters that is responsible for outer hair cell (OHC) electromotility. Measures of voltage-evoked charge density (Q(sp)) of prestin indicated that the protein is highly expressed in OHCs, with single cells expressing up to 10 million molecules within the lateral membrane. In contrast, charge density measures in transfected cells indicated that they express, at best, only a fifth as many proteins on their surface. We sought to determine whether associations with other OHC-specific proteins could account for this difference. Using a yeast two-hybrid technique, we found microtubule-associated protein 1S (MAP1S) bound to prestin. The interaction was limited to the STAS domain of prestin and the region connecting the heavy and light chain of MAP1S. Using reciprocal immunoprecipitation and Forster resonance energy transfer, we confirmed these interactions. Furthermore, co-expression of prestin with MAP1S resulted in a 2.7-fold increase in Q(sp) in single cells that was paralleled by a 2.8-fold increase in protein surface expression, indicating that the interactions are physiological. Quantitative PCR data showed gradients in the expression of prestin and MAP1S across the tonotopic axis that may partially contribute to a previously observed 6-fold increase in Q(sp) in high frequency hair cells. These data highlight the importance of protein partner effects on prestin.
Collapse
Affiliation(s)
- Jun-Ping Bai
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Lee H, Brecha NC. Immunocytochemical evidence for SNARE protein-dependent transmitter release from guinea pig horizontal cells. Eur J Neurosci 2010; 31:1388-401. [PMID: 20384779 DOI: 10.1111/j.1460-9568.2010.07181.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Horizontal cells are lateral interneurons that participate in visual processing in the outer retina but the cellular mechanisms underlying transmitter release from these cells are not fully understood. In non-mammalian horizontal cells, GABA release has been shown to occur by a non-vesicular mechanism. However, recent evidence in mammalian horizontal cells favors a vesicular mechanism as they lack plasmalemmal GABA transporters and some soluble NSF attachment protein receptor (SNARE) core proteins have been identified in rodent horizontal cells. Moreover, immunoreactivity for GABA and the molecular machinery to synthesize GABA have been found in guinea pig horizontal cells, suggesting that if components of the SNARE complex are expressed they could contribute to the vesicular release of GABA. In this study we investigated whether these vesicular and synaptic proteins are expressed by guinea pig horizontal cells using immunohistochemistry with well-characterized antibodies to evaluate their cellular distribution. Components of synaptic vesicles including vesicular GABA transporter, synapsin I and synaptic vesicle protein 2A were localized to horizontal cell processes and endings, along with the SNARE core complex proteins, syntaxin-1a, syntaxin-4 and synaptosomal-associated protein 25 (SNAP-25). Complexin I/II, a cytosolic protein that stabilizes the activated SNARE fusion core, strongly immunostained horizontal cell soma and processes. In addition, the vesicular Ca(2+)-sensor, synaptotagmin-2, which is essential for Ca(2+)-mediated vesicular release, was also localized to horizontal cell processes and somata. These morphological findings from guinea pig horizontal cells suggest that mammalian horizontal cells have the capacity to utilize a regulated Ca(2+)-dependent vesicular pathway to release neurotransmitter, and that this mechanism may be shared among many mammalian species.
Collapse
Affiliation(s)
- Helen Lee
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
24
|
GABAa and GABAc receptor-mediated modulation of responses to color stimuli: electroretinographic study in the turtle Emys orbicularis. J Neural Transm (Vienna) 2010; 117:431-44. [DOI: 10.1007/s00702-010-0381-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
|
25
|
Lee SY, Kim JW, Jeong MH, An JH, Jang SM, Song KH, Choi KH. Microtubule-associated Protein 1B Light Chain (MAP1B-LC1) negatively regulates the activity of tumor suppressor p53 in neuroblastoma cells. FEBS Lett 2008; 582:2826-32. [DOI: 10.1016/j.febslet.2008.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/12/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
|
26
|
Yang L, Nakayama Y, Hattori N, Liu B, Inagaki C. GABAC-receptor stimulation activates cAMP-dependent protein kinase via A-kinase anchoring protein 220. J Pharmacol Sci 2008; 106:578-84. [PMID: 18385542 DOI: 10.1254/jphs.fp0071362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
In our previous study, anti-apoptotic effects of GABA(C)-receptor stimulation was suppressed by inhibitors of cAMP-dependent protein kinase (PKA), implying GABA(C) receptor-mediated PKA activation. The present study showed that GABA(C)-receptor stimulation with its agonist, cis-4-aminocrotonic acid (CACA), protected cultured hippocampal neurons from amyloid beta 25 - 35 (Abeta25 - 35) peptide-enhanced glutamate neurotoxicity. This protective effect of CACA was blocked by PKA inhibitors, KT 5720 and H-89, as well as a specific GABA(C)-receptor antagonist, (1,2,5,6-tetrahydropyridine-4-yl) methylphosphinic acid (TPMPA). To test the possibility of GABA(C) receptor-mediated PKA activation, association of GABA(C) receptor with A-kinase anchoring proteins (AKAPs) and effect of an AKAP antisense oligonucleotide on the PKA activation were examined in primary cultured rat hippocampal neurons. Stimulation of the cells with CACA-activated PKA was assessed by the phosphorylated PKA substrate (135 kDa) level. Specific antibodies raised against GABA(C)-receptor rho subunits precipitated each rho subunit, AKAP220, and PKA regulatory and catalytic subunits from rat brain lysates, suggesting that rho is associated with the AKAP220/PKA complex. Furthermore, antisense oligonucleotide of AKAP220 suppressed such GABA(C) stimulation-induced PKA activation, suggesting that GABA(C)-receptor stimulation activates PKA via AKAP220.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacology, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | |
Collapse
|
27
|
Kim J, Lee S, Jeong M, Jang S, Song K, Kim C, Kim Y, Choi K. Interaction of microtubule‐associated protein 1B light chain (MAP1B‐LC1) and p53 represses transcriptional activity of p53. Anim Cells Syst (Seoul) 2008. [DOI: 10.1080/19768354.2008.9647157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Frazao R, Nogueira MI, Wässle H. Colocalization of synaptic GABA(C)-receptors with GABA (A)-receptors and glycine-receptors in the rodent central nervous system. Cell Tissue Res 2007; 330:1-15. [PMID: 17610086 DOI: 10.1007/s00441-007-0446-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
Fast inhibition in the nervous system is preferentially mediated by GABA- and glycine-receptors. Two types of ionotropic GABA-receptor, the GABA(A)-receptor and GABA(C)-receptor, have been identified; they have specific molecular compositions, different sensitivities to GABA, different kinetics, and distinct pharmacological profiles. We have studied, by immunocytochemistry, the synaptic localization of glycine-, GABA(A)-, and GABA(C)-receptors in rodent retina, spinal cord, midbrain, and brain-stem. Antibodies specific for the alpha1 subunit of the glycine-receptor, the gamma2 subunit of the GABA(A)-receptor, and the rho subunits of the GABA(C)-receptor have been applied. Using double-immunolabeling, we have determined whether these receptors are expressed at the same postsynaptic sites. In the retina, no such colocalization was observed. However, in the spinal cord, we found the colocalization of glycine-receptors with GABA(A)- or GABA(C)-receptors and the colocalization of GABA(A)- and GABA(C)-receptors in approximately 25% of the synapses. In the midbrain and brain-stem, GABA(A)- and GABA(C)-receptors were colocalized in 10%-15% of the postsynaptic sites. We discuss the possible expression of heteromeric (hybrid) receptors assembled from GABA(A)- and GABA(C)-receptor subunits. Our results suggest that GABA(A)- and GABA(C)-receptors are colocalized in a minority of synapses of the central nervous system.
Collapse
Affiliation(s)
- Renata Frazao
- Neuroanatomie, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, 60528, Frankfurt/Main, Germany
| | | | | |
Collapse
|
29
|
Hirano AA, Brandstätter JH, Vila A, Brecha NC. Robust syntaxin-4 immunoreactivity in mammalian horizontal cell processes. Vis Neurosci 2007; 24:489-502. [PMID: 17640443 PMCID: PMC2744743 DOI: 10.1017/s0952523807070198] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/12/2007] [Indexed: 12/22/2022]
Abstract
Horizontal cells mediate inhibitory feed-forward and feedback communication in the outer retina; however, mechanisms that underlie transmitter release from mammalian horizontal cells are poorly understood. Toward determining whether the molecular machinery for exocytosis is present in horizontal cells, we investigated the localization of syntaxin-4, a SNARE protein involved in targeting vesicles to the plasma membrane, in mouse, rat, and rabbit retinae using immunocytochemistry. We report robust expression of syntaxin-4 in the outer plexiform layer of all three species. Syntaxin-4 occurred in processes and tips of horizontal cells, with regularly spaced, thicker sandwich-like structures along the processes. Double labeling with syntaxin-4 and calbindin antibodies, a horizontal cell marker, demonstrated syntaxin-4 localization to horizontal cell processes; whereas, double labeling with PKC antibodies, a rod bipolar cell (RBC) marker, showed a lack of co-localization, with syntaxin-4 immunolabeling occurring just distal to RBC dendritic tips. Syntaxin-4 immunolabeling occurred within VGLUT-1-immunoreactive photoreceptor terminals and underneath synaptic ribbons, labeled by CtBP2/RIBEYE antibodies, consistent with localization in invaginating horizontal cell tips at photoreceptor triad synapses. Vertical sections of retina immunostained for syntaxin-4 and peanut agglutinin (PNA) established that the prominent patches of syntaxin-4 immunoreactivity were adjacent to the base of cone pedicles. Horizontal sections through the OPL indicate a one-to-one co-localization of syntaxin-4 densities at likely all cone pedicles, with syntaxin-4 immunoreactivity interdigitating with PNA labeling. Pre-embedding immuno-electron microscopy confirmed the subcellular localization of syntaxin-4 labeling to lateral elements at both rod and cone triad synapses. Finally, co-localization with SNAP-25, a possible binding partner of syntaxin-4, indicated co-expression of these SNARE proteins in the same subcellular compartment of the horizontal cell. Taken together, the strong expression of these two SNARE proteins in the processes and endings of horizontal cells at rod and cone terminals suggests that horizontal cell axons and dendrites are likely sites of exocytotic activity.
Collapse
Affiliation(s)
- Arlene A Hirano
- Departments of Neurobiology & Medicine, Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
30
|
Schäffer DA, Gábriel R. GABA-immunoreactive photoreceptors in the retina of an anuran, Pelobates fuscus. Neurosci Lett 2007; 416:202-5. [PMID: 17349745 DOI: 10.1016/j.neulet.2007.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 02/01/2007] [Accepted: 02/03/2007] [Indexed: 11/19/2022]
Abstract
We have recently started to unravel the retinal neurochemistry of an anuran species, the spadefoot toad (Pelobates fuscus), because of its unique lifestyle. The immunolabelling experiments included tests to localize the major inhibitory transmitter, gamma-aminobutyric acid (GABA) to subsets of retinal neurons, using commercially available antibodies. Apart from the regular GABA-immunoreactive pattern observed formerly in other anurans, certain structures in the photoreceptor layer were also regularly labeled for GABA. The soma diameter of the labeled cells is 5-6 microm and the outer segment seems to be unlabeled. In resin-embedded preparations GABA-positive photoreceptor cells were identified as cones based on their sparse distribution and short outer segments. If these cells release GABA as a transmitter, it may act on the second order cells, from which certain horizontal and bipolar cells have functional GABA receptors. Alternatively, GABA may influence the cones themselves through autoreceptors.
Collapse
Affiliation(s)
- Dávid A Schäffer
- MTA-PTE Adaptational Biology Research Group, University of Pécs, H-7624 Pécs, Ifjúság u. 6, Hungary
| | | |
Collapse
|
31
|
Abstract
gamma-Aminobutyric acid (GABA), an important inhibitory neurotransmitter in both vertebrates and invertebrates, acts on GABA receptors that are ubiquitously expressed in the CNS. GABA(A) receptors also represent a major site of action of clinically relevant drugs, such as benzodiazepines, barbiturates, ethanol, and general anesthetics. It has been shown that the intracellular M3-M4 loop of GABA(A) receptors plays an important role in regulating GABA(A) receptor function. Therefore, studies of the function of receptor intracellular loop associated proteins become important for understanding mechanisms of regulating receptor activity. Recently, several labs have used the yeast two-hybrid assay to identify proteins interacting with GABA(A) receptors, for example, the interaction of GABA(A) receptor associated protein (GABARAP) and Golgi-specific DHHC zinc finger protein (GODZ) with gamma subunits, PRIP, phospholipase C-related, catalytically inactive proteins (PRIP-1) and (PRIP-2) with GABARAP and receptor gamma2 and beta subunits, Plic-1 with some alpha and beta subunits, radixin with the alpha5 subunit, HAP1 with the beta1 subunit, GABA(A) receptor interacting factor-1 (GRIF-1) with the beta2 subunit, and brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) with the beta3 subunit. These proteins have been shown to play important roles in modulating the activities of GABA(A) receptors ranging from enhancing trafficking, to stabilizing surface and internalized receptors, to regulating modification of GABA(A) receptors. This article reviews the current studies of GABA(A) receptor intracellular loop-associated proteins.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095- 1735, USA
| | | |
Collapse
|
32
|
Riederer BM. Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res Bull 2006; 71:541-58. [PMID: 17292797 DOI: 10.1016/j.brainresbull.2006.11.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 11/28/2006] [Indexed: 11/25/2022]
Abstract
Microtubule-associated protein 1B, MAP1B, is one of the major growth associated and cytoskeletal proteins in neuronal and glial cells. It is present as a full length protein or may be fragmented into a heavy chain and a light chain. It is essential to stabilize microtubules during the elongation of dendrites and neurites and is involved in the dynamics of morphological structures such as microtubules, microfilaments and growth cones. MAP1B function is modulated by phosphorylation and influences microtubule stability, microfilaments and growth cone motility. Considering its large size, several interactions with a variety of other proteins have been reported and there is increasing evidence that MAP1B plays a crucial role in the stability of the cytoskeleton and may have other cellular functions. Here we review molecular and functional aspects of this protein, evoke its role as a scaffold protein and have a look at several pathologies where the protein may be involved.
Collapse
Affiliation(s)
- Beat M Riederer
- Département de Biologie Cellulaire et de Morphologi), Université de Lausanne, 9 rue du Bugnon, CH-1005 Lausanne, Switzerland.
| |
Collapse
|
33
|
Liu J, Yang XL. OFF response of bullfrog cones is shaped by terminal ionotropic GABA receptors. Brain Res Bull 2006; 71:219-23. [PMID: 17113949 DOI: 10.1016/j.brainresbull.2006.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/31/2006] [Accepted: 09/06/2006] [Indexed: 11/19/2022]
Abstract
We recently reported an ionotropic GABA receptor expressed at the bullfrog retinal cone terminal that is potentiated by the GABA(A) receptor antagonist bicuculline (BIC) and suppressed by the GABA(C) receptor antagonist imidazole-4-acetic acid (I4AA) . In this study, by using the patch clamp technique in current clamp mode, we show that activation of this GABA receptor causes voltage changes of cones, which are closely dependent on the membrane potential level in relation to the chloride equilibrium potential of the cells. Furthermore, the OFF overshoot of cone light responses is enhanced or diminished when this receptor is potentiated by BIC or suppressed by I4AA, suggesting the involvement of this GABA receptor in shaping OFF light responses of bullfrog cones.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200031, PR China
| | | |
Collapse
|
34
|
Liu J, Li GL, Yang XL. An ionotropic GABA receptor with novel pharmacology at bullfrog cone photoreceptor terminals. Neurosignals 2006; 15:13-25. [PMID: 16825800 DOI: 10.1159/000094384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 11/19/2022] Open
Abstract
Characteristics of ionotropic gamma-aminobutyric acid (GABA) receptors at bullfrog cone terminals were studied by patch clamp techniques in isolated cell and retinal slice preparations. GABA-induced inward currents from isolated cones reversed in polarity at a potential, very close to the chloride equilibrium potential, and they were completely suppressed by picrotoxin. Unexpectedly, the GABA current was dose-dependently potentiated by the well-known GABA(A) receptor antagonist bicuculline (BIC), but was suppressed by gabazine, another GABA(A) antagonist, and imidazole-4-acetic acid (I4AA), a GABA(C) receptor antagonist. Similarly, currents induced by both GABA(A) agonist muscimol and GABA(C) agonist cis-4-aminocrotonic acid (CACA) were also potentiated by BIC. Furthermore, currents induced from cones by GABA and kainate-caused depolarization of horizontal cells in retinal slice preparations were both potentiated by BIC. All these results suggest that the ionotropic GABA receptor at the bullfrog cone terminal exhibits novel pharmacology, distinct from both traditional GABA(A) and GABA(C) receptors.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Neurobiology, Institute of Brain Science, Fudan University, Shanghai, PR China
| | | | | |
Collapse
|
35
|
Pangratz-Fuehrer S, Bubna-Littitz H, Propst F, Reitsamer H. Mice deficient in microtubule-associated protein MAP1B show a distinct behavioral phenotype and altered retina function. Behav Brain Res 2006; 164:188-96. [PMID: 16102853 DOI: 10.1016/j.bbr.2005.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 06/10/2005] [Accepted: 06/10/2005] [Indexed: 11/25/2022]
Abstract
We investigated mice deficient for the microtubule-associated protein MAP1B, a cytoskeletal element highly expressed in the developing nervous system, for altered performance in behavior, learning, and memory. Using the multiple T-maze, the open field and the Morris water maze we found that mice homozygous for a deletion of the MAP1B gene demonstrate impaired locomotor activity most likely correlated to a lack of physical endurance in general. In contrast, there were no significant differences in cognitive function and memory retention. In addition, we performed electroretinography and observed a reduction of the a-wave amplitude in response to single flash, white light stimulation. Taken together, these data provide further evidence for an important role of MAP1B in synaptic neurotransmission.
Collapse
Affiliation(s)
- Susanne Pangratz-Fuehrer
- Clinic of Internal Medicine and Infectious Diseases, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | | | | | | |
Collapse
|
36
|
Balse E, Tessier LH, Forster V, Roux MJ, Sahel JA, Picaud S. Glycine receptors in a population of adult mammalian cones. J Physiol 2006; 571:391-401. [PMID: 16396929 PMCID: PMC1796802 DOI: 10.1113/jphysiol.2005.100891] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glycinergic interplexiform cells provide a feedback signal from the inner retina to the outer retina. To determine if cones receive such a signal, glycine was applied on cultured porcine cone photoreceptors recorded with the patch clamp technique. A minor population of cone photoreceptors was found to generate large currents in response to puff application of glycine. These currents reversed close to the calculated equilibrium potential for chloride ions. These glycine-elicited currents were sensitive to strychnine but not to picrotoxin consistent with the expression of alpha-beta-heteromeric glycine receptors. Glycine receptors were also activated by taurine and beta-alanine. The glycine receptor antibody mAb4a labelled a minority of the cone photoreceptors identified by an antibody specific for cone arrestin. Finally, expression of the beta subunit of the glycine receptor was demonstrated by single cell RT-PCR in a similar proportion (approximately 13%) of cone photoreceptors freshly isolated by lectin-panning. The identity of cone photoreceptors was assessed by their specific expression of the cone arrestin mRNA. The population of cone photoreceptors expressing the glycine receptor was not correlated to a specific colour-sensitive subtype as demonstrated by single cell RT-PCR experiments using primers for S opsin, cone arrestin and glycine receptor beta subunit. This glycine receptor expression in a minority of cones defines a new cone population suggesting an unexpected role for glycine in the visual information processing in the outer retina.
Collapse
Affiliation(s)
- E Balse
- Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM U592, Hôpital Saint-Antoine, Bâtiment Kourilsky, 184, rue du Faubourg Saint-Antoine, 75 571 Paris cedex 12, France
| | | | | | | | | | | |
Collapse
|
37
|
Song XQ, Meng F, Ramsey DJ, Ripps H, Qian H. The GABA rho1 subunit interacts with a cellular retinoic acid binding protein in mammalian retina. Neuroscience 2005; 136:467-475. [PMID: 16198491 DOI: 10.1016/j.neuroscience.2005.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/14/2005] [Accepted: 08/04/2005] [Indexed: 11/15/2022]
Abstract
Interactions between the intracellular domain of ligand-gated membrane receptors and cytoplasmic proteins play important roles in their assembly, clustering, and function. In addition, protein-protein interactions may provide an alternative mechanism by which neurotransmitters activate intracellular pathways. In this study, we report a novel interaction between the GABA rho1 subunit and cellular retinoic acid binding protein in mammalian retina that could serve as a link between the GABA signaling pathway and the control of gene expression in neurons. The interaction between the intracellular loop of the human GABA rho subunit and cellular retinoic acid binding protein was identified using a CytoTrap XR yeast two-hybrid system, and was further confirmed by co-precipitation of the human GABA rho subunit and cellular retinoic acid binding protein from baboon retinal samples. The cellular retinoic acid binding protein binding domain on the human rho1 subunit was located to the C-terminal region of human GABA rho subunit, and the interaction of the human GABA rho subunit with cellular retinoic acid binding protein could be antagonized by a peptide derived from within the binding domain of the rho1 subunit. Since cellular retinoic acid binding protein is a carrier protein for retinoic acid, we investigated the effect of GABA on retinoic acid activity in neuroblastoma cells containing endogenously expressed cellular retinoic acid binding protein. In the absence of the rho1 receptor, these cells showed enhanced neurite outgrowth when exposed to retinoic acid and GABA had no effect on their response to retinoic acid. In contrast, cells stably transfected with the human rho1 subunit showed a significantly reduced sensitivity to retinoic acid when exposed to GABA. These results suggest that the GABA receptor subunit effectively altered gene expression through its interaction with the cellular retinoic acid binding protein pathway.
Collapse
Affiliation(s)
- X-Q Song
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
38
|
Hirano AA, Brandstätter JH, Brecha NC. Cellular distribution and subcellular localization of molecular components of vesicular transmitter release in horizontal cells of rabbit retina. J Comp Neurol 2005; 488:70-81. [PMID: 15912504 PMCID: PMC2820412 DOI: 10.1002/cne.20577] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism underlying transmitter release from retinal horizontal cells is poorly understood. We investigated the possibility of vesicular transmitter release from mammalian horizontal cells by examining the expression of synaptic proteins that participate in vesicular transmitter release at chemical synapses. Using immunocytochemistry, we evaluated the cellular and subcellular distribution of complexin I/II, syntaxin-1, and synapsin I in rabbit retina. Strong labeling for complexin I/II, proteins that regulate a late step in vesicular transmitter release, was found in both synaptic layers of the retina, and in somata of A- and B-type horizontal cells, of gamma-aminobutyric acid (GABA)- and glycinergic amacrine cells, and of ganglion cells. Immunoelectron microscopy demonstrated the presence of complexin I/II in horizontal cell processes postsynaptic to rod and cone ribbon synapses. Syntaxin-1, a core protein of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex known to bind to complexin, and synapsin I, a synaptic vesicle-associated protein involved in the Ca(2+)-dependent recruitment of synaptic vesicles for transmitter release, were also present in the horizontal cells and their processes at photoreceptor synapses. Photoreceptors and bipolar cells did not express any of these proteins at their axon terminals. The presence of complexin I/II, syntaxin-1, and synapsin I in rabbit horizontal cell processes and tips suggests that a vesicular mechanism may underlie transmitter release from mammalian horizontal cells.
Collapse
Affiliation(s)
- Arlene A Hirano
- Department of Neurobiology & Medicine, Geffen School of Medicine at University of California at Los Angeles, 90095, USA.
| | | | | |
Collapse
|
39
|
Liu J, Zhao JW, Du JL, Yang XL. Functional GABA(B) receptors are expressed at the cone photoreceptor terminals in bullfrog retina. Neuroscience 2005; 132:103-13. [PMID: 15780470 DOI: 10.1016/j.neuroscience.2004.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2004] [Indexed: 11/30/2022]
Abstract
GABA(B) receptors at the cone terminals in bullfrog retina were characterized by immunocytochemical and whole-cell patch clamp techniques in retinal slice preparations. Somata, axons and synaptic terminals (pedicles) of cones were both GABA(B) receptor (GABA(B)R) 1 and GABA(B)R2 immunoreactive. Physiologically, barium/calcium currents of cones to voltage steps were significantly reduced in size when GABA was puffed to cone terminals in the presence of picrotoxin that is supposed to block both GABA(A) and GABA(C) receptors. Similar reduction in barium currents was obtained with puff application of baclofen to cone terminals. These results suggest the presence of functional GABA(B) receptors at the bullfrog cone terminals. Suppression of barium currents of cones by baclofen was dose-dependent. Moreover, barium currents of cones were potentiated by background illumination, as compared with those recorded in the dark. 6,7-Dinitroquinoxaline-2,3-dione, an antagonist of non-NMDA receptors that hyperpolarizes horizontal cells and reduces GABA release from these cells, and saclofen, a GABA(B) receptor antagonist, both potentiated barium currents of cones in the dark, thereby mimicking the effects of background illumination. It is suggested that changes in calcium influx into the cone synaptic terminals due to activation of GABA(B) receptors may provide a negative feedback mechanism for regulating signal transmission between cones and second-order neurons in the retina by modifying the amount of glutamate released from the cones.
Collapse
Affiliation(s)
- J Liu
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
40
|
Abstract
Sensory neurons with short conduction distances can use nonregenerative, graded potentials to modulate transmitter release continuously. This mechanism can transmit information at much higher rates than spiking. Graded signaling requires a synapse to sustain high rates of exocytosis for relatively long periods, and this capacity is the special virtue of ribbon synapses. Vesicles tethered to the ribbon provide a pool for sustained release that is typically fivefold greater than the docked pool available for fast release. The current article, which is part of the TINS Synaptic Connectivity series, reviews recent evidence for this fundamental computational strategy and its underlying cell biology.
Collapse
Affiliation(s)
- Peter Sterling
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
41
|
Lukasiewicz PD. Synaptic mechanisms that shape visual signaling at the inner retina. PROGRESS IN BRAIN RESEARCH 2005; 147:205-18. [PMID: 15581708 DOI: 10.1016/s0079-6123(04)47016-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The retina is a layered structure that processes information in two stages. The outer plexiform layer (OPL) comprises the first stage and is where photoreceptors, bipolar cells, and horizontal cells interact synaptically. This is the synaptic layer where ON and OFF responses to light are formed, as well as the site where receptive field center and surround organization is first thought to occur. The inner plexiform layer (IPL) is where the second stage of synaptic interactions occurs. This synaptic layer is where subsequent visual processing occurs that may contribute to the formation of transient responses, which may underlie motion and direction sensitivity. In addition, synaptic interactions in the IPL may also contribute to the classical ganglion cell receptive field properties. This chapter will focus on the synapse and network properties at the IPL that sculpt light-evoked ganglion cell responses. These include synaptic mechanisms that may shape ganglion cell responses like desensitizing glutamate receptors and transporters, which remove glutamate from the synapse. Recent work suggests that inhibitory signaling at the IPL contributes to the surround receptive field organization of ganglion cells. A component of this amacrine cell inhibitory signaling is mediated by GABAC receptors, which are found on bipolar cell axon terminals in the IPL. Pharmacological experiments show that a component of the ganglion cell surround signal is mediated by these receptors, indicating that the ganglion cell center and surround receptive field organization is not formed entirely in the outer plexiform layer, as earlier thought.
Collapse
Affiliation(s)
- Peter D Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Maurer MH, Grünewald S, Gassler N, Rossner M, Propst F, Würz R, Weber D, Kuner T, Kuschinsky W, Schneider A. Cloning of a novel neuronally expressed orphan G-protein-coupled receptor which is up-regulated by erythropoietin, interacts with microtubule-associated protein 1b and colocalizes with the 5-hydroxytryptamine 2a receptor. J Neurochem 2004; 91:1007-1017. [PMID: 15525354 DOI: 10.1111/j.1471-4159.2004.02799.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the largest group of cell surface molecules involved in signal transduction and are receptors for a wide variety of stimuli ranging from light, calcium and odourants to biogenic amines and peptides. It is assumed that systematic genomic data-mining has identified the overwhelming majority of all remaining GPCRs in the genome. Here we report the cloning of a novel orphan GPCR which was identified in a search for erythropoietin-induced genes in the brain as a strongly up-regulated gene. This unknown gene coded for a protein which had a seven-transmembrane topology and key features typical of GPCRs of the A family but a low overall identity to all known GPCRs. The protein, coded ee3, has an unusually high evolutionary conservation and is expressed in neurons in diverse areas of the CNS with relation to integrative functions or motor tasks. A yeast two-hybrid screen for interacting proteins revealed binding to the microtubule-associated protein (MAP) 1b. Coupling to MAP1a has been described for another cognate GPCR, the 5-hydroxytryptamine (5HT) 2a receptor. Surprisingly, we found complete colocalization of ee3 and the 5HT2a receptor. The interaction with MAP1b proved to be critical for the stability or folding of ee3 as in mice lacking MAP1b the ee3 protein was undetectable by immunohistochemistry, although messenger RNA levels remained unchanged. We propose that ee3 is a highly interesting new orphan GPCR with potential connections to erythropoietin and 5HT2a receptor signalling.
Collapse
Affiliation(s)
- Martin H Maurer
- Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang XL. Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 2004; 73:127-50. [PMID: 15201037 DOI: 10.1016/j.pneurobio.2004.04.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2003] [Accepted: 04/12/2004] [Indexed: 11/16/2022]
Abstract
Glutamate and gamma-aminobutyric acid (GABA) are major excitatory and inhibitory neurotransmitters in the vertebrate retina, "a genuine neural center" (Ramón y Cajal, 1964, Recollections of My Life, C.E. Horne (Translater) MIT Press, Cambridge, MA). Photoreceptors, generating visual signals, and bipolar cells, mediating signal transfer from photoreceptors to ganglion cells, both release glutamate, which induces and/or changes the activity of the post-synaptic neurons (horizontal and bipolar cells for photoreceptors; amacrine and ganglion cells for bipolar cells). Horizontal and amacrine cells, which mediate lateral interaction in the outer and inner retina respectively, use GABA as a principal neurotransmitter. In recent years, glutamate receptors and GABA receptors in the retina have been extensively studied, using multi-disciplinary approaches. In this article some important advances in this field are reviewed, with special reference to retinal information processing. Photoreceptors possess metabotropic glutamate receptors and several subtypes of GABA receptors. Most horizontal cells express AMPA receptors, which may be predominantly assembled from flop slice variants. In addition, these cells also express GABAA and GABAC receptors. Signal transfer from photoreceptors to bipolar cells is rather complicated. Whereas AMPA/KA receptors mediate transmission for OFF type bipolar cells, several subtypes of glutamate receptors, both ionotropic and metabotropic, are involved in the generation of light responses of ON type bipolar cells. GABAA and GABAC receptors with distinct kinetics are differentially expressed on dendrites and axon terminals of both ON and OFF bipolar cells, mediating inhibition from horizontal cells and amacrine cells. Amacrine cells possess ionotropic glutamate receptors, whereas ganglion cells express both ionotropic and metabotropic glutamate receptors. GABAA receptors exist in amacrine and ganglion cells. Physiological data further suggest that GABAC receptors may be involved in the activity of these neurons. Moreover, responses of these retinal third order neurons are modulated by GABAB receptors, and in ganglion cells there exist several subtypes of GABAB receptors. A variety of glutamate receptor and GABA receptor subtypes found in the retina perform distinct functions, thus providing a wide range of neural integration and versatility of synaptic transmission. Perspectives in this research field are presented.
Collapse
Affiliation(s)
- Xiong-Li Yang
- Institute of Neurobiology, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
44
|
Biedermann B, Bringmann A, Franze K, Faude F, Wiedemann P, Reichenbach A. GABA(A) receptors in Müller glial cells of the human retina. Glia 2004; 46:302-10. [PMID: 15048853 DOI: 10.1002/glia.20004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was aimed at characterizing the GABA(A) receptor-mediated currents in acutely isolated glial (Müller) cells of the human retina and investigating their subcellular localization across the Müller cell membrane. Extracellular application of GABA evoked two current responses in human Müller cells: a fast transient GABA(A) receptor-mediated current that inactivated within 10 s and that was independent of extracellular Na(+), and a sustained current that was dependent on extracellular Na(+) and that was mediated by high-affinity GABA transporters. The receptor current was half-maximally activated at a GABA concentration of 32 microM, while the transporter current showed an affinity constant of 7.9 microM GABA. The receptor currents were blocked by bicuculline and picrotoxin and were also activated by muscimol or by other amino acids. The receptor currents are Cl(-) currents, as indicated by the close relationship between the reversal potential of these currents and the Cl(-) equilibrium potential. Using perforated-patch recordings, a mean intracellular Cl(-) concentration of 37 +/- 12 mM was determined in human Müller cells. Using electrophysiological and fluorescence imaging methods, it was revealed that GABA(A) receptors are unevenly distributed across the Müller cell membrane, with higher densities at the endfoot, at the soma, and at the distal sclerad end of the cells. It is concluded that GABA(A) receptor expression may allow a sensing of retinal GABAergic neuronal signal transmission by Müller cells.
Collapse
Affiliation(s)
- Bernd Biedermann
- Department of Neurophysiology, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The distribution of P2X(7) receptor (P2X(7)R) subunits was studied in the rat retina using a subunit-specific antiserum. Punctate immunofluorescence was observed in the inner and outer plexiform layers. Double labeling of P2X(7) and the horizontal cell marker, calbindin, revealed extensive colocalization in the outer plexiform layer (OPL). Significant colocalization of P2X(7)R and kinesin, a marker of photoreceptor ribbons, was also observed, indicating that this receptor may be expressed at photoreceptor terminals. Furthermore, another band of P2X(7)R puncta was identified below the level of the photoreceptor terminals, adjacent to the inner nuclear layer (INL). This band of P2X(7)R puncta colocalized with the active-zone protein, bassoon, suggesting that "synapse-like" structures exist outside photoreceptor terminals. Preembedding immunoelectron microscopy demonstrated P2X(7)R labeling of photoreceptor terminals adjacent to ribbons. In addition, some horizontal cell dendrites and putative "desmosome-like" junctions below cone pedicles were labeled. In the inner plexiform layer (IPL), P2X(7)R puncta were observed surrounding terminals immunoreactive for protein kinase C-alpha, a marker of rod bipolar cells. Double labeling with bassoon in the IPL revealed extensive colocalization, indicating that P2X(7)R is likely to be found at conventional cell synapses. This finding was confirmed at the ultrastructural level: only processes presynaptic to rod bipolar cells were found to be labeled for the P2X(7)R, as well as other conventional synapses. These findings suggest that purines play a significant role in neurotransmission within the retina, and may modulate both photoreceptor and rod bipolar cell responses.
Collapse
Affiliation(s)
- Theresa Puthussery
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville 3010 Victoria, Australia
| | | |
Collapse
|
46
|
Emery DL, Royo NC, Fischer I, Saatman KE, McIntosh TK. Plasticity following Injury to the Adult Central Nervous System: Is Recapitulation of a Developmental State Worth Promoting? J Neurotrauma 2003; 20:1271-92. [PMID: 14748977 DOI: 10.1089/089771503322686085] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adult central nervous system (CNS) appears to initiate a transient increase in plasticity following injury, including increases in growth-related proteins and generation of new cells. Recent evidence is reviewed that the injured adult CNS exhibits events and patterns of gene expression that are also observed during development and during regeneration following damage to the mature peripheral nervous system (PNS). The growth of neurons during development or regeneration is correlated, in part, with a coordinated expression of growth-related proteins, such as growth-associated-protein-43 (GAP-43), microtubule-associated-protein-1B (MAP1B), and polysialylated-neural-cell-adhesion-molecule (PSA-NCAM). For each of these proteins, evidence is discussed regarding its specific role in neuronal development, signals that modify its expression, and reappearance following injury. The rate of adult hippocampal neurogenesis is also affected by numerous endogenous and exogenous factors including injury. The continuing study of developmental neurobiology will likely provide further gene and protein targets for increasing plasticity and regeneration in the mature adult CNS.
Collapse
Affiliation(s)
- Dana L Emery
- Head Injury Center, Department of Neurosurgery, University of Pennsylvania, USA
| | | | | | | | | |
Collapse
|
47
|
Verweij J, Hornstein EP, Schnapf JL. Surround antagonism in macaque cone photoreceptors. J Neurosci 2003; 23:10249-57. [PMID: 14614083 PMCID: PMC6741006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Center-surround antagonism is a hallmark feature of the receptive fields of sensory neurons. In retinas of lower vertebrates, surround antagonism derives in part from inhibition of cone photoreceptors by horizontal cells. Using whole-cell patch recording methods, we found that light-evoked responses of cones in macaque monkey were antagonized when surrounding cones were illuminated. The spatial and spectral properties of this antagonism indicate that it results from inhibition by horizontal cells. It has been suggested that horizontal cell inhibition is mediated by the neurotransmitter GABA. The inhibition observed here, however, was inconsistent with a GABA-gated chloride conductance mechanism. Instead, surround illumination evoked an increase in calcium conductance and calcium-activated chloride conductance in cones. We expect that these conductances modulate neurotransmitter release at the cone synapse and increase visual sensitivity to spatial contrast.
Collapse
Affiliation(s)
- Jan Verweij
- Department of Ophthalmology, University of California, San Francisco, California 94143-0730, USA
| | | | | |
Collapse
|
48
|
Hirasawa H, Kaneko A. pH changes in the invaginating synaptic cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. ACTA ACUST UNITED AC 2003; 122:657-71. [PMID: 14610018 PMCID: PMC2229595 DOI: 10.1085/jgp.200308863] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Feedback from horizontal cells (HCs) to cone photoreceptors plays a key role in the center-surround–receptive field organization of retinal neurons. Recordings from cone photoreceptors in newt retinal slices were obtained by the whole-cell patch-clamp technique, using a superfusate containing a GABA antagonist (100 μM picrotoxin). Surround illumination of the receptive field increased the voltage-dependent calcium current (ICa) in the cones, and shifted the activation voltage of ICa to negative voltages. External alkalinization also increased cone ICa and shifted its activation voltage toward negative voltages. Enrichment of the pH buffering capacity of the extracellular solution increased cone ICa, and blocked any additional increase in cone ICa by surround illumination. Hyperpolarization of the HCs by a glutamate receptor antagonist-augmented cone ICa, whereas depolarization of the HCs by kainate suppressed cone ICa. From these results, we propose the hypothesis that pH changes in the synaptic clefts, which are intimately related to the membrane voltage of the HCs, mediate the feedback from the HCs to cone photoreceptors. The feedback mediated by pH changes in the synaptic cleft may serve as an additional mechanism for the center-surround organization of the receptive field in the outer retina.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
49
|
Croci C, Brändstatter JH, Enz R. ZIP3, a new splice variant of the PKC-zeta-interacting protein family, binds to GABAC receptors, PKC-zeta, and Kv beta 2. J Biol Chem 2003; 278:6128-35. [PMID: 12431995 DOI: 10.1074/jbc.m205162200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The correct targeting of modifying enzymes to ion channels and neurotransmitter receptors represents an important biological mechanism to control neuronal excitability. The recent cloning of protein kinase C-zeta interacting proteins (ZIP1, ZIP2) identified new scaffolds linking the atypical protein kinase PKC-zeta to target proteins. GABA(C) receptors are composed of three rho subunits (rho 1-3) that are highly expressed in the retina, where they are clustered at synaptic terminals of bipolar cells. A yeast two-hybrid screen for the GABA(C) receptor rho 3 subunit identified ZIP3, a new C-terminal splice variant of the ZIP protein family. ZIP3 was ubiquitously expressed in non-neuronal and neuronal tissues, including the retina. The rho 3-binding region of ZIP3 contained a ZZ-zinc finger domain, which interacted with 10 amino acids conserved in rho 1-3 but not in GABA(A) receptors. Consistently, only rho 1-3 subunits bound to ZIP3. ZIP3 formed dimers with ZIP1-3 and interacted with PKC-zeta and the shaker-type potassium channel subunit Kv beta 2. Different domains of ZIP3 interacted with PKC-zeta and the rho 3 subunit, and simultaneous assembly of ZIP3, PKC-zeta and rho 3 was demonstrated in vitro. Subcellular co-expression of ZIP3 binding partners in the retina supported the proposed protein interactions. Our results indicate the formation of a ternary postsynaptic complex containing PKC-zeta, ZIP3, and GABA(C) receptors.
Collapse
Affiliation(s)
- Cristina Croci
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | | | | |
Collapse
|
50
|
Cornea-Hébert V, Watkins KC, Roth BL, Kroeze WK, Gaudreau P, Leclerc N, Descarries L. Similar ultrastructural distribution of the 5-HT(2A) serotonin receptor and microtubule-associated protein MAP1A in cortical dendrites of adult rat. Neuroscience 2002; 113:23-35. [PMID: 12123681 DOI: 10.1016/s0306-4522(02)00146-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As visualized by light and electron microscopic immunocytochemistry, the distribution of the neuronal serotonin-2A (5-HT(2A)) receptor is mainly intracellular throughout adult rat brain. This localization is particularly striking in the pyramidal cells of cerebral cortex, the dendrites of which are intensely immunoreactive, but without any labeling of their spines. In view of recent yeast two-hybrid and biochemical results suggesting an association of 5-HT(2A) receptors with the cytoskeletal microtubule-associated protein MAP1A, the respective subcellular distributions of the receptors and of MAP1A were compared by quantitative electron microscopic immunocytochemistry in dendrites of adult rat frontoparietal cortex. Counts of silver-intensified immunogold particles revealed a higher density of 5-HT(2A) receptors in smaller rather than larger dendrites, and an apportionment between pre-defined compartments representing the plasma membrane and the cytoplasm that was proportional to the relative surface area of these compartments. MAP1A immunoreactivity also predominated in smaller versus larger dendrites, but with a slightly lower proportion of labeling in the plasma membrane versus cytoplasmic compartment. The co-localization of 5-HT(2A) receptors and MAP1A protein in the same dendrites could be demonstrated in double immunolabeling experiments. These results confirmed the predominantly somato-dendritic, intracellular localization of 5-HT(2A) receptors in cerebral cortex, showed their higher concentration in distal as opposed to proximal dendrites, and suggested their potential association to the cytoskeleton in cortical neurons in vivo. Such a distribution of 5-HT(2A) receptors reinforces our earlier hypothesis that 5-HT(2A) receptors participate in intraneuronal signaling processes involving the cytoskeleton, and raises the possibility that their activation could be dependent upon that of another co-localized, plasma membrane-bound, 5-HT receptor.
Collapse
Affiliation(s)
- V Cornea-Hébert
- Départements de pathologie et biologie cellulaire et de physiologie, Faculté de médecine, Université de Montréal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|