1
|
Chien C, He K, Perry S, Tchitchkan E, Han Y, Li X, Dickman D. Distinct input-specific mechanisms enable presynaptic homeostatic plasticity. SCIENCE ADVANCES 2025; 11:eadr0262. [PMID: 39951523 PMCID: PMC11827636 DOI: 10.1126/sciadv.adr0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Synapses are endowed with the flexibility to change through experience, but must be sufficiently stable to last a lifetime. This tension is illustrated at the Drosophila neuromuscular junction (NMJ), where two motor inputs that differ in structural and functional properties coinnervate most muscles to coordinate locomotion. To stabilize NMJ activity, motor neurons augment neurotransmitter release following diminished postsynaptic glutamate receptor functionality, termed presynaptic homeostatic potentiation (PHP). How these distinct inputs contribute to PHP plasticity remains enigmatic. We have used a botulinum neurotoxin to selectively silence each input and resolve their roles in PHP, demonstrating that PHP is input specific: Chronic (genetic) PHP selectively targets the tonic MN-Ib, where active zone remodeling enhances Ca2+ influx to promote increased glutamate release. In contrast, acute (pharmacological) PHP selectively increases vesicle pools to potentiate phasic MN-Is. Thus, distinct homeostatic modulations in active zone nanoarchitecture, vesicle pools, and Ca2+ influx collaborate to enable input-specific PHP expression.
Collapse
Affiliation(s)
- Chun Chien
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
- USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Kaikai He
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
- USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Tchitchkan
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
- USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
- USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Fiala A, Kaun KR. What do the mushroom bodies do for the insect brain? Twenty-five years of progress. Learn Mem 2024; 31:a053827. [PMID: 38862175 PMCID: PMC11199942 DOI: 10.1101/lm.053827.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
In 1998, a special edition of Learning & Memory was published with a discrete focus of synthesizing the state of the field to provide an overview of the function of the insect mushroom body. While molecular neuroscience and optical imaging of larger brain areas were advancing, understanding the basic functioning of neuronal circuits, particularly in the context of the mushroom body, was rudimentary. In the past 25 years, technological innovations have allowed researchers to map and understand the in vivo function of the neuronal circuits of the mushroom body system, making it an ideal model for investigating the circuit basis of sensory encoding, memory formation, and behavioral decisions. Collaborative efforts within the community have played a crucial role, leading to an interactive connectome of the mushroom body and accessible genetic tools for studying mushroom body circuit function. Looking ahead, continued technological innovation and collaborative efforts are likely to further advance our understanding of the mushroom body and its role in behavior and cognition, providing insights that generalize to other brain structures and species.
Collapse
Affiliation(s)
- André Fiala
- Department of Molecular Neurobiology of Behaviour, University of Göttingen, Göttingen 37077, Germany
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, Rhode Island 02806, USA
| |
Collapse
|
3
|
Zhai RG. The Architecture of the Presynaptic Release Site. ADVANCES IN NEUROBIOLOGY 2023; 33:1-21. [PMID: 37615861 DOI: 10.1007/978-3-031-34229-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The architecture of the presynaptic release site is exquisitely designed to facilitate and regulate synaptic vesicle exocytosis. With the identification of some of the building blocks of the active zone and the advent of super resolution imaging techniques, we are beginning to understand the morphological and functional properties of synapses in great detail. Presynaptic release sites consist of the plasma membrane, the cytomatrix, and dense projections. These three components are morphologically distinct but intimately connected with each other and with postsynaptic specializations, ensuring the fidelity of synaptic vesicle tethering, docking, and fusion, as well as signal detection. Although the morphology and molecular compositions of active zones may vary among species, tissues, and cells, global architectural design of the release sites is highly conserved.
Collapse
Affiliation(s)
- R Grace Zhai
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
4
|
Lnenicka GA. Crayfish and Drosophila NMJs. Neurosci Lett 2020; 732:135110. [PMID: 32497734 DOI: 10.1016/j.neulet.2020.135110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/06/2023]
Abstract
Many synaptic studies have utilized the experimental advantages of the Arthropod NMJ and the most prominent preparations have been the crayfish and Drosophila larval NMJs. Early cellular studies in the crayfish established the framework for later molecular studies in Drosophila. The two neuromuscular systems are compared including the advantages presented by each preparation for cellular analysis. Beginning with the early work in the crayfish, research developments are followed in the areas of structure/function relationships, activity-dependent synaptic plasticity/development and synaptic homeostasis. A reoccurring theme in these studies is the regulation of active zone structure and function. Early studies in the crayfish focused on the role of active zone number/size and possible functional heterogeneity in regulating transmitter release. Recent studies in Drosophila have begun to characterize this heterogeneity using new approaches that combine imaging of transmitter release, Ca2+ influx and molecular composition for individual active zones.
Collapse
Affiliation(s)
- Gregory A Lnenicka
- Department of Biological Sciences, University at Albany, SUNY, Albany, NY 12222, United States.
| |
Collapse
|
5
|
Badawi Y, Nishimune H. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging. Neurosci Res 2017; 127:78-88. [PMID: 29221906 DOI: 10.1016/j.neures.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
6
|
Abstract
Fluorescent protein-based biosensors are indispensable molecular tools for life science research. The invention and development of high-fidelity biosensors for a particular molecule or molecular event often catalyze important scientific breakthroughs. Understanding the structural and functional organization of brain activities remain a subject for which optical sensors are in desperate need and of growing interest. Here, we review genetically encoded fluorescent sensors for imaging neuronal activities with a focus on the design principles and optimizations of various sensors. New bioluminescent sensors useful for deep-tissue imaging are also discussed. By highlighting the protein engineering efforts and experimental applications of these sensors, we can consequently analyze factors influencing their performance. Finally, we remark on how future developments can fill technological gaps and lead to new discoveries.
Collapse
Affiliation(s)
- Zhijie Chen
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720, USA
| | - Tan M. Truong
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
7
|
Ulian-Benitez S, Bishop S, Foldi I, Wentzell J, Okenwa C, Forero MG, Zhu B, Moreira M, Phizacklea M, McIlroy G, Li G, Gay NJ, Hidalgo A. Kek-6: A truncated-Trk-like receptor for Drosophila neurotrophin 2 regulates structural synaptic plasticity. PLoS Genet 2017; 13:e1006968. [PMID: 28846707 PMCID: PMC5591008 DOI: 10.1371/journal.pgen.1006968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/08/2017] [Accepted: 08/08/2017] [Indexed: 01/19/2023] Open
Abstract
Neurotrophism, structural plasticity, learning and long-term memory in mammals critically depend on neurotrophins binding Trk receptors to activate tyrosine kinase (TyrK) signaling, but Drosophila lacks full-length Trks, raising the question of how these processes occur in the fly. Paradoxically, truncated Trk isoforms lacking the TyrK predominate in the adult human brain, but whether they have neuronal functions independently of full-length Trks is unknown. Drosophila has TyrK-less Trk-family receptors, encoded by the kekkon (kek) genes, suggesting that evolutionarily conserved functions for this receptor class may exist. Here, we asked whether Keks function together with Drosophila neurotrophins (DNTs) at the larval glutamatergic neuromuscular junction (NMJ). We tested the eleven LRR and Ig-containing (LIG) proteins encoded in the Drosophila genome for expression in the central nervous system (CNS) and potential interaction with DNTs. Kek-6 is expressed in the CNS, interacts genetically with DNTs and can bind DNT2 in signaling assays and co-immunoprecipitations. Ligand binding is promiscuous, as Kek-6 can also bind DNT1, and Kek-2 and Kek-5 can also bind DNT2. In vivo, Kek-6 is found presynaptically in motoneurons, and DNT2 is produced by the muscle to function as a retrograde factor at the NMJ. Kek-6 and DNT2 regulate NMJ growth and synaptic structure. Evidence indicates that Kek-6 does not antagonise the alternative DNT2 receptor Toll-6. Instead, Kek-6 and Toll-6 interact physically, and together regulate structural synaptic plasticity and homeostasis. Using pull-down assays, we identified and validated CaMKII and VAP33A as intracellular partners of Kek-6, and show that they regulate NMJ growth and active zone formation downstream of DNT2 and Kek-6. The synaptic functions of Kek-6 could be evolutionarily conserved. This raises the intriguing possibility that a novel mechanism of structural synaptic plasticity involving truncated Trk-family receptors independently of TyrK signaling may also operate in the human brain. A long-standing paradox had been to explain how brain structural plasticity, learning and long-term memory might occur in Drosophila in the absence of canonical Trk receptors for neurotrophin (NT) ligands. NTs link structure and function in the brain enabling adjustments in cell number, dendritic, axonal and synaptic patterns, in response to neuronal activity. These events are essential for brain development, learning and long-term memory, and are thought to depend on the tyrosine-kinase function of the NT Trk receptors. However, paradoxically, the most abundant Trk isoforms in the adult human brain lack the tyrosine kinase, and their neuronal function is unknown. Remarkably, Drosophila has kinase-less receptors of the Trk family encoded by the kekkon (kek) genes, suggesting that deep evolutionary functional conservation for this receptor class could be unveiled. Here, we show that Kek-6 is a receptor for Drosophila neurotrophin 2 (DNT2) that regulates structural synaptic plasticity via CaMKII and VAP33A. The latter are well-known factors regulating synaptic structure and plasticity and vesicle release. Furthemore, Kek-6 cooperates with the alternative DNT2 receptor Toll-6, and their concerted functions are required to regulate structural homeostasis at the NMJ. Our findings suggest that in mammals truncated Trk-family receptors could also have synaptic functions in neurons independently of Tyrosine kinase signaling. This might reveal a novel mechanism of brain plasticity, with important implications for understanding also the human brain, in health and disease.
Collapse
Affiliation(s)
- Suzana Ulian-Benitez
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon Bishop
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Istvan Foldi
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jill Wentzell
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Chinenye Okenwa
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | - Bangfu Zhu
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Marta Moreira
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mark Phizacklea
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Graham McIlroy
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Guiyi Li
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Nicholas J. Gay
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alicia Hidalgo
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Serotonergic Modulation Enables Pathway-Specific Plasticity in a Developing Sensory Circuit in Drosophila. Neuron 2017; 95:623-638.e4. [PMID: 28712652 DOI: 10.1016/j.neuron.2017.06.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 05/06/2017] [Accepted: 06/19/2017] [Indexed: 11/23/2022]
Abstract
How experiences during development cause long-lasting changes in sensory circuits and affect behavior in mature animals are poorly understood. Here we establish a novel system for mechanistic analysis of the plasticity of developing neural circuits by showing that sensory experience during development alters nociceptive behavior and circuit physiology in Drosophila larvae. Despite the convergence of nociceptive and mechanosensory inputs on common second-order neurons (SONs), developmental noxious input modifies transmission from nociceptors to their SONs, but not from mechanosensors to the same SONs, which suggests striking sensory pathway specificity. These SONs activate serotonergic neurons to inhibit nociceptor-to-SON transmission; stimulation of nociceptors during development sensitizes nociceptor presynapses to this feedback inhibition. Our results demonstrate that, unlike associative learning, which involves inputs from two sensory pathways, sensory pathway-specific plasticity in the Drosophila nociceptive circuit is in part established through feedback modulation. This study elucidates a novel mechanism that enables pathway-specific plasticity in sensory systems. VIDEO ABSTRACT.
Collapse
|
9
|
Wagner N. Ultrastructural comparison of the Drosophila larval and adult ventral abdominal neuromuscular junction. J Morphol 2017; 278:987-996. [PMID: 28444917 DOI: 10.1002/jmor.20692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 02/04/2023]
Abstract
Drosophila melanogaster has recently emerged as model system for studying synaptic transmission and plasticity during adulthood, aging and neurodegeneration. However, still little is known about the basic neuronal mechanisms of synaptic function in the adult fly. Per se, adult Drosophila neuromuscular junctions should be highly suited for studying these aspects as they allow for genetic manipulations in combination with ultrastructural and electrophysiological analyses. Although different neuromuscular junctions of the adult fly have been described during the last years, a direct ultrastructural comparison with their larval counterpart is lacking. The present study was designed to close this gap by providing a detailed ultrastructural comparison of the larval and the adult neuromuscular junction of the ventrolongitudinal muscle. Assessment of several parameters revealed similarities but also major differences in the ultrastructural organisation of the two model neuromuscular junctions. While basic morphological parameters are retained from the larval into the adult stage, the analysis discovered major differences of potential functional relevance in the adult: The electron-dense membrane apposition of the presynaptic and postsynaptic membrane is shorter, the subsynaptic reticulum is less elaborated and the number of synaptic vesicles at a certain distance of the presynaptic membrane is higher.
Collapse
Affiliation(s)
- Nicole Wagner
- Institute of Anatomy and Cell Biology, Julius-Maximilians University Wuerzburg, Koellikerstraße 6, Wuerzburg, Germany
| |
Collapse
|
10
|
Bruckner JJ, Zhan H, Gratz SJ, Rao M, Ukken F, Zilberg G, O'Connor-Giles KM. Fife organizes synaptic vesicles and calcium channels for high-probability neurotransmitter release. J Cell Biol 2016; 216:231-246. [PMID: 27998991 PMCID: PMC5223599 DOI: 10.1083/jcb.201601098] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 10/19/2016] [Accepted: 11/29/2016] [Indexed: 11/22/2022] Open
Abstract
Fife is a Piccolo-RIM–related protein that regulates neurotransmission and motor behavior through an unknown mechanism. Here, Bruckner et al. show that Fife organizes synaptic vesicle docking and coupling to calcium channels to establish and modulate synaptic strength. The strength of synaptic connections varies significantly and is a key determinant of communication within neural circuits. Mechanistic insight into presynaptic factors that establish and modulate neurotransmitter release properties is crucial to understanding synapse strength, circuit function, and neural plasticity. We previously identified Drosophila Piccolo-RIM-related Fife, which regulates neurotransmission and motor behavior through an unknown mechanism. Here, we demonstrate that Fife localizes and interacts with RIM at the active zone cytomatrix to promote neurotransmitter release. Loss of Fife results in the severe disruption of active zone cytomatrix architecture and molecular organization. Through electron tomographic and electrophysiological studies, we find a decrease in the accumulation of release-ready synaptic vesicles and their release probability caused by impaired coupling to Ca2+ channels. Finally, we find that Fife is essential for the homeostatic modulation of neurotransmission. We propose that Fife organizes active zones to create synaptic vesicle release sites within nanometer distance of Ca2+ channel clusters for reliable and modifiable neurotransmitter release.
Collapse
Affiliation(s)
- Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Hong Zhan
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Scott J Gratz
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Monica Rao
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Fiona Ukken
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Gregory Zilberg
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Kate M O'Connor-Giles
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706 .,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
11
|
Sulkowski MJ, Han TH, Ott C, Wang Q, Verheyen EM, Lippincott-Schwartz J, Serpe M. A Novel, Noncanonical BMP Pathway Modulates Synapse Maturation at the Drosophila Neuromuscular Junction. PLoS Genet 2016; 12:e1005810. [PMID: 26815659 PMCID: PMC4729469 DOI: 10.1371/journal.pgen.1005810] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
At the Drosophila NMJ, BMP signaling is critical for synapse growth and homeostasis. Signaling by the BMP7 homolog, Gbb, in motor neurons triggers a canonical pathway—which modulates transcription of BMP target genes, and a noncanonical pathway—which connects local BMP/BMP receptor complexes with the cytoskeleton. Here we describe a novel noncanonical BMP pathway characterized by the accumulation of the pathway effector, the phosphorylated Smad (pMad), at synaptic sites. Using genetic epistasis, histology, super resolution microscopy, and electrophysiology approaches we demonstrate that this novel pathway is genetically distinguishable from all other known BMP signaling cascades. This novel pathway does not require Gbb, but depends on presynaptic BMP receptors and specific postsynaptic glutamate receptor subtypes, the type-A receptors. Synaptic pMad is coordinated to BMP’s role in the transcriptional control of target genes by shared pathway components, but it has no role in the regulation of NMJ growth. Instead, selective disruption of presynaptic pMad accumulation reduces the postsynaptic levels of type-A receptors, revealing a positive feedback loop which appears to function to stabilize active type-A receptors at synaptic sites. Thus, BMP pathway may monitor synapse activity then function to adjust synapse growth and maturation during development. Synaptic activity and synapse development are intimately linked, but our understanding of the coupling mechanisms remains limited. Anterograde and retrograde signals together with trans-synaptic complexes enable intercellular communications. How synapse activity status is monitored and relayed across the synaptic cleft remains poorly understood. The Drosophila NMJ is a very powerful genetic system to study synapse development. BMP signaling modulates NMJ growth via a canonical, Smad-dependent pathway, but also synapse stability, via a noncanonical, Smad-independent pathway. Here we describe a novel, noncanonical BMP pathway, which is genetically distinguishable from all other known BMP pathways. This pathway does not contribute to NMJ growth and instead influences synapse formation and maturation in an activity-dependent manner. Specifically, phosphorylated Smad (pMad in flies) accumulates at active zone in response to active postsynaptic type-A glutamate receptors, a specific receptor subtype. In turn, synaptic pMad functions to promote the recruitment of type-A receptors at synaptic sites. This positive feedback loop provides a molecular switch controlling which flavor of glutamate receptors will be stabilized at synaptic locations as a function of synapse status. Since BMP signaling also controls NMJ growth and stability, BMP pathway offers an exquisite means to monitor the status of synapse activity and coordinate NMJ growth with synapse maturation and stabilization.
Collapse
Affiliation(s)
- Mikolaj J. Sulkowski
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Tae Hee Han
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Carolyn Ott
- Cellular Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Qi Wang
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jennifer Lippincott-Schwartz
- Cellular Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Mihaela Serpe
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Wagner N, Laugks U, Heckmann M, Asan E, Neuser K. Aging Drosophila melanogaster display altered pre- and postsynaptic ultrastructure at adult neuromuscular junctions. J Comp Neurol 2015; 523:2457-75. [PMID: 25940748 DOI: 10.1002/cne.23798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/19/2023]
Abstract
Although age-related changes in synaptic plasticity are an important focus within neuroscience, little is known about ultrastructural changes of synaptic morphology during aging. Here we report how aging affects synaptic ultrastructure by using fluorescence and electron microscopy at the adult Drosophila neuromuscular junction (NMJ) of ventral abdominal muscles. Mainly four striking morphological changes of aging NMJs were revealed. 1) Bouton size increases with proportionally rising number of active zones (AZs). 2) Synaptic vesicle density at AZs is increased in old flies. 3) Late endosomes, cisternae, and multivesicular bodies accumulate in the presynaptic terminal, and vesicles accumulate between membranes of the terminal bouton and the subsynaptic reticulum. 4) The electron-dense pre- and postsynaptic apposition is expanded in aging NMJs, which is accompanied by an expansion of the postsynaptic glutamate receptor fields. These findings suggest that aging is possibly accompanied by impaired synaptic vesicle release and recycling and a potentially compensatory expansion of AZs and postsynaptic densities.
Collapse
Affiliation(s)
- Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Wuerzburg, 97070, Wuerzburg, Germany
| | - Ulrike Laugks
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Manfred Heckmann
- Institute of Physiology-Neurophysiology, Julius-Maximilians University Wuerzburg, 97070, Wuerzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Wuerzburg, 97070, Wuerzburg, Germany
| | - Kirsa Neuser
- Institute of Physiology-Neurophysiology, Julius-Maximilians University Wuerzburg, 97070, Wuerzburg, Germany
| |
Collapse
|
13
|
Grice SJ, Liu JL, Webber C. Synergistic interactions between Drosophila orthologues of genes spanned by de novo human CNVs support multiple-hit models of autism. PLoS Genet 2015; 11:e1004998. [PMID: 25816101 PMCID: PMC4376901 DOI: 10.1371/journal.pgen.1004998] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/12/2015] [Indexed: 01/30/2023] Open
Abstract
Autism spectrum disorders (ASDs) are highly heritable and characterised by deficits in social interaction and communication, as well as restricted and repetitive behaviours. Although a number of highly penetrant ASD gene variants have been identified, there is growing evidence to support a causal role for combinatorial effects arising from the contributions of multiple loci. By examining synaptic and circadian neurological phenotypes resulting from the dosage variants of unique human:fly orthologues in Drosophila, we observe numerous synergistic interactions between pairs of informatically-identified candidate genes whose orthologues are jointly affected by large de novo copy number variants (CNVs). These CNVs were found in the genomes of individuals with autism, including a patient carrying a 22q11.2 deletion. We first demonstrate that dosage alterations of the unique Drosophila orthologues of candidate genes from de novo CNVs that harbour only a single candidate gene display neurological defects similar to those previously reported in Drosophila models of ASD-associated variants. We then considered pairwise dosage changes within the set of orthologues of candidate genes that were affected by the same single human de novo CNV. For three of four CNVs with complete orthologous relationships, we observed significant synergistic effects following the simultaneous dosage change of gene pairs drawn from a single CNV. The phenotypic variation observed at the Drosophila synapse that results from these interacting genetic variants supports a concordant phenotypic outcome across all interacting gene pairs following the direction of human gene copy number change. We observe both specificity and transitivity between interactors, both within and between CNV candidate gene sets, supporting shared and distinct genetic aetiologies. We then show that different interactions affect divergent synaptic processes, demonstrating distinct molecular aetiologies. Our study illustrates mechanisms through which synergistic effects resulting from large structural variation can contribute to human disease.
Collapse
Affiliation(s)
- Stuart J. Grice
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Caleb Webber
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Blunk AD, Akbergenova Y, Cho RW, Lee J, Walldorf U, Xu K, Zhong G, Zhuang X, Littleton JT. Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction. Mol Cell Neurosci 2014; 61:241-54. [PMID: 25066865 PMCID: PMC4134997 DOI: 10.1016/j.mcn.2014.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/14/2014] [Accepted: 07/23/2014] [Indexed: 12/26/2022] Open
Abstract
Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a chemical mutagenesis screen in Drosophila to identify mutants defective in the alignment of active zones with postsynaptic glutamate receptor fields at the larval neuromuscular junction. From this screen we identified a mutation in Actin 57B that disrupted synaptic morphology and presynaptic active zone organization. Actin 57B, one of six actin genes in Drosophila, is expressed within the postsynaptic bodywall musculature. The isolated allele, act(E84K), harbors a point mutation in a highly conserved glutamate residue in subdomain 1 that binds members of the Calponin Homology protein family, including spectrin. Homozygous act(E84K) mutants show impaired alignment and spacing of presynaptic active zones, as well as defects in apposition of active zones to postsynaptic glutamate receptor fields. act(E84K) mutants have disrupted postsynaptic actin networks surrounding presynaptic boutons, with the formation of aberrant actin swirls previously observed following disruption of postsynaptic spectrin. Consistent with a disruption of the postsynaptic actin cytoskeleton, spectrin, adducin and the PSD-95 homolog Discs-Large are all mislocalized in act(E84K) mutants. Genetic interactions between act(E84K) and neurexin mutants suggest that the postsynaptic actin cytoskeleton may function together with the Neurexin-Neuroligin transsynaptic signaling complex to mediate normal synapse development and presynaptic active zone organization.
Collapse
Affiliation(s)
- Aline D Blunk
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Richard W Cho
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jihye Lee
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; The Department of Oral Pathology, School of Dentistry, Pusan National University, Republic of Korea
| | - Uwe Walldorf
- Department of Developmental Biology, University of Saarland, Homburg, Saar, Germany
| | - Ke Xu
- Howard Hughes Medical Institute (HHMI), Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Guisheng Zhong
- Howard Hughes Medical Institute (HHMI), Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute (HHMI), Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States; Department of Physics, Harvard University, Cambridge, MA 02138, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
15
|
Sulkowski M, Kim YJ, Serpe M. Postsynaptic glutamate receptors regulate local BMP signaling at the Drosophila neuromuscular junction. Development 2013; 141:436-47. [PMID: 24353060 DOI: 10.1242/dev.097758] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effective communication between pre- and postsynaptic compartments is required for proper synapse development and function. At the Drosophila neuromuscular junction (NMJ), a retrograde BMP signal functions to promote synapse growth, stability and homeostasis and coordinates the growth of synaptic structures. Retrograde BMP signaling triggers accumulation of the pathway effector pMad in motoneuron nuclei and at synaptic termini. Nuclear pMad, in conjunction with transcription factors, modulates the expression of target genes and instructs synaptic growth; a role for synaptic pMad remains to be determined. Here, we report that pMad signals are selectively lost at NMJ synapses with reduced postsynaptic sensitivities. Despite this loss of synaptic pMad, nuclear pMad persisted in motoneuron nuclei, and expression of BMP target genes was unaffected, indicating a specific impairment in pMad production/maintenance at synaptic termini. During development, synaptic pMad accumulation followed the arrival and clustering of ionotropic glutamate receptors (iGluRs) at NMJ synapses. Synaptic pMad was lost at NMJ synapses developing at suboptimal levels of iGluRs and Neto, an auxiliary subunit required for functional iGluRs. Genetic manipulations of non-essential iGluR subunits revealed that synaptic pMad signals specifically correlated with the postsynaptic type-A glutamate receptors. Altering type-A receptor activities via protein kinase A (PKA) revealed that synaptic pMad depends on the activity and not the net levels of postsynaptic type-A receptors. Thus, synaptic pMad functions as a local sensor for NMJ synapse activity and has the potential to coordinate synaptic activity with a BMP retrograde signal required for synapse growth and homeostasis.
Collapse
Affiliation(s)
- Mikolaj Sulkowski
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
16
|
Matkovic T, Siebert M, Knoche E, Depner H, Mertel S, Owald D, Schmidt M, Thomas U, Sickmann A, Kamin D, Hell SW, Bürger J, Hollmann C, Mielke T, Wichmann C, Sigrist SJ. The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles. ACTA ACUST UNITED AC 2013; 202:667-83. [PMID: 23960145 PMCID: PMC3747298 DOI: 10.1083/jcb.201301072] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two Bruchpilot isoforms create a stereotypic arrangement of the cytomatrix that defines the size of the readily releasable pool of synaptic vesicles. Synaptic vesicles (SVs) fuse at a specialized membrane domain called the active zone (AZ), covered by a conserved cytomatrix. How exactly cytomatrix components intersect with SV release remains insufficiently understood. We showed previously that loss of the Drosophila melanogaster ELKS family protein Bruchpilot (BRP) eliminates the cytomatrix (T bar) and declusters Ca2+ channels. In this paper, we explored additional functions of the cytomatrix, starting with the biochemical identification of two BRP isoforms. Both isoforms alternated in a circular array and were important for proper T-bar formation. Basal transmission was decreased in isoform-specific mutants, which we attributed to a reduction in the size of the readily releasable pool (RRP) of SVs. We also found a corresponding reduction in the number of SVs docked close to the remaining cytomatrix. We propose that the macromolecular architecture created by the alternating pattern of the BRP isoforms determines the number of Ca2+ channel-coupled SV release slots available per AZ and thereby sets the size of the RRP.
Collapse
Affiliation(s)
- Tanja Matkovic
- Neurogenetik, Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Macleod GT. Calcium imaging at the Drosophila larval neuromuscular junction. Cold Spring Harb Protoc 2012; 2012:758-66. [PMID: 22753609 DOI: 10.1101/pdb.top070078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcium imaging uses optical imaging techniques to measure the concentration of free calcium [Ca(2+)] in live cells. It is a highly informative technique in neurobiology because Ca(2+) is involved in many neuronal signaling pathways and serves as the trigger for neurotransmitter release. The technique relies on loading Ca(2+) indicators into cells, measuring the quantity and/or wavelength of the photons emitted by the Ca(2+) indicator, and interpreting these data in terms of [Ca(2+)]. There are several possible methods for loading synthetic Ca(2+) indicators into subcellular compartments, for example, topical application of membrane-permeant Ca(2+) indicators, forward-filling of dextran conjugates, and direct injection. These techniques are applicable to calcium imaging at the Drosophila larval neuromuscular junction (NMJ), and are also readily adaptable to Drosophila embryo and adult preparations.
Collapse
|
18
|
Neuronal influence on peripheral circadian oscillators in pupal Drosophila prothoracic glands. Nat Commun 2012; 3:909. [PMID: 22713751 PMCID: PMC3621432 DOI: 10.1038/ncomms1922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/22/2012] [Indexed: 11/08/2022] Open
Abstract
Rhythmic expression of period (per) and timeless (tim) genes in central circadian pacemaker neurons and prothoracic gland cells, part of the peripheral circadian oscillators in flies, may synergistically control eclosion rhythms, but their oscillatory profiles remain unclear. Here we show differences and interactions between peripheral and central oscillators using per-luciferase and cytosolic Ca2+ reporter (yellow cameleon) imaging in organotypic prothoracic gland cultures with or without the associated central nervous system. Isolated prothoracic gland cells exhibit light-insensitive synchronous per-transcriptional rhythms. In prothoracic gland cells associated with the central nervous system, however, per transcription is markedly amplified following 12-h light exposure, resulting in the manifestation of day–night rhythms in nuclear PER immunostaining levels and spontaneous Ca2+ spiking. Unlike PER expression, nuclear TIM expression is associated with day–night cycles that are independent of the central nervous system. These results demonstrate that photoreception and synaptic signal transduction in/from the central nervous system coordinate molecular 'gears' in endocrine oscillators to generate physiological rhythms. In the fruit fly Drosophila, changes in expression of circadian clock genes are believed to control eclosion. Morioka and colleagues show that transcriptional oscillations of the clock gene, period, in prothoracic gland cells are amplified by photic inputs from the central nervous system.
Collapse
|
19
|
Transsynaptic control of presynaptic Ca²⁺ influx achieves homeostatic potentiation of neurotransmitter release. Curr Biol 2012; 22:1102-8. [PMID: 22633807 DOI: 10.1016/j.cub.2012.04.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 11/20/2022]
Abstract
Given the complexity of the nervous system and its capacity for change, it is remarkable that robust, reproducible neural function and animal behavior can be achieved. It is now apparent that homeostatic signaling systems have evolved to stabilize neural function. At the neuromuscular junction (NMJ) of organisms ranging from Drosophila to human, inhibition of postsynaptic neurotransmitter receptor function causes a homeostatic increase in presynaptic release that precisely restores postsynaptic excitation. Here we address what occurs within the presynaptic terminal to achieve homeostatic potentiation of release at the Drosophila NMJ. By imaging presynaptic Ca(2+) transients evoked by single action potentials, we reveal a retrograde, transsynaptic modulation of presynaptic Ca(2+) influx that is sufficient to account for the rapid induction and sustained expression of the homeostatic change in vesicle release. We show that the homeostatic increase in Ca(2+) influx and release is blocked by a point mutation in the presynaptic CaV2.1 channel, demonstrating that the modulation of presynaptic Ca(2+) influx through this channel is causally required for homeostatic potentiation of release. Together with additional analyses, we establish that retrograde, transsynaptic modulation of presynaptic Ca(2+) influx through CaV2.1 channels is a key factor underlying the homeostatic regulation of neurotransmitter release.
Collapse
|
20
|
Jordán-Álvarez S, Fouquet W, Sigrist SJ, Acebes A. Presynaptic PI3K activity triggers the formation of glutamate receptors at neuromuscular terminals of Drosophila. J Cell Sci 2012; 125:3621-9. [PMID: 22505608 DOI: 10.1242/jcs.102806] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synapse transmission depends on the precise structural and functional assembly between pre- and postsynaptic elements. This tightly regulated interaction has been thoroughly characterised in vivo in the Drosophila glutamatergic larval neuromuscular junction (NMJ) synapse, a suitable model to explore synapse formation, dynamics and plasticity. Previous findings have demonstrated that presynaptic upregulation of phosphoinositide 3-kinase (PI3K) increases synapse number, generating new functional contacts and eliciting changes in behaviour. Here, we show that genetically driven overexpression of PI3K in the presynaptic element also leads to a correlated increase in the levels of glutamate receptor (GluRII) subunits and the number of postsynaptic densities (PSDs), without altering GluRII formation and assembly dynamics. In addition to GluRIIs, presynaptic PI3K activity also modifies the expression of the postsynaptic protein Discs large (Dlg). Remarkably, PI3K specifically overexpressed in the final larval stages is sufficient for the formation of NMJ synapses. No differences in the number of synapses and PSDs were detected when PI3K was selectively expressed in the postsynaptic compartment. Taken together, these results demonstrate that PI3K-dependent synaptogenesis plays an instructive role in PSD formation and growth from the presynaptic side.
Collapse
Affiliation(s)
- Sheila Jordán-Álvarez
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Ave Dr Arce 37, Madrid 28002, Spain
| | | | | | | |
Collapse
|
21
|
Chen J, Mizushige T, Nishimune H. Active zone density is conserved during synaptic growth but impaired in aged mice. J Comp Neurol 2012; 520:434-52. [PMID: 21935939 DOI: 10.1002/cne.22764] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Presynaptic active zones are essential structures for synaptic vesicle release, but the developmental regulation of their number and maintenance during aging at mammalian neuromuscular junctions (NMJs) remains unknown. Here, we analyzed the distribution of active zones in developing, mature, and aged mouse NMJs by immunohistochemical detection of the active zone-specific protein Bassoon. Bassoon is a cytosolic scaffolding protein essential for the active zone assembly in ribbon synapses and some brain synapses. Bassoon staining showed a punctate pattern in nerve terminals and axons at the nascent NMJ on embryonic days 16.5-18.5. Three-dimensional reconstruction of NMJs revealed that the majority of Bassoon puncta within an NMJ were attached to the presynaptic membrane from postnatal day 0 to adulthood, and colocalized with another active zone protein, Piccolo. During postnatal development, the number of Bassoon puncta increased as the size of the synapses increased. Importantly, the density of Bassoon puncta remained relatively constant from postnatal day 0 to 54 at 2.3 puncta/μm(2) , while the synapse size increased 3.3-fold. However, Bassoon puncta density and signal intensity were significantly attenuated at the NMJs of 27-month-old aged mice. These results suggest that synapses maintain the density of synaptic vesicle release sites while the synapse size changes, but this density becomes impaired during aging.
Collapse
Affiliation(s)
- Jie Chen
- Department of Anatomy and Cell Biology and Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical School, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
22
|
Riemensperger T, Pech U, Dipt S, Fiala A. Optical calcium imaging in the nervous system of Drosophila melanogaster. Biochim Biophys Acta Gen Subj 2012; 1820:1169-78. [PMID: 22402253 DOI: 10.1016/j.bbagen.2012.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Drosophila melanogaster is one of the best-studied model organisms in biology, mainly because of the versatility of methods by which heredity and specific expression of genes can be traced and manipulated. Sophisticated genetic tools have been developed to express transgenes in selected cell types, and these techniques can be utilized to target DNA-encoded fluorescence probes to genetically defined subsets of neurons. Neuroscientists make use of this approach to monitor the activity of restricted types or subsets of neurons in the brain and the peripheral nervous system. Since membrane depolarization is typically accompanied by an increase in intracellular calcium ions, calcium-sensitive fluorescence proteins provide favorable tools to monitor the spatio-temporal activity across groups of neurons. SCOPE OF REVIEW Here we describe approaches to perform optical calcium imaging in Drosophila in consideration of various calcium sensors and expression systems. In addition, we outline by way of examples for which particular neuronal systems in Drosophila optical calcium imaging have been used. Finally, we exemplify briefly how optical calcium imaging in the brain of Drosophila can be carried out in practice. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE Drosophila provides an excellent model organism to combine genetic expression systems with optical calcium imaging in order to investigate principles of sensory coding, neuronal plasticity, and processing of neuronal information underlying behavior. This article is part of a Special Issue entitled Biochemical, Biophysical and Genetic Approaches to Intracellular Calcium Signaling.
Collapse
Affiliation(s)
- Thomas Riemensperger
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-University of Goettingen, Goettingen, Germany.
| | | | | | | |
Collapse
|
23
|
Glutamate receptors in synaptic assembly and plasticity: case studies on fly NMJs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:3-28. [PMID: 22351049 DOI: 10.1007/978-3-7091-0932-8_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms that control the composition and functionality of ionotropic glutamate receptors may be considered as most important "set screws" for adjusting excitatory transmission in the course of developmental and experience-dependent changes within neural networks. The Drosophila larval neuromuscular junction has emerged as one important invertebrate model system to study the formation, maintenance, and plasticity-related remodeling of glutamatergic synapses in vivo. By exploiting the unique genetic accessibility of this organism combined with diverse tools for manipulation and analysis including electrophysiology and state of the art imaging, considerable progress has been made to characterize the role of glutamate receptors during the orchestration of junctional development, synaptic activity, and synaptogenesis. Following an introduction to basic features of this model system, we will mainly focus on conceptually important findings such as the selective impact of glutamate receptor subtypes on the formation of new synapses, the coordination of presynaptic maturation and receptor subtype composition, the role of nonvesicularly released glutamate on the synaptic localization of receptors, or the homeostatic feedback of receptor functionality on presynaptic transmitter release.
Collapse
|
24
|
Knight D, Xie W, Boulianne GL. Neurexins and neuroligins: recent insights from invertebrates. Mol Neurobiol 2011; 44:426-40. [PMID: 22037798 PMCID: PMC3229692 DOI: 10.1007/s12035-011-8213-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/17/2011] [Indexed: 11/28/2022]
Abstract
During brain development, each neuron must find and synapse with the correct pre- and postsynaptic partners. The complexity of these connections and the relatively large distances some neurons must send their axons to find the correct partners makes studying brain development one of the most challenging, and yet fascinating disciplines in biology. Furthermore, once the initial connections have been made, the neurons constantly remodel their dendritic and axonal arbours in response to changing demands. Neurexin and neuroligin are two cell adhesion molecules identified as important regulators of this process. The importance of these genes in the development and modulation of synaptic connectivity is emphasised by the observation that mutations in these genes in humans have been associated with cognitive disorders such as Autism spectrum disorders, Tourette syndrome and Schizophrenia. The present review will discuss recent advances in our understanding of the role of these genes in synaptic development and modulation, and in particular, we will focus on recent work in invertebrate models, and how these results relate to studies in mammals.
Collapse
Affiliation(s)
- David Knight
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | |
Collapse
|
25
|
Abstract
The synaptic active zone, the site where Ca(2+)-triggered fusion of synaptic vesicles takes place, is commonly associated with protein-rich, electron-dense cytomatrices. The molecular composition and functional role of active zones, especially in the context of vesicular exo- and endocytosis, are under intense investigation. Per se, Drosophila synapses, which display so-called T-bars as electron-dense specializations, should be a highly suitable model system, as they allow for a combination of efficient genetics with ultrastructural and electrophysiological analyses. However, it needed a biochemical approach of the Buchner laboratory to "molecularly" access the T-bar by identification of the CAST/ERC-family member Bruchpilot as the first T-bar-residing protein. Genetic elimination of Bruchpilot revealed that the protein is essential for T-bar formation, calcium channel clustering, and hence proper vesicle fusion and patterned synaptic plasticity. Recently, Bruchpilot was shown to directly shape the T-bar, likely by adopting an elongated conformation. Moreover, first mechanisms that control the availability of Bruchpilot for T-bar assembly were described. This review seeks to summarize the information on T-bar structure, as well as on functional aspects, formulating the hypothesis that T-bars are genuine "plasticity modules."
Collapse
Affiliation(s)
- Carolin Wichmann
- NeuroCure Cluster of Excellence, Charité Berlin, Berlin, Germany
| | | |
Collapse
|
26
|
Sigrist SJ, Andlauer TFM. Fighting the famine with an amine: synaptic strategies for smart search. Nat Neurosci 2011; 14:124-6. [PMID: 21270776 DOI: 10.1038/nn0211-124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Tsurudome K, Tsang K, Liao EH, Ball R, Penney J, Yang JS, Elazzouzi F, He T, Chishti A, Lnenicka G, Lai EC, Haghighi AP. The Drosophila miR-310 cluster negatively regulates synaptic strength at the neuromuscular junction. Neuron 2010; 68:879-93. [PMID: 21145002 PMCID: PMC3034365 DOI: 10.1016/j.neuron.2010.11.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2010] [Indexed: 12/25/2022]
Abstract
Emerging data implicate microRNAs (miRNAs) in the regulation of synaptic structure and function, but we know little about their role in the regulation of neurotransmission in presynaptic neurons. Here, we demonstrate that the miR-310-313 cluster is required for normal synaptic transmission at the Drosophila larval neuromuscular junction. Loss of miR-310-313 cluster leads to a significant enhancement of neurotransmitter release, which can be rescued with temporally restricted expression of mir-310-313 in larval presynaptic neurons. Kinesin family member, Khc-73 is a functional target for miR-310-313 as its expression is increased in mir-310-313 mutants and reducing it restores normal synaptic function. Cluster mutants show an increase in the active zone protein Bruchpilot accompanied by an increase in electron dense T bars. Finally, we show that repression of Khc-73 by miR-310-313 cluster influences the establishment of normal synaptic homeostasis. Our findings establish a role for miRNAs in the regulation of neurotransmitter release.
Collapse
Affiliation(s)
- Kazuya Tsurudome
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
| | - Karen Tsang
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
| | - Edward H. Liao
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
| | - Robin Ball
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
| | - Jay Penney
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
| | - Jr-Shiuan Yang
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 252, New York, NY 10065
| | - Fatima Elazzouzi
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
| | - Tao He
- Department of Biological Sciences, University at Albany, SUNY, Albany, NY 12222
| | - Athar Chishti
- Department of Physiology, Tufts University School of Medicine, Boston MA 02111
| | - Greg Lnenicka
- Department of Biological Sciences, University at Albany, SUNY, Albany, NY 12222
| | - Eric C. Lai
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 252, New York, NY 10065
| | - A. Pejmun Haghighi
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
| |
Collapse
|
28
|
Abstract
In the last two decades, imaging of fluorescent indicators specific for Ca(2+) has revealed its often spectacular spatial dynamics, such as rhythmic oscillations or standing gradients, within single groups or individual cells, in unprecedented detail. This short review describes how the more widely used indicators work. The currently used Ca(2+) indicators have a modular design consisting of a metal-binding site (or sensor) coupled in some way to a fluorescent dye. Combining different sensors with different dyes results in numerous indicators suited to a wide range of experiments and equipment.
Collapse
|
29
|
Abstract
Small, fluorescent, calcium-sensing molecules have been enormously useful in mapping intracellular calcium signals in time and space, as chapters in this volume attest. Despite their widespread adoption and utility, they suffer some disadvantages. Genetically encoded calcium sensors that can be expressed inside cells by transfection or transgenesis are desirable. The last 10 years have been marked by a rapid evolution in the laboratory of genetically encoded calcium sensors both figuratively and literally, resulting in 11 distinct configurations of fluorescent proteins and their attendant calcium sensor modules. Here, the design logic and performance of this abundant collection of sensors and their in vitro and in vivo use and performance are described. Genetically encoded calcium sensors have proved valuable in the measurement of calcium concentration in cellular organelles, for the most part in single cells in vitro. Their success as quantitative calcium sensors in tissues in vitro and in vivo is qualified, but they have proved valuable in imaging the pattern of calcium signals within tissues in whole animals. Some branches of the calcium sensor evolutionary tree continue to evolve rapidly and the steady progress in optimizing sensor parameters leads to the certain hope that these drawbacks will eventually be overcome by further genetic engineering.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Biosciences Medical School, Newcastle University, Framlington Place Newcastle upon Tyne, United Kingdom
| |
Collapse
|
30
|
Pozzan T, Rudolf R. Measurements of mitochondrial calcium in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1317-23. [PMID: 19100709 DOI: 10.1016/j.bbabio.2008.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 12/21/2022]
Abstract
Mitochondria play a pivotal role in intracellular Ca(2+) signalling by taking up and releasing the ion upon specific conditions. In order to do so, mitochondria depend on a number of factors, such as the mitochondrial membrane potential and spatio-temporal constraints. Whereas most of the basic principles underlying mitochondrial Ca(2+) handling have been successfully deciphered over the last 50 years using assays based on in vitro preparations of mitochondria or cultured cells, we have only just started to understand the actual physiological relevance of these processes in the whole animal. Recent advancements in imaging and genetically encoded sensor technologies have allowed us to visualise mitochondrial Ca(2+) transients in live mice. These studies used either two-photon microscopy or bioluminescence imaging of cameleon or aequorin-GFP Ca(2+) sensors, respectively. Both methods revealed a consistent picture of Ca(2+) uptake into mitochondria under physiological conditions even during very short-lasting elevations of cytosolic Ca(2+) levels. The big future challenge is to understand the functional impact of such Ca(2+) signals on the physiology of the observed tissue as well as of the whole organism. To that end, the development of multiparametric in vivo approaches will be mandatory.
Collapse
Affiliation(s)
- Tullio Pozzan
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padua, Viale Giuseppe Colombo 3, Padua 35121, Italy
| | | |
Collapse
|
31
|
Martin JR. In VivoBrain Imaging: Fluorescence or Bioluminescence, Which to Choose? J Neurogenet 2009; 22:285-307. [DOI: 10.1080/01677060802298517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Dynamic visualization of cellular signaling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 119:79-97. [PMID: 19499207 DOI: 10.1007/10_2008_48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our understanding of cellular signaling is critically dependent on our ability to visualize and quantify specific signaling events with high spatial and temporal resolution in the cellular context. Over the past decade or so, biosensors based on fluorescent proteins and fluorescence resonance energy transfer (FRET) have emerged as one major class of fluorescent probes that are capable of tracking a variety of cellular signaling events, such as second messenger dynamics and enzyme activation/activity, in time and space. Here we review recent advances in the development of such biosensors and some biological insights revealed by these biosensors in living cells, tissue, and organisms.
Collapse
|
33
|
Schmid A, Hallermann S, Kittel RJ, Khorramshahi O, Frölich AMJ, Quentin C, Rasse TM, Mertel S, Heckmann M, Sigrist SJ. Activity-dependent site-specific changes of glutamate receptor composition in vivo. Nat Neurosci 2008; 11:659-66. [PMID: 18469810 DOI: 10.1038/nn.2122] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 04/14/2008] [Indexed: 02/08/2023]
Abstract
The subunit composition of postsynaptic non-NMDA-type glutamate receptors (GluRs) determines the function and trafficking of the receptor. Changes in GluR composition have been implicated in the homeostasis of neuronal excitability and synaptic plasticity underlying learning. Here, we imaged GluRs in vivo during the formation of new postsynaptic densities (PSDs) at Drosophila neuromuscular junctions coexpressing GluRIIA and GluRIIB subunits. GluR composition was independently regulated at directly neighboring PSDs on a submicron scale. Immature PSDs typically had large amounts of GluRIIA and small amounts of GluRIIB. During subsequent PSD maturation, however, the GluRIIA/GluRIIB composition changed and became more balanced. Reducing presynaptic glutamate release increased GluRIIA, but decreased GluRIIB incorporation. Moreover, the maturation of GluR composition correlated in a site-specific manner with the level of Bruchpilot, an active zone protein that is essential for mature glutamate release. Thus, we show that an activity-dependent, site-specific control of GluR composition can contribute to match pre- and postsynaptic assembly.
Collapse
Affiliation(s)
- Andreas Schmid
- Institute for Clinical Neurobiology, Medical Faculty, University of Würzburg, Zinklesweg 10, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zou J, Hofer AM, Lurtz MM, Gadda G, Ellis AL, Chen N, Huang Y, Holder A, Ye Y, Louis CF, Welshhans K, Rehder V, Yang JJ. Developing Sensors for Real-Time Measurement of High Ca2+ Concentrations. Biochemistry 2007; 46:12275-88. [PMID: 17924653 DOI: 10.1021/bi7007307] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin Zou
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Aldebaran M. Hofer
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Monica M. Lurtz
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Giovanni Gadda
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - April L. Ellis
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Ning Chen
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Yun Huang
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Angela Holder
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Yiming Ye
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Charles F. Louis
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Kristy Welshhans
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Vincent Rehder
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Jenny J. Yang
- Departments of Chemistry and Biology, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital and VA Boston Healthcare System, West Roxbury, Massachusetts 02132, and Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| |
Collapse
|
35
|
Palmer AE, Tsien RY. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 2007; 1:1057-65. [PMID: 17406387 DOI: 10.1038/nprot.2006.172] [Citation(s) in RCA: 358] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetically encoded Ca2+ indicators allow researchers to quantitatively measure Ca2+ dynamics in a variety of experimental systems. This protocol summarizes the indicators that are available, and highlights those that are most appropriate for a number of experimental conditions, such as measuring Ca2+ in specific organelles and localizations in mammalian tissue-culture cells. The protocol itself focuses on the use of a cameleon, which is a fluorescence resonance-energy transfer (FRET)-based indicator comprising two fluorescent proteins and two Ca2+-responsive elements (a variant of calmodulin (CaM) and a CaM-binding peptide). This protocol details how to set up and conduct a Ca2+-imaging experiment, accomplish offline data processing (such as background correction) and convert the observed FRET ratio changes to Ca2+ concentrations. Additionally, we highlight some of the challenges in observing organellar Ca2+ and the alternative strategies researchers can employ for effectively calibrating the genetically encoded Ca2+ indicators in these locations. Setting up and conducting an initial calibration of the microscope system is estimated to take approximately 1 week, assuming that all the component parts are readily available. Cell culture and transfection is estimated to take approximately 3 d (from the time of plating cells on imaging dishes). An experiment and calibration will probably take a few hours. Finally, the offline data workup can take approximately 1 d depending on the extent of analysis.
Collapse
Affiliation(s)
- Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA.
| | | |
Collapse
|
36
|
Kazama H, Nose A, Morimoto-Tanifuji T. Synaptic components necessary for retrograde signaling triggered by calcium/calmodulin-dependent protein kinase II during synaptogenesis. Neuroscience 2007; 145:1007-15. [PMID: 17293056 DOI: 10.1016/j.neuroscience.2006.12.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 12/27/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
The development and function of presynaptic terminals are tightly controlled by retrograde factors presented from postsynaptic cells. However, it remains elusive whether major constituents of synapses themselves are necessary for retrograde modulation during synaptogenesis. Here we show that the homophilic cell adhesion molecule Fasciclin II (FasII) as well as the scaffolding protein Discs large (DLG) is indispensable for retrograde signaling initiated by calcium/calmodulin-dependent protein kinase II (CaMKII) at developing Drosophila neuromuscular junctions. Postsynaptic activation of CaMKII increased the area of nerve terminals, the number of active zones, and the frequency of miniature excitatory synaptic currents in wild-type animals. However, all of these retrograde effects were abolished in the fasII or dlg mutant background. On the other hand, the retrograde effects remained in null mutants of the glutamate receptor subunit GluRIIA. Furthermore, we show that CaMKII-induced modulation was independent of the bone morphogenetic protein signaling that is important for retrograde control at mature larvae. These results highlight a novel function of FasII as well as DLG, and more broadly, illustrate that prime synaptic components are necessary for transferring target-derived signals to presynaptic cells at a certain developing synapse.
Collapse
Affiliation(s)
- H Kazama
- Department of Physics, Graduate School of Science, University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
37
|
Schuster CM. Experience-dependent potentiation of larval neuromuscular synapses. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:307-22. [PMID: 17137934 DOI: 10.1016/s0074-7742(06)75014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Christoph M Schuster
- Department of Neurobiology, Interdisciplinary Center for Neurosciences University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Gerber B, Stocker RF. The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. Chem Senses 2006; 32:65-89. [PMID: 17071942 DOI: 10.1093/chemse/bjl030] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the relationship between brain and behavior is the fundamental challenge in neuroscience. We focus on chemosensation and chemosensory learning in larval Drosophila and review what is known about its molecular and cellular bases. Detailed analyses suggest that the larval olfactory system, albeit much reduced in cell number, shares the basic architecture, both in terms of receptor gene expression and neuronal circuitry, of its adult counterpart as well as of mammals. With respect to the gustatory system, less is known in particular with respect to processing of gustatory information in the central nervous system, leaving generalizations premature. On the behavioral level, a learning paradigm for the association of odors with food reinforcement has been introduced. Capitalizing on the knowledge of the chemosensory pathways, we review the first steps to reveal the genetic and cellular bases of olfactory learning in larval Drosophila. We argue that the simplicity of the larval chemosensory system, combined with the experimental accessibility of Drosophila on the genetic, electrophysiological, cellular, and behavioral level, makes this system suitable for an integrated understanding of chemosensation and chemosensory learning.
Collapse
Affiliation(s)
- Bertram Gerber
- Universität Würzburg, Biozentrum, Am Hubland, Lehrstuhl für Genetik und Neurobiologie, D-97074 Würzburg, Germany.
| | | |
Collapse
|
39
|
Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. ACTA ACUST UNITED AC 2006; 13:521-30. [PMID: 16720273 DOI: 10.1016/j.chembiol.2006.03.007] [Citation(s) in RCA: 403] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 03/16/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
The binding interface of calmodulin and a calmodulin binding peptide were reengineered by computationally designing complementary bumps and holes. This redesign led to the development of sensitive and specific pairs of mutant proteins used to sense Ca(2+) in a second generation of genetically encoded Ca(2+) indicators (cameleons). These cameleons are no longer perturbed by large excesses of native calmodulin, and they display Ca(2+) sensitivities tuned over a 100-fold range (0.6-160 microM). Incorporation of circularly permuted Venus in place of Citrine results in a 3- to 5-fold increase in the dynamic range. These redesigned cameleons show significant improvements over previous versions in the ability to monitor Ca(2+) in the cytoplasm as well as distinct subcellular localizations, such as the plasma membrane of neurons and the mitochondria.
Collapse
Affiliation(s)
- Amy E Palmer
- Department of Pharmacology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Schuster CM. Glutamatergic synapses of Drosophila neuromuscular junctions: a high-resolution model for the analysis of experience-dependent potentiation. Cell Tissue Res 2006; 326:287-99. [PMID: 16896945 DOI: 10.1007/s00441-006-0290-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
The glutamatergic synapses of developing neuromuscular junctions (NMJ) of Drosophila larvae are readily accessible, morphologically simple, and physiologically well-characterized. They therefore have a long and highly successful tradition as a model system for the discovery of genetic and molecular mechanisms of target recognition, synaptogenesis, NMJ development, and synaptic plasticity. However, since the development and the activity-dependent refinement of NMJs are concurrent processes, they cannot easily be separated by the widely applied genetic manipulations that mostly have chronic effects. Recent studies have therefore begun systematically to incorporate larval foraging behavior into the physiological and genetic analysis of NMJ function in order to analyze potential experience-dependent changes of glutamatergic transmission. These studies have revealed that recent crawling experience is a potent modulator of glutamatergic transmission at NMJs, because high crawling activities result after an initial lag-phase in several subsequent phases of experience-dependent synaptic potentiation. Depending on the time window of occurrence, four distinct phases of experience-dependent potentiation have been defined. These phases of potentiation can be followed from their initial induction (phase-I) up to the morphological consolidation (phase-III/IV) of previously established functional changes (phase-II). This therefore establishes, for the first time, a temporal hierarchy of mechanisms involved in the use-dependent modification of glutamatergic synapses.
Collapse
Affiliation(s)
- Christoph M Schuster
- Interdisciplinary Center for Neurosciences (ICN), Department of Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
41
|
Dickman DK, Lu Z, Meinertzhagen IA, Schwarz TL. Altered synaptic development and active zone spacing in endocytosis mutants. Curr Biol 2006; 16:591-8. [PMID: 16546084 DOI: 10.1016/j.cub.2006.02.058] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/27/2006] [Accepted: 02/03/2006] [Indexed: 11/22/2022]
Abstract
Many types of synapses have highly characteristic shapes and tightly regulated distributions of active zones, parameters that are important to the function of neuronal circuits. The development of terminal arborizations must therefore include mechanisms to regulate the spacing of terminals, the frequency of branching, and the distribution and density of release sites. At present, however, the mechanisms that control these features remain obscure. Here, we report the development of supernumerary or "satellite" boutons in a variety of endocytic mutants at the Drosophila neuromuscular junction. Mutants in endophilin, synaptojanin, dynamin, AP180, and synaptotagmin all show increases in supernumerary bouton structures. These satellite boutons contain releasable vesicles and normal complements of synaptic proteins that are correctly localized within terminals. Interestingly, however, synaptojanin terminals have more active zones per unit of surface area and more dense bodies (T-bars) within these active zones, which may in part compensate for reduced transmission per active zone. The altered structural development of the synapse is selectively encountered in endocytosis mutants and is not observed when synaptic transmission is reduced by mutations in glutamate receptors or when synaptic transmission is blocked by tetanus toxin. We propose that endocytosis plays a critical role in sculpting the structure of synapses, perhaps through the endocytosis of unknown regulatory signals that organize morphogenesis at synaptic terminals.
Collapse
Affiliation(s)
- Dion K Dickman
- Division of Neuroscience, Children's Hospital, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
42
|
Hamilton J, Dillaman RM, Worden MK. Neuromuscular synapses on the dactyl opener muscle of the lobster Homarus americanus. Cell Tissue Res 2006; 326:823-34. [PMID: 16788836 DOI: 10.1007/s00441-006-0221-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 04/11/2006] [Indexed: 11/24/2022]
Abstract
The crustacean dactyl opener neuromuscular system has been studied extensively as a model system that exhibits several forms of synaptic plasticity. We report the ultrastructural features of the synapses on dactyl opener of the lobster (Homarus americanus) as determined by examination of serial thin sections. Several innervation sites supplied by an inhibitory motoneuron have been observed without nearby excitatory innervation, indicating that excitatory and inhibitory inputs to the muscle are not always closely matched. The ultrastructural features of the lobster synapses are generally similar to those described previously for the homologous crayfish muscle, with one major distinction: few dense bars are seen at the presynaptic membranes of these lobster synapses. The majority of the lobster neuromuscular synapses lack dense bars altogether, and the mean number of dense bars per synapse is relatively low. In view of the finding that the physiology of the lobster dactyl opener synapses is similar to that reported for crayfish, these ultrastructural observations suggest that the structural complexity of the synapses may not be a critical factor determining synaptic plasticity.
Collapse
Affiliation(s)
- Jonna Hamilton
- Department of Neuroscience, University of Virginia, P.O. Box 801392, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
43
|
Macleod GT, Chen L, Karunanithi S, Peloquin JB, Atwood HL, McRory JE, Zamponi GW, Charlton MP. TheDrosophila cacts2mutation reduces presynaptic Ca2+entry and defines an important element in Cav2.1 channel inactivation. Eur J Neurosci 2006; 23:3230-44. [PMID: 16820014 DOI: 10.1111/j.1460-9568.2006.04873.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Voltage-gated Ca2+ channels in nerve terminals open in response to action potentials and admit Ca2+, the trigger for neurotransmitter release. The cacophony gene encodes the primary presynaptic voltage-gated Ca2+ channel in Drosophila motor-nerve terminals. The cac(ts2) mutant allele of cacophony is associated with paralysis and reduced neurotransmission at non-permissive temperatures but the basis for the neurotransmission deficit has not been established. The cac(ts2) mutation occurs in the cytoplasmic carboxyl tail of the alpha1-subunit, not within the pore-forming trans-membrane domains, making it difficult to predict the mutation's impact. We applied a Ca2+-imaging technique at motor-nerve terminals of mutant larvae to test the hypothesis that the neurotransmission deficit is a result of impaired Ca2+ entry. Presynaptic Ca2+ signals evoked by single and multiple action potentials showed a temperature-dependent reduction. The amplitude of the reduction was sufficient to account for the neurotransmission deficit, indicating that the site of the cac(ts2) mutation plays a role in Ca2+ channel activity. As the mutation occurs in a motif conserved in mammalian high-voltage-activated Ca2+ channels, we used a heterologous expression system to probe the effect of this mutation on channel function. The mutation was introduced into rat Ca(v)2.1 channels expressed in human embryonic kidney cells. Patch-clamp analysis of mutant channels at the physiological temperature of 37 degrees C showed much faster inactivation rates than for wild-type channels, demonstrating that the integrity of this motif is critical for normal Ca(v)2.1 channel inactivation.
Collapse
Affiliation(s)
- G T Macleod
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Prokop A. Organization of the Efferent System and Structure of Neuromuscular Junctions In Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:71-90. [PMID: 17137924 DOI: 10.1016/s0074-7742(06)75004-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
45
|
Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O. A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 2005; 90:1790-6. [PMID: 16339891 PMCID: PMC1367327 DOI: 10.1529/biophysj.105.073536] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded calcium biosensors have become valuable tools in cell biology and neuroscience, but some aspects such as signal strength and response kinetics still need improvement. Here we report the generation of a FRET-based calcium biosensor employing troponin C as calcium-binding moiety that is fast, is stable in imaging experiments, and shows a significantly enhanced fluorescence change. These improvements were achieved by engineering magnesium and calcium-binding properties within the C-terminal lobe of troponin C and by the incorporation of circularly permuted variants of the green fluorescent protein. This sensor named TN-XL shows a maximum fractional fluorescence change of 400% in its emission ratio and linear response properties over an expanded calcium regime. When imaged in vivo at presynaptic motoneuron terminals of transgenic fruit flies, TN-XL exhibits highly reproducible fluorescence signals with the fastest rise and decay times of all calcium biosensors known so far.
Collapse
Affiliation(s)
- Marco Mank
- AG Zelluläre Dynamik, Abteilung Neuronale Informationsverarbeitung, Max-Planck-Institut für Neurobiologie 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Guerrero G, Agarwal G, Reiff DF, Ball RW, Borst A, Goodman CS, Isacoff EY. Heterogeneity in synaptic transmission along a Drosophila larval motor axon. Nat Neurosci 2005; 8:1188-96. [PMID: 16116446 PMCID: PMC1402256 DOI: 10.1038/nn1526] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 07/25/2005] [Indexed: 11/09/2022]
Abstract
At the Drosophila melanogaster larval neuromuscular junction (NMJ), a motor neuron releases glutamate from 30-100 boutons onto the muscle it innervates. How transmission strength is distributed among the boutons of the NMJ is unknown. To address this, we created synapcam, a version of the Ca2+ reporter Cameleon. Synapcam localizes to the postsynaptic terminal and selectively reports Ca2+ influx through glutamate receptors (GluRs) with single-impulse and single-bouton resolution. GluR-based Ca2+ signals were uniform within a given connection (that is, a given bouton/postsynaptic terminal pair) but differed considerably among connections of an NMJ. A steep gradient of transmission strength was observed along axonal branches, from weak proximal connections to strong distal ones. Presynaptic imaging showed a matching axonal gradient, with higher Ca2+ influx and exocytosis at distal boutons. The results suggest that transmission strength is mainly determined presynaptically at the level of individual boutons, possibly by one or more factors existing in a gradient.
Collapse
Affiliation(s)
- Giovanna Guerrero
- Department of Molecular and Cell Biology, 279 Life Sciences Addition, University of California, Berkeley, California 94720-3200, USA
| | - Gautam Agarwal
- Helen Wills Neuroscience Institute, 279 Life Sciences Addition, University of California, Berkeley, California 94720-3200, USA
| | - Dierk F. Reiff
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Am Klopfersptiz 18 A, 82152 Martinsried, Germany
| | - Robin W. Ball
- Helen Wills Neuroscience Institute, 279 Life Sciences Addition, University of California, Berkeley, California 94720-3200, USA
| | - Alexander Borst
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Am Klopfersptiz 18 A, 82152 Martinsried, Germany
| | - Corey S. Goodman
- Department of Molecular and Cell Biology, 279 Life Sciences Addition, University of California, Berkeley, California 94720-3200, USA
- Helen Wills Neuroscience Institute, 279 Life Sciences Addition, University of California, Berkeley, California 94720-3200, USA
- Current address: Renovis, Inc., Two Corporate Drive, South San Francisco, California 94080, USA
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, 279 Life Sciences Addition, University of California, Berkeley, California 94720-3200, USA
- Helen Wills Neuroscience Institute, 279 Life Sciences Addition, University of California, Berkeley, California 94720-3200, USA
- Physical Bioscience and Material Science Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
47
|
Abstract
The exploitation of green fluorescent protein-based biosensors promises to revolutionize functional imaging of the nervous system. Various approaches have created a multitude of reporters of neuronal activity and of activation of biochemical signaling pathways. Although the number of different probes has increased significantly, the critical step remains to bring these probes from the cuvette through the imaging of single cells to the imaging of whole organisms in vivo. The recent development of new genetically encoded sensors and their functional expression in model organisms are encouraging signs that the field is moving ahead in this direction.
Collapse
Affiliation(s)
- Oliver Griesbeck
- Nachwuchsgruppe Zelluläre Dynamik, Max-Planck-Institut für Neurobiologie, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
48
|
Hara M, Bindokas V, Lopez JP, Kaihara K, Landa LR, Harbeck M, Roe MW. Imaging endoplasmic reticulum calcium with a fluorescent biosensor in transgenic mice. Am J Physiol Cell Physiol 2004; 287:C932-8. [PMID: 15163621 DOI: 10.1152/ajpcell.00151.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of biosynthetic fluorescent sensors is an important new approach for imaging Ca2+ in cells. Genetically encoded indicators based on green fluorescent protein, calmodulin, and fluorescence resonance energy transfer (FRET) have been utilized to measure Ca2+ in nonmammalian transgenic organisms and provide information about the organization and regulation of Ca2+ signaling events in vivo. However, expression of biosynthetic FRET-based Ca2+ indicators in transgenic mammals has proven to be problematic. Here, we report transgenic expression of an endoplasmic reticulum (ER) Ca2+ biosensor in mouse pancreas. We targeted expression of a yellow cameleon3.3er (YC3.3er) transgene with mouse insulin I promoter. YC3.3er protein expression was limited to pancreatic β-cells within islets of Langerhans and absent in the exocrine pancreas and other tissues. Animals developed and matured normally; sensor expression was unaffected by age. Glucose tolerance in transgenic mice was also unaffected, indicating the transgenic biosensor did not impair endocrine pancreas function. ER Ca2+ responses after administration of thapsigargin, carbachol, and glucose were measured in individual β-cells of intact islets using confocal microscopy and confirmed the function of the biosensor. We conclude that controlling transgene transcription with a cell-specific promoter permits transgenic expression of FRET-based Ca2+ sensors in mammals and that this approach will facilitate real-time optical imaging of signal transduction events in living tissues.
Collapse
Affiliation(s)
- Manami Hara
- Department of Medicine MC1027, The University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Increasingly sophisticated strategies for labeling cells in vivo are providing unprecedented opportunities to study neurons in living animals. Transgenic expression of genetically encoded reporters enables us to monitor changes in neuronal activity in response to sensory stimuli, and the labeling of single neurons with fluorescent proteins allows the dynamics of neuronal connectivity to be observed in transgenic animals over periods ranging from minutes to months. Advances in transient labeling techniques such as viral infection and electroporation provide a rapid means by which to analyze neuronal gene function in vivo. These new approaches to labeling, manipulating and imaging neurons in intact organisms are transforming the way in which the nervous system is studied.
Collapse
Affiliation(s)
- Paul Young
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
50
|
Zhai RG, Bellen HJ. The Architecture of the Active Zone in the Presynaptic Nerve Terminal. Physiology (Bethesda) 2004; 19:262-70. [PMID: 15381754 DOI: 10.1152/physiol.00014.2004] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Active zones are highly specialized sites for release of neurotransmitter from presynaptic nerve terminals. The architecture of the active zone is exquisitely designed to facilitate the regulated tethering, docking, and fusing of the synaptic vesicles with the plasma membrane. Here we present our view of the structural and molecular organization of active zones across species and propose that all active zones are organized according to a common principle in which the structural differences correlate with the kinetics of transmitter release.
Collapse
Affiliation(s)
- R Grace Zhai
- Howard Hughes Medical Institute and Department of Molecular and Human Genetics, Division of Neuroscience, Program In Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|