1
|
Stincic T, Gayet-Primo J, Taylor WR, Puthussery T. TARPγ2 Is Required for Normal AMPA Receptor Expression and Function in Direction-Selective Circuits of the Mammalian Retina. eNeuro 2023; 10:ENEURO.0158-23.2023. [PMID: 37491367 PMCID: PMC10431237 DOI: 10.1523/eneuro.0158-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
AMPA receptors (AMPARs) are the major mediators of fast excitatory neurotransmission in the retina as in other parts of the brain. In most neurons, the synaptic targeting, pharmacology, and function of AMPARs are influenced by auxiliary subunits including the transmembrane AMPA receptor regulatory proteins (TARPs). However, it is unclear which TARP subunits are present at retinal synapses and how they influence receptor localization and function. Here, we show that TARPɣ2 (stargazin) is associated with AMPARs in the synaptic layers of the mouse, rabbit, macaque, and human retina. In most species, TARPɣ2 expression was high where starburst amacrine cells (SACs) ramify and transcriptomic analyses suggest correspondingly high gene expression in mouse and human SACs. Synaptic expression of GluA2, GluA3, and GluA4 was significantly reduced in a mouse mutant lacking TARPɣ2 expression (stargazer mouse; stg), whereas GluA1 levels were unaffected. AMPAR-mediated light-evoked EPSCs in ON-SACs from stg mice were ∼30% smaller compared with heterozygous littermates. There was also loss of a transient ON pathway-driven GABAergic input to ON-SACs in stg mutants. Direction-selective ganglion cells in the stg mouse showed normal directional tuning, but their surround inhibition and thus spatial tuning was reduced. Our results indicate that TARPɣ2 is required for normal synaptic expression of GluA2, GluA3, and GluA4 in the inner retina. The presence of residual AMPAR expression in the stargazer mutant suggests that other TARP subunits may compensate in the absence of TARPɣ2.
Collapse
Affiliation(s)
- Todd Stincic
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - Jacqueline Gayet-Primo
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - W Rowland Taylor
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
2
|
Percival KA, Gayet J, Khanjian R, Taylor WR, Puthussery T. Calcium-permeable AMPA receptors on AII amacrine cells mediate sustained signaling in the On-pathway of the primate retina. Cell Rep 2022; 41:111484. [PMID: 36223749 PMCID: PMC10518213 DOI: 10.1016/j.celrep.2022.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022] Open
Abstract
Midget and parasol ganglion cells (GCs) represent the major output channels from the primate eye to the brain. On-type midget and parasol GCs exhibit a higher background spike rate and thus can respond more linearly to contrast changes than their Off-type counterparts. Here, we show that a calcium-permeable AMPA receptor (CP-AMPAR) antagonist blocks background spiking and sustained light-evoked firing in On-type GCs while preserving transient light responses. These effects are selective for On-GCs and are occluded by a gap-junction blocker suggesting involvement of AII amacrine cells (AII-ACs). Direct recordings from AII-ACs, cobalt uptake experiments, and analyses of transcriptomic data confirm that CP-AMPARs are expressed by primate AII-ACs. Overall, our data demonstrate that under some background light levels, CP-AMPARs at the rod bipolar to AII-AC synapse drive sustained signaling in On-type GCs and thus contribute to the more linear contrast signaling of the primate On- versus Off-pathway.
Collapse
Affiliation(s)
- Kumiko A Percival
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacqueline Gayet
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA
| | - Roupen Khanjian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - W Rowland Taylor
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-2020, USA
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
3
|
Boccuni I, Fairless R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life (Basel) 2022; 12:638. [PMID: 35629305 PMCID: PMC9147752 DOI: 10.3390/life12050638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate neurotransmission and metabolism are finely modulated by the retinal network, where the efficient processing of visual information is shaped by the differential distribution and composition of glutamate receptors and transporters. However, disturbances in glutamate homeostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to this. In particular, we focus on the N-methyl-d-aspartate (NMDA) receptor as the major effector of glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis, changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA receptor signalling, novel neuroprotective strategies may be on the horizon.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Abo-Ahmed AI, Emam MA. Expression of vesicular glutamate transporter 2 and 3 and glutamate receptor 1 and 2 mRNAs in the retina of adult laughing doves (Streptopelia senegalensis): An in situ hybridization study. Acta Histochem 2020; 122:151597. [PMID: 32778249 DOI: 10.1016/j.acthis.2020.151597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
The retina possesses few types of neurons so; it is considered an excellent model for understanding the neural mechanisms underlying basic neural information processing in the brain. Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system and retina. The present study was carried out to characterize the expression pattern of vesicular glutamate transporter 2 (Vglut2) and 3 (Vglut3) and glutamate receptor 1 (GluR1) and 2 (GluR2) mRNAs in the retina of adult laughing dove (Streptopelia senegalensis) by RT-PCR and in situ hybridization histochemistry. The cerebellum of adult laughing dove was used as a positive control in this study. Vglut2 mRNA was highly expressed only in the granular layer of the cerebellum while Vglut3 mRNA was weakly expressed only in the Purkinje cells layer. In the retina, Vglut2 mRNA was highly expressed in the ganglion cell layer and moderately expressed in the inner nuclear layer while Vglut3 mRNA was moderately expressed only in the inner nuclear layer. GluR1 mRNA was intensely expressed in the Purkinje cells layer while GluR2 mRNA signals were highly detectable in both granular and Purkinje cells layers of the cerebellum. In the retina, moderate expression of GluR1 and intense expression of GluR2 was found in both ganglion cell layer and the internal half of inner nuclear layer mostly amacrine cells. These results suggest that some retinal neuronal cells in the adult laughing dove are glutamatergic. Therefore, GluR1 and 2 are suggested as useful markers for glutamatergic retinal neuronal cells in the adult laughing doves.
Collapse
|
5
|
Proteomic insight into the pathogenesis of CAPN5-vitreoretinopathy. Sci Rep 2019; 9:7608. [PMID: 31110225 PMCID: PMC6527583 DOI: 10.1038/s41598-019-44031-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
CAPN5 Neovascular Inflammatory Vitreoretinopathy (CAPN5-NIV; OMIM 193235) is a poorly-understood rare, progressive inflammatory intraocular disease with limited therapeutic options. To profile disease effector proteins in CAPN5-NIV patient vitreous, liquid vitreous biopsies were collected from two groups: eyes from control subjects (n = 4) with idiopathic macular holes (IMH) and eyes from test subjects (n = 12) with different stages of CAPN5-NIV. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein expression changes were evaluated by principal component analysis, 1-way ANOVA (significant p-value < 0.05), hierarchical clustering, gene ontology, and pathway representation. There were 216 differentially-expressed proteins (between CAPN5-NIV and control vitreous), including those unique to and abundant in each clinical stage. Gene ontology analysis revealed decreased synaptic signaling proteins in CAPN5-NIV vitreous compared to controls. Pathway analysis revealed that inflammatory mediators of the acute phase response and the complement cascade were highly-represented. The CAPN5-NIV vitreous proteome displayed characteristic enrichment of proteins and pathways previously-associated with non-infectious posterior uveitis, rhegmatogenous retinal detachment (RRD), age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and proliferative vitreoretinopathy (PVR). This study expands our knowledge of affected molecular pathways in CAPN5-NIV using unbiased, shotgun proteomic analysis rather than targeted detection platforms. The high-levels and representation of acute phase response proteins suggests a functional role for the innate immune system in CAPN5-NIV pathogenesis.
Collapse
|
6
|
Ohkuma M, Kaneda M, Yoshida S, Fukuda A, Miyachi E. Optical measurement of glutamate in slice preparations of the mouse retina. Neurosci Res 2018. [PMID: 29522783 DOI: 10.1016/j.neures.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signaling by glutamatergic synapses plays an important role in visual processing in the retina. In this study, we used an enzyme-linked fluorescence assay system to monitor the dynamics of extracellular glutamate in a slice preparation from the mouse retina. High K stimulation induced an elevation of fluorescence in the inner plexiform layer (IPL) of the retina when glutamate transporters were inhibited by dl-threo-β-benzyloxyaspartic acid (TBOA). The high K-induced fluorescence signals in the IPL were inhibited by the calcium channel blocker Cd2+. Blockade of GABAergic and glycinergic circuits by picrotoxin and strychnine also elevated the fluorescence signals in the IPL. Thus, the enzyme-linked fluorescence assay system might be useful for monitoring the bulk concentration of extracellular glutamate released by synapses in the inner retina.
Collapse
Affiliation(s)
- M Ohkuma
- Department of Physiology, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - M Kaneda
- Department of Physiology, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo 160-8602, Japan.
| | - S Yoshida
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - A Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - E Miyachi
- Department of Physiology, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
7
|
Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia. Exp Eye Res 2018; 167:1-13. [DOI: 10.1016/j.exer.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/31/2017] [Accepted: 10/08/2017] [Indexed: 11/21/2022]
|
8
|
Hartveit E, Zandt BJ, Madsen E, Castilho Á, Mørkve SH, Veruki ML. AMPA receptors at ribbon synapses in the mammalian retina: kinetic models and molecular identity. Brain Struct Funct 2017; 223:769-804. [PMID: 28936725 DOI: 10.1007/s00429-017-1520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/10/2017] [Indexed: 10/24/2022]
Abstract
In chemical synapses, neurotransmitter molecules released from presynaptic vesicles activate populations of postsynaptic receptors that vary in functional properties depending on their subunit composition. Differential expression and localization of specific receptor subunits are thought to play fundamental roles in signal processing, but our understanding of how that expression is adapted to the signal processing in individual synapses and microcircuits is limited. At ribbon synapses, glutamate release is independent of action potentials and characterized by a high and rapidly changing rate of release. Adequately translating such presynaptic signals into postsynaptic electrical signals poses a considerable challenge for the receptor channels in these synapses. Here, we investigated the functional properties of AMPA receptors of AII amacrine cells in rat retina that receive input at spatially segregated ribbon synapses from OFF-cone and rod bipolar cells. Using patch-clamp recording from outside-out patches, we measured the concentration dependence of response amplitude and steady-state desensitization, the single-channel conductance and the maximum open probability. The GluA4 subunit seems critical for the functional properties of AMPA receptors in AII amacrines and immunocytochemical labeling suggested that GluA4 is located at synapses made by both OFF-cone bipolar cells and rod bipolar cells. Finally, we used a series of experimental observables to develop kinetic models for AII amacrine AMPA receptors and subsequently used the models to explore the behavior of the receptors and responses generated by glutamate concentration profiles mimicking those occurring in synapses. These models will facilitate future in silico modeling of synaptic signaling and processing in AII amacrine cells.
Collapse
Affiliation(s)
- Espen Hartveit
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Bas-Jan Zandt
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Eirik Madsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Department of Radiology, Førde Central Hospital, Førde, Norway
| | - Áurea Castilho
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Svein Harald Mørkve
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Margaret Lin Veruki
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
9
|
Fasoli A, Dang J, Johnson JS, Gouw AH, Fogli Iseppe A, Ishida AT. Somatic and neuritic spines on tyrosine hydroxylase-immunopositive cells of rat retina. J Comp Neurol 2017; 525:1707-1730. [PMID: 28035673 DOI: 10.1002/cne.24166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
Abstract
Dopamine- and tyrosine hydroxylase-immunopositive cells (TH cells) modulate visually driven signals as they flow through retinal photoreceptor, bipolar, and ganglion cells. Previous studies suggested that TH cells release dopamine from varicose axons arborizing in the inner and outer plexiform layers after glutamatergic synapses depolarize TH cell dendrites in the inner plexiform layer and these depolarizations propagate to the varicosities. Although it has been proposed that these excitatory synapses are formed onto appendages resembling dendritic spines, spines have not been found on TH cells of most species examined to date or on TH cell somata that release dopamine when exposed to glutamate receptor agonists. By use of protocols that preserve proximal retinal neuron morphology, we have examined the shape, distribution, and synapse-related immunoreactivity of adult rat TH cells. We report here that TH cell somata, tapering and varicose inner plexiform layer neurites, and varicose outer plexiform layer neurites all bear spines, that some of these spines are immunopositive for glutamate receptor and postsynaptic density proteins (viz., GluR1, GluR4, NR1, PSD-95, and PSD-93), that TH cell somata and tapering neurites are also immunopositive for a γ-aminobutyric acid (GABA) receptor subunit (GABAA Rα1 ), and that a synaptic ribbon-specific protein (RIBEYE) is found adjacent to some colocalizations of GluR1 and TH in the inner plexiform layer. These results identify previously undescribed sites at which glutamatergic and GABAergic inputs may stimulate and inhibit dopamine release, especially at somata and along varicose neurites that emerge from these somata and arborize in various levels of the retina. J. Comp. Neurol. 525:1707-1730, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Fasoli
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - James Dang
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Jeffrey S Johnson
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Aaron H Gouw
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Alex Fogli Iseppe
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California.,Department of Ophthalmology and Vision Science, University of California, Sacramento, California
| |
Collapse
|
10
|
Castilho Á, Madsen E, Ambrósio AF, Veruki ML, Hartveit E. Diabetic hyperglycemia reduces Ca2+ permeability of extrasynaptic AMPA receptors in AII amacrine cells. J Neurophysiol 2015; 114:1545-53. [PMID: 26156384 DOI: 10.1152/jn.00295.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/01/2015] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that diabetic retinopathy is a primary neuropathological disorder that precedes the microvascular pathology associated with later stages of the disease. Recently, we found evidence for altered functional properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in A17, but not AII, amacrine cells in the mammalian retina, and the observed changes were consistent with an upregulation of the GluA2 subunit, a key determinant of functional properties of AMPA receptors, including Ca(2+) permeability and current-voltage (I-V) rectification properties. Here, we have investigated functional changes of extrasynaptic AMPA receptors in AII amacrine cells evoked by diabetes. With patch-clamp recording of nucleated patches from retinal slices, we measured Ca(2+) permeability and I-V rectification in rats with ∼3 wk of streptozotocin-induced diabetes and age-matched, noninjected controls. Under bi-ionic conditions (extracellular Ca(2+) concentration = 30 mM, intracellular Cs(+) concentration = 171 mM), the reversal potential (Erev) of AMPA-evoked currents indicated a significant reduction of Ca(2+) permeability in diabetic animals [Erev = -17.7 mV, relative permeability of Ca(2+) compared with Cs(+) (PCa/PCs) = 1.39] compared with normal animals (Erev = -7.7 mV, PCa/PCs = 2.35). Insulin treatment prevented the reduction of Ca(2+) permeability. I-V rectification was examined by calculating a rectification index (RI) as the ratio of the AMPA-evoked conductance at +40 and -60 mV. The degree of inward rectification in patches from diabetic animals (RI = 0.48) was significantly reduced compared with that in normal animals (RI = 0.30). These results suggest that diabetes evokes a change in the functional properties of extrasynaptic AMPA receptors of AII amacrine cells. These changes could be representative for extrasynaptic AMPA receptors elsewhere in AII amacrine cells and suggest that synaptic and extrasynaptic AMPA receptors are differentially regulated.
Collapse
Affiliation(s)
- Áurea Castilho
- Department of Biomedicine, University of Bergen, Bergen, Norway; Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Eirik Madsen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - António F Ambrósio
- Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Institute of Biomedical Imaging and Life Sciences (CNC.IBILI) Consortium, University of Coimbra, Coimbra, Portugal; and Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | | | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway;
| |
Collapse
|
11
|
Pérez de Sevilla Müller L, Sargoy A, Fernández-Sánchez L, Rodriguez A, Liu J, Cuenca N, Brecha N. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina. J Comp Neurol 2015; 523:1443-60. [PMID: 25631988 DOI: 10.1002/cne.23751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/21/2015] [Accepted: 01/24/2015] [Indexed: 12/11/2022]
Abstract
High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca(2+), neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α(1) pore-forming subunit, which is associated with an extracellular α(2)δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α(2)δ(3) subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼ 305 bp corresponding to the predicted size of the α(2)δ(3) subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α(2)δ(3) subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α(2)δ(3) immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α(2)δ(3) calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Allison Sargoy
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | | | - Allen Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Janelle Liu
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Nicolás Cuenca
- Physiology, Genetics and Microbiology, University of Alicante, 03690, Alicante, Spain
| | - Nicholas Brecha
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,CURE-Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, 90073
| |
Collapse
|
12
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
De Sevilla Müller LP, Liu J, Solomon A, Rodriguez A, Brecha NC. Expression of voltage-gated calcium channel α(2)δ(4) subunits in the mouse and rat retina. J Comp Neurol 2014; 521:2486-501. [PMID: 23296739 DOI: 10.1002/cne.23294] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/12/2012] [Accepted: 12/27/2012] [Indexed: 01/18/2023]
Abstract
High-voltage activated Ca channels participate in multiple cellular functions, including transmitter release, excitation, and gene transcription. Ca channels are heteromeric proteins consisting of a pore-forming α(1) subunit and auxiliary α(2)δ and β subunits. Although there are reports of α(2)δ(4) subunit mRNA in the mouse retina and localization of the α(2)δ(4) subunit immunoreactivity to salamander photoreceptor terminals, there is a limited overall understanding of its expression and localization in the retina. α(2)δ(4) subunit expression and distribution in the mouse and rat retina were evaluated by using reverse transcriptase polymerase chain reaction, western blot, and immunohistochemistry with specific primers and a well-characterized antibody to the α(2)δ(4) subunit. α(2)δ(4) subunit mRNA and protein are present in mouse and rat retina, brain, and liver homogenates. Immunostaining for the α(2)δ(4) subunit is mainly localized to Müller cell processes and endfeet, photoreceptor terminals, and photoreceptor outer segments. This subunit is also expressed in a few displaced ganglion cells and bipolar cell dendrites. These findings suggest that the α(2)δ(4) subunit participates in the modulation of L-type Ca(2+) current regulating neurotransmitter release from photoreceptor terminals and Ca(2+)-dependent signaling pathways in bipolar and Müller cells.
Collapse
Affiliation(s)
- Luis Pérez De Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
14
|
Nivison-Smith L, Sun D, Fletcher EL, Marc RE, Kalloniatis M. Mapping kainate activation of inner neurons in the rat retina. J Comp Neurol 2014; 521:2416-38. [PMID: 23348566 DOI: 10.1002/cne.23305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/06/2012] [Accepted: 01/17/2013] [Indexed: 11/10/2022]
Abstract
Kainate receptors mediate fast, excitatory synaptic transmission for a range of inner neurons in the mammalian retina. However, allocation of functional kainate receptors to known cell types and their sensitivity remains unresolved. Using the cation channel probe 1-amino-4-guanidobutane agmatine (AGB), we investigated kainate sensitivity of neurochemically identified cell populations within the structurally intact rat retina. Most inner retinal neuron populations responded to kainate in a concentration-dependent manner. OFF cone bipolar cells demonstrated the highest sensitivity of all inner neurons to kainate. Immunocytochemical localization of AGB and macromolecular markers confirmed that type 2 bipolar cells were part of this kainate-sensitive population. The majority of amacrine (ACs) and ganglion cells (GCs) showed kainate responses with different sensitivities between major neurochemical classes (γ-aminobutyric acid [GABA]/glycine ACs > glycine ACs > GABA ACs; glutamate [Glu]/weakly GABA GCs > Glu GCs). Conventional and displaced cholinergic ACs were highly responsive to kainate, whereas dopaminergic ACs do not appear to express functional kainate receptors. These findings further contribute to our understanding of neuronal networks in complex multicellular tissues.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | | | | | | | | |
Collapse
|
15
|
Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina. Neurochem Int 2014; 66:1-14. [DOI: 10.1016/j.neuint.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/09/2013] [Accepted: 01/04/2014] [Indexed: 11/23/2022]
|
16
|
Lauritzen JS, Anderson JR, Jones BW, Watt CB, Mohammed S, Hoang JV, Marc RE. ON cone bipolar cell axonal synapses in the OFF inner plexiform layer of the rabbit retina. J Comp Neurol 2013; 521:977-1000. [PMID: 23042441 DOI: 10.1002/cne.23244] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 11/07/2022]
Abstract
Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and the OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make noncanonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscopic imaging, molecular tagging, tracing, and rendering of ~400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include γ-aminobutyrate (GABA)-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs), and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs, and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells.
Collapse
Affiliation(s)
- J Scott Lauritzen
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Distinct synaptic localization patterns of brefeldin A-resistant guanine nucleotide exchange factors BRAG2 and BRAG3 in the mouse retina. J Comp Neurol 2013; 521:860-76. [DOI: 10.1002/cne.23206] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 05/11/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
|
18
|
|
19
|
Jones RS, Carroll RC, Nawy S. Light-induced plasticity of synaptic AMPA receptor composition in retinal ganglion cells. Neuron 2012; 75:467-78. [PMID: 22884330 DOI: 10.1016/j.neuron.2012.05.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2012] [Indexed: 11/26/2022]
Abstract
Light-evoked responses of all three major classes of retinal ganglion cells (RGCs) are mediated by NMDA receptors (NMDARs) and AMPA receptors (AMPARs). Although synaptic activity at RGC synapses is highly dynamic, synaptic plasticity has not been observed in adult RGCs. Here, using patch-clamp recordings in dark-adapted mouse retina, we report a retina-specific form of AMPAR plasticity. Both chemical and light activation of NMDARs caused the selective endocytosis of GluA2-containing, Ca(2+)-impermeable AMPARs on RGCs and replacement with GluA2-lacking, Ca(2+)-permeable AMPARs. The plasticity was expressed in ON but not OFF RGCs and was restricted solely to the ON responses in ON-OFF RGCs. Finally, the plasticity resulted in a shift in the light responsiveness of ON RGCs. Thus, physiologically relevant light stimuli can induce a change in synaptic receptor composition of ON RGCs, providing a mechanism by which the sensitivity of RGC responses may be modified under scotopic conditions.
Collapse
Affiliation(s)
- Rebecca S Jones
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, The Rose F. Kennedy Center, 1410 Pelham Parkway, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
20
|
Hartveit E, Veruki ML. Electrical synapses between AII amacrine cells in the retina: Function and modulation. Brain Res 2012; 1487:160-72. [PMID: 22776293 DOI: 10.1016/j.brainres.2012.05.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/09/2012] [Indexed: 12/24/2022]
Abstract
Adaptation enables the visual system to operate across a large range of background light intensities. There is evidence that one component of this adaptation is mediated by modulation of gap junctions functioning as electrical synapses, thereby tuning and functionally optimizing specific retinal microcircuits and pathways. The AII amacrine cell is an interneuron found in most mammalian retinas and plays a crucial role for processing visual signals in starlight, twilight and daylight. AII amacrine cells are connected to each other by gap junctions, potentially serving as a substrate for signal averaging and noise reduction, and there is evidence that the strength of electrical coupling is modulated by the level of background light. Whereas there is extensive knowledge concerning the retinal microcircuits that involve the AII amacrine cell, it is less clear which signaling pathways and intracellular transduction mechanisms are involved in modulating the junctional conductance between electrically coupled AII amacrine cells. Here we review the current state of knowledge, with a focus on the recent evidence that suggests that the modulatory control involves activity-dependent changes in the phosphorylation of the gap junction channels between AII amacrine cells, potentially linked to their intracellular Ca(2+) dynamics. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Espen Hartveit
- University of Bergen, Department of Biomedicine, Bergen, Norway.
| | | |
Collapse
|
21
|
Auferkorte ON, Baden T, Kaushalya SK, Zabouri N, Rudolph U, Haverkamp S, Euler T. GABA(A) receptors containing the α2 subunit are critical for direction-selective inhibition in the retina. PLoS One 2012; 7:e35109. [PMID: 22506070 PMCID: PMC3323634 DOI: 10.1371/journal.pone.0035109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/13/2012] [Indexed: 01/08/2023] Open
Abstract
Far from being a simple sensor, the retina actively participates in processing visual signals. One of the best understood aspects of this processing is the detection of motion direction. Direction-selective (DS) retinal circuits include several subtypes of ganglion cells (GCs) and inhibitory interneurons, such as starburst amacrine cells (SACs). Recent studies demonstrated a surprising complexity in the arrangement of synapses in the DS circuit, i.e. between SACs and DS ganglion cells. Thus, to fully understand retinal DS mechanisms, detailed knowledge of all synaptic elements involved, particularly the nature and localization of neurotransmitter receptors, is needed. Since inhibition from SACs onto DSGCs is crucial for generating retinal direction selectivity, we investigate here the nature of the GABA receptors mediating this interaction. We found that in the inner plexiform layer (IPL) of mouse and rabbit retina, GABA(A) receptor subunit α2 (GABA(A)R α2) aggregated in synaptic clusters along two bands overlapping the dendritic plexuses of both ON and OFF SACs. On distal dendrites of individually labeled SACs in rabbit, GABA(A)R α2 was aligned with the majority of varicosities, the cell's output structures, and found postsynaptically on DSGC dendrites, both in the ON and OFF portion of the IPL. In GABA(A)R α2 knock-out (KO) mice, light responses of retinal GCs recorded with two-photon calcium imaging revealed a significant impairment of DS responses compared to their wild-type littermates. We observed a dramatic drop in the proportion of cells exhibiting DS phenotype in both the ON and ON-OFF populations, which strongly supports our anatomical findings that α2-containing GABA(A)Rs are critical for mediating retinal DS inhibition. Our study reveals for the first time, to the best of our knowledge, the precise functional localization of a specific receptor subunit in the retinal DS circuit.
Collapse
|
22
|
Lin Y, Jones BW, Liu A, Vazquéz-Chona FR, Lauritzen JS, Ferrell WD, Marc RE. Rapid glutamate receptor 2 trafficking during retinal degeneration. Mol Neurodegener 2012; 7:7. [PMID: 22325330 PMCID: PMC3296582 DOI: 10.1186/1750-1326-7-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 02/10/2012] [Indexed: 01/03/2023] Open
Abstract
Background Retinal degenerations, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), are characterized by photoreceptor loss and anomalous remodeling of the surviving retina that corrupts visual processing and poses a barrier to late-stage therapeutic interventions in particular. However, the molecular events associated with retinal remodeling remain largely unknown. Given our prior evidence of ionotropic glutamate receptor (iGluR) reprogramming in retinal degenerations, we hypothesized that the edited glutamate receptor 2 (GluR2) subunit and its trafficking may be modulated in retinal degenerations. Results Adult albino Balb/C mice were exposed to intense light for 24 h to induce light-induced retinal degeneration (LIRD). We found that prior to the onset of photoreceptor loss, protein levels of GluR2 and related trafficking proteins, including glutamate receptor-interacting protein 1 (GRIP1) and postsynaptic density protein 95 (PSD-95), were rapidly increased. LIRD triggered neuritogenesis in photoreceptor survival regions, where GluR2 and its trafficking proteins were expressed in the anomalous dendrites. Immunoprecipitation analysis showed interaction between KIF3A and GRIP1 as well as PSD-95, suggesting that KIF3A may mediate transport of GluR2 and its trafficking proteins to the novel dendrites. However, in areas of photoreceptor loss, GluR2 along with its trafficking proteins nearly vanished in retracted retinal neurites. Conclusions All together, LIRD rapidly triggers GluR2 plasticity, which is a potential mechanism behind functionally phenotypic revisions of retinal neurons and neuritogenesis during retinal degenerations.
Collapse
Affiliation(s)
- Yanhua Lin
- Department of Ophthalmology, John A, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
de Souza CF, Kalloniatis M, Polkinghorne PJ, McGhee CN, Acosta ML. Functional activation of glutamate ionotropic receptors in the human peripheral retina. Exp Eye Res 2012; 94:71-84. [DOI: 10.1016/j.exer.2011.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/22/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022]
|
24
|
Guo C, Hirano AA, Stella SL, Bitzer M, Brecha NC. Guinea pig horizontal cells express GABA, the GABA-synthesizing enzyme GAD 65, and the GABA vesicular transporter. J Comp Neurol 2010; 518:1647-69. [PMID: 20235161 DOI: 10.1002/cne.22294] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyric acid (GABA) is likely expressed in horizontal cells of all species, although conflicting physiological findings have led to considerable controversy regarding its role as a transmitter in the outer retina. This study has evaluated key components of the GABA system in the outer retina of guinea pig, an emerging retinal model system. The presence of GABA, its rate-limiting synthetic enzyme glutamic acid decarboxylase (GAD(65) and GAD(67) isoforms), the plasma membrane GABA transporters (GAT-1 and GAT-3), and the vesicular GABA transporter (VGAT) was evaluated by using immunohistochemistry with well-characterized antibodies. The presence of GAD(65) mRNA was also evaluated by using laser capture microdissection and reverse transcriptase-polymerase chain reaction. Specific GABA, GAD(65), and VGAT immunostaining was localized to horizontal cell bodies, as well as to their processes and tips in the outer plexiform layer. Furthermore, immunostaining of retinal whole mounts and acutely dissociated retinas showed GAD(65) and VGAT immunoreactivity in both A-type and B-type horizontal cells. However, these cells did not contain GAD(67), GAT-1, or GAT-3 immunoreactivity. GAD(65) mRNA was detected in horizontal cells, and sequencing of the amplified GAD(65) fragment showed approximately 85% identity with other mammalian GAD(65) mRNAs. These studies demonstrate the presence of GABA, GAD(65), and VGAT in horizontal cells of the guinea pig retina, and support the idea that GABA is synthesized from GAD(65), taken up into synaptic vesicles by VGAT, and likely released by a vesicular mechanism from horizontal cells.
Collapse
Affiliation(s)
- Chenying Guo
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
25
|
Lee H, Brecha NC. Immunocytochemical evidence for SNARE protein-dependent transmitter release from guinea pig horizontal cells. Eur J Neurosci 2010; 31:1388-401. [PMID: 20384779 DOI: 10.1111/j.1460-9568.2010.07181.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Horizontal cells are lateral interneurons that participate in visual processing in the outer retina but the cellular mechanisms underlying transmitter release from these cells are not fully understood. In non-mammalian horizontal cells, GABA release has been shown to occur by a non-vesicular mechanism. However, recent evidence in mammalian horizontal cells favors a vesicular mechanism as they lack plasmalemmal GABA transporters and some soluble NSF attachment protein receptor (SNARE) core proteins have been identified in rodent horizontal cells. Moreover, immunoreactivity for GABA and the molecular machinery to synthesize GABA have been found in guinea pig horizontal cells, suggesting that if components of the SNARE complex are expressed they could contribute to the vesicular release of GABA. In this study we investigated whether these vesicular and synaptic proteins are expressed by guinea pig horizontal cells using immunohistochemistry with well-characterized antibodies to evaluate their cellular distribution. Components of synaptic vesicles including vesicular GABA transporter, synapsin I and synaptic vesicle protein 2A were localized to horizontal cell processes and endings, along with the SNARE core complex proteins, syntaxin-1a, syntaxin-4 and synaptosomal-associated protein 25 (SNAP-25). Complexin I/II, a cytosolic protein that stabilizes the activated SNARE fusion core, strongly immunostained horizontal cell soma and processes. In addition, the vesicular Ca(2+)-sensor, synaptotagmin-2, which is essential for Ca(2+)-mediated vesicular release, was also localized to horizontal cell processes and somata. These morphological findings from guinea pig horizontal cells suggest that mammalian horizontal cells have the capacity to utilize a regulated Ca(2+)-dependent vesicular pathway to release neurotransmitter, and that this mechanism may be shared among many mammalian species.
Collapse
Affiliation(s)
- Helen Lee
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
26
|
Dumitrescu ON, Pucci FG, Wong KY, Berson DM. Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 2009; 517:226-44. [PMID: 19731338 DOI: 10.1002/cne.22158] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A key principle of retinal organization is that distinct ON and OFF channels are relayed by separate populations of bipolar cells to different sublaminae of the inner plexiform layer (IPL). ON bipolar cell axons have been thought to synapse exclusively in the inner IPL (the ON sublamina) onto dendrites of ON-type amacrine and ganglion cells. However, M1 melanopsin-expressing ganglion cells and dopaminergic amacrine (DA) cells apparently violate this dogma. Both are driven by ON bipolar cells, but their dendrites stratify in the outermost IPL, within the OFF sublamina. Here, in the mouse retina, we show that some ON cone bipolar cells make ribbon synapses in the outermost OFF sublayer, where they costratify with and contact the dendrites of M1 and DA cells. Whole-cell recording and dye filling in retinal slices indicate that type 6 ON cone bipolars provide some of this ectopic ON channel input. Imaging studies in dissociated bipolar cells show that these ectopic ribbon synapses are capable of vesicular release. There is thus an accessory ON sublayer in the outer IPL.
Collapse
Affiliation(s)
- Olivia N Dumitrescu
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | | | | | | |
Collapse
|
27
|
BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina. Nat Neurosci 2009; 12:585-92. [PMID: 19363492 PMCID: PMC2704978 DOI: 10.1038/nn.2302] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/18/2009] [Indexed: 11/25/2022]
Abstract
In the mammalian retina, A17 amacrine cells provide reciprocal inhibitory feedback to rod bipolar cells, thereby shaping the time course of visual signaling in vivo. Previous results indicate that A17 feedback can be triggered by Ca2+ influx through Ca2+ permeable AMPARs and can occur independently of voltage-gated Ca2+ (Cav) channels, whose presence and functional role in A17 dendrites have not been explored. Here, we combine electrophysiology, calcium imaging and immunohistochemistry to show that L-type Cav channels in rat A17 amacrine cells are located at the sites of reciprocal synaptic feedback, but their contribution to GABA release is diminished by large-conductance Ca2+-activated potassium (BK) channels, which suppress postsynaptic depolarization in A17s and limit Cav channel activation. We also show that BK channels, by limiting GABA release from A17s, regulate the flow of excitatory synaptic transmission through the rod pathway.
Collapse
|
28
|
Guo C, Stella SL, Hirano AA, Brecha NC. Plasmalemmal and vesicular gamma-aminobutyric acid transporter expression in the developing mouse retina. J Comp Neurol 2009; 512:6-26. [PMID: 18975268 DOI: 10.1002/cne.21846] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmalemmal and vesicular gamma-aminobutyric acid (GABA) transporters influence neurotransmission by regulating high-affinity GABA uptake and GABA release into the synaptic cleft and extracellular space. Postnatal expression of the plasmalemmal GABA transporter-1 (GAT-1), GAT-3, and the vesicular GABA/glycine transporter (VGAT) were evaluated in the developing mouse retina by using immunohistochemistry with affinity-purified antibodies. Weak transporter immunoreactivity was observed in the inner retina at postnatal day 0 (P0). GAT-1 immunostaining at P0 and at older ages was in amacrine and displaced amacrine cells in the inner nuclear layer (INL) and ganglion cell layer (GCL), respectively, and in their processes in the inner plexiform layer (IPL). At P10, weak GAT-1 immunostaining was in Müller cell processes. GAT-3 immunostaining at P0 and older ages was in amacrine cells and their processes, as well as in Müller cells and their processes that extended radially across the retina. At P10, Müller cell somata were observed in the middle of the INL. VGAT immunostaining was present at P0 and older ages in amacrine cells in the INL as well as processes in the IPL. At P5, weak VGAT immunostaining was also observed in horizontal cell somata and processes. By P15, the GAT and VGAT immunostaining patterns appear similar to the adult immunostaining patterns; they reached adult levels by about P20. These findings demonstrate that GABA uptake and release are initially established in the inner retina during the first postnatal week and that these systems subsequently mature in the outer retina during the second postnatal week.
Collapse
Affiliation(s)
- Chenying Guo
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
29
|
Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals. Proc Natl Acad Sci U S A 2008; 105:4922-7. [PMID: 18339810 DOI: 10.1073/pnas.0709067105] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic vesicles release neurotransmitter by following a process of vesicle docking and exocytosis. Although these steps are well established, it has been difficult to observe and measure these rates directly in living synapses. Here, by combining the direct imaging of single synaptic vesicles and synaptic ribbons, I measure the properties of vesicle docking and evoked and spontaneous release from ribbon and extraribbon locations in a ribbon-type synaptic terminal, the goldfish retinal bipolar cell. In the absence of a stimulus, captured vesicles near ribbons associate tightly and only rarely undock or undergo spontaneous exocytosis. By contrast, vesicle capture at outlier sites is less stable and spontaneous exocytosis occurs at a higher rate. In response to a stimulus, exocytic events cluster near ribbons, but show no evidence of clustering away from ribbon sites. Together, the results here indicate that, although vesicles can associate and fuse both near and away from synaptic sites, vesicles at synaptic ribbons associate more stably and fusion is more tightly linked to stimuli.
Collapse
|
30
|
Sun D, Bui BV, Vingrys AJ, Kalloniatis M. Alterations in photoreceptor-bipolar cell signaling following ischemia/reperfusion in the rat retina. J Comp Neurol 2008; 505:131-46. [PMID: 17729268 DOI: 10.1002/cne.21470] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studies of retinal ischemia/reperfusion indicate a disparity between the anatomical and functional results; while a large number of rod bipolar cells remain postischemia, there is a significant reduction in the amplitude of the scotopic b-wave of the electroretinogram (ERG). We investigated the alterations in photoreceptor-bipolar cell signaling following ischemia/reperfusion and suggest a mechanism for the decrease in b-wave amplitude. A cation channel probe (agmatine, 1-amino-4-guanidobutane, AGB) was used to assess cellular ion channel activity in neurochemically identified cells secondary to endogenous glutamate release or pharmacological manipulations. By applying the "neurochemical truth point" principle (Sun et al. [2007a] J Comp Neurol, this issue), we have been able to confirm the loss of specific subpopulations of neurons. ERG was used to assess gross retinal function, with parameters of the ERG model providing insight into changes in the phototransduction cascade and sensitivity of postreceptoral glutamate receptors. Following ischemia/reperfusion, rod bipolar cells maintained 2-amino-4-phosphonobutyric acid-responsive metabotropic glutamate receptors and displayed no change in sensitivity to flashes of light as assessed by ERG. Therefore, the loss in b-wave amplitude is likely due to alterations in photoreceptoral glutamate release detected as a change in postsynaptic AGB permeation into rod bipolar cells. Bipolar cell to amacrine cell signaling was also altered. The robust AGB entry into cholinergic amacrine cells was virtually absent in retinas that had undergone ischemia/reperfusion but remained in the AII amacrine cells. Such results suggest a loss of glutamate receptors and/or a change in receptor subunit expression in subpopulations of inner retinal neurons. Although many cells retain their characteristic neurochemical labeling following ischemia/reperfusion, caution should be used when assuming cells participate in functional retinal circuits based solely on the persistence of neurochemical labeling.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
31
|
Seiler MJ, Thomas BB, Chen Z, Arai S, Chadalavada S, Mahoney MJ, Sadda SR, Aramant RB. BDNF-treated retinal progenitor sheets transplanted to degenerate rats: improved restoration of visual function. Exp Eye Res 2007; 86:92-104. [PMID: 17983616 DOI: 10.1016/j.exer.2007.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/28/2007] [Accepted: 09/26/2007] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the functional efficacy of retinal progenitor cell (RPC) containing sheets with BDNF microspheres following subretinal transplantation in a rat model of retinal degeneration. Sheets of E19 RPCs derived from human placental alkaline phosphatase (hPAP) expressing transgenic rats were coated with poly-lactide-co-glycolide (PLGA) microspheres containing brain-derived neurotrophic factor (BDNF) and transplanted into the subretinal space of S334ter line 3 rhodopsin retinal degenerate rats. Controls received transplants without BDNF or BDNF microspheres alone. Visual function was monitored using optokinetic head-tracking behavior. Visually evoked responses to varying light intensities were recorded from the superior colliculus (SC) by electrophysiology at 60days after surgery. Frozen sections were studied by immunohistochemistry for photoreceptor and synaptic markers. Visual head tracking was significantly improved in rats that received BDNF-coated RPC sheets. Relatively more BDNF-treated transplanted rats (80%) compared to non-BDNF transplants (57%) responded to a "low light" intensity of 1cd/m2 in a confined SC area. With bright light, the onset latency of SC responses was restored to a nearly normal level in BDNF-treated transplants. No significant improvement was observed in the BDNF-only and no surgery transgenic control rats. The bipolar synaptic markers mGluR6 and PSD-95 showed normal distribution in transplants and abnormal distribution of the host retina, both with or without BDNF treatment. Red-green cones were significantly reduced in the host retina overlying the transplant in the BDNF-treated group. In summary, BDNF coating improved the functional efficacy of RPC grafts. The mechanism of the BDNF effects--either promoting functional integration between the transplant and the host retina and/or synergistic action with other putative humoral factors released by the RPCs--still needs to be elucidated.
Collapse
|
32
|
Witkovsky P, Svenningsson P, Yan L, Bateup H, Silver R. Cellular localization and function of DARPP-32 in the rodent retina. Eur J Neurosci 2007; 25:3233-42. [PMID: 17552992 PMCID: PMC3285295 DOI: 10.1111/j.1460-9568.2007.05571.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The goal of the present study was to elucidate the role of DARPP-32 (dopamine- and cyclic adenosine 3'-5'-monophosphate-regulated phosphoprotein, 32 kDa) in retinal function. We examined mouse and rat retinas for the presence of DARPP-32 by immunocytochemistry. In both rodent retinas DARPP-32 immunoreactivity was localized to horizontal and AII amacrine neurons and to the Mueller glial cells, using immuno-double labelling. Additional unidentified neurons in the amacrine cell layer also showed DARPP-32 immunoreactivity. Using mice entrained to a 12-12 h light-dark cycle, we found that exposure to light presented during the dark phase significantly enhanced phosphorylation of DARPP-32 at threonine (Thr) 34 and phosphorylation of the ionotropic glutamate receptor subunit GluR1 at serine (Ser) 845, as measured by immunoblots. However, light also increased Ser 845-GluR1 phosphorylation in DARPP-32-knockout mice. When a dopamine D1 receptor antagonist was injected into the eye prior to light exposure, phosphorylation of both Thr 34-DARPP-32 and Ser 845-GluR1 was significantly reduced. These data indicate that DARPP-32 participates in dopamine-mediated modifications of retinal function. We also tested for a possible circadian rhythm of Thr 34- and Thr 75-DARPP-32 and Ser 845-GluR1 expression. No significant circadian rhythm of either DARPP-32 or GluR1 phosphorylation was found.
Collapse
Affiliation(s)
- Paul Witkovsky
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
33
|
Tamalu F, Watanabe SI. Glutamatergic input is coded by spike frequency at the soma and proximal dendrite of AII amacrine cells in the mouse retina. Eur J Neurosci 2007; 25:3243-52. [PMID: 17552993 DOI: 10.1111/j.1460-9568.2007.05596.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the mammalian retina, AII amacrine cells play a crucial role in scotopic vision. They transfer rod signals from rod bipolar cells to the cone circuit, and divide these signals into the ON and OFF pathways at the discrete synaptic layers. AII amacrine cells have been reported to generate tetrodotoxin (TTX)-sensitive repetitive spikes of small amplitude. To investigate the properties of the spikes, we performed whole-cell patch-clamping of AII amacrine cells in mouse retinal slices. The spike frequency increased in proportion to the concentration of glutamate puffer-applied to the arboreal dendrite and to the intensity of the depolarizing current injection. The spike activity was suppressed by L-2-amino-4-phosphonobutyric acid, a glutamate analogue that hyperpolarizes rod bipolar cells, puffer-applied to the outer plexiform layer. Therefore, it is most likely that the spike frequency generated by AII amacrine cells is dependent on the excitatory glutamatergic input from rod bipolar cells. Gap junction blockers reduced the range of intensity of input with which spike frequency varies. Application of TTX to the soma and the proximal dendrite of AII amacrine cells blocked the voltage-gated Na(+) current significantly more than application to the arboreal dendrite, indicating that the Na(+) channels are mainly localized in these regions. Our results suggest that the intensity of the glutamatergic input from rod bipolar cells is coded by the spike frequency at the soma and the proximal dendrite of AII amacrine cells, raising the possibility that the spikes could contribute to the OFF pathway to enhance release of neurotransmitter.
Collapse
Affiliation(s)
- Fuminobu Tamalu
- Department of Physiology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Saitama 350-0495, Japan.
| | | |
Collapse
|
34
|
Vitanova L. AMPA and kainate receptors in turtle retina: an immunocytochemical study. Cell Mol Neurobiol 2007; 27:407-21. [PMID: 17235691 PMCID: PMC11517399 DOI: 10.1007/s10571-006-9133-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
1. Glutamate is one of the main neurotransmitters in the retina. Its effects are mediated by a large number of ionotropic and metabotropic receptors.2. The distribution of ionotropic AMPA receptor subunits GluR1-4, kainate receptor subunits GluR5-7 and KA2, as well as delta receptors 1-2 was studied in turtle retina. Indirect immunofluorescence was used to localize the different receptor subunits viewed using light microscopy.3. Results show that all subunits, with exception of GluR1 and GluR5, are widely distributed in the turtle retina.4. They are mainly located in the both plexiform layers of the retina where punctate staining, a sign for synaptic localization, is observed.5. The vast majority of the subunits possess specific pattern of staining that allow to suppose that they are involved in different retinal circuits.6. It can be assumed that the GluR2/3 and GluR6/7 subunits are expressed on the dendrites of a subpopulation of bipolar cells that are immunopositive for alpha-isoform of protein kinase C (PKCalpha). The GluR2/3 and GluR6/7 subunits are most probably used by the same PKCalpha immunopositive bipolar cells in their synaptic contacts with the third-order retinal neurons, the amacrine and ganglion cells.
Collapse
Affiliation(s)
- Lily Vitanova
- Department of Physiology, Medical University, 1 G. Sofiisky Street, Sofia, 1431, Bulgaria.
| |
Collapse
|
35
|
Puthussery T, Fletcher EL. Neuronal expression of P2X3 purinoceptors in the rat retina. Neuroscience 2007; 146:403-14. [PMID: 17367943 DOI: 10.1016/j.neuroscience.2007.01.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 01/10/2007] [Accepted: 01/27/2007] [Indexed: 11/16/2022]
Abstract
P2X3 purinoceptors are involved in fast, excitatory neurotransmission in the nervous system, and are expressed predominantly within sensory neurons. In this study, we examined the cellular and synaptic localization of the P2X3 receptor subunit in the retina of the rat using immunofluorescence immunohistochemistry and pre-embedding immunoelectron microscopy. In addition, we investigated the activity of ecto-ATPases in the inner retina using an enzyme cytochemical method. The P2X3 receptor subunit was expressed in the soma of a subset of GABA immunoreactive amacrine cells, some of which also expressed protein kinase C-alpha. In addition, punctate immunoreactivity was observed within both the inner and outer plexiform layers of the retina. Double labeling studies showed that P2X3 receptor puncta were associated with both rod and cone bipolar cell axon terminals in the inner plexiform layer. Ultrastructural studies indicated that P2X3 receptor subunits were expressed on putative A17 amacrine cells at sites of reciprocal synaptic input to the rod bipolar cell axon terminal. Moreover, we observed P2X3 immunolabeling on amacrine cell processes that were associated with cone bipolar cell axon terminals and other conventional synapses. In the outer retina, P2X3 immunoreactivity was observed on specialized junctions made by putative interplexiform cells. Ecto-ATPase activity was localized to the inner plexiform layer on the extracellular side of all plasma membranes, but was not apparent in the ganglion cell layer or the inner nuclear layer, suggesting that ATP dephosphorylation occurs exclusively in synaptic regions of the inner retina. These data provide further evidence that purines participate in retinal transmission, particularly within the rod pathway.
Collapse
Affiliation(s)
- T Puthussery
- Department of Anatomy and Cell Biology, The University of Melbourne, Cnr Grattan St and Royal Pde, Parkville, 3010, Victoria, Australia
| | | |
Collapse
|
36
|
Dmitrieva NA, Strang CE, Keyser KT. Expression of alpha 7 nicotinic acetylcholine receptors by bipolar, amacrine, and ganglion cells of the rabbit retina. J Histochem Cytochem 2006; 55:461-76. [PMID: 17189521 DOI: 10.1369/jhc.6a7116.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cholinergic agents affect the light responses of many ganglion cells (GCs) in the mammalian retina by activating nicotinic acetylcholine receptors (nAChRs). Whereas retinal neurons that express beta2 subunit-containing nAChRs have been characterized in the rabbit retina, expression patterns of other nAChR subtypes remain unclear. Therefore, we evaluated the expression of alpha7 nAChRs in retinal neurons by means of single-, double-, and triple-label immunohistochemistry. Our data demonstrate that, in the rabbit retina, several types of bipolar cells, amacrine cells, and cells in the GC layer express alpha7 nAChRs. At least three different populations of cone bipolar cells exhibited alpha7 labeling, whereas glycine-immunoreactive amacrine cells comprised the majority of alpha7-positive amacrine cells. Some GABAergic amacrine cells also displayed alpha7 immunoreactivity; alpha7 labeling was never detected in rod bipolar cells or rod amacrine cells (AII amacrine cells). Our data suggest that activation of alpha7 nAChRs by acetylcholine (ACh) or choline may affect glutamate release from several types of cone bipolar cells, modulating GC responses. ACh-induced excitation of inhibitory amacrine cells might cause either inhibition or disinhibition of other amacrine and GC circuits. Finally, ACh may act on alpha7 nAChRs expressed by GCs themselves.
Collapse
Affiliation(s)
- Nina A Dmitrieva
- Vision Science Research Center, The University of Alabama at Birmingham, WORB, 626 Birmingham, AL 35294-4390, USA
| | | | | |
Collapse
|
37
|
Vitanova L. Non-NMDA receptors in frog retina: an immunocytochemical study. Acta Histochem 2006; 109:154-63. [PMID: 17175011 DOI: 10.1016/j.acthis.2006.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/15/2006] [Accepted: 10/03/2006] [Indexed: 11/27/2022]
Abstract
Glutamate is one of the main neurotransmitters in the retina. Its effects are mediated by a large number of ionotropic and metabotropic membrane receptors. The distribution of ionotropic AMPA receptor subunits GluR1-4, kainate receptor subunits GluR5-7 and KA2, delta receptors 1-2, as well as the metabotropic receptor mGluR6 were studied in the frog retina. Indirect immunofluorescence was used to localize the different receptor subunits. Results showed that all subunits, with the exception of GluR1 and GluR5, are widely distributed in the retina. They are mainly located in both plexiform layers: the outer (OPL) and the inner one (IPL), where punctate labelling, a sign of synaptic localization, is observed. The metabotropic receptor mGluR6 is localised only in the OPL. The AMPA receptor subunit GluR4 is localised on the glial Müller cells of the retina. The vast majority of the subunits possess specific patterns of labelling that indicate that they are involved with different retinal functions. The significance of the AMPA receptors and involvement of glia in modulation of synaptic transmission are discussed.
Collapse
Affiliation(s)
- Lily Vitanova
- Department of Physiology, Medical Faculty, Medical University, Sofia, Bulgaria.
| |
Collapse
|
38
|
Gomes AR, Correia SS, Esteban JA, Duarte CB, Carvalho AL. PKC Anchoring to GluR4 AMPA Receptor Subunit Modulates PKC-Driven Receptor Phosphorylation and Surface Expression. Traffic 2006; 8:259-69. [PMID: 17233759 DOI: 10.1111/j.1600-0854.2006.00521.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Changes in the synaptic content of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors lead to synaptic efficacy modifications, involved in synaptic plasticity mechanisms believed to underlie learning and memory formation. Early in development, GluR4 is highly expressed in the hippocampus, and GluR4-containing AMPA receptors are inserted into synapses. During synapse maturation, the number of AMPA receptors at the synapse is dynamically regulated, and both addition and removal of receptors from postsynaptic sites occur through regulated mechanisms. GluR4 delivery to synapses in rat hippocampal slices was shown to require protein kinase A (PKA)-mediated phosphorylation of GluR4 at serine 842 (Ser842). Protein kinase C (PKC) can also phosphorylate Ser842, and we have shown that PKCgamma can associate with GluR4. Here we show that activation of PKC in retina neurons, or in human embryonic kidney 293 cells cotransfected with GluR4 and PKCgamma, increases GluR4 surface expression and Ser842 phosphorylation. Moreover, mutation of amino acids R821A, K825A and R826A at the GluR4 C-terminal, within the interacting region of GluR4 with PKCgamma, abolishes the interaction between PKCgamma and GluR4 and prevents the stimulatory effect of PKCgamma on GluR4 Ser842 phosphorylation and surface expression. These data argue for a role of anchored PKCgamma in Ser842 phosphorylation and targeting to the plasma membrane. The triple GluR4 mutant is, however, phosphorylated by PKA, and it is targeted to the synapse in CA1 hippocampal neurons in organotypic rat hippocampal slices. The present findings show that the interaction between PKCgamma and GluR4 is specifically required to assure PKC-driven phosphorylation and surface membrane expression of GluR4.
Collapse
Affiliation(s)
- André R Gomes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | | | | | | | | |
Collapse
|
39
|
Zhang J, Diamond JS. Distinct perisynaptic and synaptic localization of NMDA and AMPA receptors on ganglion cells in rat retina. J Comp Neurol 2006; 498:810-20. [PMID: 16927255 PMCID: PMC2577313 DOI: 10.1002/cne.21089] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At most excitatory synapses, AMPA and NMDA receptors (AMPARs and NMDARs) occupy the postsynaptic density (PSD) and contribute to miniature excitatory postsynaptic currents (mEPSCs) elicited by single transmitter quanta. Juxtaposition of AMPARs and NMDARs may be crucial for certain types of synaptic plasticity, although extrasynaptic NMDARs may also contribute. AMPARs and NMDARs also contribute to evoked EPSCs in retinal ganglion cells (RGCs), but mEPSCs are mediated solely by AMPARs. Previous work indicates that an NMDAR component emerges in mEPSCs when glutamate uptake is reduced, suggesting that NMDARs are located near the release site but perhaps not directly beneath in the PSD. Consistent with this idea, NMDARs on RGCs encounter a lower glutamate concentration during synaptic transmission than do AMPARs. To understand better the roles of NMDARs in RGC function, we used immunohistochemical and electron microscopic techniques to determine the precise subsynaptic localization of NMDARs in RGC dendrites. RGC dendrites were labeled retrogradely with cholera toxin B subunit (CTB) injected into the superior colliculus (SC) and identified using postembedding immunogold methods. Colabeling with antibodies directed toward AMPARs and/or NMDARs, we found that nearly all AMPARs are located within the PSD, while most NMDARs are located perisynaptically, 100-300 nm from the PSD. This morphological evidence for exclusively perisynaptic NMDARs localizations suggests a distinct role for NMDARs in RGC function.
Collapse
Affiliation(s)
- Jun Zhang
- Synaptic Physiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701, USA
| | | |
Collapse
|
40
|
Jeong SA, Kwon OJ, Lee JY, Kim TJ, Jeon CJ. Synaptic pattern of AMPA receptor subtypes upon direction-selective retinal ganglion cells. Neurosci Res 2006; 56:427-34. [PMID: 17007948 DOI: 10.1016/j.neures.2006.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 11/29/2022]
Abstract
In the search for anisotropies that might contribute to a directional preference of direction-selective (DS) retinal ganglion cells (RGCs), we studied the distributions of AMPA receptor subtypes GluR1, GluR2/3, and GluR4 upon the dendritic arbors of DS RGCs of the rabbit with antibody immunocytochemistry. DS RGCs were injected with Lucifer yellow and the cells were identified by their characteristic morphology. The double-labeled images of dendrites and receptors were visualized by confocal microscopy and were reconstructed from high-resolution confocal images. We found no evidence of asymmetry in any of the AMPA receptor subunits examined upon the dendritic arbors of both On and Off layers of DS RGCs. The present results indicate that direction selectivity appears to lie in presynaptic pattern.
Collapse
Affiliation(s)
- Seong-Ah Jeong
- Neuroscience Lab, Department of Biology, College of Natural Sciences, Kyungpook National University, 1370 Sankyuk-Dong, Daegu, South Korea
| | | | | | | | | |
Collapse
|
41
|
Wang X, Ng YK, Tay SSW. Factors contributing to neuronal degeneration in retinas of experimental glaucomatous rats. J Neurosci Res 2006; 82:674-89. [PMID: 16273539 DOI: 10.1002/jnr.20679] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
After our studies on ganglion cell degeneration in the glaucomatous retina, the current work further confirmed the reduction of amacrine cells in the retina after the onset of glaucoma. Present study also tried to understand the possible mechanisms underlying neuronal degeneration in the glaucomatous retina. Changes of expressions in immediate early genes (IEGs), glutamate receptors (GluRs), calcium-binding proteins (CaBPs), 8-hydroxy-deoxyguanosine (8-OH-dG) and nitric oxide synthase (NOS), as well as apoptotic-related factors including caspase 3, bax, and bcl-2 were examined. IEGs such as c-fos and c-jun were induced in the retina of the glaucomatous rat as early as 2 hr after the onset of glaucoma and lasted up to 2 weeks. Expressions of GluRs and CaBPs (i.e., parvalbumin and calbindin D-28k) were observed to be increased in the retinal ganglion cell layer (GCL) and inner nuclear layer (INL) at 3 days and 1 week after the onset of glaucoma. The increase occurred well before and during the phase where significant neuronal death was observed in the GCL and INL of the glaucomatous retinae. Induction of 8-OH-dG was present in both the GCL and INL of the glaucomatous retina at 3 days after the onset of glaucoma before significant neuronal death was observed. Furthermore, confocal microscopy study showed the complete colocalization of immunohistochemical expression of caspase 3 with glial fibrillary acidic protein (GFAP), but not with neuronal nuclei (NeuN). It indicates that astrocytes and Müller cells are involved in the pathological processes of neuronal death. The relationship between the linked factors and neuronal degeneration is also discussed.
Collapse
Affiliation(s)
- Xu Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
42
|
Dumitrescu ON, Protti DA, Majumdar S, Zeilhofer HU, Wässle H. Ionotropic glutamate receptors of amacrine cells of the mouse retina. Vis Neurosci 2006; 23:79-90. [PMID: 16597352 DOI: 10.1017/s0952523806231079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 09/15/2005] [Indexed: 11/06/2022]
Abstract
The mammalian retina contains approximately 30 different morphological types of amacrine cells, receiving glutamatergic input from bipolar cells. In this study, we combined electrophysiological and pharmacological techniques in order to study the glutamate receptors expressed by different types of amacrine cells. Whole-cell currents were recorded from amacrine cells in vertical slices of the mouse retina. During the recordings the cells were filled with Lucifer Yellow/Neurobiotin allowing classification as wide-field or narrow-field amacrine cells. Amacrine cell recordings were also carried out in a transgenic mouse line whose glycinergic amacrine cells express enhanced green fluorescent protein (EGFP). Agonist-induced currents were elicited by exogenous application of NMDA, AMPA, and kainate (KA) while holding cells at −75 mV. Using a variety of specific agonists and antagonists (NBQX, AP5, cyclothiazide, GYKI 52466, GYKI 53655, SYM 2081) responses mediated by AMPA, KA, and NMDA receptors could be dissected. All cells (n= 300) showed prominent responses to non-NMDA agonists. Some cells expressed AMPA receptors exclusively and some cells expressed KA receptors exclusively. In the majority of cells both receptor types could be identified. NMDA receptors were observed in about 75% of the wide-field amacrine cells and in less than half of the narrow-field amacrine cells. Our results confirm that different amacrine cell types express distinct sets of ionotropic glutamate receptors, which may be critical in conferring their unique temporal responses to this diverse neuronal class.
Collapse
Affiliation(s)
- Olivia N Dumitrescu
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
43
|
Functional Anatomy of the Mammalian Retina. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
44
|
Warrier A, Borges S, Dalcino D, Walters C, Wilson M. Calcium From Internal Stores Triggers GABA Release From Retinal Amacrine Cells. J Neurophysiol 2005; 94:4196-208. [PMID: 16293593 DOI: 10.1152/jn.00604.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca2+ that promotes transmitter release is generally thought to enter presynaptic terminals through voltage-gated Ca2+channels. Using electrophysiology and Ca2+ imaging, we show that, in amacrine cell dendrites, at least some of the Ca2+ that triggers transmitter release comes from endoplasmic reticulum Ca2+ stores. We show that both inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) are present in these dendrites and both participate in the elevation of cytoplasmic [Ca2+] during the brief depolarization of a dendrite. Only the Ca2+ released through IP3Rs, however, seems to promote the release of transmitter. Antagonists for the IP3R reduced transmitter release, whereas RyR blockers had no effect. Application of an agonist for metabotropic glutamate receptor, known to liberate Ca2+ from internal stores, enhanced both spontaneous and evoked transmitter release.
Collapse
Affiliation(s)
- Ajithkumar Warrier
- Section of Neurobiology, Physiology and Behavior, Division of Biological Sciences, University of California, Davis, 95616, USA
| | | | | | | | | |
Collapse
|
45
|
Trexler EB, Li W, Massey SC. Simultaneous Contribution of Two Rod Pathways to AII Amacrine and Cone Bipolar Cell Light Responses. J Neurophysiol 2005; 93:1476-85. [PMID: 15525810 DOI: 10.1152/jn.00597.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rod signals traverse several synapses en route to cone bipolar cells. In one pathway, rods communicate directly with cones via gap junctions. In a second pathway, signals flow rods-rod bipolars-AII amacrines-cone bipolars. The relative contribution of each pathway to retinal function is not well understood. Here we have examined this question from the perspective of the AII amacrine. AIIs form bidirectional electrical synapses with on cone bipolars. Consequently, as on cone bipolars are activated by outer plexiform inputs, they too should contribute to the AII response. Rod bipolar inputs to AIIs were blocked by AMPA receptor antagonists, revealing a smaller, non-AMPA component of the light response. This small residual response did not reverse between −70 and +70 mV and was blocked by carbenoxolone, suggesting that the current arose in on cone bipolars and was transmitted to AIIs via gap junctions. The residual component was evident for stimuli 2 log units below cone threshold and was prolonged for bright stimuli, demonstrating that it was rod driven. Because the rod bipolar-AII pathway was blocked, the rod-driven residual current likely was generated via the rod-cone pathway activation of on cone bipolars. Thus for a large range of intensities, rod signals reach the inner retina by both rod bipolar-AII and rod-cone coupling pathways.
Collapse
Affiliation(s)
- E Brady Trexler
- Department of Ophthalmology and Neuroscience, University of Texas Medical School, Houston, Texas, USA.
| | | | | |
Collapse
|
46
|
Sun D, Kalloniatis M. Mapping glutamate responses in immunocytochemically identified neurons of the mouse retina. J Comp Neurol 2005; 494:686-703. [PMID: 16374798 DOI: 10.1002/cne.20813] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mammalian retina contains as many as 50-60 unique cell types, many of which have been identified using various neurochemical markers. Retinal neurons express N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA), and kainic acid (KA) receptor subunits in various mixtures, densities, and spatial distributions. Ionotropic glutamatergic drive in retinal neurons can be mapped using a cation channel permeant guanidinium analog called agmatine (1-amino-4-guanidobutane; AGB). This alternative approach to physiologically characterize neurons in the retina was introduced by Marc (1999, J Comp Neurol 407:47-64, 407:65-76), and allows the simultaneous mapping of responses of glutamate receptor-gated channels from an entire population of neurons. Unlike previous AGB studies, we colocalized AGB with various macromolecular markers using direct and indirect immunofluorescence to characterize the glutamate agonist sensitivities of specific cell types. Activation with NMDA, AMPA, and KA resulted in AGB entry into neurons in a dose-dependent manner and was consistent with previous receptor subunit localization studies. Consistent with the various morphological phenotypes encompassed by the calbindin and calretinin immunoreactive cells, we observed various functional phenotypes revealed by AGB labeling. Not all calbindin or calretinin immunoreactive cells showed ligand-evoked AGB permeation. A small proportion either did not possess functional glutamate receptors, required higher activation thresholds, or express functional channels impermeable to AGB. AMPA and KA activation of bipolar cells resulted in AGB permeation into the hyperpolarizing variety only. We also studied the glutamate ligand-gating properties of 3[alpha1-3]-fucosyl-N-acetyl-lactosamine (CD15) immunoreactive cells and show functional responses consistent with receptor subunit gene expression patterns. CD15-immunoreactive bipolar cells only responded to AMPA but not KA. The CD15 immunoreactive amacrine cells demonstrated an identical selectivity to AMPA activation, but were also responsive to NMDA. Finally, localization of AGB secondary to glutamate receptor activation was visualized with a permanent reaction product.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, Auckland 1020, New Zealand
| | | |
Collapse
|
47
|
Jusuf PR, Martin PR, Grünert U. Synaptic connectivity in the midget-parvocellular pathway of primate central retina. J Comp Neurol 2005; 494:260-74. [PMID: 16320234 DOI: 10.1002/cne.20804] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The synaptic connectivity of OFF midget bipolar cells was investigated in the central retina of two primate species, the New World common marmoset monkey, Callithrix jacchus, and the Old World macaque monkey, Macaca fascicularis. In marmosets, dichromatic and trichromatic animals were compared. Bipolar output synapses were identified with antibodies against ribbon proteins (kinesin, C-terminal binding protein 2) or with an antiserum that recognizes postsynaptic glutamate receptor clusters (GluR4). The midget bipolar cells were identified immunocytochemically with antibodies to CD15 (marmoset) or an antiserum to recoverin (macaque). In marmosets, midget ganglion cells were retrogradely labeled from the parvocellular layers of the dorsal lateral geniculate nucleus. Consistent with previous studies of Old World primates, in marmoset, midget bipolar cells contacted midget ganglion cells at a ratio of 1:1. The number of output synapses made by OFF midget bipolar cells was quantified for 104 cells in two dichromatic marmosets, 108 cells in one trichromatic marmoset, and 118 cells in one macaque. The number of output synapses was comparable for all animals, ranging from 10-71 in the dichromatic marmoset (average 29.7 +/- 12.4 SD), 12-86 in the trichromatic marmoset (average 28.6 +/- 11.7 SD) and 9-48 in the macaque (average 26.5 +/- 9.3 SD) per axon terminal. In all animals the number of output synapses per axon terminal showed a unimodal distribution. Our results suggest that the midget circuitry is comparable in dichromatic and trichromatic animals.
Collapse
Affiliation(s)
- Patricia R Jusuf
- The National Vision Research Institute of Australia, Carlton, Victoria 3053
| | | | | |
Collapse
|
48
|
Haverkamp S, Müller U, Zeilhofer HU, Harvey RJ, Wässle H. Diversity of glycine receptors in the mouse retina: localization of the alpha2 subunit. J Comp Neurol 2004; 477:399-411. [PMID: 15329889 DOI: 10.1002/cne.20267] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gamma-aminobutyric acid (GABA) and glycine are the major inhibitory neurotransmitters in the retina, glycine being produced in approximately half of all amacrine cells. Whereas retinal cell types expressing the glycine receptor (GlyR) alpha1 and alpha3 subunits have been mapped, the role of the alpha2 subunit in retinal circuitry remains unclear. By using immunocytochemistry, we localized the alpha2 subunit in the inner plexiform layer (IPL) in brightly fluorescent puncta, which represent postsynaptically clustered GlyRs. This was shown by doubly labeling sections for GlyR alpha2 and bassoon (a presynaptic marker) or gephyrin (a postsynaptic marker). Synapses containing GlyR alpha2 were rarely found on ganglion cell dendrites but were observed on bipolar cell axon terminals and on amacrine cell processes. Recently, an amacrine cell type has been described that is immunopositive for glycine and for the vesicular glutamate transporter vGluT3. The processes of this cell type were presynaptic to GlyR alpha2 puncta, suggesting that vGluT3 amacrine cells release glycine. Double labeling of sections for GlyR alpha1 and GlyR alpha2 subunits showed that they are clustered at different synapses. In sections doubly labeled for GlyR alpha2 and GlyR alpha3, approximately one-third of the puncta were colocalized. The most abundant GlyR subtype in retina contains alpha3 subunits, followed by those containing GlyR alpha2 and GlyR alpha1 subunits.
Collapse
Affiliation(s)
- Silke Haverkamp
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, D-60528 Frankfurt/M., Germany
| | | | | | | | | |
Collapse
|
49
|
Ng YK, Zeng XX, Ling EA. Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats. Brain Res 2004; 1018:66-72. [PMID: 15262206 DOI: 10.1016/j.brainres.2004.05.055] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2004] [Indexed: 11/16/2022]
Abstract
This study was aimed to investigate the expression of glutamate receptors and calcium-binding proteins in 1- and 4-month/s (mo) streptozotocin (STZ)-induced diabetic rats. Upregulation of glutamate receptors' [N-methyl-D-aspartate receptor (NMDAR)1 and GluR2/3] immunoreactivities was observed in the ganglion, amacrine and bipolar cells as well as in the inner and outer plexiform layers (IPL and OPL) in 1 mo diabetes and was further enhanced at 4 mo. Immunoreactivity of calcium-binding proteins (calbindin and parvalbumin) was also concomitantly increased. The present results suggest that upregulation of glutamate receptors and calcium-binding proteins may reflect changes of the glutamate and calcium metabolism in the diabetic retina. It is speculated that the above changes in the IPL and OPL may be linked to alteration of synaptic transmission in the diabetic retina.
Collapse
Affiliation(s)
- Yee-Kong Ng
- Department of Anatomy, Faculty of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore 117597, Singapore.
| | | | | |
Collapse
|
50
|
Kertész S, Kapus G, Lévay G. Interactions of allosteric modulators of AMPA/kainate receptors on spreading depression in the chicken retina. Brain Res 2004; 1025:123-9. [PMID: 15464752 DOI: 10.1016/j.brainres.2004.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2004] [Indexed: 11/17/2022]
Abstract
The functional role of AMPA and kainate receptors in spreading depression (SD) was investigated in the isolated chicken retina. Competitive (NBQX) and non-competitive (GYKI 52466, GYKI 53405 and GYKI 53655) antagonists of the AMPA receptor inhibited AMPA-induced SD in a concentration-dependent manner. Concentrations of drugs caused 50% inhibition (IC(50) values) are 0.2, 16.6, 7.0 and 1.4 microM, respectively. AMPA receptor positive modulator cyclothiazide was more effective in the potentiation of SD evoked by AMPA than by kainate. Slight potentiation of either AMPA- or kainate-induced SD was observed only at high concentration (1 mg/ml) by the kainate receptor modulator concanavalin A. Compounds that positively modulate AMPA receptor function (cyclothiazide, IDRA-21, S 18986, 1-BCP and aniracetam) caused a concentration-dependent potentiation in SD. Concentrations of drugs that caused 50% potentiation (estimated EC(50) values) are 9, 135, 142, 450 and 1383 microM, respectively. Interaction between cyclothiazide, aniracetam or S 18986 administered with each other, or with GYKI 52466, respectively, was also investigated. When cyclothiazide and S 18986 were co-applied, their effects seemed to be additive. However, lack of additivity was obtained when S 18986 was added together with aniracetam. Positive modulators applied at equiactive concentrations reduced the inhibitory action of GYKI 52466 and differently shifted its concentration-response curve. In this respect, S 18986 was the most effective (IC(50) of GYKI 52466 changed from 16.6 to 51.9 microM). Our findings indicate the contribution of AMPA rather than kainate receptors in the mediation of retinal spreading depression. Our data further support the idea that multiple positive modulatory sites are present on the AMPA receptor complex in addition to a negative modulatory site.
Collapse
Affiliation(s)
- Szabolcs Kertész
- EGIS Pharmaceuticals Ltd., Division of Preclinical Research, CNS Pharmacology, H-1475 Budapest 10, P.O. Box 100, Hungary
| | | | | |
Collapse
|