1
|
Vahdat Z, Gambrell O, Fisch J, Friauf E, Singh A. Inferring synaptic transmission from the stochastic dynamics of the quantal content: An analytical approach. PLoS Comput Biol 2025; 21:e1013067. [PMID: 40359429 PMCID: PMC12101786 DOI: 10.1371/journal.pcbi.1013067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 05/23/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Quantal parameters of synapses are fundamental for the temporal dynamics of neurotransmitter release, which is the basis of interneuronal communication. We formulate a general class of models that capture the stochastic dynamics of quantal content (QC), defined as the number of SV fusion events triggered by a single action potential (AP). Considering the probabilistic and time-varying nature of SV docking, undocking, and AP-triggered fusion, we derive an exact statistical distribution for the QC over time. Analyzing this distribution at steady-state and its associated autocorrelation function, we show that QC fluctuation statistics can be leveraged for inferring key presynaptic parameters, such as the probability of SV fusion (release probability) and SV replenishment at empty docking sites (refilling probability). Our model predictions are tested with electrophysiological data obtained from 50-Hz stimulation of auditory MNTB-LSO synapses in brainstem slices from juvenile mice. Our results show that while synaptic depression can be explained by low and constant refilling/release probabilities, this scenario is inconsistent with the statistics of the electrophysiological data, which show a low QC Fano factor and almost uncorrelated successive QCs. Our systematic analysis yields a model that couples a high release probability to a time-varying refilling probability to explain both the synaptic depression and its associated statistical fluctuations. In summary, we provide a general approach that exploits stochastic signatures in QCs to infer neurotransmission regulating processes that cannot be distinguished from simple analysis of averaged synaptic responses.
Collapse
Affiliation(s)
- Zahra Vahdat
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Oliver Gambrell
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Jonas Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
- Department of Biomedical Engineering University of Delaware, Newark, Delaware, United States of America
- Mathematical Sciences, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Program, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
2
|
Depret N, Gleizes M, Moreau MM, Poirault-Chassac S, Quiedeville A, Carvalho SDS, Venugopal V, Abed ASA, Ezan J, Barthet G, Mulle C, Desmedt A, Marighetto A, Racca C, Montcouquiol M, Sans N. The correct connectivity of the DG-CA3 circuits involved in declarative memory processes depends on Vangl2-dependent planar cell polarity signaling. Prog Neurobiol 2025; 246:102728. [PMID: 39956311 DOI: 10.1016/j.pneurobio.2025.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
In the hippocampus, dentate gyrus granule cells connect to CA3 pyramidal cells via their axons, the mossy fibers (Mf). The synaptic terminals of Mfs (Mf boutons, MfBs) form large and complex synapses with thorny excrescences (TE) on the proximal dendrites of CA3 pyramidal cells (PCs). MfB/TE synapses have distinctive "detonator" properties due to low initial release probability and large presynaptic facilitation. The molecular mechanisms shaping the morpho-functional properties of MfB/TE synapses are still poorly understood, though alterations in their morphology are associated with Down syndrome, intellectual disabilities, and Alzheimer's disease. Here, we identify the core PCP gene Vangl2 as essential to the morphogenesis and function of MfB/TE synapses. Vangl2 colocalises with the presynaptic heparan sulfate proteoglycan glypican 4 (GPC4) to stabilise the postsynaptic orphan receptor GPR158. Embryonic loss of Vangl2 disrupts the morphology of MfBs and TEs, impairs ultrastructural and molecular organisation, resulting in defective synaptic transmission and plasticity. In adult, the early loss of Vangl2 results in a number of hippocampus-dependent memory deficits including characteristic flexibility of declarative memory, organisation and retention of working / everyday-like memory. These deficits also lead to abnormal generalisation of memories to salient cues and diminished ability to form detailed contextual memories. Together, these results establish Vangl2 as a key regulator of DG-CA3 connectivity and functions.
Collapse
Affiliation(s)
- Noémie Depret
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Marie Gleizes
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Maïté Marie Moreau
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Anne Quiedeville
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Vasika Venugopal
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Alice Shaam Al Abed
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Jérôme Ezan
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Gael Barthet
- Univ. Bordeaux, CNRS, IINS, UMR 5297, Bordeaux F-33000, France
| | | | - Aline Desmedt
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Aline Marighetto
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Claudia Racca
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Nathalie Sans
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France.
| |
Collapse
|
3
|
Haikonen J, Szrinivasan R, Ojanen S, Rhee JK, Ryazantseva M, Sulku J, Zumaraite G, Lauri SE. GluK1 kainate receptors are necessary for functional maturation of parvalbumin interneurons regulating amygdala circuit function. Mol Psychiatry 2024; 29:3752-3768. [PMID: 38942774 PMCID: PMC11609095 DOI: 10.1038/s41380-024-02641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Parvalbumin expressing interneurons (PV INs) are key players in the local inhibitory circuits and their developmental maturation coincides with the onset of adult-type network dynamics in the brain. Glutamatergic signaling regulates emergence of the unique PV IN phenotype, yet the receptor mechanisms involved are not fully understood. Here we show that GluK1 subunit containing kainate receptors (KARs) are necessary for development and maintenance of the neurochemical and functional properties of PV INs in the lateral and basal amygdala (BLA). Ablation of GluK1 expression specifically from PV INs resulted in low parvalbumin expression and loss of characteristic high firing rate throughout development. In addition, we observed reduced spontaneous excitatory synaptic activity at adult GluK1 lacking PV INs. Intriguingly, inactivation of GluK1 expression in adult PV INs was sufficient to abolish their high firing rate and to reduce PV expression levels, suggesting a role for GluK1 in dynamic regulation of PV IN maturation state. The PV IN dysfunction in the absence of GluK1 perturbed the balance between evoked excitatory vs. inhibitory synaptic inputs and long-term potentiation (LTP) in LA principal neurons, and resulted in aberrant development of the resting-state functional connectivity between mPFC and BLA. Behaviorally, the absence of GluK1 from PV INs associated with hyperactivity and increased fear of novelty. These results indicate a critical role for GluK1 KARs in regulation of PV IN function across development and suggest GluK1 as a potential therapeutic target for pathologies involving PV IN malfunction.
Collapse
Affiliation(s)
- Joni Haikonen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Rakenduvadhana Szrinivasan
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Simo Ojanen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Jun Kyu Rhee
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Maria Ryazantseva
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Janne Sulku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Gabija Zumaraite
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Marneffe C, Moreira-de-Sá A, Lecomte S, Erhardt A, Mulle C. Short term plasticity at hippocampal mossy fiber synapses. Neuroscience 2024:S0306-4522(24)00497-4. [PMID: 39332701 DOI: 10.1016/j.neuroscience.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Short-term synaptic plasticity refers to the regulation of synapses by their past activity on time scales of milliseconds to minutes. Hippocampal mossy fiber synapses onto CA3 pyramidal cells (Mf-CA3 synapses) are endowed with remarkable forms of short-term synaptic plasticity expressed as facilitation of synaptic release by a factor of up to ten-fold. Three main forms of short-term plasticity are distinguished: 1) Frequency facilitation, which includes low frequency facilitation and train facilitation, operating in the range of tens of milliseconds to several seconds; 2) Post-tetanic potentiation triggered by trains of high frequency stimulation, which lasts several minutes; 3) Finally, depolarization-induced potentiation of excitation, based on retrograde signaling, with an onset and offset of several minutes. Here we describe the proposed mechanisms for short-term plasticity, mainly based on the kinetics of presynaptic Ca2+ transients and the Ca2+ sensor synaptotagmin 7, on cAMP-dependent mechanisms and readily releasable vesicle pool, and on the regulation of presynaptic K+ channels. We then review evidence for a physiological function of short-term plasticity of Mf-CA3 synapses in information transfer between the dentate gyrus and CA3 in conditions of natural spiking, and discuss how short-term plasticity counteracts robust feedforward inhibition in a frequency-dependent manner. Although DG-CA3 connections have long been proposed to play a role in memory, direct evidence for an implication of short-term plasticity at Mf-CA3 synapses is mostly lacking. The mechanistic knowledge gained on short-term plasticity at Mf-CA3 synapses should help in designing future experiments to directly test how this evolutionary conserved feature controls hippocampal circuit function in behavioural conditions.
Collapse
Affiliation(s)
- Catherine Marneffe
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, France; University of Bordeaux, F-33000 Bordeaux, France
| | - Ana Moreira-de-Sá
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, France; University of Bordeaux, F-33000 Bordeaux, France
| | - Simon Lecomte
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, France; University of Bordeaux, F-33000 Bordeaux, France
| | - Anaël Erhardt
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, France; University of Bordeaux, F-33000 Bordeaux, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, France; University of Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
5
|
Atanasova T, Savonlehto T, Kukko-Lukjanov TK, Kharybina Z, Chang WC, Lauri SE, Taira T. Progressive development of synchronous activity in the hippocampal neuronal network is modulated by GluK1 kainate receptors. Neuropharmacology 2023; 239:109671. [PMID: 37567438 DOI: 10.1016/j.neuropharm.2023.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Kainate receptors are potent modulators of circuit excitability and have been repeatedly implicated in pathophysiological synchronization of limbic networks. While the role of aberrant GluK2 subunit containing KARs in generation of epileptiform hypersynchronous activity is well described, the contribution of other KAR subtypes, including GluK1 subunit containing KARs remain less well understood. To investigate the contribution of GluK1 KARs in developmental and pathological synchronization of the hippocampal neural network, we used multielectrode array recordings on organotypic hippocampal slices that display first multi-unit activity and later spontaneous population discharges resembling ictal-like epileptiform activity (IEA). Chronic blockage of GluK1 activity using selective antagonist ACET or lentivirally delivered shRNA significantly delayed developmental synchronization of the hippocampal CA3 network and generation of IEA. GluK1 overexpression, on the other hand, had no significant effect on occurrence of IEA, but enhanced the size of the neuron population participating in the population discharges. Correlation analysis indicated that local knockdown of GluK1 locally in the CA3 neurons reduced their functional connectivity, while GluK1 overexpression increased the connectivity to both CA1 and DG. These data suggest that GluK1 KARs regulate functional connectivity between the excitatory neurons, possibly via morphological changes in glutamatergic circuit, affecting synchronization of neuronal populations. The significant effects of GluK1 manipulations on network activity call for further research on GluK1 KAR as potential targets for antiepileptic treatments, particularly during the early postnatal development when GluK1 KARs are strongly expressed in the limbic neural networks.
Collapse
Affiliation(s)
- Tsvetomira Atanasova
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Tiina Savonlehto
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | | | - Zoia Kharybina
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Wei-Chih Chang
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Sari E Lauri
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| |
Collapse
|
6
|
Nair JD, Wilkinson KA, Yucel BP, Mulle C, Vissel B, Mellor J, Henley JM. GluK2 Q/R editing regulates kainate receptor signaling and long-term potentiation of AMPA receptors. iScience 2023; 26:107708. [PMID: 37720087 PMCID: PMC10504484 DOI: 10.1016/j.isci.2023.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Q/R editing of the kainate receptor (KAR) subunit GluK2 radically alters recombinant KAR properties, but the effects on endogenous KARs in vivo remain largely unexplored. Here, we compared GluK2 editing-deficient mice that express ∼95% unedited GluK2(Q) to wild-type counterparts that express ∼85% edited GluK2(R). At mossy fiber-CA3 (MF-CA3) synapses GluK2(Q) mice displayed increased postsynaptic KAR function and KAR-mediated presynaptic facilitation, demonstrating enhanced ionotropic function. Conversely, GluK2(Q) mice exhibited reduced metabotropic KAR function, assessed by KAR-mediated inhibition of slow after-hyperpolarization currents (ISAHP). GluK2(Q) mice also had fewer GluA1-and GluA3-containing AMPA receptors (AMPARs) and reduced postsynaptic AMPAR currents at both MF-CA3 and CA1-Schaffer collateral synapses. Moreover, long-term potentiation of AMPAR-mediated transmission at CA1-Schaffer collateral synapses was reduced in GluK2(Q) mice. These findings suggest that GluK2 Q/R editing influences ionotropic/metabotropic balance of KAR signaling to regulate synaptic expression of AMPARs and plasticity.
Collapse
Affiliation(s)
- Jithin D. Nair
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Busra P. Yucel
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christophe Mulle
- CNRS UMR 5297, Interdisciplinary Institute of Neuroscience, University of Bordeaux, France
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Jack Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M. Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
7
|
Boileau C, Deforges S, Peret A, Scavarda D, Bartolomei F, Giles A, Partouche N, Gautron J, Viotti J, Janowitz H, Penchet G, Marchal C, Lagarde S, Trebuchon A, Villeneuve N, Rumi J, Marissal T, Khazipov R, Khalilov I, Martineau F, Maréchal M, Lepine A, Milh M, Figarella-Branger D, Dougy E, Tong S, Appay R, Baudouin S, Mercer A, Smith JB, Danos O, Porter R, Mulle C, Crépel V. GluK2 Is a Target for Gene Therapy in Drug-Resistant Temporal Lobe Epilepsy. Ann Neurol 2023; 94:745-761. [PMID: 37341588 DOI: 10.1002/ana.26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is characterized by recurrent seizures generated in the limbic system, particularly in the hippocampus. In TLE, recurrent mossy fiber sprouting from dentate gyrus granule cells (DGCs) crea an aberrant epileptogenic network between DGCs which operates via ectopically expressed GluK2/GluK5-containing kainate receptors (KARs). TLE patients are often resistant to anti-seizure medications and suffer significant comorbidities; hence, there is an urgent need for novel therapies. Previously, we have shown that GluK2 knockout mice are protected from seizures. This study aims at providing evidence that downregulating KARs in the hippocampus using gene therapy reduces chronic epileptic discharges in TLE. METHODS We combined molecular biology and electrophysiology in rodent models of TLE and in hippocampal slices surgically resected from patients with drug-resistant TLE. RESULTS Here, we confirmed the translational potential of KAR suppression using a non-selective KAR antagonist that markedly attenuated interictal-like epileptiform discharges (IEDs) in TLE patient-derived hippocampal slices. An adeno-associated virus (AAV) serotype-9 vector expressing anti-grik2 miRNA was engineered to specifically downregulate GluK2 expression. Direct delivery of AAV9-anti grik2 miRNA into the hippocampus of TLE mice led to a marked reduction in seizure activity. Transduction of TLE patient hippocampal slices reduced levels of GluK2 protein and, most importantly, significantly reduced IEDs. INTERPRETATION Our gene silencing strategy to knock down aberrant GluK2 expression demonstrates inhibition of chronic seizure in a mouse TLE model and IEDs in cultured slices derived from TLE patients. These results provide proof-of-concept for a gene therapy approach targeting GluK2 KARs for drug-resistant TLE patients. ANN NEUROL 2023;94:745-761.
Collapse
Affiliation(s)
| | - Severine Deforges
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | | - Didier Scavarda
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Pediatric Neurosurgery, Marseille, France
| | - Fabrice Bartolomei
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | | | - Nicolas Partouche
- Aix-Marseille Univ. INSERM, Marseille, France
- Corlieve Therapeutics SAS, uniQure NV, Paris, France
| | - Justine Gautron
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
- Corlieve Therapeutics SAS, uniQure NV, Paris, France
| | - Julio Viotti
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | | | | - Cécile Marchal
- Pellegrin Hospital, Neurosurgery Department, Bordeaux, France
| | - Stanislas Lagarde
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Agnès Trebuchon
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Nathalie Villeneuve
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Julie Rumi
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | | | | | | | | - Marine Maréchal
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | - Anne Lepine
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Mathieu Milh
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Dominique Figarella-Branger
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | - Etienne Dougy
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | - Soutsakhone Tong
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | - Romain Appay
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | | | | | | | | | | | - Christophe Mulle
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | |
Collapse
|
8
|
Zhuang M, Geng X, Han P, Che P, Liang F, Liu C, Yang L, Yu J, Zhang Z, Dong W, Ji SJ. YTHDF2 in dentate gyrus is the m 6A reader mediating m 6A modification in hippocampus-dependent learning and memory. Mol Psychiatry 2023; 28:1679-1691. [PMID: 36670199 DOI: 10.1038/s41380-023-01953-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
N6-methyladenosine (m6A) has been demonstrated to regulate learning and memory in mice. To investigate the mechanism by which m6A modification exerts its function through its reader proteins in the hippocampus, as well as to unveil the specific subregions of the hippocampus that are crucial for memory formation, we generated dentate gyrus (DG)-, CA3-, and CA1-specific Ythdf1 and Ythdf2 conditional knockout (cKO) mice, respectively. Surprisingly, we found that only the DG-specific Ythdf2 cKO mice displayed impaired memory formation, which is inconsistent with the previous report showing that YTHDF1 was involved in this process. YTHDF2 controls the stability of its target transcripts which encode proteins that regulate the elongation of mossy fibers (MF), the axons of DG granule cells. DG-specific Ythdf2 ablation caused MF overgrowth and impairment of the MF-CA3 excitatory synapse development and transmission in the stratum lucidum. Thus, this study identifies the m6A reader YTHDF2 in dentate gyrus as the only regulator that mediates m6A modification in hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Mengru Zhuang
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,SUSTech-HKUST Joint PhD Program, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoqi Geng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China.,Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Peng Han
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Pengfei Che
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Fanghao Liang
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chao Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lixin Yang
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jun Yu
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhuxia Zhang
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China. .,Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Sheng-Jian Ji
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
9
|
Focusing on the Emerging Role of Kainate Receptors in the Dorsal Cochlear Nucleus (DCN) and Cerebellum. Int J Mol Sci 2023; 24:ijms24021718. [PMID: 36675230 PMCID: PMC9865595 DOI: 10.3390/ijms24021718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Mammals have a dorsal cochlear nucleus (DCN), which is thought to be a cerebellum-like structure with similar features in terms of structure and microcircuitry to the cerebellum. Both the DCN and cerebellum perform their functions depending on synaptic and neuronal networks mediated by various glutamate receptors. Kainate receptors (KARs) are one class of the glutamate receptor family and are strongly expressed in the hippocampus, the cerebellum, and cerebellum-like structures. The cellular distribution and the potential role of KARs in the hippocampus have been extensively investigated. However, the cellular distribution and the potential role of KARs in cerebellum-like structures, including the DCN and cerebellum, are poorly understood. In this review, we summarize the similarity between the DCN and cerebellum at the levels of structure, circuitry, and cell type as well as the investigations referring to the expression patterns of KARs in the DCN and cerebellum according to previous studies. Recent studies on the role of KARs have shown that KARs mediate a bidirectional modulatory effect at parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum, implying insights into their roles in cerebellum-like structures, including the DCN, that remain to be explored in the coming years.
Collapse
|
10
|
Hokama Y, Nishimura M, Usugi R, Fujiwara K, Katagiri C, Takagi H, Ishiuchi S. Recovery from the damage of cranial radiation modulated by memantine, an NMDA receptor antagonist, combined with hyperbaric oxygen therapy. Neuro Oncol 2022; 25:108-122. [PMID: 35762568 PMCID: PMC9825311 DOI: 10.1093/neuonc/noac162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Radiotherapy is an important treatment option for central nervous system malignancies. However, cranial radiation induces hippocampal dysfunction and white matter injury; this leads to cognitive dysfunction, and results in a reduced quality of life in patients. Excitatory glutamate signaling through N-methyl-d-aspartate receptors (NMDARs) plays a central role both in hippocampal neurogenesis and in the myelination of oligodendrocytes in the cerebrum. METHODS We provide a method for quantifying neurogenesis in human subjects in live brain during cancer therapy. Neuroimaging using originally created behavioral tasks was employed to examine human hippocampal memory pathway in patients with brain disorders. RESULTS Treatment with memantine, a non-competitive NMDAR antagonist, reversed impairment in hippocampal pattern separation networks as detected by functional magnetic resonance imaging. Hyperbaric preconditioning of the patients just before radiotherapy with memantine mostly reversed white matter injury as detected by whole brain analysis with Tract-Based Spatial Statics. Neuromodulation combined with the administration of hyperbaric oxygen therapy and memantine during radiotherapy facilitated the restoration of hippocampal function and white matter integrity, and improved higher cognitive function in patients receiving cranial radiation. CONCLUSIONS The method described herein, for diagnosis of hippocampal dysfunction, and therapeutic intervention can be utilized to restore some of the cognitive decline experienced by patients who have received cranial radiation. The underlying mechanism of restoration is the production of new neurons, which enhances functionality in pattern separation networks in the hippocampi, resulting in an increase in cognitive score, and restoration of microstructural integrity of white matter tracts revealed by Tract-Based Spatial Statics Analysis.
Collapse
Affiliation(s)
- Yohei Hokama
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Masahiko Nishimura
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Ryoichi Usugi
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Kyoko Fujiwara
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Chiaki Katagiri
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Hiroshi Takagi
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Shogo Ishiuchi
- Corresponding Author: Dr. Shogo Ishiuchi, Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan ()
| |
Collapse
|
11
|
Formation of the Mouse Internal Capsule and Cerebral Peduncle: A Pioneering Role for Striatonigral Axons as Revealed in Isl1 Conditional Mutants. J Neurosci 2022; 42:3344-3364. [PMID: 35273083 PMCID: PMC9034787 DOI: 10.1523/jneurosci.2291-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 01/05/2023] Open
Abstract
The projection neurons of the striatum, the principal nucleus of the basal ganglia, belong to one of the following two major pathways: the striatopallidal (indirect) pathway or the striatonigral (direct) pathway. Striatonigral axons project long distances and encounter ascending tracts (thalamocortical) while coursing alongside descending tracts (corticofugal) as they extend through the internal capsule and cerebral peduncle. These observations suggest that striatal circuitry may help to guide their trajectories. To investigate the developmental contributions of striatonigral axons to internal capsule formation, we have made use of Sox8-EGFP (striatal direct pathway) and Fezf2-TdTomato (corticofugal pathway) BAC transgenic reporter mice in combination with immunohistochemical markers to trace these axonal pathways throughout development. We show that striatonigral axons pioneer the internal capsule and cerebral peduncle and are temporally and spatially well positioned to provide guidance for corticofugal and thalamocortical axons. Using Isl1 conditional knock-out (cKO) mice, which exhibit disrupted striatonigral axon outgrowth, we observe both corticofugal and thalamocortical axon defects with either ventral forebrain- or telencephalon-specific Isl1 inactivation, despite Isl1 not being expressed in either cortical or thalamic projection neurons. Striatonigral axon defects can thus disrupt internal capsule formation. Our genome-wide transcriptomic analysis in Isl1 cKOs reveals changes in gene expression relevant to cell adhesion, growth cone dynamics, and extracellular matrix composition, suggesting potential mechanisms by which the striatonigral pathway exerts this guidance role. Together, our data support a novel pioneering role for the striatal direct pathway in the correct assembly of the ascending and descending axon tracts within the internal capsule and cerebral peduncle.SIGNIFICANCE STATEMENT The basal ganglia are a group of subcortical nuclei with established roles in the coordination of voluntary motor programs, aspects of cognition, and the selection of appropriate social behaviors. Hence, disruptions in basal ganglia connectivity have been implicated in the motor, cognitive, and social dysfunction characterizing common neurodevelopmental disorders such as attention-deficit/hyperactivity disorder, autism spectrum disorder, obsessive-compulsive disorder, and tic disorder. Here, we identified a novel role for the striatonigral (direct) pathway in pioneering the internal capsule and cerebral peduncle, and in guiding axons extending to and from the cortex. Our findings suggest that the abnormal development of basal ganglia circuits can drive secondary internal capsule defects and thereby may contribute to the pathology of these disorders.
Collapse
|
12
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
13
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
14
|
Zhu Y, Armstrong JN, Contractor A. Kainate receptors regulate the functional properties of young adult-born dentate granule cells. Cell Rep 2021; 36:109751. [PMID: 34551304 PMCID: PMC8525187 DOI: 10.1016/j.celrep.2021.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 11/06/2022] Open
Abstract
Both inhibitory and excitatory neurotransmitter receptors can influence maturation and survival of adult-born neurons in the dentate gyrus; nevertheless, how these two neurotransmitter systems affect integration of new neurons into the existing circuitry is still not fully characterized. Here, we demonstrate that glutamate receptors of the kainate receptor (KAR) subfamily are expressed in adult-born dentate granule cells (abDGCs) and that, through their interaction with GABAergic signaling mechanisms, they alter the functional properties of adult-born cells during a critical period of their development. Both the intrinsic properties and synaptic connectivity of young abDGCs were affected. Timed KAR loss in a cohort of young adult-born neurons in mice disrupted their performance in a spatial discrimination task but not in a hippocampal-dependent fear conditioning task. Together, these results demonstrate the importance of KARs in the proper functional development of young abDGCs.
Collapse
Affiliation(s)
- Yiwen Zhu
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John N Armstrong
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anis Contractor
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurobiology, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
15
|
Nair JD, Wilkinson KA, Henley JM, Mellor JR. Kainate receptors and synaptic plasticity. Neuropharmacology 2021; 196:108540. [PMID: 33794245 DOI: 10.1016/j.neuropharm.2021.108540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Synaptic plasticity has classically been characterized to involve the NMDA and AMPA subtypes of glutamate receptors, with NMDA receptors providing the key trigger for the induction of long-term plasticity leading to changes in AMPA receptor expression. Here we review the more subtle roles played by kainate receptors, which contribute critical postsynaptic signalling as well as playing major presynaptic auto-receptor roles. We focus on two research areas: plasticity of kainate receptors themselves and the contribution they make to the plasticity of synaptic transmission. This article is part of the special issue on Glutamate Receptors - Kainate receptors.
Collapse
Affiliation(s)
- Jithin D Nair
- Center for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- Center for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- Center for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jack R Mellor
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
16
|
Stolz JR, Foote KM, Veenstra-Knol HE, Pfundt R, Ten Broeke SW, de Leeuw N, Roht L, Pajusalu S, Part R, Rebane I, Õunap K, Stark Z, Kirk EP, Lawson JA, Lunke S, Christodoulou J, Louie RJ, Rogers RC, Davis JM, Innes AM, Wei XC, Keren B, Mignot C, Lebel RR, Sperber SM, Sakonju A, Dosa N, Barge-Schaapveld DQCM, Peeters-Scholte CMPCD, Ruivenkamp CAL, van Bon BW, Kennedy J, Low KJ, Ellard S, Pang L, Junewick JJ, Mark PR, Carvill GL, Swanson GT. Clustered mutations in the GRIK2 kainate receptor subunit gene underlie diverse neurodevelopmental disorders. Am J Hum Genet 2021; 108:1692-1709. [PMID: 34375587 PMCID: PMC8456161 DOI: 10.1016/j.ajhg.2021.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 also underlie NDDs is less understood because only a single individual has been reported previously. Here, we describe an additional eleven individuals with heterozygous de novo variants in GRIK2 causative for neurodevelopmental deficits that include intellectual disability. Five children harbored recurrent de novo variants (three encoding p.Thr660Lys and two p.Thr660Arg), and four children and one adult were homozygous for a previously reported variant (c.1969G>A [p.Ala657Thr]). Individuals with shared variants had some overlapping behavioral and neurological dysfunction, suggesting that the GRIK2 variants are likely pathogenic. Analogous mutations introduced into recombinant GluK2 KAR subunits at sites within the M3 transmembrane domain (encoding p.Ala657Thr, p.Thr660Lys, and p.Thr660Arg) and the M3-S2 linker domain (encoding p.Ile668Thr) had complex effects on functional properties and membrane localization of homomeric and heteromeric KARs. Both p.Thr660Lys and p.Thr660Arg mutant KARs exhibited markedly slowed gating kinetics, similar to p.Ala657Thr-containing receptors. Moreover, we observed emerging genotype-phenotype correlations, including the presence of severe epilepsy in individuals with the p.Thr660Lys variant and hypomyelination in individuals with either the p.Thr660Lys or p.Thr660Arg variant. Collectively, these results demonstrate that human GRIK2 variants predicted to alter channel function are causative for early childhood development disorders and further emphasize the importance of clarifying the role of KARs in early nervous system development.
Collapse
Affiliation(s)
- Jacob R Stolz
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kendall M Foote
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hermine E Veenstra-Knol
- Department of Genetics, University Medical Center Groningen, Groningen 9700, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6525, the Netherlands
| | - Sanne W Ten Broeke
- Department of Genetics, University Medical Center Groningen, Groningen 9700, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6525, the Netherlands
| | - Laura Roht
- Department of Clinical Genetics, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu 51003, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu 51003, Estonia
| | - Reelika Part
- Department of Neonatal and Infant Medicine, Tallinn Children's Hospital, Tallinn 13419, Estonia
| | - Ionella Rebane
- Department of Neonatal and Infant Medicine, Tallinn Children's Hospital, Tallinn 13419, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu 51003, Estonia
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Edwin P Kirk
- School of Women's and Children's Health, UNSW Medicine, University of New South Wales, Randwick, NSW 2031, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW 2031, Australia
| | - John A Lawson
- Department of Neurology, Sydney Children's Hospital, Randwick, NSW 2031, Australia
| | - Sebastian Lunke
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | | | | | | | - A Micheil Innes
- Departments of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Xing-Chang Wei
- Department of Diagnostic Imaging, Cumming School of Medicine, University of Calgary, AB T2N 4N1, Canada
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Paris 75013, France
| | - Cyril Mignot
- Département de Génétique, Hôpital Pitié-Salpêtrière, Paris 75013, France
| | - Robert Roger Lebel
- Division of Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven M Sperber
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ai Sakonju
- Department of Neurology, Upstate Health Care Center, Syracuse, NY 13210, USA
| | - Nienke Dosa
- Division of Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6525, the Netherlands
| | - Joanna Kennedy
- University Hospital Bristol, NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Karen J Low
- University Hospital Bristol, NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Lewis Pang
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Joseph J Junewick
- Department of Radiology, Helen DeVos Children's Hospital, Grand Rapids, MI 49503, USA
| | - Paul R Mark
- Spectrum Health Medical Genetics, Grand Rapids, MI 49503, USA
| | - Gemma L Carvill
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Negrete-Díaz JV, Falcón-Moya R, Rodríguez-Moreno A. Kainate receptors: from synaptic activity to disease. FEBS J 2021; 289:5074-5088. [PMID: 34143566 DOI: 10.1111/febs.16081] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Kainate receptors (KARs) are glutamate receptors that participate in the postsynaptic transmission of information and in the control of neuronal excitability, as well as presynaptically modulating the release of the neurotransmitters GABA and glutamate. These modulatory effects, general follow a biphasic pattern, with low KA concentrations provoking an increase in GABA and glutamate release, and higher concentrations mediating a decrease in the release of these neurotransmitters. In addition, KARs are involved in different forms of long- and short-term plasticity. Importantly, altered activity of these receptors has been implicated in different central nervous system diseases and disturbances. Here, we describe the pre- and postsynaptic actions of KARs, and the possible role of these receptors in disease, a field that has seen significant progress in recent years.
Collapse
Affiliation(s)
- José Vicente Negrete-Díaz
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain.,Laboratorio de Psicología Experimental y Neurociencias, División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, México
| | - Rafael Falcón-Moya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
18
|
Robert BJA, Moreau MM, Dos Santos Carvalho S, Barthet G, Racca C, Bhouri M, Quiedeville A, Garret M, Atchama B, Al Abed AS, Guette C, Henderson DJ, Desmedt A, Mulle C, Marighetto A, Montcouquiol M, Sans N. Vangl2 in the Dentate Network Modulates Pattern Separation and Pattern Completion. Cell Rep 2021; 31:107743. [PMID: 32521268 PMCID: PMC7296350 DOI: 10.1016/j.celrep.2020.107743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
The organization of spatial information, including pattern completion and pattern separation processes, relies on the hippocampal circuits, yet the molecular and cellular mechanisms underlying these two processes are elusive. Here, we find that loss of Vangl2, a core PCP gene, results in opposite effects on pattern completion and pattern separation processes. Mechanistically, we show that Vangl2 loss maintains young postmitotic granule cells in an immature state, providing increased cellular input for pattern separation. The genetic ablation of Vangl2 disrupts granule cell morpho-functional maturation and further prevents CaMKII and GluA1 phosphorylation, disrupting the stabilization of AMPA receptors. As a functional consequence, LTP at lateral perforant path-GC synapses is impaired, leading to defects in pattern completion behavior. In conclusion, we show that Vangl2 exerts a bimodal regulation on young and mature GCs, and its disruption leads to an imbalance in hippocampus-dependent pattern completion and separation processes. Vangl2-dependent PCP signaling controls granule cell maturation and network integration Vangl2 stabilizes GluA1-containing receptors at the surface of dendritic spines Granule cells require Vangl2-dependent signaling to elicit LTP Vangl2 loss has opposite functional effects on pattern completion/separation processes
Collapse
Affiliation(s)
- Benjamin J A Robert
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Maïté M Moreau
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Steve Dos Santos Carvalho
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Gael Barthet
- CNRS, IINS, UMR 5297, 33000 Bordeaux, France; Université Bordeaux, IINS, 33000 Bordeaux, France
| | - Claudia Racca
- Biosciences Institute, Newcastle University, Medical School, Newcastle upon Tyne, NE2 4HH, UK
| | - Mehdi Bhouri
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Anne Quiedeville
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Maurice Garret
- CNRS, INCIA, 33000 Bordeaux, France; Université Bordeaux, INCIA, 30000 Bordeaux, France
| | - Bénédicte Atchama
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Alice Shaam Al Abed
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Christelle Guette
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne, NE1 4EP, UK
| | - Aline Desmedt
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Christophe Mulle
- CNRS, IINS, UMR 5297, 33000 Bordeaux, France; Université Bordeaux, IINS, 33000 Bordeaux, France
| | - Aline Marighetto
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France.
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France.
| |
Collapse
|
19
|
Kainate receptors in the developing neuronal networks. Neuropharmacology 2021; 195:108585. [PMID: 33910033 DOI: 10.1016/j.neuropharm.2021.108585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Kainate receptors (KARs) are highly expressed in the immature brain and have unique developmentally regulated functions that may be important in linking neuronal activity to morphogenesis during activity-dependent fine-tuning of the synaptic connectivity. Altered expression of KARs in the developing neural network leads to changes in glutamatergic connectivity and network excitability, which may lead to long-lasting changes in behaviorally relevant circuitries in the brain. Here, we summarize the current knowledge on physiological and morphogenic functions described for different types of KARs at immature neural circuitries, focusing on their roles in modulating synaptic transmission and plasticity as well as circuit maturation in the rodent hippocampus and amygdala. Finally, we discuss the emerging evidence suggesting that malfunction of KARs in the immature brain may contribute to the pathophysiology underlying developmentally originating neurological disorders.
Collapse
|
20
|
Kesaf S, Khirug S, Dinh E, Saez Garcia M, Soni S, Orav E, Delpire E, Taira T, Lauri SE, Rivera C. The Kainate Receptor Subunit GluK2 Interacts With KCC2 to Promote Maturation of Dendritic Spines. Front Cell Neurosci 2020; 14:252. [PMID: 33005130 PMCID: PMC7479265 DOI: 10.3389/fncel.2020.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Kainate receptors (KAR) play a crucial role in the plasticity and functional maturation of glutamatergic synapses. However, how they regulate structural plasticity of dendritic spines is not known. The GluK2 subunit was recently shown to coexist in a functional complex with the neuronal K-Cl cotransporter KCC2. Apart from having a crucial role in the maturation of GABAergic transmission, KCC2 has a morphogenic role in the maturation of dendritic spines. Here, we show that in vivo local inactivation of GluK2 expression in CA3 hippocampal neurons induces altered morphology of dendritic spines and reduction in mEPSC frequency. GluK2 deficiency also resulted in a strong change in the subcellular distribution of KCC2 as well as a smaller somatodendritic gradient in the reversal potential of GABAA. Strikingly, the aberrant morphology of dendritic spines in GluK2-deficient CA3 pyramidal neurons was restored by overexpression of KCC2. GluK2 silencing in hippocampal neurons significantly reduced the expression of 4.1N and functional form of the actin filament severing protein cofilin. Consistently, assessment of actin dynamics using fluorescence recovery after photobleaching (FRAP) of β-actin showed a significant increase in the stability of F-actin filaments in dendritic spines. In conclusion, our results demonstrate that GluK2-KCC2 interaction plays an important role in the structural maturation of dendritic spines. This also provides novel insights into the connection between KAR dysfunction, structural plasticity, and developmental disorders.
Collapse
Affiliation(s)
- Sebnem Kesaf
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Stanislav Khirug
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Emilie Dinh
- Developmental Biology Institute of Marseille, Marseille, France
| | - Marta Saez Garcia
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Shetal Soni
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Ester Orav
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Tomi Taira
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Claudio Rivera
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Institut de Neurobiologie de la Méditerranée (INMED) UMR901, Marseille, France
| |
Collapse
|
21
|
AMPA receptor nanoscale dynamic organization and synaptic plasticities. Curr Opin Neurobiol 2020; 63:137-145. [DOI: 10.1016/j.conb.2020.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
|
22
|
Ryazantseva M, Englund J, Shintyapina A, Huupponen J, Shteinikov V, Pitkänen A, Partanen JM, Lauri SE. Kainate receptors regulate development of glutamatergic synaptic circuitry in the rodent amygdala. eLife 2020; 9:52798. [PMID: 32202495 PMCID: PMC7117908 DOI: 10.7554/elife.52798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/22/2020] [Indexed: 12/13/2022] Open
Abstract
Perturbed information processing in the amygdala has been implicated in developmentally originating neuropsychiatric disorders. However, little is known on the mechanisms that guide formation and refinement of intrinsic connections between amygdaloid nuclei. We demonstrate that in rodents the glutamatergic connection from basolateral to central amygdala (BLA-CeA) develops rapidly during the first 10 postnatal days, before external inputs underlying amygdala-dependent behaviors emerge. During this restricted period of synaptic development, kainate-type of ionotropic glutamate receptors (KARs) are highly expressed in the BLA and tonically activated to regulate glutamate release via a G-protein-dependent mechanism. Genetic manipulation of this endogenous KAR activity locally in the newborn LA perturbed development of glutamatergic input to CeA, identifying KARs as a physiological mechanism regulating formation of the glutamatergic circuitry in the amygdala.
Collapse
Affiliation(s)
- Maria Ryazantseva
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jonas Englund
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Alexandra Shintyapina
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Johanna Huupponen
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Vasilii Shteinikov
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha M Partanen
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Valbuena S, Lerma J. Kainate Receptors, Homeostatic Gatekeepers of Synaptic Plasticity. Neuroscience 2019; 456:17-26. [PMID: 31866560 DOI: 10.1016/j.neuroscience.2019.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/16/2023]
Abstract
Extensive research over the past decades has characterized multiple forms of synaptic plasticity, identifying them as key processes that allow the brain to operate in a dynamic manner. Within the wide variety of synaptic plasticity modulators, kainate receptors are receiving increasing attention, given their diversity of signaling mechanisms and cellular expression profile. Here, we summarize the experimental evidence about the involvement of kainate receptor signaling in the regulation of short- and long-term plasticity, from the perspective of the regulation of neurotransmitter release. In light of this evidence, we propose that kainate receptors may be considered homeostatic modulators of neurotransmitter release, able to bidirectionally regulate plasticity depending on the functional history of the synapse.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain.
| | - Juan Lerma
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
24
|
Coll-Tané M, Krebbers A, Castells-Nobau A, Zweier C, Schenck A. Intellectual disability and autism spectrum disorders 'on the fly': insights from Drosophila. Dis Model Mech 2019; 12:dmm039180. [PMID: 31088981 PMCID: PMC6550041 DOI: 10.1242/dmm.039180] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
25
|
Xie X, Hou F, Li L, Chen Y, Liu L, Luo X, Gu H, Li X, Zhang J, Gong J, Song R. Polymorphisms of Ionotropic Glutamate Receptor-Related Genes and the Risk of Autism Spectrum Disorder in a Chinese Population. Psychiatry Investig 2019; 16:379-385. [PMID: 31132842 PMCID: PMC6539266 DOI: 10.30773/pi.2019.02.26.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/26/2019] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE To evaluate the association of GRIK2 and NLGN1 with autism spectrum disorder in a Chinese population. METHODS We performed spatio-temporal expression analysis of GRIK2 and NLGN1 in the developing prefrontal cortex, and examined the expression of the genes in ASD cases and healthy controls using the GSE38322 data set. Following, we performed a case-control study in a Chinese population. RESULTS The analysis using the publicly available expression data showed that GRIK2 and NLGN1 may have a role in the development of human brain and contribute to the risk of ASD. Later genetic analysis in the Chinese population showed that the GRIK2 rs6922753 for the T allele, TC genotype and dominant model played a significant protective role in ASD susceptibility (respectively: OR=0.840, p=0.023; OR=0.802, p=0.038; OR=0.791, p=0.020). The NLGN1 rs9855544 for the G allele and GG genotype played a significant protective role in ASD susceptibility (respectively: OR=0.844, p=0.019; OR=0.717, p=0.022). After adjusting p values, the statistical significance was lost (p>0.05). CONCLUSION Our results suggested that GRIK2 rs6922753 and NLGN1 rs9855544 might not confer susceptibility to ASD in the Chinese population.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Hou
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Yanlin Chen
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Lingfei Liu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu Luo
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaiting Gu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Jianhua Gong
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Orav E, Dowavic I, Huupponen J, Taira T, Lauri SE. NETO1 Regulates Postsynaptic Kainate Receptors in CA3 Interneurons During Circuit Maturation. Mol Neurobiol 2019; 56:7473-7489. [PMID: 31044365 PMCID: PMC6815322 DOI: 10.1007/s12035-019-1612-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/15/2019] [Indexed: 01/02/2023]
Abstract
Kainate type ionotropic glutamate receptors (KARs) are expressed in hippocampal interneurons and regulate interneuron excitability and GABAergic transmission. Neuropilin tolloid-like proteins (NETO1 and NETO2) act as KAR auxiliary subunits; however, their significance for various functions of KARs in GABAergic interneurons is not fully understood. Here we show that NETO1, but not NETO2, is necessary for dendritic delivery of KAR subunits and, consequently, for formation of KAR-containing synapses in cultured GABAergic neurons. Accordingly, electrophysiological analysis of neonatal CA3 stratum radiatum interneurons revealed impaired postsynaptic and metabotropic KAR signaling in Neto1 knockouts, while a subpopulation of ionotropic KARs in the somatodendritic compartment remained functional. Loss of NETO1/KAR signaling had no significant effect on development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)-receptor-mediated glutamatergic transmission in CA3 interneurons, contrasting the synaptogenic role proposed for KARs in principal cells. Furthermore, loss of NETO1 had no effect on excitability and characteristic spontaneous network bursts in the immature CA3 circuitry. However, we find that NETO1 is critical for kainate-dependent modulation of network bursts and GABAergic transmission in the hippocampus already during the first week of life. Our results provide the first description of NETO1-dependent subcellular targeting of KAR subunits in GABAergic neurons and indicate that endogenous NETO1 is required for formation of KAR-containing synapses in interneurons. Since aberrant KAR-mediated excitability is implicated in certain forms of epilepsy, NETO1 represents a potential therapeutic target for treatment of both adult and early life seizures.
Collapse
Affiliation(s)
- Ester Orav
- Molecular and Integrative Biosciences Research Program, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland.,HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Ilona Dowavic
- Molecular and Integrative Biosciences Research Program, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland.,HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Johanna Huupponen
- Molecular and Integrative Biosciences Research Program, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland.,HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- Molecular and Integrative Biosciences Research Program, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland. .,HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
27
|
Hippocampal Mossy Fibers Synapses in CA3 Pyramidal Cells Are Altered at an Early Stage in a Mouse Model of Alzheimer's Disease. J Neurosci 2019; 39:4193-4205. [PMID: 30886015 DOI: 10.1523/jneurosci.2868-18.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Early Alzheimer's disease (AD) affects the brain non-uniformly, causing hippocampal memory deficits long before wide-spread brain degeneration becomes evident. Here we addressed whether mossy fiber inputs from the dentate gyrus onto CA3 principal cells are affected in an AD mouse model before amyloid β plaque deposition. We recorded from CA3 pyramidal cells in a slice preparation from 6-month-old male APP/PS1 mice, and studied synaptic properties and intrinsic excitability. In parallel we performed a morphometric analysis of mossy fiber synapses following viral based labeling and 3D-reconstruction. We found that the basal structural and functional properties as well as presynaptic short-term plasticity at mossy fiber synapses are unaltered at 6 months in APP/PS1 mice. However, transient potentiation of synaptic transmission mediated by activity-dependent release of lipids was abolished. Whereas the presynaptic form of mossy fiber long-term potentiation (LTP) was not affected, the postsynaptic LTP of NMDAR-EPSCs was reduced. In addition, we also report an impairment in feedforward inhibition in CA3 pyramidal cells. This study, together with our previous work describing deficits at CA3-CA3 synapses, provides evidence that early AD affects synapses in a projection-dependent manner at the level of a single neuronal population.SIGNIFICANCE STATEMENT Because loss of episodic memory is considered the cognitive hallmark of Alzheimer's disease (AD), it is important to study whether synaptic circuits involved in the encoding of episodic memory are compromised in AD mouse models. Here we probe alterations in the synaptic connections between the dentate gyrus and CA3, which are thought to be critical for enabling episodic memories to be formed and stored in CA3. We found that forms of synaptic plasticity specific to these synaptic connections are markedly impaired at an early stage in a mouse model of AD, before deposition of β amyloid plaques. Together with previous work describing deficits at CA3-CA3 synapses, we provide evidence that early AD affects synapses in an input-dependent manner within a single neuronal population.
Collapse
|
28
|
Presenilin-mediated cleavage of APP regulates synaptotagmin-7 and presynaptic plasticity. Nat Commun 2018; 9:4780. [PMID: 30429473 PMCID: PMC6235831 DOI: 10.1038/s41467-018-06813-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
Mutations of the intramembrane protease presenilin (PS) or of its main substrate, the amyloid precursor protein (APP), cause early-onset form of Alzheimer disease. PS and APP interact with proteins of the neurotransmitter release machinery without identified functional consequences. Here we report that genetic deletion of PS markedly decreases the presynaptic levels of the Ca2+ sensor synaptotagmin-7 (Syt7) leading to impaired synaptic facilitation and replenishment of synaptic vesicles. The regulation of Syt7 expression by PS occurs post-transcriptionally and depends on γ-secretase proteolytic activity. It requires the substrate APP as revealed by the combined genetic invalidation of APP and PS1, and in particular the APP-Cterminal fragments which interact with Syt7 and accumulate in synaptic terminals under pharmacological or genetic inhibition of γ-secretase. Thus, we uncover a role of PS in presynaptic mechanisms, through APP cleavage and regulation of Syt7, that highlights aberrant synaptic vesicle processing as a possible new pathway in AD. Mutations in presenilin, which cleaves amyloid precursor protein, cause familial Alzheimer’s Disease. Here, the authors show that loss of presenilin leads to loss of synaptotagmin 7, leading to impaired presynaptic release.
Collapse
|
29
|
Zhang F, Lu Y, Yan S, Xing Q, Tian W. SPRINT: an SNP-free toolkit for identifying RNA editing sites. Bioinformatics 2018; 33:3538-3548. [PMID: 29036410 PMCID: PMC5870768 DOI: 10.1093/bioinformatics/btx473] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Motivation RNA editing generates post-transcriptional sequence alterations. Detection of RNA editing sites (RESs) typically requires the filtering of SNVs called from RNA-seq data using an SNP database, an obstacle that is difficult to overcome for most organisms. Results Here, we present a novel method named SPRINT that identifies RESs without the need to filter out SNPs. SPRINT also integrates the detection of hyper RESs from remapped reads, and has been fully automated to any RNA-seq data with reference genome sequence available. We have rigorously validated SPRINT’s effectiveness in detecting RESs using RNA-seq data of samples in which genes encoding RNA editing enzymes are knock down or over-expressed, and have also demonstrated its superiority over current methods. We have applied SPRINT to investigate RNA editing across tissues and species, and also in the development of mouse embryonic central nervous system. A web resource (http://sprint.tianlab.cn) of RESs identified by SPRINT has been constructed. Availability and implementation The software and related data are available at http://sprint.tianlab.cn. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200436, China
| | - Yulan Lu
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defect, Translational Medicine Research Center of Children Development and Diseases, Pediatrics Research Institute
| | - Sijia Yan
- Children's Hospital of Fudan University, Shanghai 201102, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qinghe Xing
- Children's Hospital of Fudan University, Shanghai 201102, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200436, China.,Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
30
|
Michaelsen‐Preusse K, Feuge J, Korte M. Imbalance of synaptic actin dynamics as a key to fragile X syndrome? J Physiol 2018; 596:2773-2782. [PMID: 29380377 PMCID: PMC6046079 DOI: 10.1113/jp275571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/09/2018] [Indexed: 11/08/2022] Open
Abstract
Our experiences and memories define who we are, and evidence has accumulated that memory formation is dependent on functional and structural adaptations of synaptic structures in our brain. Especially dendritic spines, the postsynaptic compartments of synapses show a strong structure-to-function relationship and a high degree of structural plasticity. Although the molecular mechanisms are not completely understood, it is known that these modifications are highly dependent on the actin cytoskeleton, the major cytoskeletal component of the spine. Given the crucial involvement of actin in these mechanisms, dysregulations of spine actin dynamics (reflected by alterations in dendritic spine morphology) can be found in a variety of neurological disorders ranging from schizophrenia to several forms of autism spectrum disorders such as fragile X syndrome (FXS). FXS is caused by a single mutation leading to an inactivation of the X-linked fragile X mental retardation 1 gene and loss of its gene product, the RNA-binding protein fragile X mental retardation protein 1 (FMRP), which normally can be found both pre- and postsynaptically. FMRP is involved in mRNA transport as well as regulation of local translation at the synapse, and although hundreds of FMRP-target mRNAs could be identified only a very few interactions between FMRP and actin-regulating proteins have been reported and validated. In this review we give an overview of recent work by our lab and others providing evidence that dysregulated actin dynamics might indeed be at the very base of a deeper understanding of neurological disorders ranging from cognitive impairment to the autism spectrum.
Collapse
Affiliation(s)
- Kristin Michaelsen‐Preusse
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
| | - Jonas Feuge
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
- Helmholtz Centre for Infection ResearchAG NINDInhoffenstr. 7Braunschweig38124Germany
| |
Collapse
|
31
|
De Bruyckere E, Simon R, Nestel S, Heimrich B, Kätzel D, Egorov AV, Liu P, Jenkins NA, Copeland NG, Schwegler H, Draguhn A, Britsch S. Stability and Function of Hippocampal Mossy Fiber Synapses Depend on Bcl11b/Ctip2. Front Mol Neurosci 2018; 11:103. [PMID: 29674952 PMCID: PMC5895709 DOI: 10.3389/fnmol.2018.00103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/15/2018] [Indexed: 01/04/2023] Open
Abstract
Structural and functional plasticity of synapses are critical neuronal mechanisms underlying learning and memory. While activity-dependent regulation of synaptic strength has been extensively studied, much less is known about the transcriptional control of synapse maintenance and plasticity. Hippocampal mossy fiber (MF) synapses connect dentate granule cells to CA3 pyramidal neurons and are important for spatial memory formation and consolidation. The transcription factor Bcl11b/Ctip2 is expressed in dentate granule cells and required for postnatal hippocampal development. Ablation of Bcl11b/Ctip2 in the adult hippocampus results in impaired adult neurogenesis and spatial memory. The molecular mechanisms underlying the behavioral impairment remained unclear. Here we show that selective deletion of Bcl11b/Ctip2 in the adult mouse hippocampus leads to a rapid loss of excitatory synapses in CA3 as well as reduced ultrastructural complexity of remaining mossy fiber boutons (MFBs). Moreover, a dramatic decline of long-term potentiation (LTP) of the dentate gyrus-CA3 (DG-CA3) projection is caused by adult loss of Bcl11b/Ctip2. Differential transcriptomics revealed the deregulation of genes associated with synaptic transmission in mutants. Together, our data suggest Bcl11b/Ctip2 to regulate maintenance and function of MF synapses in the adult hippocampus.
Collapse
Affiliation(s)
| | - Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Sigrun Nestel
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Bernd Heimrich
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Nancy A Jenkins
- Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Neal G Copeland
- Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Herbert Schwegler
- Institute of Anatomy, Otto-von-Guericke-University, Magdeburg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| |
Collapse
|
32
|
Exciting Times: New Advances Towards Understanding the Regulation and Roles of Kainate Receptors. Neurochem Res 2017; 44:572-584. [PMID: 29270706 PMCID: PMC6420428 DOI: 10.1007/s11064-017-2450-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Kainate receptors (KARs) are glutamate-gated ion channels that play fundamental roles in regulating neuronal excitability and network function in the brain. After being cloned in the 1990s, important progress has been made in understanding the mechanisms controlling the molecular and cellular properties of KARs, and the nature and extent of their regulation of wider neuronal activity. However, there have been significant recent advances towards understanding KAR trafficking through the secretory pathway, their precise synaptic positioning, and their roles in synaptic plasticity and disease. Here we provide an overview highlighting these new findings about the mechanisms controlling KARs and how KARs, in turn, regulate other proteins and pathways to influence synaptic function.
Collapse
|
33
|
Control of Spike Transfer at Hippocampal Mossy Fiber Synapses In Vivo by GABAA and GABAB Receptor-Mediated Inhibition. J Neurosci 2017; 37:587-598. [PMID: 28100741 DOI: 10.1523/jneurosci.2057-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/02/2016] [Accepted: 11/20/2016] [Indexed: 11/21/2022] Open
Abstract
Despite extensive studies in hippocampal slices and incentive from computational theories, the synaptic mechanisms underlying information transfer at mossy fiber (mf) connections between the dentate gyrus (DG) and CA3 neurons in vivo are still elusive. Here we used an optogenetic approach in mice to selectively target and control the activity of DG granule cells (GCs) while performing whole-cell and juxtacellular recordings of CA3 neurons in vivo In CA3 pyramidal cells (PCs), mf-CA3 synaptic responses consisted predominantly of an IPSP at low stimulation frequency (0.05 Hz). Upon increasing the frequency of stimulation, a biphasic response was observed consisting of a brief mf EPSP followed by an inhibitory response lasting on the order of 100 ms. Spike transfer at DG-CA3 interneurons recorded in the juxtacellular mode was efficient at low presynaptic stimulation frequency and appeared insensitive to an increased frequency of GC activity. Overall, this resulted in a robust and slow feedforward inhibition of spike transfer at mf-CA3 pyramidal cell synapses. Short-term plasticity of EPSPs with increasing frequency of presynaptic activity allowed inhibition to be overcome to reach spike discharge in CA3 PCs. Whereas the activation of GABAA receptors was responsible for the direct inhibition of light-evoked spike responses, the slow inhibition of spiking activity required the activation of GABAB receptors in CA3 PCs. The slow inhibitory response defined an optimum frequency of presynaptic activity for spike transfer at ∼10 Hz. Altogether these properties define the temporal rules for efficient information transfer at DG-CA3 synaptic connections in the intact circuit. SIGNIFICANCE STATEMENT Activity-dependent changes in synaptic strength constitute a basic mechanism for memory. Synapses from the dentate gyrus (DG) to the CA3 area of the hippocampus are distinctive for their prominent short-term plasticity, as studied in slices. Plasticity of DG-CA3 connections may assist in the encoding of precise memory in the CA3 network. Here we characterize DG-CA3 synaptic transmission in vivo using targeted optogenetic activation of DG granule cells while recording in whole-cell patch-clamp and juxtacellular configuration from CA3 pyramidal cells and interneurons. We show that, in vivo, short-term plasticity of excitatory inputs to CA3 pyramidal cells combines with robust feedforward inhibition mediated by both GABAA and GABAB receptors to control the efficacy and temporal rules for information transfer at DG-CA3 connections.
Collapse
|
34
|
NETO1 Guides Development of Glutamatergic Connectivity in the Hippocampus by Regulating Axonal Kainate Receptors. eNeuro 2017; 4:eN-NWR-0048-17. [PMID: 28680963 PMCID: PMC5494894 DOI: 10.1523/eneuro.0048-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022] Open
Abstract
Kainate-type glutamate receptors (KARs) are highly expressed in the developing brain, where they are tonically activated to modulate synaptic transmission, network excitability and synaptogenesis. NETO proteins are auxiliary subunits that regulate biophysical properties of KARs; however, their functions in the immature brain are not known. Here, we show that NETO1 guides the development of the rodent hippocampal CA3-CA1 circuitry via regulating axonal KARs. NETO deficiency reduced axonal targeting of most KAR subunits in hippocampal neurons in a subtype independent manner. As an interesting exception, axonal delivery of GluK1c was strongly and selectively impaired in the Neto1−/−, but not Neto2−/−, neurons. Correspondingly, the presynaptic GluK1 KAR activity that tonically inhibits glutamate release at immature CA3-CA1 synapses was completely lost in the absence of NETO1 but not NETO2. The deficit in axonal KARs at Neto1−/− neurons resulted in impaired synaptogenesis and perturbed synchronization of CA3 and CA1 neuronal populations during development in vitro. Both these Neto1−/− phenotypes were fully rescued by overexpression of GluK1c, emphasizing the role of NETO1/KAR complex in development of efferent connectivity. Together, our data uncover a novel role for NETO1 in regulation of axonal KARs and identify its physiological significance in development of the CA3-CA1 circuit.
Collapse
|
35
|
Petrovic MM, Viana da Silva S, Clement JP, Vyklicky L, Mulle C, González-González IM, Henley JM. Metabotropic action of postsynaptic kainate receptors triggers hippocampal long-term potentiation. Nat Neurosci 2017; 20:529-539. [PMID: 28192396 DOI: 10.1038/nn.4505] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/13/2017] [Indexed: 11/08/2022]
Abstract
Long-term potentiation (LTP) in the rat hippocampus is the most extensively studied cellular model for learning and memory. Induction of classical LTP involves an NMDA-receptor- and calcium-dependent increase in functional synaptic AMPA receptors, mediated by enhanced recycling of internalized AMPA receptors back to the postsynaptic membrane. Here we report a physiologically relevant NMDA-receptor-independent mechanism that drives increased AMPA receptor recycling and LTP. This pathway requires the metabotropic action of kainate receptors and activation of G protein, protein kinase C and phospholipase C. Like classical LTP, kainate-receptor-dependent LTP recruits recycling endosomes to spines, enhances synaptic recycling of AMPA receptors to increase their surface expression and elicits structural changes in spines, including increased growth and maturation. These data reveal a new and, to our knowledge, previously unsuspected role for postsynaptic kainate receptors in the induction of functional and structural plasticity in the hippocampus.
Collapse
Affiliation(s)
- Milos M Petrovic
- School of Biochemistry, University of Bristol, Bristol, UK
- Institute of Physiology, Academy of Sciences, Prague, Czech Republic
- Insitute of Medical Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Silvia Viana da Silva
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Ladislav Vyklicky
- Institute of Physiology, Academy of Sciences, Prague, Czech Republic
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
36
|
Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci 2017; 18:208-220. [DOI: 10.1038/nrn.2017.10] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Guzmán YF, Ramsey K, Stolz JR, Craig DW, Huentelman MJ, Narayanan V, Swanson GT. A gain-of-function mutation in the GRIK2 gene causes neurodevelopmental deficits. NEUROLOGY-GENETICS 2017; 3:e129. [PMID: 28180184 PMCID: PMC5286855 DOI: 10.1212/nxg.0000000000000129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022]
Abstract
Objective: To identify inherited or de novo mutations associated with a suite of neurodevelopmental abnormalities in a 10-year-old patient displaying ataxia, motor and speech delay, and intellectual disability. Methods: We performed whole-exome sequencing of the proband and her parents. A pathogenic gene variant was identified as damaging based on sequence conservation, gene function, and association with disorders having similar phenotypic profiles. Functional characterization of the mutated protein was performed in vitro using a heterologous expression system. Results: A single de novo point mutation in the GRIK2 gene was identified as causative for the neurologic symptoms of the proband. The mutation is predicted to change a codon for alanine to that of a threonine at position 657 (A657T) in the GluK2 kainate receptor (KAR) subunit, a member of the ionotropic glutamate receptor gene family. Whole-cell voltage-clamp recordings revealed that KARs incorporating the GluK2(A657T) subunits show profoundly altered channel gating and are constitutively active in nominally glutamate-free extracellular media. Conclusions: In this study, we associate a de novo gain-of-function mutation in the GRIK2 gene with deficits in motor and higher order cognitive function. These results suggest that disruption of physiologic KAR function precludes appropriate development of the nervous system.
Collapse
Affiliation(s)
- Yomayra F Guzmán
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - Keri Ramsey
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - Jacob R Stolz
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - David W Craig
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - Mathew J Huentelman
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - Vinodh Narayanan
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - Geoffrey T Swanson
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| |
Collapse
|
38
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
39
|
Park KA, Ribic A, Laage Gaupp FM, Coman D, Huang Y, Dulla CG, Hyder F, Biederer T. Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1. J Neurosci 2016; 36:7464-75. [PMID: 27413156 PMCID: PMC4945666 DOI: 10.1523/jneurosci.0189-16.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. SIGNIFICANCE STATEMENT This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network excitability. Further, we show that diffusion tensor imaging is sensitive to these cellular refinements affecting neuronal connectivity.
Collapse
Affiliation(s)
- Kellie A Park
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Adema Ribic
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Fabian M Laage Gaupp
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Yuegao Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, and Department of Biomedical Engineering, Yale University, School of Engineering and Applied Science, New Haven, Connecticut 06520
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111,
| |
Collapse
|
40
|
Sakha P, Vesikansa A, Orav E, Heikkinen J, Kukko-Lukjanov TK, Shintyapina A, Franssila S, Jokinen V, Huttunen HJ, Lauri SE. Axonal Kainate Receptors Modulate the Strength of Efferent Connectivity by Regulating Presynaptic Differentiation. Front Cell Neurosci 2016; 10:3. [PMID: 26834558 PMCID: PMC4720004 DOI: 10.3389/fncel.2016.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/04/2016] [Indexed: 11/13/2022] Open
Abstract
Kainate type of glutamate receptors (KARs) are highly expressed during early brain development and may influence refinement of the circuitry, via modulating synaptic transmission and plasticity. KARs are also localized to axons, however, their exact roles in regulating presynaptic processes remain controversial. Here, we have used a microfluidic chamber system allowing specific manipulation of KARs in presynaptic neurons to study their functions in synaptic development and function in vitro. Silencing expression of endogenous KARs resulted in lower density of synaptophysin immunopositive puncta in microfluidically isolated axons. Various recombinant KAR subunits and pharmacological compounds were used to dissect the mechanisms behind this effect. The calcium permeable (Q) variants of the low-affinity (GluK1–3) subunits robustly increased synaptophysin puncta in axons in a manner that was dependent on receptor activity and PKA and PKC dependent signaling. Further, an associated increase in the mean active zone length was observed in electron micrographs. Selective presynaptic expression of these subunits resulted in higher success rate of evoked EPSCs consistent with higher probability of glutamate release. In contrast, the calcium-impermeable (R) variant of GluK1 or the high-affinity subunits (GluK4,5) had no effect on synaptic density or transmission efficacy. These data suggest that calcium permeable axonal KARs promote efferent connectivity by increasing the density of functional presynaptic release sites.
Collapse
Affiliation(s)
- Prasanna Sakha
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Aino Vesikansa
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Ester Orav
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Joonas Heikkinen
- Departments of Materials Science and Engineering, Aalto University Espoo, Finland
| | - Tiina-Kaisa Kukko-Lukjanov
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Veterinary Biosciences, University of HelsinkiHelsinki, Finland
| | - Alexandra Shintyapina
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Sami Franssila
- Departments of Materials Science and Engineering, Aalto University Espoo, Finland
| | - Ville Jokinen
- Departments of Materials Science and Engineering, Aalto University Espoo, Finland
| | | | - Sari E Lauri
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Department of Biosciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
41
|
Lanore F, Silver RA. Extracting quantal properties of transmission at central synapses. NEUROMETHODS 2016; 113:193-211. [PMID: 30245548 DOI: 10.1007/978-1-4939-3411-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical synapses enable neurons to communicate rapidly, process and filter signals and to store information. However, studying their functional properties is difficult because synaptic connections typically consist of multiple synaptic contacts that release vesicles stochastically and exhibit time-dependent behavior. Moreover, most central synapses are small and inaccessible to direct measurements. Estimation of synaptic properties from responses recorded at the soma is complicated by the presence of nonuniform release probability and nonuniform quantal properties. The presence of multivesicular release and postsynaptic receptor saturation at some synapses can also complicate the interpretation of quantal parameters. Multiple-probability fluctuation analysis (MPFA; also known as variance-mean analysis) is a method that has been developed for estimating synaptic parameters from the variance and mean amplitude of synaptic responses recorded at different release probabilities. This statistical approach, which incorporates nonuniform synaptic properties, has become widely used for studying synaptic transmission. In this chapter, we describe the statistical models used to extract quantal parameters and discuss their interpretation when applying MPFA.
Collapse
Affiliation(s)
- Frederic Lanore
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
42
|
Martin EA, Muralidhar S, Wang Z, Cervantes DC, Basu R, Taylor MR, Hunter J, Cutforth T, Wilke SA, Ghosh A, Williams ME. The intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus. eLife 2015; 4:e09395. [PMID: 26575286 PMCID: PMC4642954 DOI: 10.7554/elife.09395] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Synaptic target specificity, whereby neurons make distinct types of synapses with different target cells, is critical for brain function, yet the mechanisms driving it are poorly understood. In this study, we demonstrate Kirrel3 regulates target-specific synapse formation at hippocampal mossy fiber (MF) synapses, which connect dentate granule (DG) neurons to both CA3 and GABAergic neurons. Here, we show Kirrel3 is required for formation of MF filopodia; the structures that give rise to DG-GABA synapses and that regulate feed-forward inhibition of CA3 neurons. Consequently, loss of Kirrel3 robustly increases CA3 neuron activity in developing mice. Alterations in the Kirrel3 gene are repeatedly associated with intellectual disabilities, but the role of Kirrel3 at synapses remained largely unknown. Our findings demonstrate that subtle synaptic changes during development impact circuit function and provide the first insight toward understanding the cellular basis of Kirrel3-dependent neurodevelopmental disorders. DOI:http://dx.doi.org/10.7554/eLife.09395.001 Nerve cells in the brain connect to each other via junctions called synapses to form vast networks that process information. Much like streets can be joined with stop signs, traffic lights, or exit ramps depending on the flow of traffic, different types of synapses control the flow of information along nerves in distinct ways. In a region of the brain called the hippocampus, nerve cells called DG neurons are connected to other neurons by two different types of synapses. One type of synapse allows the DG neurons to activate CA3 neurons, while the second type allows the DG neurons to activate GABAergic neurons. These same GABAergic neurons can then inhibit the activity of the CA3 neurons. Therefore, through these two different types of synapses, DG neurons can both increase and decrease the activity of the CA3 neurons. This delicate balance of activity across the two types of DG synapses is very important for the hippocampus to work properly, which is critical for our ability to learn and remember. Mutations in the gene that encodes a protein called Kirrel3 are associated with autism, Jacobsen's syndrome, and other disorders that affect intellectual ability in humans. Kirrel3 is similar to a protein found in roundworms that regulates the formation of synapses, but it is not known if it plays the same role in humans and other mammals. Now, Martin, Muralidhar et al. studied the role of Kirrel3 in mice. The experiments show that Kirrel3 is produced in both the DG neurons and the GABAergic neurons, but not the CA3 neurons. Young mutant mice that lacked Kirrel3 made fewer synapse-forming structures between DG neurons and GABAergic neurons than normal mice, but the synapses that connect DG neurons to CA3 neurons formed normally. This disrupted the balance of activity across the two types of DG synapses and the CA3 neurons in the mutant mice were over-active. Together, Martin, Muralidhar et al.'s findings show that altering the levels of Kirrel3 can alter the balance of synapses in the hippocampus. This may explain how even very small changes in synapse formation during brain development can have a big impact on nerve cell activity. The next challenge is to understand exactly how Kirrel3 helps build synapses, which may lead to the development of new drugs that help to rebalance brain activity in people that lack Kirrel3. DOI:http://dx.doi.org/10.7554/eLife.09395.002
Collapse
Affiliation(s)
- E Anne Martin
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, United States
| | - Shruti Muralidhar
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, United States
| | - Zhirong Wang
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, United States
| | - Diégo Cordero Cervantes
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, United States
| | - Raunak Basu
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, United States
| | - Matthew R Taylor
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, United States
| | - Jennifer Hunter
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, United States
| | - Tyler Cutforth
- Department of Neurology, Columbia University, New York City, United States
| | - Scott A Wilke
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Anirvan Ghosh
- Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Megan E Williams
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
43
|
Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94:1249-85. [PMID: 25287864 PMCID: PMC4187031 DOI: 10.1152/physrev.00008.2014] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Tim J Craig
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
44
|
Carta M, Fièvre S, Gorlewicz A, Mulle C. Kainate receptors in the hippocampus. Eur J Neurosci 2014; 39:1835-44. [PMID: 24738709 DOI: 10.1111/ejn.12590] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/23/2023]
Abstract
Kainate receptors (KARs) consist of a family of ionotropic glutamate receptors composed of the combinations of five subunits, GluK1-GluK5. Although KARs display close structural homology with AMPA receptors, they serve quite distinct functions. A great deal of our knowledge of the molecular and functional properties of KARs comes from their study in the hippocampus. This review aims at summarising the functions of KARs in the regulation of the activity of hippocampal synaptic circuits at the adult stage and throughout development. We focus on the variety of roles played by KARs in physiological conditions of activation, at pre- and postsynaptic sites, in different cell types and through either metabotropic or ionotropic actions. Finally, we present some of the few attempts to link the role of KARs in the regulation of local hippocampal circuits to the behavioural functions of the hippocampus in health and diseases.
Collapse
Affiliation(s)
- Mario Carta
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, F-33000, Bordeaux, France
| | | | | | | |
Collapse
|
45
|
Belvindrah R, Nosten-Bertrand M, Francis F. Neuronal migration and its disorders affecting the CA3 region. Front Cell Neurosci 2014; 8:63. [PMID: 24624057 PMCID: PMC3941003 DOI: 10.3389/fncel.2014.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/13/2014] [Indexed: 11/15/2022] Open
Abstract
In this review, we focus on CA3 neuronal migration disorders in the rodent. We begin by introducing the main steps of hippocampal development, and we summarize characteristic hippocampal malformations in human. We then describe various mouse mutants showing structural hippocampal defects. Notably, genes identified in human cortical neuronal migration disorders consistently give rise to a CA3 phenotype when mutated in the mouse. We successively describe their molecular, physiological and behavioral phenotypes that together contribute to a better understanding of CA3-dependent functions. We finally discuss potential factors underlying the CA3 vulnerability revealed by these mouse mutants and that may also contribute to other human neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Richard Belvindrah
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| | - Marika Nosten-Bertrand
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| | - Fiona Francis
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| |
Collapse
|
46
|
Uzunova G, Hollander E, Shepherd J. The role of ionotropic glutamate receptors in childhood neurodevelopmental disorders: autism spectrum disorders and fragile x syndrome. Curr Neuropharmacol 2014; 12:71-98. [PMID: 24533017 PMCID: PMC3915351 DOI: 10.2174/1570159x113116660046] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/20/2013] [Accepted: 09/25/2013] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are relatively common childhood neurodevelopmental disorders with increasing incidence in recent years. They are currently accepted as disorders of the synapse with alterations in different forms of synaptic communication and neuronal network connectivity. The major excitatory neurotransmitter system in brain, the glutamatergic system, is implicated in learning and memory, synaptic plasticity, neuronal development. While much attention is attributed to the role of metabotropic glutamate receptors in ASD and FXS, studies indicate that the ionotropic glutamate receptors (iGluRs) and their regulatory proteins are also altered in several brain regions. Role of iGluRs in the neurobiology of ASD and FXS is supported by a weight of evidence that ranges from human genetics to in vitro cultured neurons. In this review we will discuss clinical, molecular, cellular and functional changes in NMDA, AMPA and kainate receptors and the synaptic proteins that regulate them in the context of ASD and FXS. We will also discuss the significance for the development of translational biomarkers and treatments for the core symptoms of ASD and FXS.
Collapse
Affiliation(s)
- Genoveva Uzunova
- Autism and Obsessive Compulsive Spectrum Program, Department of Psychiatry, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th St, Bronx, New York 10467-2490
| | - Eric Hollander
- Autism and Obsessive Compulsive Spectrum Program, Department of Psychiatry, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th St, Bronx, New York 10467-2490
| | - Jason Shepherd
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 531A Wintrobe, 20N 1900 E, Salt Lake City, Utah 84132
| |
Collapse
|
47
|
Abstract
Our understanding of the molecular properties of kainate receptors and their involvement in synaptic physiology has progressed significantly over the last 30 years. A plethora of studies indicate that kainate receptors are important mediators of the pre- and postsynaptic actions of glutamate, although the mechanisms underlying such effects are still often a topic for discussion. Three clear fields related to their behavior have emerged: there are a number of interacting proteins that pace the properties of kainate receptors; their activity is unconventional since they can also signal through G proteins, behaving like metabotropic receptors; they seem to be linked to some devastating brain diseases. Despite the significant progress in their importance in brain function, kainate receptors remain somewhat puzzling. Here we examine discoveries linking these receptors to physiology and their probable implications in disease, in particular mood disorders, and propose some ideas to obtain a deeper understanding of these intriguing proteins.
Collapse
|
48
|
Tucholski J, Simmons MS, Pinner AL, McMillan LD, Haroutunian V, Meador-Woodruff JH. N-linked glycosylation of cortical N-methyl-D-aspartate and kainate receptor subunits in schizophrenia. Neuroreport 2013; 24:688-91. [PMID: 23820740 PMCID: PMC3919653 DOI: 10.1097/wnr.0b013e328363bd8a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dysfunctional glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. Abnormal expressions in schizophrenia of ionotropic glutamate receptors (iGluRs) and the proteins that regulate their trafficking have been found to be region and subunit specific in brain, suggesting that abnormal trafficking of iGluRs may contribute toward altered glutamatergic neurotransmission. The post-translational modification N-glycosylation of iGluR subunits can be used as a proxy for their intracellular localization. Receptor complexes assemble in the lumen of the endoplasmic reticulum, where N-glycosylation begins with the addition of N-linked oligomannose glycans, and is subsequently trimmed and replaced by more elaborate glycans while trafficking through the Golgi apparatus. Previously, we found abnormalities in N-glycosylation of the GluR2 AMPA receptor subunit in schizophrenia. Here, we investigated N-glycosylation of N-methyl-D-aspartate and kainate (KA) receptor subunits in the dorsolateral prefrontal cortex from patients with schizophrenia and a comparison group. We used enzymatic deglycosylation with two glycosidases: endoglycosidase H (Endo H), which removes immature high mannose-containing sugars, and peptide-N-glycosidase F (PNGase F), which removes all N-linked sugars. The NR1, NR2A, NR2B, GluR6, and KA2 subunits were all sensitive to treatment with Endo H and PNGase F. The GluR6 KA receptor subunit was significantly more sensitive to Endo H-mediated deglycosylation in schizophrenia, suggesting a larger molecular mass of N-linked high mannose and/or hybrid sugars on GluR6. This finding, taken with our previous work, suggests that a cellular mechanism underlying abnormal glutamate neurotransmission in schizophrenia may involve abnormal trafficking of both AMPA and KA receptors.
Collapse
Affiliation(s)
- Janusz Tucholski
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Khalaf-Nazzal R, Francis F. Hippocampal development - old and new findings. Neuroscience 2013; 248:225-42. [PMID: 23756184 DOI: 10.1016/j.neuroscience.2013.05.061] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/14/2013] [Accepted: 05/31/2013] [Indexed: 01/26/2023]
Abstract
The hippocampus, derived from medial regions of the telencephalon, constitutes a remarkable brain structure. It is part of the limbic system, and it plays important roles in information encoding, related to short-term and long-term memory, and spatial navigation. It has also attracted the attention of many clinicians and neuroscientists for its involvement in a wide spectrum of pathological conditions, including epilepsy, intellectual disability, Alzheimer disease and others. Here we address the topic of hippocampal development. As well as original landmark findings, modern techniques such as large-scale in situ hybridizations, in utero electroporation and the study of mouse mutants with hippocampal phenotypes, add further detail to our knowledge of the finely regulated processes which form this intricate structure. Molecular signatures are being revealed related to field, intra-field and laminar cell identity, as well as, cell compartments expressing surface proteins instrumental for connectivity. We summarize here old and new findings, and highlight elegant tools used to fine-study hippocampal development.
Collapse
Affiliation(s)
- R Khalaf-Nazzal
- INSERM, UMR-S 839, Paris 75005, France; Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - F Francis
- INSERM, UMR-S 839, Paris 75005, France; Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France.
| |
Collapse
|