1
|
Boskovic P, Gao W, Kipnis J. Will cellular immunotherapies end neurodegenerative diseases? Trends Immunol 2024; 45:329-337. [PMID: 38600001 PMCID: PMC12013965 DOI: 10.1016/j.it.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders present major challenges to global health, exacerbated by an aging population and the absence of therapies. Despite diverse pathological manifestations, they share a common hallmark, loosely termed 'neuroinflammation'. The prevailing dogma is that the immune system is an active contributor to neurodegeneration; however, recent evidence challenges this. By analogy with road construction, which causes temporary closures and disruptions, the immune system's actions in the central nervous system (CNS) might initially appear destructive, and might even cause harm, while aiming to combat neurodegeneration. We propose that the application of cellular immunotherapies to coordinate the immune response towards remodeling might pave the way for new modes of tackling the roadblocks of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pavle Boskovic
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA.
| | - Wenqing Gao
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA.
| |
Collapse
|
2
|
Zilkha-Falb R, Rachutin-Zalogin T, Cleaver L, Gurevich M, Achiron A. RAM-589.555 favors neuroprotective and anti-inflammatory profile of CNS-resident glial cells in acute relapse EAE affected mice. J Neuroinflammation 2020; 17:313. [PMID: 33081798 PMCID: PMC7576835 DOI: 10.1186/s12974-020-01983-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/05/2020] [Indexed: 02/04/2023] Open
Abstract
Background Targeting RNA polymerase-1 (POL1) machinery is a new strategy for suppression of multiple sclerosis (MS) relapse activity. Oral administration of POL1 inhibitor RAM-589.555, which is characterized by high permeability and bioavailability in naïve mice, ameliorates proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) by suppressing activated autoreactive lymphocytes. We assessed the accessibility of RAM-589.555 to the central nervous system (CNS) of EAE-mice and further investigated its immunomodulatory effects on CNS-resident astro- and micro-glial cells in-vitro and in-vivo. Methods Effects of RAM-589.555 on activated microglia and astrocyte viability, proliferation, and secretion of neurotrophic factors were assessed in-vitro. The pharmacokinetic of RAM-589.555 was evaluated in the blood and central nervous system (CNS) of EAE-affected mice. High-dimensional single-cell mass cytometry was applied to characterize the effect of RAM-589.555 on EAE-affected mice’s CNS-resident micro- and astroglial cells and CNS-infiltrating immune cells, which were obtained seven days after RAM-589.555 administration at EAE onset. Simultaneously, the expression level of pre-rRNA, the POL1 end product, was assessed in blood cells, microglia, and astrocytes to monitor RAM-589.555 effects. Results RAM-589.555 demonstrated blood and CNS permeability in EAE mice. In-vitro, incubation with 400 nM of RAM-589.555 significantly reduced viability and proliferation of lipopolysaccharide (LPS)-activated microglia by 70% and 45% (p < 0.05), respectively, while tumor necrosis factor α (TNFα)-activated astrocytes were not affected. The secretion of neurotrophic factors was preserved. Furthermore, 7 days after administration of RAM-589.555 at EAE onset, the level of pre-rRNA transcript in peripheral blood mononuclear cells (PBMC) was decreased by 38.6% (p = 0.02), while levels of pre-rRNA transcript in microglia and astrocytes remained unchanged. The high-dimensional single-cell mass cytometry analysis showed decreased percentages of CNS-resident microglia and astrocytes, diminished pro-inflammatory cytokines (IL-1β, IL-6, IL-12, IL-17, TNFα, and IFNγ), and an increase of their anti-inflammatory cytokines (IL-4, IL-10, and TGFβ) in RAM-589.555-treated compared to vehicle-treated mice (p < 0.05). Conclusions These data correlate RAM-589.555-induced clinical amelioration and its CNS-permeability to decreased CNS-inflammation, and decreased micro- and astrogliosis, while restoring micro- and astroglial anti-inflammatory and neuroprotective capacity.
Collapse
Affiliation(s)
- Rina Zilkha-Falb
- Neuroimmunology Laboratory, Multiple Sclerosis Center, Sheba Medical Center, Ramat Gan, Israel.
| | | | - Lakota Cleaver
- Neuroimmunology Laboratory, Multiple Sclerosis Center, Sheba Medical Center, Ramat Gan, Israel
| | - Michael Gurevich
- Neuroimmunology Laboratory, Multiple Sclerosis Center, Sheba Medical Center, Ramat Gan, Israel
| | - Anat Achiron
- Neuroimmunology Laboratory, Multiple Sclerosis Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. Int J Mol Sci 2020; 21:ijms21072262. [PMID: 32218163 PMCID: PMC7177277 DOI: 10.3390/ijms21072262] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The retinal ganglion cells (RGCs) are the output cells of the retina into the brain. In mammals, these cells are not able to regenerate their axons after optic nerve injury, leaving the patients with optic neuropathies with permanent visual loss. An effective RGCs-directed therapy could provide a beneficial effect to prevent the progression of the disease. Axonal injury leads to the functional loss of RGCs and subsequently induces neuronal death, and axonal regeneration would be essential to restore the neuronal connectivity, and to reestablish the function of the visual system. The manipulation of several intrinsic and extrinsic factors has been proposed in order to stimulate axonal regeneration and functional repairing of axonal connections in the visual pathway. However, there is a missing point in the process since, until now, there is no therapeutic strategy directed to promote axonal regeneration of RGCs as a therapeutic approach for optic neuropathies.
Collapse
|
4
|
Javidi E, Magnus T. Autoimmunity After Ischemic Stroke and Brain Injury. Front Immunol 2019; 10:686. [PMID: 31001280 PMCID: PMC6454865 DOI: 10.3389/fimmu.2019.00686] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemic Stroke is a major cause of morbidity and mortality worldwide. Sterile inflammation occurs after both stroke subtypes and contributes to neuronal injury and damage to the blood-brain barrier with release of brain antigens and a potential induction of autoimmune responses that escape central and peripheral tolerance mechanisms. In stroke patients, the detection of T cells and antibodies specific to neuronal antigens suggests a role of humoral adaptive immunity. In experimental models stroke leads to a significant increase of autoreactive T and B cells to CNS antigens. Lesion volume and functional outcome in stroke patients and murine stroke models are connected to antigen-specific responses to brain proteins. In patients with traumatic brain injury (TBI) a range of antibodies against brain proteins can be detected in serum samples. In this review, we will summarize the role of autoimmunity in post-lesional conditions and discuss the role of B and T cells and their potential neuroprotective or detrimental effects.
Collapse
Affiliation(s)
- Ehsan Javidi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Toossi A, Everaert DG, Uwiera RRE, Hu DS, Robinson K, Gragasin FS, Mushahwar VK. Effect of anesthesia on motor responses evoked by spinal neural prostheses during intraoperative procedures. J Neural Eng 2019; 16:036003. [PMID: 30790787 DOI: 10.1088/1741-2552/ab0938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The overall goal of this study was to investigate the effects of various anesthetic protocols on the intraoperative responses to intraspinal microstimulation (ISMS). ISMS is a neuroprosthetic approach that targets the motor networks in the ventral horns of the spinal cord to restore function after spinal cord injury. In preclinical studies, ISMS in the lumbosacral enlargement produced standing and walking by activating networks controlling the hindlimb muscles. ISMS implants are placed surgically under anesthesia, and refinements in placement are made based on the evoked responses. Anesthesia can have a significant effect on the responses evoked by spinal neuroprostheses; therefore, in preparation for clinical testing of ISMS, we compared the evoked responses under a common clinical neurosurgical anesthetic protocol with those evoked under protocols commonly used in preclinical studies. APPROACH Experiments were conducted in seven pigs. An ISMS microelectrode array was implanted in the lumbar enlargement and responses to ISMS were measured under three anesthetic protocols: (1) isoflurane, an agent used pre-clinically and clinically, (2) total intravenous anesthesia (TIVA) with propofol as the main agent commonly used in clinical neurosurgical procedures, (3) TIVA with sodium pentobarbital, an anesthetic agent used mostly preclinically. Responses to ISMS were evaluated based on stimulation thresholds, movement kinematics, and joint torques. Motor evoked potentials (MEP) and plasma concentrations of propofol were also measured. MAIN RESULTS ISMS under propofol anesthesia produced large and functional responses that were not statistically different from those produced under pentobarbital anesthesia. Isoflurane, however, significantly suppressed the ISMS-evoked responses. SIGNIFICANCE This study demonstrated that the choice of anesthesia is critical for intraoperative assessments of motor responses evoked by spinal neuroprostheses. Propofol and pentobarbital anesthesia did not overly suppress the effects of ISMS; therefore, propofol is expected to be a suitable anesthetic agent for clinical intraoperative testing of an intraspinal neuroprosthetic system.
Collapse
Affiliation(s)
- Amirali Toossi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. Sensory Motor Adaptive Rehabilitative Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Overview of Traumatic Brain Injury: An Immunological Context. Brain Sci 2017; 7:brainsci7010011. [PMID: 28124982 PMCID: PMC5297300 DOI: 10.3390/brainsci7010011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) afflicts people of all ages and genders, and the severity of injury ranges from concussion/mild TBI to severe TBI. Across all spectrums, TBI has wide-ranging, and variable symptomology and outcomes. Treatment options are lacking for the early neuropathology associated with TBIs and for the chronic neuropathological and neurobehavioral deficits. Inflammation and neuroinflammation appear to be major mediators of TBI outcomes. These systems are being intensively studies using animal models and human translational studies, in the hopes of understanding the mechanisms of TBI, and developing therapeutic strategies to improve the outcomes of the millions of people impacted by TBIs each year. This manuscript provides an overview of the epidemiology and outcomes of TBI, and presents data obtained from animal and human studies focusing on an inflammatory and immunological context. Such a context is timely, as recent studies blur the traditional understanding of an “immune-privileged” central nervous system. In presenting the evidence for specific, adaptive immune response after TBI, it is hoped that future studies will be interpreted using a broader perspective that includes the contributions of the peripheral immune system, to central nervous system disorders, notably TBI and post-traumatic syndromes.
Collapse
|
7
|
Lakhan N, Stevens NE, Diener KR, Hayball JD. CoVaccine HT™ adjuvant is superior to Freund's adjuvants in eliciting antibodies against the endogenous alarmin HMGB1. J Immunol Methods 2016; 439:37-43. [PMID: 27693642 DOI: 10.1016/j.jim.2016.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/29/2022]
Abstract
Adjuvants are used to enhance the immune response against specific antigens for the production of antibodies, with the choice of adjuvant most critical for poorly immunogenic and self-antigens. This study quantitatively and qualitatively evaluated CoVaccine HT™ and Freund's adjuvants for eliciting therapeutic ovine polyclonal antibodies targeting the endogenous alarmin, high mobility group box-1 (HMGB1). Sheep were immunised with HMGB1 protein in CoVaccine HT™ or Freund's adjuvants, with injection site reactions and antibody titres periodically assessed. The binding affinity of antibodies for HMGB1 and their neutralisation activity was determined in-vitro, with in vivo activity confirmed using a murine model of endotoxemia. Results indicated that CoVaccine HT™ elicited significantly higher antibody tires with stronger affinity and more functional potency than antibodies induced with Freund's adjuvants. These studies provide evidence that CoVaccine HT™ is superior to Freund's adjuvants for the production of antibodies to antigens with low immunogenicity and supports the use of this alternative adjuvant for clinical and experimental use antibodies.
Collapse
Affiliation(s)
- Nerissa Lakhan
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, SA, 5000, Australia; Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine, The University of Adelaide, SA, 5005, Australia
| | - Natalie E Stevens
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, SA, 5000, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, SA, 5000, Australia; Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine, The University of Adelaide, SA, 5005, Australia.
| | - John D Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, SA, 5000, Australia; Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine, The University of Adelaide, SA, 5005, Australia.
| |
Collapse
|
8
|
Benhar I, Reemst K, Kalchenko V, Schwartz M. The retinal pigment epithelium as a gateway for monocyte trafficking into the eye. EMBO J 2016; 35:1219-35. [PMID: 27107049 DOI: 10.15252/embj.201694202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/21/2016] [Indexed: 11/09/2022] Open
Abstract
The choroid plexus epithelium within the brain ventricles orchestrates blood-derived monocyte entry to the central nervous system under injurious conditions, including when the primary injury site is remote from the brain. Here, we hypothesized that the retinal pigment epithelium (RPE) serves a parallel role, as a gateway for monocyte trafficking to the retina following direct or remote injury. We found elevated expression of genes encoding leukocyte trafficking determinants in mouse RPE as a consequence of retinal glutamate intoxication or optic nerve crush (ONC). Blocking VCAM-1 after ONC interfered with monocyte infiltration into the retina and resulted in a local pro-inflammatory cytokine bias. Live imaging of the injured eye showed monocyte accumulation first in the RPE, and subsequently in the retina, and peripheral leukocytes formed close contact with the RPE Our findings further implied that the ocular milieu can confer monocytes a phenotype advantageous for neuroprotection. These results suggest that the eye utilizes a mechanism of crosstalk with the immune system similar to that of the brain, whereby epithelial barriers serve as gateways for leukocyte entry.
Collapse
Affiliation(s)
- Inbal Benhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Kitty Reemst
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Vyacheslav Kalchenko
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Russo R, Varano GP, Adornetto A, Nucci C, Corasaniti MT, Bagetta G, Morrone LA. Retinal ganglion cell death in glaucoma: Exploring the role of neuroinflammation. Eur J Pharmacol 2016; 787:134-42. [PMID: 27044433 DOI: 10.1016/j.ejphar.2016.03.064] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 01/06/2023]
Abstract
In clinical glaucoma, as well as in experimental models, the loss of retinal ganglion cells occurs by apoptosis. This final event is preceded by inflammatory responses involving the activation of innate and adaptive immunity, with retinal and optic nerve resident glial cells acting as major players. Here we review the current literature on the role of neuroinflammation in neurodegeneration, focusing on the inflammatory molecular mechanisms involved in the pathogenesis and progression of the optic neuropathy.
Collapse
Affiliation(s)
- Rossella Russo
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, Italy.
| | - Giuseppe Pasquale Varano
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Annagrazia Adornetto
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome Italy
| | | | - Giacinto Bagetta
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, Italy; University Center for Adaptive Disorders and Head Pain, Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy
| | - Luigi Antonio Morrone
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, Italy; University Center for Adaptive Disorders and Head Pain, Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
10
|
Zhao Q, Li ZY, Zhang ZP, Mo ZY, Chen SJ, Xiang SY, Zhang QS, Xue M. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury. Neural Regen Res 2015; 10:1491-7. [PMID: 26604912 PMCID: PMC4625517 DOI: 10.4103/1673-5374.165522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.
Collapse
Affiliation(s)
- Qun Zhao
- Health Management Center, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Zhi-Yue Li
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Ze-Peng Zhang
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Zhou-Yun Mo
- Department of Orthopedics, Yiyang Municipal Central Hospital, Yiyang, Hunan Province, China
| | - Shi-Jie Chen
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Si-Yu Xiang
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Qing-Shan Zhang
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Min Xue
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
11
|
Mac Nair CE, Nickells RW. Neuroinflammation in Glaucoma and Optic Nerve Damage. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:343-63. [PMID: 26310164 DOI: 10.1016/bs.pmbts.2015.06.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glaucoma is a group of optic neuropathies characterized by the degeneration of retinal ganglion cell axons and somas, ultimately preventing light signals in the retina from reaching the brain. Glaucoma is a leading cause of blindness in the world, and treatment options for patients remain limited and minimally efficacious. A number of mechanisms have been linked to glaucomatous pathophysiology. A leading role is now attributed to neuroinflammatory conditions generated by the resident innate immune cells in the optic nerve and retina. Since the eye is immune privileged, the adaptation of these innate immune cells, termed glia, is crucial following trauma. In this chapter, we discuss the mechanisms associated with normal glial function in a healthy eye, and how changes in glial activation can contribute to the process of glaucomatous neurodegeneration in both the optic nerve and retina.
Collapse
Affiliation(s)
- Caitlin E Mac Nair
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert W Nickells
- Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
12
|
Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: Boosting autoimmunity to fight-off chronic neuroinflammation. J Autoimmun 2014; 54:8-14. [DOI: 10.1016/j.jaut.2014.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022]
|
13
|
Wang J, Ren KY, Wang YH, Kou YH, Zhang PX, Peng JP, Deng L, Zhang HB, Jiang BG. Effect of active Notch signaling system on the early repair of rat sciatic nerve injury. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 43:383-9. [PMID: 24866722 DOI: 10.3109/21691401.2014.896372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is all known that dedifferentiated Schwann cells (SCs) play an important role in neural regeneration, and Notch signaling has complex and extensive regulatory functions in dedifferentiated SCs. So studies have focused on how to improve peripheral nerve repair by regulating proliferation and dedifferentiation in SCs with Notch signaling meloculars.We have found SCs can be activated when adding Recombinant rat jagged1/FC chimera (an activator of the Notch signaling system) in vivo. Compared with that of the control groups, at 4 weeks post-surgery nerve regeneration and functional rehabilitation in the Recombinant rat jagged1/FC chimera group were advanced significantly, and the expression of neurotrophic factors in the regenerated nerves was elevated largely. These results indicated that SCs activated by Notch signaling could promote nerve repair effectively in the early regenerative stage, suggesting the possible clinical application for the treatment of peripheral nerve defects.
Collapse
Affiliation(s)
- Jin Wang
- a Department of Pathology , Medical College, Qing Dao University , Qing Dao , P. R. China
| | - Ke-Yu Ren
- b The Affiliated Hospital of Medical College, Qing Dao University , Qing Dao , P. R. China
| | - Yan-Hua Wang
- c Department of Trauma and Orthopedics , People's Hospital, Peking University , Beijing , P. R. China
| | - Yu-Hui Kou
- c Department of Trauma and Orthopedics , People's Hospital, Peking University , Beijing , P. R. China
| | - Pei-Xun Zhang
- c Department of Trauma and Orthopedics , People's Hospital, Peking University , Beijing , P. R. China
| | - Jian-Ping Peng
- c Department of Trauma and Orthopedics , People's Hospital, Peking University , Beijing , P. R. China
| | - Lei Deng
- c Department of Trauma and Orthopedics , People's Hospital, Peking University , Beijing , P. R. China
| | - Hong-Bo Zhang
- c Department of Trauma and Orthopedics , People's Hospital, Peking University , Beijing , P. R. China
| | - Bao-Guo Jiang
- c Department of Trauma and Orthopedics , People's Hospital, Peking University , Beijing , P. R. China
| |
Collapse
|
14
|
del Barco DG, Berlanga J, Penton E, Hardiman O, Montero E. Boosting controlled autoimmunity: a new therapeutic target for CNS disorders. Expert Rev Neurother 2014; 8:819-25. [DOI: 10.1586/14737175.8.5.819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Bell K, Gramlich OW, Von Thun Und Hohenstein-Blaul N, Beck S, Funke S, Wilding C, Pfeiffer N, Grus FH. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog Retin Eye Res 2013; 36:199-216. [PMID: 23541978 DOI: 10.1016/j.preteyeres.2013.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 12/12/2022]
Abstract
Glaucoma is a chronic neurodegenerative disease and one of the leading causes of blindness. Several risk factors have been described, e.g. an elevated intraocular pressure (IOP), oxidative stress or mitochondrial dysfunction. Additionally, alterations in serum antibody profiles of glaucoma patients, upregulation (e.g. anti-HSP60, anti-MBP) and downregulation (e.g. anti-14-3-3), have been described, but it still remains elusive if the autoantibodies seen in glaucoma are an epiphenomenon or causative. However, it is known that elicited autoimmunity causes retinal ganglion cell loss resulting in glaucomatous-like damage and according to the autoaggressive nature of some autoantibodies we found antibody deposits in human glaucomatous retinae in a pro-inflammatory environment. Furthermore, glaucomatous serum has the potential to influence neuroretinal cell regulatory processes. Importantly, we demonstrate that some autoantibodies hold neuroprotective potential for neuroretinal cells. The protective nature of autoantibodies and the molecular mechanisms underlying the very sensitive equilibrium between autoaggression and protection remain subject of future examinations and offer promising target sites for new therapeutic approaches. Additionally, the changes in antibody profiles could be used as highly sensitive and specific marker for diagnostics purposes. Early diagnosis and intervention in risk patients would offer the chance of early treatment and to slow down the progression of glaucoma and delay the resulting blindness.
Collapse
Affiliation(s)
- Katharina Bell
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutewnberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang K, Chao R, Guo QN, Liu MY, Liang HP, Liu P, Zhao JH. Expressions of some neurotrophins and neurotrophic cytokines at site of spinal cord injury in mice after vaccination with dendritic cells pulsed with homogenate proteins. Neuroimmunomodulation 2013; 20:87-98. [PMID: 23257628 DOI: 10.1159/000345522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/22/2012] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Immune cells are key mediators of secondary damage following spinal cord injury (SCI), and dendritic cell (DC)-based vaccines have received considerable interest for treatment of SCI. We previously showed that vaccination with DCs pulsed with homogenate proteins of the spinal cord (hpDCs) promotes functional recovery from SCI in mice. However, the underlying molecular mechanisms remain unclear. Here, changes of neurotrophins, cytokines and T cells at the site of SCI in mice after vaccination with hpDCs were investigated and correlated with recovery from SCI. METHODS hpDCs, DCs (control) or PBS (control) were injected intraperitoneally into injured mouse spinal cords. Functional recovery of the spinal cord was measured weekly using the Basso Mouse Scale (BMS) and confirmed by histological and immunohistochemical analysis. Brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), interleukin-4 (IL-4) and interferon-γ (IFN-γ) levels in T cell culture supernatants and spinal cord tissues were determined by ELISA. RESULTS Eighty-four days after immunization, the BMS score of the hpDCs group (6.92 ± 0.20) was significantly higher than those of the DCs and PBS groups (p < 0.01). Meanwhile, the injury area and number of cysts in the hpDCs group decreased significantly compared with control groups. BDNF, NT-3, IL-4 and IFN-γ levels at the injured site as well as BDNF and NT-3 levels in the supernatant of cultured T cells from the hpDCs group were significantly higher than in control groups (p < 0.05). CONCLUSION These results reveal that vaccination with hpDCs can promote SCI repair potentially by upregulating BDNF, NT-3, IL-4 and IFN-γ at the injury site.
Collapse
Affiliation(s)
- Ke Wang
- Department of Spine Surgery, Daping Hospital, Research Institute of Surgery, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Colton CA. Immune heterogeneity in neuroinflammation: dendritic cells in the brain. J Neuroimmune Pharmacol 2012; 8:145-62. [PMID: 23114889 PMCID: PMC4279719 DOI: 10.1007/s11481-012-9414-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/22/2012] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DC) are critical to an integrated immune response and serve as the key link between the innate and adaptive arms of the immune system. Under steady state conditions, brain DC’s act as sentinels, continually sampling their local environment. They share this function with macrophages derived from the same basic hemopoietic (bone marrow-derived) precursor and with parenchymal microglia that arise from a unique non-hemopoietic origin. While multiple cells may serve as antigen presenting cells (APCs), dendritic cells present both foreign and self-proteins to naïve T cells that, in turn, carry out effector functions that serve to protect or destroy. The resulting activation of the adaptive response is a critical step to resolution of injury or infection and is key to survival. In this review we will explore the critical roles that DCs play in the brain’s response to neuroinflammatory disease with emphasis on how the brain’s microenvironment impacts these actions.
Collapse
Affiliation(s)
- Carol A Colton
- Neurology, Duke University Medical Center, Box 2900, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Vu THK, Jager MJ, Chen DF. The Immunology of Glaucoma. ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY (PHILADELPHIA, PA.) 2012; 1:303-11. [PMID: 26107602 DOI: 10.1097/apo.0b013e31826f57a3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The presence of specific antibodies and T cells that are specific in patients with glaucoma supports the idea that the immune system may play an important role in the initiation and/or sustainment of glaucomatous optic neuropathy, at least in some patients. At present, our understanding regarding immunological mechanisms associated with glaucomatous optic neuropathy is far from satisfactory. In this review, we examined evidence suggesting involvement of autoimmune responses in the pathogenesis of glaucoma. These include detection of autoantibodies and T cells and expression of cytokines and stress proteins in patients with glaucoma. Although immune responses are thought to be detrimental, some responses may exert a protective effect against neurodegenerative damage. Likely, the balance between positive and negative regulators determines the survival or demise of cells. It is vital that research continues to elucidate the roles of the immune system in glaucomatous neurodegeneration and the possibility of alternative modalities of treatment. These studies may also provide valuable molecular biomarkers for the diagnosis and identification of a specific cohort of patients with glaucoma, that is, those with normal-tension glaucoma.
Collapse
Affiliation(s)
- T H Khanh Vu
- From the *Schepens Eye Research Institute, Massachusetts Eye and Ear, and Department of Ophthalmology, Harvard Medical School, Boston, MA; †Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; and ‡Veteran Affairs Boston Healthcare System, Boston, MA
| | | | | |
Collapse
|
19
|
|
20
|
Walsh JT, Kipnis J. Regulatory T cells in CNS injury: the simple, the complex and the confused. Trends Mol Med 2011; 17:541-7. [PMID: 21741881 PMCID: PMC3189297 DOI: 10.1016/j.molmed.2011.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/21/2011] [Accepted: 05/27/2011] [Indexed: 11/19/2022]
Abstract
Regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs) have been the focus of significant attention for their role in controlling immune responses. Although knowledge of Treg biology has burgeoned, wide gaps remain in our understanding of Treg function under both normal and pathological conditions. Pioneering studies demonstrated roles for Tregs in cancer and autoimmune diseases, including experimental autoimmune encephalitis, and this knowledge is often applied to other pathologies including neurodegenerative conditions. However, differences between immunity in neurodegeneration and in malignancy or autoimmunity are often neglected. Thus, Treg manipulations in central nervous system (CNS) neurodegenerative conditions often yield unexpected outcomes. In this piece, we explore how the immunology of neurodegeneration differs from that of cancer and autoimmunity and how these differences create confusion about the role of Tregs in neurodegenerative conditions.
Collapse
Affiliation(s)
- James T. Walsh
- Neuroscience Graduate Program and Medical Scientist Training Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Neuroscience Graduate Program and Medical Scientist Training Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
21
|
Rook GAW, Lowry CA, Raison CL. Lymphocytes in neuroprotection, cognition and emotion: is intolerance really the answer? Brain Behav Immun 2011; 25:591-601. [PMID: 21167931 DOI: 10.1016/j.bbi.2010.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 12/12/2022] Open
Abstract
Clinical, epidemiological and therapeutic studies indicate that some human depression is associated with proinflammatory cytokines, chronic inflammatory disorders, and inflammation-inducing lifestyle factors. Moreover depression can be induced by administration of proinflammatory cytokines, including IL-2 or IFN-α. However, recent studies in specific pathogen-free (SPF) rodents suggest a different--and potentially contradictory--relationship between immune processes and mental health. These studies suggest that effector T cells specific for central nervous system (CNS) antigens can assist recovery from an array of environmental insults ranging from nerve injury to psychological stress, while in contrast, regulatory T cells (Treg) oppose such recovery. Indeed, some reported effects of this so-called "protective autoimmunity" seem of direct relevance to depressive disorders. These findings pose a dilemma for those intending to manipulate inflammatory pathways as a treatment for depression. Should we administer anti-inflammatory treatments, or should we induce self-reactive T cells? We re-examine the rodent findings and outline immunological peculiarities of SPF rodents, the abnormal properties of their regulatory T cells, and the impact of gut microbiota. We find that "protective autoimmunity" is likely to be relevant only to very clean SPF animals that lack normal levels of activated T cells, CNS T cell traffic and mature Treg. The data indicate that even in SPF models the effectors of beneficial effects are not the proinflammatory autoimmune cells themselves, but rather unidentified regulatory cells. This reinterpretation of findings relevant to "protective autoimmunity" suggests that ongoing, and planned, clinical trials of anti-inflammatory strategies to treat depressive disorders are justified.
Collapse
Affiliation(s)
- Graham A W Rook
- Department of Infection, University College London (UCL), London W1T4JF, UK.
| | | | | |
Collapse
|
22
|
London A, Itskovich E, Benhar I, Kalchenko V, Mack M, Jung S, Schwartz M. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. ACTA ACUST UNITED AC 2011; 208:23-39. [PMID: 21220455 PMCID: PMC3023128 DOI: 10.1084/jem.20101202] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
After retinal injury in mice, infiltrating monocyte-derived macrophages preserve retinal ganglion cells and promote retinal progenitor cell renewal. The death of retinal ganglion cells (RGCs) is a hallmark of many retinal neuropathies. Neuroprotection, axonal regeneration, and cell renewal are vital for the integrity of the visual system after insult but are scarce in the adult mammalian retina. We hypothesized that monocyte-derived macrophages, known to promote healing in peripheral tissues, are required after an insult to the visual system, where their role has been largely overlooked. We found that after glutamate eye intoxication, monocyte-derived macrophages infiltrated the damaged retina of mice. Inhibition of this infiltration resulted in reduced survival of RGCs and diminished numbers of proliferating retinal progenitor cells (RPCs) in the ciliary body. Enhancement of the circulating monocyte pool led to increased RGC survival and RPC renewal. The infiltrating monocyte-derived macrophages skewed the milieu of the injured retina toward an antiinflammatory and neuroprotective one and down-regulated accumulation of other immune cells, thereby resolving local inflammation. The beneficial effect on RGC survival depended on expression of interleukin 10 and major histocompatibility complex class II molecules by monocyte-derived macrophages. Thus, we attribute to infiltrating monocyte-derived macrophages a novel role in neuroprotection and progenitor cell renewal in the injured retina, with far-reaching potential implications to retinal neuropathies and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Anat London
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Glaucoma is a progressive, age-related optic neuropathy and a leading cause of irreversible blindness in the world. Animal models of glaucoma are essential to our continued efforts of elucidating the natural course of the disease and to developing therapeutic interventions to halt or reverse the progression of the condition. Over the past 10-15 years, rodents have become a popular model organism to study glaucoma, because of their high degree of availability, relatively low cost, short life-span, and amenability to experimental and genetic manipulation. In this review, we examine the numerous in vivo and in vitro rodent models of glaucoma, discuss the methods used to generate them, summarize some of the major findings obtained in these models, and identify individual strengths and weaknesses for the various systems.
Collapse
Affiliation(s)
- Thomas V. Johnson
- Molecular Mechanisms of Glaucoma Section, Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Stanislav I. Tomarev
- Molecular Mechanisms of Glaucoma Section, Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Koronyo-Hamaoui M, Ko MK, Koronyo Y, Azoulay D, Seksenyan A, Kunis G, Pham M, Bakhsheshian J, Rogeri P, Black KL, Farkas DL, Schwartz M. Attenuation of AD-like neuropathology by harnessing peripheral immune cells: local elevation of IL-10 and MMP-9. J Neurochem 2009; 111:1409-24. [DOI: 10.1111/j.1471-4159.2009.06402.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Schwartz M, London A. Erratum to: Immune maintenance in glaucoma: boosting the body's own neuroprotective potential. J Ocul Biol Dis Infor 2009; 2:104-108. [PMID: 20046842 PMCID: PMC2798980 DOI: 10.1007/s12177-009-9037-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Glaucoma, a slow progressive neurodegenerative disorder associated with death of retinal ganglion cells and degeneration of their connected optic nerve fibers, has been classically linked to high intraocular pressure. Regardless of the primary risk factor, degeneration may continue, resulting in further loss of neurons and subsequent glaucomatous damage. During the past decade, scientists and clinicians began to accept that, in addition or as an alternative to fighting off the primary risk factor(s), there is a need to protect the tissue from the ongoing spread of damage-an approach collectively termed "neuroprotection." We found that the immune system, the body's own defense mechanism, plays a key role in the ability of the optic nerve and the retina to withstand glaucomatous conditions. This defense involves recruitment of both innate and adaptive immune cells that together create a protective niche and thereby halt disease progression. The spontaneous immune response might not be sufficient, and therefore, we suggest boosting it by immunization (with the appropriate antigen, at specific timing and predetermined optimal dosing) which may be developed into a suitable therapeutic vaccination to treat glaucoma. This view of immune system involvement in glaucoma will raise new challenges in glaucoma research, changing the way in which clinicians perceive the disease and the approach to therapy.[This corrects the article on p. in vol. .].
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Anat London
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Schwartz M, London A. Immune maintenance in glaucoma: boosting the body's own neuroprotective potential. J Ocul Biol Dis Infor 2009; 2:73-77. [PMID: 19672467 PMCID: PMC2723675 DOI: 10.1007/s12177-009-9025-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 06/10/2009] [Indexed: 11/29/2022] Open
Abstract
Glaucoma, a slow progressive neurodegenerative disorder associated with death of retinal ganglion cells and degeneration of their connected optic nerve fibers, has been classically linked to high intraocular pressure. Regardless of the primary risk factor, degeneration may continue, resulting in further loss of neurons and subsequent glaucomatous damage. During the past decade, scientists and clinicians began to accept that, in addition or as an alternative to fighting off the primary risk factor(s), there is a need to protect the tissue from the ongoing spread of damage-an approach collectively termed "neuroprotection." We found that the immune system, the body's own defense mechanism, plays a key role in the ability of the optic nerve and the retina to withstand glaucomatous conditions. This defense involves recruitment of both innate and adaptive immune cells that together create a protective niche and thereby halt disease progression. The spontaneous immune response might not be sufficient, and therefore, we suggest boosting it by immunization (with the appropriate antigen, at specific timing and predetermined optimal dosing) which may be developed into a suitable therapeutic vaccination to treat glaucoma. This view of immune system involvement in glaucoma will raise new challenges in glaucoma research, changing the way in which clinicians perceive the disease and the approach to therapy.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Anat London
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Decreased inflammation and augmented expression of trophic factors correlate with MOG-induced neuroprotection of the injured nigrostriatal system in the murine MPTP model of Parkinson's disease. Int Immunopharmacol 2009; 9:781-91. [PMID: 19286483 DOI: 10.1016/j.intimp.2009.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 02/06/2009] [Accepted: 03/02/2009] [Indexed: 11/20/2022]
Abstract
The response of the immune system during injury of the central nervous system may play a role in protecting neurons. We have previously reported that immunization with MOG 35-55 prior to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced injury of the dopaminergic system promotes less dopamine depletion and less dopaminergic damage of neurons in mice. In this study, we evaluate the influence of MOG immunization on the inflammatory reaction that occurs at the place of injury. C57Bl male mice, 2 and 12 months old, received i.p. injections of MPTP (40 mg/kg) and some groups animals also received an additional injection with myelin oligodendrocyte glycoprotein (MOG) 35-55 in CFA 6 days before MPTP administration. MPTP caused a common inflammatory reaction characterized by microglial activation, infiltration of T cells into the substantia nigra and striatum and increased expression of mRNA encoding pro-inflammatory cytokines (IL-1 beta, TNFalpha, INF gamma) and trophic factors (TGFbeta, GDNF). MOG immunization prior to MPTP administration significantly diminished the microglial reaction and reduced the levels of infiltrating CD8+ lymphocytes. The number of CD4+ T cells remained at the same level as in the MPTP group. Expression of pro-inflammatory cytokines was diminished. The mRNA expression of GDNF was significantly higher in the MOG pretreated mice relative to the MPTP group, both in the 2 month old and 12 month old groups. Since MOG immunization prior to MPTP intoxication appears to prevent nigrostriatal injury, the observed decrease of inflammation and increase of GDNF mRNA expression in the injured areas might represent one of the mechanisms of observed neuroprotection.
Collapse
|
28
|
Cui Q, Yin Y, Benowitz LI. The role of macrophages in optic nerve regeneration. Neuroscience 2009; 158:1039-48. [PMID: 18708126 PMCID: PMC2670061 DOI: 10.1016/j.neuroscience.2008.07.036] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/18/2008] [Accepted: 07/20/2008] [Indexed: 11/25/2022]
Abstract
Following injury to the nervous system, the activation of macrophages, microglia, and T-cells profoundly affects the ability of neurons to survive and to regenerate damaged axons. The primary visual pathway provides a well-defined model system for investigating the interactions between the immune system and the nervous system after neural injury. Following damage to the optic nerve in mice and rats, retinal ganglion cells, the projection neurons of the eye, normally fail to regenerate their axons and soon begin to die. Induction of an inflammatory response in the vitreous strongly enhances the survival of retinal ganglion cells and enables these cells to regenerate lengthy axons beyond the injury site. T cells modulate this response, whereas microglia are thought to contribute to the loss of retinal ganglion cells in this model and in certain ocular diseases. This review discusses the complex and sometimes paradoxical actions of blood-borne macrophages, resident microglia, and T-cells in determining the outcome of injury in the primary visual pathway.
Collapse
Affiliation(s)
- Q Cui
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, 147K Argyle Street, Kowloon, Hong Kong, PR China.
| | | | | |
Collapse
|
29
|
Schwartz M, Bukshpan S, Kunis G. Application of glatiramer acetate to neurodegenerative diseases beyond multiple sclerosis: the need for disease-specific approaches. BioDrugs 2008; 22:293-9. [PMID: 18778111 DOI: 10.2165/00063030-200822050-00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adaptive and innate immunity, if well controlled, contribute to the maintenance of the CNS, as well as to downregulation of adverse acute and chronic neurological conditions. T cells that recognize CNS antigens are needed to activate resident immune cells and to recruit blood-borne monocytes, which act to restore homeostasis and facilitate repair. However, boosting such a T-cell response in a risk-free way requires a careful choice of the antigen, carrier, and regimen. A single vaccination with CNS-derived peptides or their weak agonists reduces neuronal loss in animal models of acute neurodegeneration. Repeated injections are needed to maintain a long-lasting effect in chronic neurodegenerative conditions, yet the frequency of the injections seems to have a critical effect on the outcome. An example is glatiramer acetate, a compound that is administered in a daily regimen to patients with multiple sclerosis. A single injection of glatiramer acetate, with or without an adjuvant, is neuroprotective in some animal models of acute CNS injuries. However, in an animal model of amyotrophic lateral sclerosis, a single injection of adjuvant-free glatiramer acetate is insufficient, while daily injections are not only ineffective but can carry an increased risk of mortality in female mice.Thus, considering immune-based therapies as a single therapy, rather than as a family of therapies that are regimen dependent, may be misleading. Moreover, the vaccination regimen and administration of a compound, even one shown to be safe in humans for the treatment of a particular neurodegenerative disease, must be studied in preclinical experiments before it is tested in a clinical trial for a novel indication; otherwise, an effective drug in a certain regimen for one disease may be ineffective or even carry risks when used for another disorder.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
30
|
Shulman S, Belokopytov M, Dubinsky G, Belkin M, Rosner M. Ameliorative effect of PN-277 on laser-induced retinal damage. Graefes Arch Clin Exp Ophthalmol 2008; 247:343-8. [PMID: 18987871 DOI: 10.1007/s00417-008-0975-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/14/2008] [Accepted: 10/06/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The retinal damage induced by laser photocoagulation increases considerably by the secondary degeneration process whereby tissues adjacent to the primary lesion are destroyed. As the neuroprotective effect of immunization by PN-277 was previously demonstrated in models of retina, optic nerve, brain, and spinal cord lesions, it may be used also for reducing retinal damage induced by laser. The aim of this study was to evaluate the neuroprotective effect of immunization with PN-277 in reducing the spread of laser-induced retinal damage. METHODS Standard argon laser lesions were created in 36 DA pigmented rats. Seven days before exposure to laser, the rats were divided into a test group (n = 18) that was pre-immunized with intraperitoneal injection of PN-277 and control group (n = 18) treated with saline. Histological and morphometrical evaluations of the retinal lesions were preformed 3, 20, and 60 days after the injury. RESULTS Significant ameliorative effect was demonstrated in the retinas of the pre-immunized animals 60 days after exposure to laser. The diameter of the lesion was 356 microm as compared with 406 microm (P < 0.01), the cell density of the photoreceptor cell bodies measured in the whole lesion was 72.4% of normal as compared with 64.5% (P = 0.01), and at the center of the lesion it was 57.3% of normal as compared with 38.2% (P < 0.01) (treated and control groups, respectively). CONCLUSIONS Immunization with PN-277 has an ameliorative effect in neural tissue such as the retina. This type of immunization may be of clinical significance in reducing laser-induced retinal injuries in humans.
Collapse
Affiliation(s)
- Shiri Shulman
- Ophthalmology Department, Sapir Medical Centre, Kfar-Sava, Israel
| | | | | | | | | |
Collapse
|
31
|
Wu N, Yin ZQ, Wang Y. Traumatic optic neuropathy therapy: an update of clinical and experimental studies. J Int Med Res 2008; 36:883-9. [PMID: 18831880 DOI: 10.1177/147323000803600503] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Serious injury to the optic nerve, including direct and indirect events, induces significant visual loss and even blindness. For the past decade corticosteroids and/or optic canal decompression surgery have been widely embraced therapeutic paradigms for the treatment of traumatic optic neuropathy. There is little clinical evidence, however, to support the effectiveness of these strategies, raising questions about the efficiency of current therapy for improving visual outcomes. Recently, experimental studies have yielded a wealth of information related to the protection and regeneration of retinal ganglion cells, showing promise for the development of novel and effective treatments for optic nerve injury.
Collapse
Affiliation(s)
- N Wu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
32
|
Dietz JA, Li Y, Chung LM, Yandell BS, Schlamp CL, Nickells RW. Rgcs1, a dominant QTL that affects retinal ganglion cell death after optic nerve crush in mice. BMC Neurosci 2008; 9:74. [PMID: 18671875 PMCID: PMC2518923 DOI: 10.1186/1471-2202-9-74] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/31/2008] [Indexed: 01/25/2023] Open
Abstract
Background Intrinsic apoptosis of neuronal somas is one aspect of neurodegenerative diseases that can be influenced by genetic background. Genes that affect this process may act as susceptibility alleles that contribute to the complex genetic nature of these diseases. Retinal ganglion cell death is a defining feature of the chronic and genetically complex neurodegenerative disease glaucoma. Previous studies using an optic nerve crush procedure in inbred mice, showed that ganglion cell resistance to crush was affected by the Mendelian-dominant inheritance of 1–2 predicted loci. To assess this further, we bred and phenotyped a large population of F2 mice derived from a resistant inbred strain (DBA/2J) and a susceptible strain (BALB/cByJ). Results Genome wide mapping of the F2 mice using microsatellite markers, detected a single highly significant quantitative trait locus in a 25 cM (58 Mb) interval on chromosome 5 (Chr5.loc34-59 cM). No interacting loci were detected at the resolution of this screen. We have designated this locus as Retinal ganglion cell susceptible 1, Rgcs1. In silico analysis of this region revealed the presence of 578 genes or expressed sequence tags, 4 of which are highly expressed in the ganglion cell layer of the mammalian retina, and 2 of which are suspected susceptibility alleles in chronic neurodegenerative diseases. In addition, 25 genes contain 36 known single nucleotide polymorphisms that create nonsynonymous amino acid changes between the two parental strains. Collectively, this analysis has identified 7 potential candidate genes that may affect ganglion cell death. Conclusion The process of ganglion cell death is likely one of the many facets of glaucoma susceptibility. A novel dominant locus has been identified that affects sensitivity of ganglion cells to optic nerve crush. The allele responsible for this sensitivity may also be a susceptibility allele for glaucoma.
Collapse
Affiliation(s)
- Joel A Dietz
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Elevated intraocular pressure does not explain glaucoma in all patients, but there is information that autoimmune mechanisms may be involved in this disorder. This review attempts to reveal the findings about specific changes in autoantibody profiles in glaucoma patients and their possible role in glaucoma. Considering that these changes in natural autoimmunity can be found consistently among different study populations, it might be a promising new tool for glaucoma detection.
Collapse
|
34
|
Grus F, Sun D. Immunological mechanisms in glaucoma. Semin Immunopathol 2008; 30:121-6. [PMID: 18330572 DOI: 10.1007/s00281-008-0105-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Accepted: 02/04/2008] [Indexed: 11/29/2022]
Abstract
Glaucoma is one of the most frequent causes of blindness worldwide. The elevated intraocular pressure does not explain glaucoma in all patients but can be considered as a risk factor of the disease. There are some evidences that autoimmune mechanisms may be involved in this disorder. This review attempts to demonstrate the findings about autoimmune mechanisms in glaucoma patients. Consistent up- and down-regulations in the autoantibody profiles against ocular antigens are present in glaucoma patients. These changes in natural autoimmunity could be found in independent study populations and might be a promising tool for glaucoma detection.
Collapse
Affiliation(s)
- F Grus
- Experimental Ophthalmology, Department of Ophthalmology, University of Mainz, Mainz, Germany.
| | | |
Collapse
|
35
|
Belokopytov M, Ben-Shlomo G, Rosner M, Belkin M, Dubinski G, Epstein Y, Ofri R. Functional efficacy of glatiramer acetate treatment for laser-induced retinal damage in rats. Lasers Surg Med 2008; 40:196-201. [DOI: 10.1002/lsm.20610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Schwartz M, London A. Glaucoma as a neuropathy amenable to neuroprotection and immune manipulation. PROGRESS IN BRAIN RESEARCH 2008; 173:375-84. [DOI: 10.1016/s0079-6123(08)01126-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
37
|
Cohen H, Ziv Y, Cardon M, Kaplan Z, Matar MA, Gidron Y, Schwartz M, Kipnis J. Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4+CD25+ cells. ACTA ACUST UNITED AC 2007; 66:552-63. [PMID: 16555237 DOI: 10.1002/neu.20249] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peripheral cellular immunity was recently shown to play a critical role in brain plasticity and performance. The antigenic specificity of the participating T cells, however, was not investigated, and nor was their relevance to psychological stress. Here we show, using a mouse model, that adaptive immunity mitigates maladaptation to the acute psychological stress known to trigger abnormal behaviors reminiscent of human post-traumatic stress disorder. Assessment of behavioral adaptation (measured by the acoustic startle response and avoidance behavior) in mice after their exposure to predator odor revealed that maladaptation was several times more prevalent in T cell-deficient mice than in their wild-type counterparts. A single population of T cells reactive to central nervous system (CNS)-associated self-protein was sufficient to endow immune-deficient mice with the ability to withstand the psychological stress. Naturally occurring CD4+CD25+ regulatory T cells were found to suppress this endogenous anti-stress attribute. These findings suggest that T cells specific to abundantly expressed CNS antigens are responsible for brain tissue homeostasis and help the individual to cope with stressful life episodes. They might also point the way to development of immune-based therapies for mental disorders, based either on up-regulation of T cells that partially cross-react with self-antigens or on weakening of the activity of regulatory T cells.
Collapse
MESH Headings
- Adaptation, Physiological/immunology
- Adaptation, Psychological/physiology
- Animals
- Autoimmunity/immunology
- CD4-Positive T-Lymphocytes/immunology
- Central Nervous System/immunology
- Disease Models, Animal
- Down-Regulation/immunology
- Immune Tolerance/immunology
- Immunity, Cellular/immunology
- Interleukin-2 Receptor alpha Subunit/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Mice, Transgenic
- Myelin Basic Protein/immunology
- Nerve Tissue Proteins/immunology
- Stress Disorders, Post-Traumatic/immunology
- Stress Disorders, Post-Traumatic/physiopathology
- Stress, Psychological/immunology
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Hagit Cohen
- Ministry of Health Mental Health Center Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
A major causative factor in the paralysis that often follows an acute injury to the central nervous system (CNS) is the paradoxical inability of the CNS to tolerate its own mechanism of self-repair. The dismal result is often a wider spread of damage (part of the inevitable "secondary" or "delayed" degeneration) rather than contribution toward a cure. Ever since the phenomenon of posttraumatic damage spread in the CNS was first recognized, neuroscientists have attempted to identify the players in this destructive process and have sought ways to neutralize or bypass them with the object of rescuing any neurons that are still viable. This approach is collectively termed neuroprotection. In this chapter, we present a view of experimental paradigms used to study neuroprotection.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
39
|
Ibarra A, Jiménez A, Cortes C, Correa D. Influence of the intensity, level and phase of spinal cord injury on the proliferation of T cells and T-cell-dependent antibody reactions in rats. Spinal Cord 2006; 45:380-6. [PMID: 16955070 DOI: 10.1038/sj.sc.3101972] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Three independent experiments in a rat model of contusive spinal cord (SC) injury were performed. Two studied the alterations induced by SC injury on some immunological aspects of the T-cell response. The third one evaluated the motor recovery of rats with low-thoracic injuries. OBJECTIVE To examine the effect of level, intensity and phase of SC injury on T-cell proliferation and T-cell-dependent antibody response. SETTING Neuroimmunology Department, UIMEN, IMSS-CAMINA Research Center. METHODS Lymphocyte proliferation and hemagglutination assays were performed. Animals were injured either moderately or severely at T1 or T12 SC segments. Analysis of peripheral T-cell proliferation in response to mitogens and to myelin basic protein (MBP), as well as of antibody production against a T-dependent antigen, was performed at acute, subacute and chronic phases. RESULTS A significant decrease of both response to mitogens and antibody production was found especially during the acute phase and in animals with severe and high (T1)-level injury. Animals with low (T12) and moderate contusions recovered to control levels at the chronic phase. An autoimmune reaction against MBP was observed only in animals with severe contusion at low level. CONCLUSIONS The intensity, level and phase of SC injury differentially alter the function of T cells. These results will allow a better interpretation of studies directed to elucidate the role of T lymphocytes in various processes developed after SC injury.
Collapse
Affiliation(s)
- A Ibarra
- Unidad de Investigación Médica en Enfermedades Neurológicas, HE, CMN Siglo XXI, IMSS, Col. Doctores, México City, México
| | | | | | | |
Collapse
|
40
|
Lewitus GM, Kipnis J, Avidan H, Ben-Nun A, Schwartz M. Neuroprotection induced by mucosal tolerance is epitope-dependent: Conflicting effects in different strains. J Neuroimmunol 2006; 175:31-8. [PMID: 16626813 DOI: 10.1016/j.jneuroim.2006.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/19/2006] [Accepted: 02/24/2006] [Indexed: 11/26/2022]
Abstract
The ability to cope with ongoing neurodegeneration after injury to the central nervous system of mammals differs among strains and depends in part on the animal's ability to manifest a T-cell-mediated protective response. After CNS injury, strain-related differences were observed. Moreover, the post-injury effect of naturally occurring regulatory CD4+CD25+ T cells was found to differ in different strains. In this study, using partially injured optic nerves of Balb/c/OLA and C57BL/6J mice as models, we observed strain-related differences in the T-cell-mediated protection obtained by antigens administered via the nasal route. Active immunization with myelin-related antigens emulsified in complete Freund's adjuvant had a beneficial effect on both strains, whereas mucosal administration of the same antigens was destructive in mice of the Balb/c/OLA strain but protective in C57BL/6J mice.
Collapse
Affiliation(s)
- Gil M Lewitus
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | |
Collapse
|
41
|
Debate: "is increasing neuroinflammation beneficial for neural repair?". J Neuroimmune Pharmacol 2006; 1:195-211. [PMID: 18040798 DOI: 10.1007/s11481-006-9021-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 04/26/2006] [Indexed: 12/18/2022]
|
42
|
Schwartz M, Yoles E. Immune-Based Therapy for Spinal Cord Repair: Autologous Macrophages and Beyond. J Neurotrauma 2006; 23:360-70. [PMID: 16629622 DOI: 10.1089/neu.2006.23.360] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Spinal cord injury is a devastating condition of the central nervous system (CNS), often resulting in severe loss of tissue, functional impairment, and only limited repair. Studies over the last few years have shown that response to the insult and spontaneous attempts at repair are multiphasic processes, with varying and sometimes conflicting requirements. This knowledge has led to novel strategies of therapeutic intervention. Our view is that a pivotal role in repair, maintenance, healing, and cell renewal in the CNS, as in other tissues, is played by the immune system. The mode and timing of intervention must be carefully selected, however, as the capacity of the CNS to tolerate local repair mechanisms is limited. Studies have shown that the spontaneously evoked early innate response to CNS injury is characterized by invasion of neutrophils and is unfavorable for cell survival. This is followed by a response of the resident innate immune cells (microglia), which however cannot supply all the needs of the damaged tissue; moreover, once evoked, and for as long as the damage persists, the microglial response remains beyond the capacity of the CNS to tolerate it. Immune-based clinical intervention is most effective in improving functional and morphological recovery when delayed for a certain period. Effective intervention might be in the form of (1) local injection of "alternatively activated" macrophages, (2) systemic injection of dendritic cells specific to CNS antigens, or (3) T-cell-based vaccination. The treatment of choice depends on the severity of the insult, the site of injury, the therapeutic window, and safety considerations.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
43
|
Kadiu I, Glanzer JG, Kipnis J, Gendelman HE, Thomas MP. Mononuclear phagocytes in the pathogenesis of neurodegenerative diseases. Neurotox Res 2006; 8:25-50. [PMID: 16260384 DOI: 10.1007/bf03033818] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain mononuclear phagocytes (MP, bone marrow monocyte-derived macrophages, perivascular macrophages, and microglia) function to protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of immune responses. MP are activated by a variety of environmental cues and such inflammatory responses elicit cell injury and death in the nervous system. MP immunoregulatory responses include secretion of neurotoxic factors, mobilization of adaptive immunity, and cell chemotaxis. This incites tissue remodelling and blood-brain barrier dysfunction. As disease progresses, MP secretions engage neighboring cells in a vicious cycle of autocrine and paracrine amplification of inflammation leading to tissue injury and ultimately destruction. Such pathogenic processes tilt the balance between the relative production of neurotrophic and neurotoxic factors and to disease progression. The ultimate effects that brain MP play in disease revolves "principally" around their roles in neurodegeneration. Importantly, common functions of brain MP in neuroimmunity link highly divergent diseases (for example, human immunodeficiency virus type-one associated dementia, Alzheimer's disease and Parkinson's disease). Research into this process from our own laboratories and those of others seek to harness MP inflammatory processes with the intent of developing therapeutic interventions that block neurodegenerative processes and improve the quality of life in affected people.
Collapse
Affiliation(s)
- I Kadiu
- Laboratory of Neuroregeneration, Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | |
Collapse
|
44
|
Schwartz M, Butovsky O, Brück W, Hanisch UK. Microglial phenotype: is the commitment reversible? Trends Neurosci 2006; 29:68-74. [PMID: 16406093 DOI: 10.1016/j.tins.2005.12.005] [Citation(s) in RCA: 333] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 10/26/2005] [Accepted: 12/15/2005] [Indexed: 11/22/2022]
Abstract
Microglia, the standby cells for immune defense in the CNS, have a reputation for exacerbating the neural damage that occurs in neurodegenerative diseases. However, research over the past few years has established that microglia do not constitute a single, uniform cell population, but rather comprise a family of cells with diverse phenotypes--some that are beneficial and others that the CNS can barely tolerate and that are therefore destructive. This finding raised several questions. What instructs microglia to acquire a particular phenotype, and how do these phenotypes differ? How committed are microglia to a specific phenotype? Can destructive microglia become protective, and can protective microglia retain their beneficial phenotype even when they encounter a destructive environment? Here, we address these questions, and the background of research that elicited them.
Collapse
Affiliation(s)
- Michal Schwartz
- The Weizmann Institute of Science, POB 26, Rehovot, 76100, Israel.
| | | | | | | |
Collapse
|
45
|
Schwartz M. Are neurodegenerative disorders systemic diseases? Outlook for future immune-based therapies. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.1.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prevalence of neurodegenerative diseases increases exponentially with age. Increasing life expectancies in Western countries have, therefore, been accompanied by a growing increase in the number of victims, and in the future we can expect to see an increased number of the geriatric population suffering from these diseases. Despite improvements in our understanding of the pathogeneses, the prospects for finding a cure remain bleak. Many questions remain unanswered: are we dealing with a family of diseases or with individual unrelated syndromes? Is there a systemic malfunction that operates via a common pathway but affects different tissues or organs in different individuals? How will the answers to these questions affect future therapy?
Collapse
|
46
|
Yano T, Yamada K, Kimura A, Takeshita T, Minohara M, Kira JI, Senju S, Nishimura Y, Tanihara H. Autoimmunity against neurofilament protein and its possible association with HLA-DRB1*1502 allele in glaucoma. Immunol Lett 2005; 100:164-9. [PMID: 16005081 DOI: 10.1016/j.imlet.2005.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 03/25/2005] [Indexed: 11/26/2022]
Abstract
Glaucoma is understood as a neurodegenerative disease and intraocular pressure has been regarded as the major risk factors for the optic nerve damages. However, recent studies suggested that several risk factors including autoimmunity are also shown to play important roles in glaucoma. To identify the retinal antigen in glaucoma, we used the serological analysis of recombinant cDNA expression libraries (SEREX) approach and quantified IgG antibodies directed against the identified antigens in an ELISA. We identified neurofilament protein and the prevalence of anti-bovine neurofilament light subunit (NF-L) autoantibodies in glaucomatous patients was significantly higher than in healthy controls and patients with other uveitic and optic nerve diseases (P<0.05). In addition, our immunogenetic analysis showed a possible association between HLA-DRB1*1502 allele and the patients positive for anti-NF-L autoantibodies. It suggests that the HLA class II-linked gene may be involved in development of autoimmunity in patients with glaucoma.
Collapse
Affiliation(s)
- Tsuyoshi Yano
- Department of Ophthalmology and Visual Science, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bakalash S, Ben-Shlomo G, Shlomo GB, Aloni E, Shaked I, Wheeler L, Ofri R, Schwartz M. T-cell-based vaccination for morphological and functional neuroprotection in a rat model of chronically elevated intraocular pressure. J Mol Med (Berl) 2005; 83:904-16. [PMID: 16096740 DOI: 10.1007/s00109-005-0689-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 04/10/2005] [Indexed: 10/25/2022]
Abstract
Acute or chronic glaucoma is often associated with an increase in intraocular pressure (IOP). In many patients, however, therapeutic pressure reduction does not halt disease progression. Neuroprotection has been proposed as a complementary therapeutic approach. We previously demonstrated effective T-cell-based neuroprotection in experimental animals vaccinated with the synthetic copolymer glatiramer acetate (copolymer-1, Cop-1), a weak agonist of self-antigens. This study was undertaken to test different routes and modes of vaccination with Cop-1 as treatment modalities for protection against retinal ganglion cell (RGC) death caused by chronic elevation of IOP in rats, and to determine whether anatomical neuroprotection is accompanied by functional neuroprotection. In a chronic model of unilaterally high IOP, Cop-1 vaccination, with or without an adjuvant, protected rats against IOP-induced loss of RGCs by eliciting a systemic T-cell-mediated response capable of cross-reacting with self-antigens residing in the eye. In rats deprived of T cells, Cop-1 (unlike treatment with alpha2-adrenoreceptor agonists) was not protective of RGCs, substantiating the contention that its beneficial effect is not conferred directly but is T-cell-mediated. Pattern electroretinography provided evidence of functional protection. Thus, vaccination with adjuvant-free Cop-1 can protect RGCs from the consequences of elevated IOP in rats. This protection is manifested both morphologically and functionally. These findings can be readily implemented for the development of a therapeutic vaccination to arrest the progression of glaucoma.
Collapse
Affiliation(s)
- Sharon Bakalash
- Department of Neurobiology, The Weizmann Institute of Science, 76100, Rehovot, Israel,
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The past decade has seen growing acceptance that glaucoma should be viewed as a slowly progressive neurodegenerative disease. According to this view, in glaucoma (as in other such diseases), whatever the primary risk factors, at any given time some neurons are still healthy but are threatened with destruction owing to the toxicity emanating from the degenerating neurons. It follows that any intervention that protects surviving neurons and rescues the marginally damaged ones should slow down progression of the disease. This novel view of glaucoma prompted scientists to compare glaucoma with other neurodegenerative diseases with respect to mediators of disease progression and ways in which the spread of damage, or 'secondary degeneration', can be attenuated. Studies of partial crush injury of the rat optic nerve, a model of secondary degeneration established in our laboratory, led us to conceptualize the 'enemy within' as a flood of neurotoxic self-compounds issuing from the degenerating nerve. With this model, pharmacological and molecular approaches were employed to identify and test potentially therapeutic neuroprotective compounds and methodologies, leading us ultimately to the serendipitous discovery of protective autoimmunity as the body's defense against destructive self-compounds. Mediators of self-perpetuating acute and chronic degeneration identified in the injured optic nerve were also detected in other sites of central nervous system (CNS) damage. This finding led scientists to screen drugs that had proven to be beneficial in other disease models for their use in glaucoma therapy. It also opened the way to studies of the direct effects of these toxic mediators on retinal ganglion cell survival and ways to prevent the degenerative outcome. Although no single model can fully simulate human glaucoma or any other neurodegenerative disease, the availability of different models of optic nerve damage and the similarity of findings in the optic nerve and in other parts of the CNS have led to significant progress toward development of a cure for glaucoma.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
49
|
Schori H, Robenshtok E, Schwartz M, Hourvitz A. Post-intoxication vaccination for protection of neurons against the toxicity of nerve agents. Toxicol Sci 2005; 87:163-8. [PMID: 15976190 DOI: 10.1093/toxsci/kfi237] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nerve agents are highly toxic organophosphates (OPs) that can cause severe damage to the central and peripheral nervous systems. The central nervous system insult results in seizures and neuronal death. The glutamatergic system apparently contributes to the neuropathology. Using a model of OP intoxication causing death of retinal ganglion cells in the mouse eye, we show here that intoxication is exacerbated if the mice are devoid of mature T cells. The retinal neurons could be protected from these effects by vaccination, 7 days before or immediately after intoxication, with the copolymer glatiramer acetate (Cop-1), recently found to limit the usual consequences of an acute glutamate insult to the eye. These findings underlie a new therapeutic approach to protection against OP intoxication, based on the rationale that boosting of the adaptive immunity recruited at the site of intoxication helps the local cellular machinery such as resident microglia to withstand the neurotoxic effects.
Collapse
Affiliation(s)
- Hadas Schori
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | |
Collapse
|
50
|
Kurkowska-Jastrzebska I, Bałkowiec-Iskra E, Joniec I, Litwin T, Członkowski A, Członkowska A. Immunization with myelin oligodendrocyte glycoprotein and complete Freund adjuvant partially protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced damage in mouse model of Parkinson's disease. Neuroscience 2005; 131:247-54. [PMID: 15680707 DOI: 10.1016/j.neuroscience.2004.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2004] [Indexed: 11/21/2022]
Abstract
The concept of neuroprotective immunity identifies a new role of autoimmune cells in the CNS pathology. Specifically, immune cells infiltrating the CNS during an injury may help in a regeneration process and prevent the secondary degeneration of neurons. The objectives of our study were to determine the role of autoimmune and peripheral immune enhancement in neurodegeneration process, and to compare the results between young adult and aging animals. C57Bl mice were immunized with either myelin oligodendrocyte glycoprotein (MOG) 35-55 combined with complete Freund adjuvant (CFA), or CFA alone. Following 6 days, the animals were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to produce a damage of the nigrostriatal dopaminergic system. Although immunization with MOG 35-55 combined with CFA resulted in autoimmune encephalomyelosis, it substantially enhanced neuronal survival after the toxic insult. The immunization with CFA alone was also effective in preventing neuronal cell death, but the magnitude of the neuroprotective effect was smaller. Interestingly, the neuroprotective effect of MOG 35-55 and CFA was more pronounced in aging (i.e. 10-month-old) compared with young (i.e. 2-month-old) mice. Our results indicate that an increased immune activation may be beneficial for neurodegenerative processes following the CNS injury, but the mechanisms of such immune neuroprotection and of age differences need further investigation.
Collapse
Affiliation(s)
- I Kurkowska-Jastrzebska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|