1
|
Alhesain M, Alzu’bi A, Sankar N, Smith C, Kerwin J, Laws R, Lindsay S, Clowry GJ. Development of the early fetal human thalamus: from a protomap to emergent thalamic nuclei. Front Neuroanat 2025; 19:1530236. [PMID: 39990522 PMCID: PMC11842364 DOI: 10.3389/fnana.2025.1530236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Most of what is known about thalamic development comes from rodent studies, however, the increased proportion of human association cortex has co-evolved with increased thalamocortical connectivity. Higher order thalamic nuclei, relaying information between cortical regions and important in higher cognitive function, are greatly expanded. Methods This study mapped the emergence of thalamic nuclei in human fetal development (8-16 post conceptional weeks; PCW) by revealing gene expression patterns using in situ hybridization and immunohistochemistry for previously established thalamic development markers. Results In the proliferative thalamic ventricular zone, OLIG3 and NR2F1 immunoreactivity marked the extent of the thalamus, whereas PAX6 and NR2F2 were expressed in gradients, suggesting an early protomap. This was also the case for post-mitotic transcription factors ZIC4, GBX2, FOXP2 and OTX2 which marked thalamic boundaries but also exhibited opposing gradients with ZIC4 expression higher anterior/lateral, and GBX2, FOXP2 and OTX2 higher in posterior/medial. Expression patterns became increasingly compartmentalized as development progressed and by 14 PCW recognizable thalamic nuclei were observed with, for instance, the centromedian nucleus being characterized by high FOXP2 and absent GBX2 expression. SP8-like immunoreactivity was expressed in distinct thalamic locations other than the reticular formation which has not been previously reported. Markers for GABAergic neurons and their precursors revealed the location of the prethalamus and its development into the reticular formation and zona incerta. No GAD67+ neurons were observed in the thalamus at 10 PCW, but by 14 PCW the medial posterior quadrant of the thalamus at various levels was infiltrated by GAD67+/ SOX14+ cells of presumed pretectal/midbrain origin. We compared expression of the neurodevelopmental disease susceptibility gene CNTNAP2 to these patterns. It was highly expressed by glutamatergic neurons in many thalamic regions by 14 PCW, sometimes but not always in conjunction with its upstream expression regulator FOXP2. Conclusion In human discrete thalamic nuclei exhibiting discrete gene expression patterns emerge relatively early from a protomap of gene expression. The migration of GABAergic neurons into the thalamus occurs over a protracted period, first from the midbrain. Disruption of CNTNAP2 activity and function could be hypothezised to have a variety of effects upon thalamic development.
Collapse
Affiliation(s)
- Maznah Alhesain
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
| | - Ayman Alzu’bi
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
- Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Niveditha Sankar
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Charles Smith
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Janet Kerwin
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Lindsay
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Gavin J. Clowry
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Pyott SJ, Pavlinkova G, Yamoah EN, Fritzsch B. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Annu Rev Neurosci 2024; 47:1-20. [PMID: 38360566 PMCID: PMC11787624 DOI: 10.1146/annurev-neuro-081423-093942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.
Collapse
Affiliation(s)
- Sonja J Pyott
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Groningen, Graduate School of Medical Sciences, and Research School of Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA;
| |
Collapse
|
3
|
Morrow A, Smale L, Meek PD, Lundrigan B. Trade-Offs in the Sensory Brain between Diurnal and Nocturnal Rodents. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:123-143. [PMID: 38569487 PMCID: PMC11346379 DOI: 10.1159/000538090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Transitions in temporal niche have occurred many times over the course of mammalian evolution. These are associated with changes in sensory stimuli available to animals, particularly with visual cues, because levels of light are so much higher during the day than at night. This relationship between temporal niche and available sensory stimuli elicits the expectation that evolutionary transitions between diurnal and nocturnal lifestyles will be accompanied by modifications of sensory systems that optimize the ability of animals to receive, process, and react to important stimuli in the environment. METHODS This study examines the influence of temporal niche on investment in sensory brain tissue of 13 rodent species (five diurnal; eight nocturnal). Animals were euthanized and the brains immediately frozen on dry ice; olfactory bulbs were subsequently dissected and weighed, and the remaining brain was weighed, sectioned, and stained. Stereo Investigator was used to calculate volumes of four sensory regions that function in processing visual (lateral geniculate nucleus, superior colliculus) and auditory (medial geniculate nucleus, inferior colliculus) information. A phylogenetic framework was used to assess the influence of temporal niche on the relative sizes of these brain structures and of olfactory bulb weights. RESULTS Compared to nocturnal species, diurnal species had larger visual regions, whereas nocturnal species had larger olfactory bulbs than their diurnal counterparts. Of the two auditory structures examined, one (medial geniculate nucleus) was larger in diurnal species, while the other (inferior colliculus) did not differ significantly with temporal niche. CONCLUSION Our results indicate a possible indirect association between temporal niche and auditory investment and suggest probable trade-offs of investment between olfactory and visual areas of the brain, with diurnal species investing more in processing visual information and nocturnal species investing more in processing olfactory information.
Collapse
Affiliation(s)
- Andrea Morrow
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
| | - Laura Smale
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Paul Douglas Meek
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Coffs Harbour, NSW, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Barbara Lundrigan
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
- Michigan State University Museum, East Lansing, MI, USA
| |
Collapse
|
4
|
Vaglietti S, Villeri V, Dell’Oca M, Marchetti C, Cesano F, Rizzo F, Miller D, LaPierre L, Pelassa I, Monje FJ, Colnaghi L, Ghirardi M, Fiumara F. PolyQ length-based molecular encoding of vocalization frequency in FOXP2. iScience 2023; 26:108036. [PMID: 37860754 PMCID: PMC10582585 DOI: 10.1016/j.isci.2023.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/18/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
The transcription factor FOXP2, a regulator of vocalization- and speech/language-related phenotypes, contains two long polyQ repeats (Q1 and Q2) displaying marked, still enigmatic length variation across mammals. We found that the Q1/Q2 length ratio quantitatively encodes vocalization frequency ranges, from the infrasonic to the ultrasonic, displaying striking convergent evolution patterns. Thus, species emitting ultrasonic vocalizations converge with bats in having a low ratio, whereas species vocalizing in the low-frequency/infrasonic range converge with elephants and whales, which have higher ratios. Similar, taxon-specific patterns were observed for the FOXP2-related protein FOXP1. At the molecular level, we observed that the FOXP2 polyQ tracts form coiled coils, assembling into condensates and fibrils, and drive liquid-liquid phase separation (LLPS). By integrating evolutionary and molecular analyses, we found that polyQ length variation related to vocalization frequency impacts FOXP2 structure, LLPS, and transcriptional activity, thus defining a novel form of polyQ length-based molecular encoding of vocalization frequency.
Collapse
Affiliation(s)
- Serena Vaglietti
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Veronica Villeri
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Marco Dell’Oca
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Chiara Marchetti
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Federico Cesano
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Francesca Rizzo
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China
| | - Dave Miller
- Cascades Pika Watch, Oregon Zoo, Portland, OR 97221, USA
| | - Louis LaPierre
- Deptartment of Natural Science, Lower Columbia College, Longview, WA 98632, USA
| | - Ilaria Pelassa
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Francisco J. Monje
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Luca Colnaghi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mirella Ghirardi
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Ferdinando Fiumara
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| |
Collapse
|
5
|
Williams LZJ, Fitzgibbon SP, Bozek J, Winkler AM, Dimitrova R, Poppe T, Schuh A, Makropoulos A, Cupitt J, O'Muircheartaigh J, Duff EP, Cordero-Grande L, Price AN, Hajnal JV, Rueckert D, Smith SM, Edwards AD, Robinson EC. Structural and functional asymmetry of the neonatal cerebral cortex. Nat Hum Behav 2023; 7:942-955. [PMID: 36928781 DOI: 10.1038/s41562-023-01542-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/31/2023] [Indexed: 03/18/2023]
Abstract
Features of brain asymmetry have been implicated in a broad range of cognitive processes; however, their origins are still poorly understood. Here we investigated cortical asymmetries in 442 healthy term-born neonates using structural and functional magnetic resonance images from the Developing Human Connectome Project. Our results demonstrate that the neonatal cortex is markedly asymmetric in both structure and function. Cortical asymmetries observed in the term cohort were contextualized in two ways: by comparing them against cortical asymmetries observed in 103 preterm neonates scanned at term-equivalent age, and by comparing structural asymmetries against those observed in 1,110 healthy young adults from the Human Connectome Project. While associations with preterm birth and biological sex were minimal, significant differences exist between birth and adulthood.
Collapse
Affiliation(s)
- Logan Z J Williams
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK.
| | - Sean P Fitzgibbon
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Anderson M Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ralica Dimitrova
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Tanya Poppe
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Andreas Schuh
- Department of Computing, Imperial College London, London, UK
| | - Antonios Makropoulos
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - John Cupitt
- Department of Computing, Imperial College London, London, UK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department for Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Eugene P Duff
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, ISCIII, Madrid, Spain
| | - Anthony N Price
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
- Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephen M Smith
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Neonatal Intensive Care Unit, Evelina London Children's Hospital, London, UK
| | - Emma C Robinson
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK.
| |
Collapse
|
6
|
Moreno-Juan V, Aníbal-Martínez M, Herrero-Navarro Á, Valdeolmillos M, Martini FJ, López-Bendito G. Spontaneous Thalamic Activity Modulates the Cortical Innervation of the Primary Visual Nucleus of the Thalamus. Neuroscience 2023; 508:87-97. [PMID: 35878717 DOI: 10.1016/j.neuroscience.2022.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/17/2023]
Abstract
Sensory processing relies on the correct development of thalamocortical loops. Visual corticothalamic axons (CTAs) invade the dorsolateral geniculate nucleus (dLGN) of the thalamus in early postnatal mice according to a regulated program that includes activity-dependent mechanisms. Spontaneous retinal activity influences the thalamic incursion of CTAs, yet the perinatal thalamus also generates intrinsic patterns of spontaneous activity whose role in modulating afferent connectivity remains unknown. Here, we found that patterned spontaneous activity in the dLGN contributes to proper spatial and temporal innervation of CTAs. Disrupting patterned spontaneous activity in the dLGN delays corticogeniculate innervation under normal conditions and upon eye enucleation. The delayed innervation was evident throughout the first two postnatal weeks but resumes after eye-opening, suggesting that visual experience is necessary for the homeostatic recovery of corticogeniculate innervation.
Collapse
Affiliation(s)
- Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Álvaro Herrero-Navarro
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
7
|
Giasafaki C, Grant E, Hoerder‐Suabedissen A, Hayashi S, Lee S, Molnár Z. Cross-hierarchical plasticity of corticofugal projections to dLGN after neonatal monocular enucleation. J Comp Neurol 2022; 530:978-997. [PMID: 35078267 PMCID: PMC9305932 DOI: 10.1002/cne.25304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
Perception is the result of interactions between the sensory periphery, thalamus, and cerebral cortex. Inputs from the retina project to the first-order dorsal lateral geniculate nucleus (dLGN), which projects to the primary visual cortex (V1). In return, the cortex innervates the thalamus. While layer 6 projections innervate all thalamic nuclei, cortical layer 5 neurons selectively project to the higher order lateral posterior nucleus (LP) and not to dLGN. It has been demonstrated that a subpopulation of layer 5 (Rbp4-Cre+) projections rewires to dLGN after monocular or binocular enucleation in young postnatal mice. However, the exact cortical regional origin of these projections was not fully determined, and it remained unclear whether these changes persisted into adulthood. In this study, we report gene expression changes observed in the dLGN after monocular enucleation at birth using microarray, qPCR at P6, and in situ hybridization at P8. We report that genes that are normally enriched in dLGN, but not LP during development are preferentially downregulated in dLGN following monocular enucleation. Comparisons with developmental gene expression patters in dLGN suggest more immature and delayed gene expression in enucleated dLGN. Combined tracing and immuno-histochemical analysis revealed that the induced layer 5 fibers that innervate enucleated dLGN originate from putative primary visual cortex and they retain increased VGluT1+ synapse formation into adulthood. Our results indicate a new form of plasticity when layer 5 driver input takes over the innervation of an originally first-order thalamic nucleus after early sensory deficit.
Collapse
Affiliation(s)
- Chrysoula Giasafaki
- Department of PhysiologyAnatomy and GeneticsOxfordUK,Instituto de Neurociencias de AlicanteCSIC‐UMH, Av. Ramon y Cajals/n 03550 San Juan de AlicanteAlicanteSpain
| | - Eleanor Grant
- Department of PhysiologyAnatomy and GeneticsOxfordUK
| | | | - Shuichi Hayashi
- Department of PhysiologyAnatomy and GeneticsOxfordUK,Department of AnatomyKawasaki Medical SchoolKurashikiOkayama701‐0192Japan
| | - Sheena Lee
- Department of PhysiologyAnatomy and GeneticsOxfordUK
| | - Zoltán Molnár
- Department of PhysiologyAnatomy and GeneticsOxfordUK
| |
Collapse
|
8
|
Mekki Y, Guillemot V, Lemaitre H, Carrion-Castillo A, Forkel S, Frouin V, Philippe C. The genetic architecture of language functional connectivity. Neuroimage 2021; 249:118795. [PMID: 34929384 DOI: 10.1016/j.neuroimage.2021.118795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
Language is a unique trait of the human species, of which the genetic architecture remains largely unknown. Through language disorders studies, many candidate genes were identified. However, such complex and multifactorial trait is unlikely to be driven by only few genes and case-control studies, suffering from a lack of power, struggle to uncover significant variants. In parallel, neuroimaging has significantly contributed to the understanding of structural and functional aspects of language in the human brain and the recent availability of large scale cohorts like UK Biobank have made possible to study language via image-derived endophenotypes in the general population. Because of its strong relationship with task-based fMRI (tbfMRI) activations and its easiness of acquisition, resting-state functional MRI (rsfMRI) have been more popularised, making it a good surrogate of functional neuronal processes. Taking advantage of such a synergistic system by aggregating effects across spatially distributed traits, we performed a multivariate genome-wide association study (mvGWAS) between genetic variations and resting-state functional connectivity (FC) of classical brain language areas in the inferior frontal (pars opercularis, triangularis and orbitalis), temporal and inferior parietal lobes (angular and supramarginal gyri), in 32,186 participants from UK Biobank. Twenty genomic loci were found associated with language FCs, out of which three were replicated in an independent replication sample. A locus in 3p11.1, regulating EPHA3 gene expression, is found associated with FCs of the semantic component of the language network, while a locus in 15q14, regulating THBS1 gene expression is found associated with FCs of the perceptual-motor language processing, bringing novel insights into the neurobiology of language.
Collapse
Affiliation(s)
- Yasmina Mekki
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France.
| | - Vincent Guillemot
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Hervé Lemaitre
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | | | - Stephanie Forkel
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | - Vincent Frouin
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France
| | - Cathy Philippe
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France.
| |
Collapse
|
9
|
Sha Z, Schijven D, Carrion-Castillo A, Joliot M, Mazoyer B, Fisher SE, Crivello F, Francks C. The genetic architecture of structural left-right asymmetry of the human brain. Nat Hum Behav 2021; 5:1226-1239. [PMID: 33723403 PMCID: PMC8455338 DOI: 10.1038/s41562-021-01069-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Left-right hemispheric asymmetry is an important aspect of healthy brain organization for many functions including language, and it can be altered in cognitive and psychiatric disorders. No mechanism has yet been identified for establishing the human brain's left-right axis. We performed multivariate genome-wide association scanning of cortical regional surface area and thickness asymmetries, and subcortical volume asymmetries, using data from 32,256 participants from the UK Biobank. There were 21 significant loci associated with different aspects of brain asymmetry, with functional enrichment involving microtubule-related genes and embryonic brain expression. These findings are consistent with a known role of the cytoskeleton in left-right axis determination in other organs of invertebrates and frogs. Genetic variants associated with brain asymmetry overlapped with those associated with autism, educational attainment and schizophrenia. Comparably large datasets will likely be required in future studies, to replicate and further clarify the associations of microtubule-related genes with variation in brain asymmetry, behavioural and psychiatric traits.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Urbanus BHA, Peter S, Fisher SE, De Zeeuw CI. Region-specific Foxp2 deletions in cortex, striatum or cerebellum cannot explain vocalization deficits observed in spontaneous global knockouts. Sci Rep 2020; 10:21631. [PMID: 33303861 PMCID: PMC7730140 DOI: 10.1038/s41598-020-78531-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
FOXP2 has been identified as a gene related to speech in humans, based on rare mutations that yield significant impairments in speech at the level of both motor performance and language comprehension. Disruptions of the murine orthologue Foxp2 in mouse pups have been shown to interfere with production of ultrasonic vocalizations (USVs). However, it remains unclear which structures are responsible for these deficits. Here, we show that conditional knockout mice with selective Foxp2 deletions targeting the cerebral cortex, striatum or cerebellum, three key sites of motor control with robust neural gene expression, do not recapture the profile of pup USV deficits observed in mice with global disruptions of this gene. Moreover, we observed that global Foxp2 knockout pups show substantive reductions in USV production as well as an overproduction of short broadband noise “clicks”, which was not present in the brain region-specific knockouts. These data indicate that deficits of Foxp2 expression in the cortex, striatum or cerebellum cannot solely explain the disrupted vocalization behaviours in global Foxp2 knockouts. Our findings raise the possibility that the impact of Foxp2 disruption on USV is mediated at least in part by effects of this gene on the anatomical prerequisites for vocalizing.
Collapse
Affiliation(s)
| | - Saša Peter
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands. .,Netherlands Institute for Neuroscience, KNAW, 1105 CA, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Li J, Osher DE, Hansen HA, Saygin ZM. Innate connectivity patterns drive the development of the visual word form area. Sci Rep 2020; 10:18039. [PMID: 33093478 PMCID: PMC7582172 DOI: 10.1038/s41598-020-75015-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023] Open
Abstract
What determines the functional organization of cortex? One hypothesis is that innate connectivity patterns, either structural or functional connectivity, set up a scaffold upon which functional specialization can later take place. We tested this hypothesis by asking whether the visual word form area (VWFA), an experience-driven region, was already functionally connected to proto language networks in neonates scanned within one week of birth. Using the data from the Human Connectone Project (HCP) and the Developing Human Connectome Project (dHCP), we calculated intrinsic functional connectivity during resting-state functional magnetic resonance imaging (fMRI), and found that neonates showed similar functional connectivity patterns to adults. We observed that (1) language regions connected more strongly with the putative VWFA than other adjacent ventral visual regions that also show foveal bias, and (2) the VWFA connected more strongly with frontotemporal language regions than with regions adjacent to these language regions. These data suggest that the location of the VWFA is earmarked at birth due to its connectivity with the language network, providing evidence that innate connectivity instructs the later refinement of cortex.
Collapse
Affiliation(s)
- Jin Li
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
| | - David E Osher
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Heather A Hansen
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Zeynep M Saygin
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Hofer E, Roshchupkin GV, Adams HHH, Knol MJ, Lin H, Li S, Zare H, Ahmad S, Armstrong NJ, Satizabal CL, Bernard M, Bis JC, Gillespie NA, Luciano M, Mishra A, Scholz M, Teumer A, Xia R, Jian X, Mosley TH, Saba Y, Pirpamer L, Seiler S, Becker JT, Carmichael O, Rotter JI, Psaty BM, Lopez OL, Amin N, van der Lee SJ, Yang Q, Himali JJ, Maillard P, Beiser AS, DeCarli C, Karama S, Lewis L, Harris M, Bastin ME, Deary IJ, Veronica Witte A, Beyer F, Loeffler M, Mather KA, Schofield PR, Thalamuthu A, Kwok JB, Wright MJ, Ames D, Trollor J, Jiang J, Brodaty H, Wen W, Vernooij MW, Hofman A, Uitterlinden AG, Niessen WJ, Wittfeld K, Bülow R, Völker U, Pausova Z, Bruce Pike G, Maingault S, Crivello F, Tzourio C, Amouyel P, Mazoyer B, Neale MC, Franz CE, Lyons MJ, Panizzon MS, Andreassen OA, Dale AM, Logue M, Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, Lind PA, Pizzagalli F, Stein JL, Thompson PM, Medland SE, Sachdev PS, Kremen WS, Wardlaw JM, Villringer A, van Duijn CM, Grabe HJ, Longstreth WT, Fornage M, Paus T, Debette S, Ikram MA, Schmidt H, Schmidt R, Seshadri S. Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nat Commun 2020; 11:4796. [PMID: 32963231 PMCID: PMC7508833 DOI: 10.1038/s41467-020-18367-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022] Open
Abstract
Cortical thickness, surface area and volumes vary with age and cognitive function, and in neurological and psychiatric diseases. Here we report heritability, genetic correlations and genome-wide associations of these cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprises 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. We identify genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There is enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
Collapse
Affiliation(s)
- Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gennady V Roshchupkin
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Hieab H H Adams
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, USA
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Michelle Luciano
- Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Aniket Mishra
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, Bordeaux, France
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Rui Xia
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xueqiu Jian
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yasaman Saba
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Lukas Pirpamer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Stephan Seiler
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology, University of California-Davis, Davis, CA, USA
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| | - James T Becker
- Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
| | - Oscar L Lopez
- Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jayandra J Himali
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Pauline Maillard
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology, University of California-Davis, Davis, CA, USA
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Charles DeCarli
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology, University of California-Davis, Davis, CA, USA
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| | - Sherif Karama
- McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - Lindsay Lewis
- McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - Mat Harris
- Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, The University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, The University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Medicine, CRC 1052 Obesity Mechanisms, University of Leipzig, Leipzig, Germany
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Medicine, CRC 1052 Obesity Mechanisms, University of Leipzig, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - John B Kwok
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Brain and Mind Centre - The University of Sydney, Camperdown, NSW, Australia
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| | - David Ames
- National Ageing Research Institute, Royal Melbourne Hospital, Parkvill, VIC, Australia
- Academic Unit for Psychiatry of Old Age, University of Melbourne, St George's Hospital, Kew, VIC, Australia
| | - Julian Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Centre for Research Collaboration, University of New South Wales, Sydney, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Meike W Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Zdenka Pausova
- Hospital for Sick Children, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinial Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Sophie Maingault
- Institut des Maladies Neurodégénratives UMR5293, CEA, CNRS, University of Bordeaux, Bordeaux, France
| | - Fabrice Crivello
- Institut des Maladies Neurodégénratives UMR5293, CEA, CNRS, University of Bordeaux, Bordeaux, France
| | - Christophe Tzourio
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, Bordeaux, France
- Pole de santé publique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Philippe Amouyel
- Centre Hospitalier Universitaire de Bordeaux, France; Inserm U1167, Lille, France
- Department of Epidemiology and Public Health, Pasteur Institute of Lille, Lille, France
- Department of Public Health, Lille University Hospital, Lille, France
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénratives UMR5293, CEA, CNRS, University of Bordeaux, Bordeaux, France
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Mark Logue
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- National Center for PTSD at Boston VA Healthcare System, Boston, MA, USA
- Department of Psychiatry and Department of Medicine-Biomedical Genetics Section, Boston University School of Medicine, Boston, MA, USA
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jodie N Painter
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lucía Colodro-Conde
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Janita Bralten
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Derrek P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Neuroscience Biomarkers, Janssen Research and Development, LLC, San Diego, CA, USA
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Joanna M Wardlaw
- Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, The University of Edinburgh, Edinburgh, UK
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hans J Grabe
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - William T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stephanie Debette
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, Bordeaux, France
- CHU de Bordeaux, Department of Neurology, F-33000, Bordeaux, France
| | - M Arfan Ikram
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Morona R, Bandín S, López JM, Moreno N, González A. Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis. J Comp Neurol 2020; 528:2361-2403. [PMID: 32162311 DOI: 10.1002/cne.24899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
The early patterning of the thalamus during embryonic development defines rostral and caudal progenitor domains, which are conserved from fishes to mammals. However, the subsequent developmental mechanisms that lead to the adult thalamic configuration have only been investigated for mammals and other amniotes. In this study, we have analyzed in the anuran amphibian Xenopus laevis (an anamniote vertebrate), through larval and postmetamorphic development, the progressive regional expression of specific markers for the rostral (GABA, GAD67, Lhx1, and Nkx2.2) and caudal (Gbx2, VGlut2, Lhx2, Lhx9, and Sox2) domains. In addition, the regional distributions at different developmental stages of other markers such as calcium binding proteins and neuropeptides, helped the identification of thalamic nuclei. It was observed that the two embryonic domains were progressively specified and compartmentalized during premetamorphosis, and cell subpopulations characterized by particular gene expression combinations were located in periventricular, intermediate and superficial strata. During prometamorphosis, three dorsoventral tiers formed from the caudal domain and most pronuclei were defined, which were modified into the definitive nuclear configuration through the metamorphic climax. Mixed cell populations originated from the rostral and caudal domains constitute most of the final nuclei and allowed us to propose additional subdivisions in the adult thalamus, whose main afferent and efferent connections were assessed by tracing techniques under in vitro conditions. This study corroborates shared features of early gene expression patterns in the thalamus between Xenopus and mouse, however, the dynamic changes in gene expression observed at later stages in the amphibian support mechanisms different from those of mammals.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Sandra Bandín
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
14
|
Schreiweis C, Irinopoulou T, Vieth B, Laddada L, Oury F, Burguière E, Enard W, Groszer M. Mice carrying a humanized Foxp2 knock-in allele show region-specific shifts of striatal Foxp2 expression levels. Cortex 2019; 118:212-222. [DOI: 10.1016/j.cortex.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/07/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
|
15
|
Nakagawa Y. Development of the thalamus: From early patterning to regulation of cortical functions. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e345. [PMID: 31034163 DOI: 10.1002/wdev.345] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
The thalamus is a brain structure of the vertebrate diencephalon that plays a central role in regulating diverse functions of the cerebral cortex. In traditional view of vertebrate neuroanatomy, the thalamus includes three regions, dorsal thalamus, ventral thalamus, and epithalamus. Recent molecular embryological studies have redefined the thalamus and the associated axial nomenclature of the diencephalon in the context of forebrain patterning. This new view has provided a useful conceptual framework for studies on molecular mechanisms of patterning, neurogenesis and fate specification in the thalamus as well as the guidance mechanisms for thalamocortical axons. Additionally, the availability of genetic tools in mice has led to important findings on how thalamic development is linked to the development of other brain regions, particularly the cerebral cortex. This article will give an overview of the organization of the embryonic thalamus and how progenitor cells in the thalamus generate neurons that are organized into discrete nuclei. I will then discuss how thalamic development is orchestrated with the development of the cerebral cortex and other brain regions. This article is categorized under: Nervous System Development > Vertebrates: Regional Development Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Yasushi Nakagawa
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
16
|
Mercurio S, Serra L, Motta A, Gesuita L, Sanchez-Arrones L, Inverardi F, Foglio B, Barone C, Kaimakis P, Martynoga B, Ottolenghi S, Studer M, Guillemot F, Frassoni C, Bovolenta P, Nicolis SK. Sox2 Acts in Thalamic Neurons to Control the Development of Retina-Thalamus-Cortex Connectivity. iScience 2019; 15:257-273. [PMID: 31082736 PMCID: PMC6517317 DOI: 10.1016/j.isci.2019.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Visual system development involves the formation of neuronal projections connecting the retina to the thalamic dorso-lateral geniculate nucleus (dLGN) and the thalamus to the visual cerebral cortex. Patients carrying mutations in the SOX2 transcription factor gene present severe visual defects, thought to be linked to SOX2 functions in the retina. We show that Sox2 is strongly expressed in mouse postmitotic thalamic projection neurons. Cre-mediated deletion of Sox2 in these neurons causes reduction of the dLGN, abnormal distribution of retino-thalamic and thalamo-cortical projections, and secondary defects in cortical patterning. Reduced expression, in mutants, of Sox2 target genes encoding ephrin-A5 and the serotonin transport molecules SERT and vMAT2 (important for establishment of thalamic connectivity) likely provides a molecular contribution to these defects. These findings unveil thalamic SOX2 function as a novel regulator of visual system development and a plausible additional cause of brain-linked genetic blindness in humans. Sox2 is expressed in postmitotic neurons of the visual thalamic nucleus (dLGN) Sox2 ablation in the dLGN perturbs retino-thalamic and thalamo-cortical projections The visual cortex is not correctly patterned in Sox2 thalamic mutants Downregulation of EphrinA5 and SERT expression may mediate these defects
Collapse
Affiliation(s)
- Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy
| | - Linda Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Alessia Motta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy
| | - Lorenzo Gesuita
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy
| | - Luisa Sanchez-Arrones
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid and CIBER de Enfermedades Raras (CIBERER), ISCIII Madrid, Madrid, Spain
| | - Francesca Inverardi
- Clinical and Experimental Epileptology Unit, Fondazione I.R.C.C.S. Istituto Neurologico "Carlo Besta", c/o AMADEOLAB, via Amadeo 42, 20133 Milano, Italy
| | - Benedetta Foglio
- Clinical and Experimental Epileptology Unit, Fondazione I.R.C.C.S. Istituto Neurologico "Carlo Besta", c/o AMADEOLAB, via Amadeo 42, 20133 Milano, Italy
| | - Cristiana Barone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy
| | - Polynikis Kaimakis
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid and CIBER de Enfermedades Raras (CIBERER), ISCIII Madrid, Madrid, Spain
| | - Ben Martynoga
- The Francis Crick Institute, Midland Road, London NW 1AT, UK
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy
| | | | | | - Carolina Frassoni
- Clinical and Experimental Epileptology Unit, Fondazione I.R.C.C.S. Istituto Neurologico "Carlo Besta", c/o AMADEOLAB, via Amadeo 42, 20133 Milano, Italy
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid and CIBER de Enfermedades Raras (CIBERER), ISCIII Madrid, Madrid, Spain
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
17
|
Schatton A, Agoro J, Mardink J, Leboulle G, Scharff C. Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. BMC Neurosci 2018; 19:69. [PMID: 30400853 PMCID: PMC6219247 DOI: 10.1186/s12868-018-0469-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND FoxP transcription factors play crucial roles for the development and function of vertebrate brains. In humans the neurally expressed FOXPs, FOXP1, FOXP2, and FOXP4 are implicated in cognition, including language. Neural FoxP expression is specific to particular brain regions but FoxP1, FoxP2 and FoxP4 are not limited to a particular neuron or neurotransmitter type. Motor- or sensory activity can regulate FoxP2 expression, e.g. in the striatal nucleus Area X of songbirds and in the auditory thalamus of mice. The DNA-binding domain of FoxP proteins is highly conserved within metazoa, raising the possibility that cellular functions were preserved across deep evolutionary time. We have previously shown in bee brains that FoxP is expressed in eleven specific neuron populations, seven tightly packed clusters and four loosely arranged groups. RESULTS The present study examined the co-expression of honeybee FoxP (AmFoxP) with markers for glutamatergic, GABAergic, cholinergic and monoaminergic transmission. We found that AmFoxP could co-occur with any one of those markers. Interestingly, AmFoxP clusters and AmFoxP groups differed with respect to homogeneity of marker co-expression; within a cluster, all neurons co-expressed the same neurotransmitter marker, within a group co-expression varied. We also assessed qualitatively whether age or housing conditions providing different sensory and motor experiences affected the AmFoxP neuron populations, but found no differences. CONCLUSIONS Based on the neurotransmitter homogeneity we conclude that AmFoxP neurons within the clusters might have a common projection and function whereas the AmFoxP groups are more diverse and could be further sub-divided. The obtained information about the neurotransmitters co-expressed in the AmFoxP neuron populations facilitated the search of similar neurons described in the literature. These comparisons revealed e.g. a possible function of AmFoxP neurons in the central complex. Our findings provide opportunities to focus future functional studies on invertebrate FoxP expressing neurons. In a broader context, our data will contribute to the ongoing efforts to discern in which cases relationships between molecular and phenotypic signatures are linked evolutionary.
Collapse
Affiliation(s)
- Adriana Schatton
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Julia Agoro
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Janis Mardink
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Gérard Leboulle
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| |
Collapse
|
18
|
Zic4-Lineage Cells Increase Their Contribution to Visual Thalamic Nuclei during Murine Embryogenesis If They Are Homozygous or Heterozygous for Loss of Pax6 Function. eNeuro 2018; 5:eN-CFN-0367-18. [PMID: 30406191 PMCID: PMC6220585 DOI: 10.1523/eneuro.0367-18.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 12/22/2022] Open
Abstract
Our aim was to study the mechanisms that contribute to the development of discrete thalamic nuclei during mouse embryogenesis (both sexes included). We characterized the expression of the transcription factor coding gene Zic4 and the distribution of cells that expressed Zic4 in their lineage. We used genetic fate mapping to show that Zic4-lineage cells mainly contribute to a subset of thalamic nuclei, in particular the lateral geniculate nuclei (LGNs), which are crucial components of the visual pathway. We observed that almost all Zic4-lineage diencephalic progenitors express the transcription factor Pax6 at variable location-dependent levels. We used conditional mutagenesis to delete either one or both copies of Pax6 from Zic4-lineage cells. We found that Zic4-lineage cells carrying either homozygous or heterozygous loss of Pax6 contributed in abnormally high numbers to one or both of the main lateral geniculate nuclei (LGNs). This could not be attributed to a change in cell production and was likely due to altered sorting of thalamic cells. Our results indicate that positional information encoded by the levels of Pax6 in diencephalic progenitors is an important determinant of the eventual locations of their daughter cells.
Collapse
|
19
|
Cheadle L, Tzeng CP, Kalish BT, Harmin DA, Rivera S, Ling E, Nagy MA, Hrvatin S, Hu L, Stroud H, Burkly LC, Chen C, Greenberg ME. Visual Experience-Dependent Expression of Fn14 Is Required for Retinogeniculate Refinement. Neuron 2018; 99:525-539.e10. [PMID: 30033152 PMCID: PMC6101651 DOI: 10.1016/j.neuron.2018.06.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022]
Abstract
Sensory experience influences the establishment of neural connectivity through molecular mechanisms that remain unclear. Here, we employ single-nucleus RNA sequencing to investigate the contribution of sensory-driven gene expression to synaptic refinement in the dorsal lateral geniculate nucleus of the thalamus, a region of the brain that processes visual information. We find that visual experience induces the expression of the cytokine receptor Fn14 in excitatory thalamocortical neurons. By combining electrophysiological and structural techniques, we show that Fn14 is dispensable for early phases of refinement mediated by spontaneous activity but that Fn14 is essential for refinement during a later, experience-dependent period of development. Refinement deficits in mice lacking Fn14 are associated with functionally weaker and structurally smaller retinogeniculate inputs, indicating that Fn14 mediates both functional and anatomical rearrangements in response to sensory experience. These findings identify Fn14 as a molecular link between sensory-driven gene expression and vision-sensitive refinement in the brain.
Collapse
Affiliation(s)
- Lucas Cheadle
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Christopher P Tzeng
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brian T Kalish
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - David A Harmin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Samuel Rivera
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Emi Ling
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; BBS Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Linda Hu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Hume Stroud
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Linda C Burkly
- Research and Early Development, Biogen, 115 Broadway, Cambridge, MA 02142, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Jia L, Chopp M, Wang L, Lu X, Zhang Y, Szalad A, Zhang ZG. MiR-34a Regulates Axonal Growth of Dorsal Root Ganglia Neurons by Targeting FOXP2 and VAT1 in Postnatal and Adult Mouse. Mol Neurobiol 2018; 55:9089-9099. [PMID: 29637443 DOI: 10.1007/s12035-018-1047-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Abstract
Hyperglycemia impairs nerve fibers of dorsal root ganglia (DRG) neurons, leading to diabetic peripheral neuropathy (DPN). However, the molecular mechanisms underlying DPN are not fully understood. Using a mouse model of type II diabetes (db/db mouse), we found that microRNA-34a (miR-34a) was over-expressed in DRG, sciatic nerve, and foot pad tissues of db/db mice. In vitro, high glucose significantly upregulated miR-34a in postnatal and adult DRG neurons, which was associated with inhibition of axonal growth. Overexpression and attenuation of miR-34a in postnatal and adult DRG neurons suppressed and promoted, respectively, axonal growth. Bioinformatic analysis suggested that miR-34a putatively targets forkhead box protein P2 (FOXP2) and vesicle amine transport 1 (VAT1), which were decreased in diabetic tissues and in cultured DRG neurons under high glucose conditions. Dual-luciferase assay showed that miR-34a downregulated FOXP2 and VAT1 expression by targeting their 3' UTR. Gain-of- and loss-of-function analysis showed an inverse relation between augmentation of miR-34a and reduction of FOXP2 and VAT1 proteins in postnatal and adult DRG neurons. Knockdown of FOXP2 and VAT1 reduced axonal growth. Together, these findings suggest that miR-34a and its target genes of FOXP2 and VAT1 are involved in DRG neuron damage under hyperglycemia.
Collapse
Affiliation(s)
- Longfei Jia
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.,Department of Neurolgoy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.,Department of Physics Oakland University, Rochester, MI, 48309, USA
| | - Lei Wang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Xuerong Lu
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
21
|
Schatton A, Mendoza E, Grube K, Scharff C. FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. J Comp Neurol 2018. [PMID: 29536541 DOI: 10.1002/cne.24430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the transcription factors FOXP1, FOXP2, and FOXP4 affect human cognition, including language. The FoxP gene locus is evolutionarily ancient and highly conserved in its DNA-binding domain. In Drosophila melanogaster FoxP has been implicated in courtship behavior, decision making, and specific types of motor-learning. Because honeybees (Apis mellifera, Am) excel at navigation and symbolic dance communication, they are a particularly suitable insect species to investigate a potential link between neural FoxP expression and cognition. We characterized two AmFoxP isoforms and mapped their expression in the brain during development and in adult foragers. Using a custom-made antiserum and in situ hybridization, we describe 11 AmFoxP expressing neuron populations. FoxP was expressed in equivalent patterns in two other representatives of Apidae; a closely related dwarf bee and a bumblebee species. Neural tracing revealed that the largest FoxP expressing neuron cluster in honeybees projects into a posterior tract that connects the optic lobe to the posterior lateral protocerebrum, predicting a function in visual processing. Our data provide an entry point for future experiments assessing the function of FoxP in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Adriana Schatton
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Ezequiel Mendoza
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Kathrin Grube
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Constance Scharff
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
22
|
Gezelius H, Moreno-Juan V, Mezzera C, Thakurela S, Rodríguez-Malmierca LM, Pistolic J, Benes V, Tiwari VK, López-Bendito G. Genetic Labeling of Nuclei-Specific Thalamocortical Neurons Reveals Putative Sensory-Modality Specific Genes. Cereb Cortex 2017; 27:5054-5069. [PMID: 27655933 PMCID: PMC7610997 DOI: 10.1093/cercor/bhw290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/22/2016] [Indexed: 11/14/2022] Open
Abstract
The thalamus is a central brain structure with topographically ordered long-range axonal projections that convey sensory information to the cortex via distinct nuclei. Although there is an increasing knowledge about genes important for thalamocortical (TC) development, the identification of genetic landmarks of the distinct thalamic nuclei during the embryonic development has not been addressed systematically. Indeed, a more comprehensive understanding of how the axons from the individual nuclei find their way and connect to their corresponding cortical area is called for. Here, we used a genetic dual labeling strategy in mice to purify distinct principal sensory thalamic neurons. Subsequent genome-wide transcriptome profiling revealed genes specifically expressed in each nucleus during embryonic development. Analysis of regulatory regions of the identified genes revealed key transcription factors and networks that likely underlie the specification of individual sensory-modality TC connections. Finally, the importance of correct axon targeting for the specific sensory-modality population transcriptome was evidenced in a Sema6A mutant, in which visual TC axons are derailed at embryonic life. In sum, our data determined the developmental transcriptional profile of the TC neurons that will eventually support sensory processing.
Collapse
Affiliation(s)
- Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | - Cecilia Mezzera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
- Present address: Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sudhir Thakurela
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Luis Miguel Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | | | - Vladimir Benes
- EMBL, GeneCore, Meyerhofstr. 1, D-69117 Heidelberg, Germany
| | - Vijay K. Tiwari
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| |
Collapse
|
23
|
Gezelius H, López-Bendito G. Thalamic neuronal specification and early circuit formation. Dev Neurobiol 2016; 77:830-843. [PMID: 27739248 DOI: 10.1002/dneu.22460] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/16/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
The thalamus is a central structure of the brain, primarily recognized for the relay of incoming sensory and motor information to the cerebral cortex but also key in high order intracortical communication. It consists of glutamatergic projection neurons organized in several distinct nuclei, each having a stereotype connectivity pattern and functional roles. In the adult, these nuclei can be appreciated by architectural boundaries, although their developmental origin and specification is only recently beginning to be revealed. Here, we summarize the current knowledge on the specification of the distinct thalamic neurons and nuclei, starting from early embryonic patterning until the postnatal days when active sensory experience is initiated and the overall system connectivity is already established. We also include an overview of the guidance processes important for establishing thalamocortical connections, with emphasis on the early topographical specification. The extensively studied thalamocortical axon branching in the cortex is briefly mentioned; however, the maturation and plasticity of this connection are beyond the scope of this review. In separate chapters, additional mechanisms and/or features that influence the specification and development of thalamic neurons and their circuits are also discussed. Finally, an outlook of future directions is given. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 830-843, 2017.
Collapse
Affiliation(s)
- Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Spain
| |
Collapse
|
24
|
Saygin ZM, Osher DE, Norton ES, Youssoufian DA, Beach SD, Feather J, Gaab N, Gabrieli JDE, Kanwisher N. Connectivity precedes function in the development of the visual word form area. Nat Neurosci 2016; 19:1250-5. [PMID: 27500407 PMCID: PMC5003691 DOI: 10.1038/nn.4354] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/05/2016] [Indexed: 11/11/2022]
Abstract
What determines the cortical location at which a given functionally specific region will arise in development? We tested the hypothesis that functionally specific regions develop in their characteristic locations because of pre-existing differences in the extrinsic connectivity of that region to the rest of the brain. We exploited the visual word form area (VWFA) as a test case, scanning children with diffusion and functional imaging at age 5, before they learned to read, and at age 8, after they learned to read. We found the VWFA developed functionally in this interval and that its location in a particular child at age 8 could be predicted from that child's connectivity fingerprints (but not functional responses) at age 5. These results suggest that early connectivity instructs the functional development of the VWFA, possibly reflecting a general mechanism of cortical development.
Collapse
Affiliation(s)
- Zeynep M Saygin
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David E Osher
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Elizabeth S Norton
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Deanna A Youssoufian
- Department of Biological Sciences, Barnard College, Columbia University, New York, New York, USA
| | - Sara D Beach
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jenelle Feather
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nadine Gaab
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nancy Kanwisher
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Hackett TA, Guo Y, Clause A, Hackett NJ, Garbett K, Zhang P, Polley DB, Mirnics K. Transcriptional maturation of the mouse auditory forebrain. BMC Genomics 2015; 16:606. [PMID: 26271746 PMCID: PMC4536593 DOI: 10.1186/s12864-015-1709-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023] Open
Abstract
Background The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. Results The main findings were: (1) Global gene expression patterns were tightly clustered by postnatal age and brain region; (2) comparing A1 and MG, the total numbers of differentially expressed genes were comparable from P7 to P21, then dropped to nearly half by adulthood; (3) comparing successive age groups, the greatest numbers of differentially expressed genes were found between P7 and P14 in both regions, followed by a steady decline in numbers with age; (4) maturational trajectories in expression levels varied at the single gene level (increasing, decreasing, static, other); (5) between regions, the profiles of single genes were often asymmetric; (6) GSEA revealed that genesets related to neural activity and plasticity were typically upregulated from P7 to adult, while those related to structure tended to be downregulated; (7) GSEA and pathways analysis of selected functional networks were not predictive of expression patterns in the auditory forebrain for all genes, reflecting regional specificity at the single gene level. Conclusions Gene expression in the auditory forebrain during postnatal development is in constant flux and becomes increasingly stable with age. Maturational changes are evident at the global through single gene levels. Transcriptome profiles in A1 and MG are distinct at all ages, and differ from other brain regions. The database generated by this study provides a rich foundation for the identification of novel developmental biomarkers, functional gene pathways, and targeted studies of postnatal maturation in the auditory forebrain. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1709-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA.
| | - Amanda Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| | | | | | - Pan Zhang
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA.
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA. .,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Psychiatry, University of Szeged, 6725, Szeged, Hungary. .,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
26
|
Benítez-Burraco A, Boeckx C. Possible functional links among brain- and skull-related genes selected in modern humans. Front Psychol 2015; 6:794. [PMID: 26136701 PMCID: PMC4468360 DOI: 10.3389/fpsyg.2015.00794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language.
Collapse
Affiliation(s)
| | - Cedric Boeckx
- Catalan Institute for Research and Advanced Studies , Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
27
|
Driscoll C. Constructive criticism: An evaluation of Buller and Hardcastle's genetic and neuroscientific arguments against Evolutionary Psychology. PHILOSOPHICAL PSYCHOLOGY 2014. [DOI: 10.1080/09515089.2013.785068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 2014; 159:896-910. [PMID: 25417164 DOI: 10.1016/j.cell.2014.10.010] [Citation(s) in RCA: 1162] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/29/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The visualization of molecularly labeled structures within large intact tissues in three dimensions is an area of intense focus. We describe a simple, rapid, and inexpensive method, iDISCO, that permits whole-mount immunolabeling with volume imaging of large cleared samples ranging from perinatal mouse embryos to adult organs, such as brains or kidneys. iDISCO is modeled on classical histology techniques, facilitating translation of section staining assays to intact tissues, as evidenced by compatibility with 28 antibodies to both endogenous antigens and transgenic reporters like GFP. When applied to degenerating neurons, iDISCO revealed unexpected variability in number of apoptotic neurons within individual sensory ganglia despite tight control of total number in all ganglia. It also permitted imaging of single degenerating axons in adult brain and the first visualization of cleaved Caspase-3 in degenerating embryonic sensory axons in vivo, even single axons. iDISCO enables facile volume imaging of immunolabeled structures in complex tissues. PAPERCLIP:
Collapse
Affiliation(s)
- Nicolas Renier
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Zhuhao Wu
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - David J Simon
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jing Yang
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Pablo Ariel
- Bio-Imaging Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
29
|
French CA, Fisher SE. What can mice tell us about Foxp2 function? Curr Opin Neurobiol 2014; 28:72-9. [PMID: 25048596 DOI: 10.1016/j.conb.2014.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Disruptions of the FOXP2 gene cause a rare speech and language disorder, a discovery that has opened up novel avenues for investigating the relevant neural pathways. FOXP2 shows remarkably high conservation of sequence and neural expression in diverse vertebrates, suggesting that studies in other species are useful in elucidating its functions. Here we describe how investigations of mice that carry disruptions of Foxp2 provide insights at multiple levels: molecules, cells, circuits and behaviour. Work thus far has implicated the gene in key processes including neurite outgrowth, synaptic plasticity, sensorimotor integration and motor-skill learning.
Collapse
Affiliation(s)
- Catherine A French
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Abstract
Functional binocular vision requires that inputs arising from the two retinae are integrated and precisely organized within central visual areas. Previous studies have demonstrated an important role for one member of the Ten-m/Odz/teneurin family, Ten-m3, in the mapping of ipsilateral retinal projections. Here, we have identified a distinct role for another closely related family member, Ten-m2, in the formation of the ipsilateral projection in the mouse visual system. Ten-m2 expression was observed in the retina, dorsal lateral geniculate nucleus (dLGN), superior colliculus (SC), and primary visual cortex (V1) of the developing mouse. Anterograde and retrograde tracing experiments in Ten-m2 knock-out (KO) mice revealed a specific decrease in ipsilateral retinal ganglion cells projecting to dLGN and SC. This reduction was most prominent in regions corresponding to ventral retina. No change in the topography of ipsilateral or contralateral projections was observed. While expression of a critical ipsilateral fate determinant, Zic2, appeared unaltered, a notable reduction in one of its downstream targets, EphB1, was observed in ventral retina, suggesting that Ten-m2 may interact with this molecular pathway. Immunohistochemistry for c-fos, a neural activity marker, revealed that the area of V1 driven by ipsilateral inputs was reduced in KOs, while the ratio of ipsilateral-to-contralateral responses contributing to binocular activation during visually evoked potential recordings was also diminished. Finally, a novel two-alternative swim task revealed specific deficits associated with dorsal visual field. These data demonstrate a requirement for Ten-m2 in the establishment of ipsilateral projections, and thus the generation of binocular circuits, critical for mammalian visual function.
Collapse
|
31
|
Leyva-Díaz E, López-Bendito G. In and out from the cortex: development of major forebrain connections. Neuroscience 2013; 254:26-44. [PMID: 24042037 DOI: 10.1016/j.neuroscience.2013.08.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
In this review we discuss recent advances in the understanding of the development of forebrain projections attending to their origin, fate determination, and axon guidance. Major forebrain connections include callosal, corticospinal, corticothalamic and thalamocortical projections. Although distinct transcriptional programs specify these subpopulations of projecting neurons, the mechanisms involved in their axonal development are similar. Guidance by short- and long-range molecular cues, interaction with intermediate target populations and activity-dependent mechanisms contribute to their development. Moreover, some of these connections interact with each other showing that the development of these axonal tracts is a well-orchestrated event. Finally, we will recapitulate recent discoveries that challenge the field of neural wiring that show that these forebrain connections can be changed once formed. The field of reprogramming has arrived to postmitotic cortical neurons and has showed us that forebrain connectivity is not immutable and might be changed by manipulations in the transcriptional program of matured cells.
Collapse
Affiliation(s)
- E Leyva-Díaz
- Instituto de Neurociencias de Alicante, CSIC & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | | |
Collapse
|
32
|
Bartlett EL. The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. BRAIN AND LANGUAGE 2013; 126:29-48. [PMID: 23725661 PMCID: PMC3707394 DOI: 10.1016/j.bandl.2013.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 05/17/2023]
Abstract
The auditory thalamus, or medial geniculate body (MGB), is the primary sensory input to auditory cortex. Therefore, it plays a critical role in the complex auditory processing necessary for robust speech perception. This review will describe the functional organization of the thalamus as it relates to processing acoustic features important for speech perception, focusing on thalamic nuclei that relate to auditory representations of language sounds. The MGB can be divided into three main subdivisions, the ventral, dorsal, and medial subdivisions, each with different connectivity, auditory response properties, neuronal properties, and synaptic properties. Together, the MGB subdivisions actively and dynamically shape complex auditory processing and form ongoing communication loops with auditory cortex and subcortical structures.
Collapse
|
33
|
Graham SA, Fisher SE. Decoding the genetics of speech and language. Curr Opin Neurobiol 2013; 23:43-51. [PMID: 23228431 DOI: 10.1016/j.conb.2012.11.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 12/31/2022]
|
34
|
Clascá F, Rubio-Garrido P, Jabaudon D. Unveiling the diversity of thalamocortical neuron subtypes. Eur J Neurosci 2012; 35:1524-32. [DOI: 10.1111/j.1460-9568.2012.08033.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Hoffmann A, Huang Y, Suetsugu-Maki R, Ringelberg CS, Tomlinson CR, Del Rio-Tsonis K, Tsonis PA. Implication of the miR-184 and miR-204 competitive RNA network in control of mouse secondary cataract. Mol Med 2012; 18:528-38. [PMID: 22270329 DOI: 10.2119/molmed.2011.00463] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 11/06/2022] Open
Abstract
The high recurrence rate of secondary cataract (SC) is caused by the intrinsic differentiation activity of residual lens epithelial cells after extra-capsular lens removal. The objective of this study was to identify changes in the microRNA (miRNA) expression profile during mouse SC formation and to selectively manipulate miRNA expression for potential therapeutic intervention. To model SC, mouse cataract surgery was performed and temporal changes in the miRNA expression pattern were determined by microarray analysis. To study the potential SC counterregulative effect of miRNAs, a lens capsular bag in vitro model was used. Within the first 3 wks after cataract surgery, microarray analysis demonstrated SC-associated expression pattern changes of 55 miRNAs. Of the identified miRNAs, miR-184 and miR-204 were chosen for further investigations. Manipulation of miRNA expression by the miR-184 inhibitor (anti-miR-184) and the precursor miRNA for miR-204 (pre-miR-204) attenuated SC-associated expansion and migration of lens epithelial cells and signs of epithelial to mesenchymal transition such as α-smooth muscle actin expression. In addition, pre-miR-204 attenuated SC-associated expression of the transcription factor Meis homeobox 2 (MEIS2). Examination of miRNA target binding sites for miR-184 and miR-204 revealed an extensive range of predicted target mRNA sequences that were also a target to a complex network of other SC-associated miRNAs with possible opposing functions. The identification of the SC-specific miRNA expression pattern together with the observed in vitro attenuation of SC by anti-miR-184 and pre-miR-204 suggest that miR-184 and miR-204 play a significant role in the control of SC formation in mice that is most likely regulated by a complex competitive RNA network.
Collapse
Affiliation(s)
- Andrea Hoffmann
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio 45469-2320, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Grant E, Hoerder-Suabedissen A, Molnár Z. Development of the corticothalamic projections. Front Neurosci 2012; 6:53. [PMID: 22586359 PMCID: PMC3343305 DOI: 10.3389/fnins.2012.00053] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/29/2012] [Indexed: 02/03/2023] Open
Abstract
In this review we discuss recent advances in the understanding of corticothalamic axon guidance; patterning of the early telencephalon, the sequence and choreography of the development of projections from subplate, layers 5 and 6. These cortical subpopulations display different axonal outgrowth kinetics and innervate distinct thalamic nuclei in a temporal pattern determined by cortical layer identity and subclass specificity. Guidance by molecular cues, structural cues, and activity-dependent mechanisms contribute to this development. There is a substantial rearrangement of the corticofugal connectivity outside the thalamus at the border of and within the reticular thalamic nucleus, a region that shares some of the characteristics of the cortical subplate during development. The early transient circuits are not well understood, nor the extent to which this developmental pattern may be driven by peripheral sensory activity. We hypothesize that transient circuits during embryonic and early postnatal development are critical in the matching of the cortical and thalamic representations and forming the cortical circuits in the mature brain.
Collapse
Affiliation(s)
- Eleanor Grant
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | | | | |
Collapse
|
37
|
Merlin S, Horng S, Marotte LR, Sur M, Sawatari A, Leamey CA. Deletion of Ten-m3 induces the formation of eye dominance domains in mouse visual cortex. ACTA ACUST UNITED AC 2012; 23:763-74. [PMID: 22499796 DOI: 10.1093/cercor/bhs030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The visual system is characterized by precise retinotopic mapping of each eye, together with exquisitely matched binocular projections. In many species, the inputs that represent the eyes are segregated into ocular dominance columns in primary visual cortex (V1), whereas in rodents, this does not occur. Ten-m3, a member of the Ten-m/Odz/Teneurin family, regulates axonal guidance in the retinogeniculate pathway. Significantly, ipsilateral projections are expanded in the dorsal lateral geniculate nucleus and are not aligned with contralateral projections in Ten-m3 knockout (KO) mice. Here, we demonstrate the impact of altered retinogeniculate mapping on the organization and function of V1. Transneuronal tracing and c-fos immunohistochemistry demonstrate that the subcortical expansion of ipsilateral input is conveyed to V1 in Ten-m3 KOs: Ipsilateral inputs are widely distributed across V1 and are interdigitated with contralateral inputs into eye dominance domains. Segregation is confirmed by optical imaging of intrinsic signals. Single-unit recording shows ipsilateral, and contralateral inputs are mismatched at the level of single V1 neurons, and binocular stimulation leads to functional suppression of these cells. These findings indicate that the medial expansion of the binocular zone together with an interocular mismatch is sufficient to induce novel structural features, such as eye dominance domains in rodent visual cortex.
Collapse
Affiliation(s)
- Sam Merlin
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Scharff C, Petri J. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philos Trans R Soc Lond B Biol Sci 2011; 366:2124-40. [PMID: 21690130 PMCID: PMC3130369 DOI: 10.1098/rstb.2011.0001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the 'evo-devo' conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this 'deep homology'. Recently, 'evo-devo' has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can 'descend with modification'.
Collapse
Affiliation(s)
- Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany.
| | | |
Collapse
|
39
|
Enard W. FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr Opin Neurobiol 2011; 21:415-24. [PMID: 21592779 DOI: 10.1016/j.conb.2011.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/20/2011] [Indexed: 01/14/2023]
Abstract
PURPOSE OF THE REVIEW A reduced dosage of the transcription factor FOXP2 leads to speech and language impairments probably owing to deficits in cortical and subcortical neural circuits. Based on evolutionary sequence analysis it has been proposed that the two amino acid substitutions that occurred on the human lineage have been positively selected. Here I review recent studies investigating the functional consequences of these two substitutions and discuss how these first endeavors to study human brain evolution can be interpreted in the context of speech and language evolution. RECENT FINDINGS Mice carrying the two substitutions in their endogenous Foxp2 gene show specific alterations in dopamine levels, striatal synaptic plasticity and neuronal morphology. Mice carrying only one functional Foxp2, show additional and partly opposite effects suggesting that FOXP2 has contributed to tuning cortico-basal ganglia circuits during human evolution. Evidence from human and songbird studies suggest that this could have been relevant during language acquisition or vocal learning, respectively. SUMMARY FOXP2 could have contributed to the evolution of human speech and language by adapting cortico-basal ganglia circuits. More generally the recent studies allow careful optimism that aspects of human brain evolution can be investigated in model systems such as the mouse.
Collapse
Affiliation(s)
- Wolfgang Enard
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany.
| |
Collapse
|
40
|
Bolhuis JJ, Okanoya K, Scharff C. Twitter evolution: converging mechanisms in birdsong and human speech. Nat Rev Neurosci 2010; 11:747-59. [PMID: 20959859 DOI: 10.1038/nrn2931] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vocal imitation in human infants and in some orders of birds relies on auditory-guided motor learning during a sensitive period of development. It proceeds from 'babbling' (in humans) and 'subsong' (in birds) through distinct phases towards the full-fledged communication system. Language development and birdsong learning have parallels at the behavioural, neural and genetic levels. Different orders of birds have evolved networks of brain regions for song learning and production that have a surprisingly similar gross anatomy, with analogies to human cortical regions and basal ganglia. Comparisons between different songbird species and humans point towards both general and species-specific principles of vocal learning and have identified common neural and molecular substrates, including the forkhead box P2 (FOXP2) gene.
Collapse
Affiliation(s)
- Johan J Bolhuis
- Behavioural Biology, Department of Biology and Helmholtz Institute, Utrecht University, Padualaan 8, Utrecht, the Netherlands.
| | | | | |
Collapse
|
41
|
Razak KA, Fuzessery ZM. Development of parallel auditory thalamocortical pathways for two different behaviors. Front Neuroanat 2010; 4. [PMID: 20941327 PMCID: PMC2952463 DOI: 10.3389/fnana.2010.00134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 08/29/2010] [Indexed: 11/13/2022] Open
Abstract
Auditory thalamocortical connections are organized as parallel pathways that originate in different divisions of the medial geniculate body (MGB). These pathways may be involved in different functions. Surprisingly little is known about the development of these connections. Here we review studies of the organization and development of auditory thalamocortical pathways in the pallid bat. The pallid bat depends primarily on passive hearing of prey-generated noise for localizing prey, while reserving echolocation for general orientation and obstacle avoidance. In the inferior colliculus (IC) and the auditory cortex, physiological studies show that noise and echolocation calls are processed in segregated regions. Injection of retrograde tracers in physiologically characterized cortical sites show that the ventral division of the MGB (MGBv) projects to the cortical region selective for noise. The cortical region selective for echolocation calls receives input from the suprageniculate (SG) nucleus in the dorsal MGB, but not from the MGBv. Taken together, these studies reveal parallel IC-MGB-cortex pathways involved in echolocation and passive listening. There is overlap of thalamocortical pathways during development. At 2-weeks postnatal, when the bat begins to exhibit adult-like hearing thresholds, the SG projects to both noise- and echolocation call-selective regions. The MGBv, as in adults, projects only to the noise-selective region. The connections become adult-like only after 2-months postnatal. These data suggest that parallel auditory thalamocortical pathways may segregate in an experience-dependent fashion, a hypothesis that remains to be tested in any species.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology, University of California Riverside, CA, USA
| | | |
Collapse
|