1
|
Mostafa M, Disouky A, Lazarov O. Therapeutic modulation of neurogenesis to improve hippocampal plasticity and cognition in aging and Alzheimer's disease. Neurotherapeutics 2025; 22:e00580. [PMID: 40180804 DOI: 10.1016/j.neurot.2025.e00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Alzheimer's disease is characterized by progressive memory loss and cognitive decline. The hippocampal formation is the most vulnerable brain area in Alzheimer's disease. Neurons in layer II of the entorhinal cortex and the CA1 region of the hippocampus are lost at early stages of the disease. A unique feature of the hippocampus is the formation of new neurons that incorporate in the dentate gyrus of the hippocampus. New neurons form synapses with neurons in layer II of the entorhinal cortex and with the CA3 region. Immature and new neurons are characterized by high level of plasticity. They play important roles in learning and memory. Hippocampal neurogenesis is impaired early in mouse models of Alzheimer's disease and in human patients. In fact, neurogenesis is compromised in mild cognitive impairment (MCI), suggesting that rescuing neurogenesis may restore hippocampal plasticity and attenuate neuronal vulnerability and memory loss. This review will discuss the current understanding of therapies that target neurogenesis or modulate it, for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Mostafa Mostafa
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ahmed Disouky
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Feng Y, Zhou Q, Hu B, Wang S, Chen L, Cai W, Zhu Q, Qin X, Zhou W, Wu Y, Song W. Unveiling the role of KLF9-mediated IFITM3 regulation in amyloidogenesis. FASEB J 2025; 39:e70403. [PMID: 39953787 DOI: 10.1096/fj.202401584rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is implicated in the pathogenesis of Alzheimer's Disease (AD) by regulating γ-secretase activity and subsequent amyloid β (Aβ) generation. However, the regulation of IFITM3 gene expression and the underlying mechanisms remain exclusive. In this study, we aimed to investigate the regulation of the IFITM3 and its role in amyloidogenesis. The functional active promoter of the IFITM3 gene was identified within the 1047 bp of 5'-flanking regions by luciferase assays. Through chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA), we successfully identified a specific Krüppel-like factor 9 (KLF9) binding site within the promoter region. Moreover, KLF9 overexpression significantly upregulates IFITM3 expression in vitro and in vivo, which promotes Aβ generation in the hippocampus of mice. Consistently, reduced IFITM3 expression results in a notable decrease of Aβ production. Together, we demonstrate that KLF9 plays a critical role in regulating IFITM3 expression and subsequent Aβ production. It highly suggests that inhibiting KLF9-mediated IFITM3 expression may have therapeutic potential for AD by reducing Aβ production.
Collapse
Affiliation(s)
- Yijia Feng
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Qian Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bolang Hu
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Shengya Wang
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lifen Chen
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wantong Cai
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Qinxin Zhu
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuemei Qin
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yili Wu
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Weihong Song
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Feng YY, Hao JR, Zhang YJ, Qiu TT, Zhang ML, Qiao W, Wu JJ, Qiu P, Xu CF, Zhang YL, Du CY, Pan Z, Chang YS. Krüppel-like factor 9 alleviates Alzheimer's disease via IDE-mediated Aβ degradation. Acta Pharmacol Sin 2025:10.1038/s41401-025-01491-0. [PMID: 39962264 DOI: 10.1038/s41401-025-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/19/2025] [Indexed: 03/17/2025]
Abstract
The deposition of β-amyloid (Aβ) in the brain is a crucial factor in the pathogenesis of Alzheimer's disease (AD). Insulin-degrading enzyme (IDE) plays a critical role in the balance between Aβ production and degradation. However, the regulatory mechanisms of IDE are not yet fully understood. Therefore, uncovering additional IDE regulatory mechanisms will help elucidate the pathogenesis of AD and identify key therapeutic targets for this disease. This study revealed that global Krüppel-like factor 9-mutant (Klf9-/-) mice exhibited impaired cognitive function. Additionally, we found that Klf9 expression in hippocampal tissue was reduced in APPswe/PS1dE9 (APP/PS1) mice. This study also showed that Klf9 stimulates IDE expression and promotes the Aβ degradation process by directly binding to IDE and activating its transcription. Silencing IDE blocked the Klf9-induced Aβ degradation process. We stereotactically injected an adeno-associated virus to selectively overexpress IDE (AAV-IDE) in the hippocampal neurons of Klf9-/- mice and found that the overexpression of IDE in hippocampal neurons ameliorated cognitive deficits and reduced the Aβ content in Klf9-/- mice. Additionally, we also stereotactically injected AAV-Klf9 into the hippocampal neurons of APP/PS1 mice and found that overexpression of Klf9 in hippocampal neurons ameliorated cognitive deficits and reduced Aβ levels in APP/PS1 mice. These findings suggest that downregulation of Klf9 may be a key factor in AD progression, as it reduces Aβ clearance by decreasing IDE expression. Overexpression or activation of Klf9 may be a potential strategy for preventing the pathogenesis of AD.
Collapse
Affiliation(s)
- Yue-Yao Feng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Jing-Ran Hao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Yu-Jie Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Tong-Tong Qiu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Meng-Lin Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Wei Qiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Jin-Jin Wu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Ping Qiu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Chao-Fan Xu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Yin-Liang Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Chun-Yuan Du
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Zhe Pan
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China.
| | - Yong-Sheng Chang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China.
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300052, China.
| |
Collapse
|
4
|
Kirk RW, Sun L, Xiao R, Clark EA, Nelson S. Multiplexed CRISPRi Reveals a Transcriptional Switch Between KLF Activators and Repressors in the Maturing Neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636951. [PMID: 39975013 PMCID: PMC11839100 DOI: 10.1101/2025.02.07.636951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
A critical phase of mammalian brain development takes place after birth. Neurons of the mouse neocortex undergo dramatic changes in their morphology, physiology, and synaptic connections during the first postnatal month, while properties of immature neurons, such as the capacity for robust axon outgrowth, are lost. The genetic and epigenetic programs controlling prenatal development are well studied, but our understanding of the transcriptional mechanisms that regulate postnatal neuronal maturation is comparatively lacking. By integrating chromatin accessibility and gene expression data from two subtypes of neocortical pyramidal neurons in the neonatal and maturing brain, we predicted a role for the Krüppel-Like Factor (KLF) family of Transcription Factors in the developmental regulation of neonatally expressed genes. Using a multiplexed CRISPR Interference (CRISPRi) knockdown strategy, we found that a shift in expression from KLF activators (Klf6, Klf7) to repressors (Klf9, Klf13) during early postnatal development functions as a transcriptional 'switch' to first activate, then repress a set of shared targets with cytoskeletal functions including Tubb2b and Dpysl3. We demonstrate that this switch is buffered by redundancy between KLF paralogs, which our multiplexed CRISPRi strategy is equipped to overcome and study. Our results indicate that competition between activators and repressors within the KLF family regulates a conserved component of the postnatal maturation program that may underlie the loss of intrinsic axon growth in maturing neurons. This could facilitate the transition from axon growth to synaptic refinement required to stabilize mature circuits.
Collapse
Affiliation(s)
- Ryan W Kirk
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Liwei Sun
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Ruixuan Xiao
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Erin A Clark
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Sacha Nelson
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
5
|
Gong J, Lee C, Kim H, Kim J, Jeon J, Park S, Cho K. Control of Cellular Differentiation Trajectories for Cancer Reversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2402132. [PMID: 39661721 PMCID: PMC11744559 DOI: 10.1002/advs.202402132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Cellular differentiation is controlled by intricate layers of gene regulation, involving the modulation of gene expression by various transcriptional regulators. Due to the complexity of gene regulation, identifying master regulators across the differentiation trajectory has been a longstanding challenge. To tackle this problem, a computational framework, single-cell Boolean network inference and control (BENEIN), is presented. Applying BENEIN to human large intestinal single-cell transcriptome data, MYB, HDAC2, and FOXA2 are identified as the master regulators whose inhibition induces enterocyte differentiation. It is found that simultaneous knockdown of these master regulators can revert colorectal cancer cells into normal-like enterocytes by synergistically inducing differentiation and suppressing malignancy, which is validated by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Jeong‐Ryeol Gong
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Chun‐Kyung Lee
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Hoon‐Min Kim
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Juhee Kim
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Jaeog Jeon
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Sunmin Park
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Kwang‐Hyun Cho
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
6
|
Vicidomini C, Goode TD, McAvoy KM, Yu R, Beveridge CH, Iyer SN, Victor MB, Leary N, Evans L, Steinbaugh MJ, Lai ZW, Lyon MC, Silvestre MRFS, Bonilla G, Sadreyev RI, Walther TC, Sui SH, Saido T, Yamamoto K, Murakami M, Tsai LH, Chopra G, Sahay A. An aging-sensitive compensatory secretory phospholipase that confers neuroprotection and cognitive resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605338. [PMID: 39211220 PMCID: PMC11361190 DOI: 10.1101/2024.07.26.605338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Breakdown of lipid homeostasis is thought to contribute to pathological aging, the largest risk factor for neurodegenerative disorders such as Alzheimer's Disease (AD). Cognitive reserve theory posits a role for compensatory mechanisms in the aging brain in preserving neuronal circuit functions, staving off cognitive decline, and mitigating risk for AD. However, the identities of such mechanisms have remained elusive. A screen for hippocampal dentate granule cell (DGC) synapse loss-induced factors identified a secreted phospholipase, Pla2g2f, whose expression increases in DGCs during aging. Pla2g2f deletion in DGCs exacerbates aging-associated pathophysiological changes including synapse loss, inflammatory microglia, reactive astrogliosis, impaired neurogenesis, lipid dysregulation and hippocampal-dependent memory loss. Conversely, boosting Pla2g2f in DGCs during aging is sufficient to preserve synapses, reduce inflammatory microglia and reactive gliosis, prevent hippocampal-dependent memory impairment and modify trajectory of cognitive decline. Ex vivo, neuronal-PLA2G2F mediates intercellular signaling to decrease lipid droplet burden in microglia. Boosting Pla2g2f expression in DGCs of an aging-sensitive AD model reduces amyloid load and improves memory. Our findings implicate PLA2G2F as a compensatory neuroprotective factor that maintains lipid homeostasis to counteract aging-associated cognitive decline.
Collapse
Affiliation(s)
- Cinzia Vicidomini
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Conor H Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay N Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael J Steinbaugh
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina C Lyon
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Manuel Rico F S Silvestre
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gracia Bonilla
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias C Walther
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Shannan Ho Sui
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Li-Huei Tsai
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
8
|
Signal B, Phipps AJ, Giles KA, Huskins SN, Mercer TR, Robinson MD, Woodhouse A, Taberlay PC. Ageing-Related Changes to H3K4me3, H3K27ac, and H3K27me3 in Purified Mouse Neurons. Cells 2024; 13:1393. [PMID: 39195281 PMCID: PMC11353134 DOI: 10.3390/cells13161393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Neurons are central to lifelong learning and memory, but ageing disrupts their morphology and function, leading to cognitive decline. Although epigenetic mechanisms are known to play crucial roles in learning and memory, neuron-specific genome-wide epigenetic maps into old age remain scarce, often being limited to whole-brain homogenates and confounded by glial cells. Here, we mapped H3K4me3, H3K27ac, and H3K27me3 in mouse neurons across their lifespan. This revealed stable H3K4me3 and global losses of H3K27ac and H3K27me3 into old age. We observed patterns of synaptic function gene deactivation, regulated through the loss of the active mark H3K27ac, but not H3K4me3. Alongside this, embryonic development loci lost repressive H3K27me3 in old age. This suggests a loss of a highly refined neuronal cellular identity linked to global chromatin reconfiguration. Collectively, these findings indicate a key role for epigenetic regulation in neurons that is inextricably linked with ageing.
Collapse
Affiliation(s)
- Brandon Signal
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia; (B.S.); (K.A.G.); (S.N.H.)
| | - Andrew J. Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia;
| | - Katherine A. Giles
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia; (B.S.); (K.A.G.); (S.N.H.)
- Children’s Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Shannon N. Huskins
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia; (B.S.); (K.A.G.); (S.N.H.)
| | - Timothy R. Mercer
- Australian Institute for Bioengineering and Nanotechnology, Corner College and Cooper Roads, Brisbane, QLD 4072, Australia;
| | - Mark D. Robinson
- SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia;
| | - Phillippa C. Taberlay
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia; (B.S.); (K.A.G.); (S.N.H.)
| |
Collapse
|
9
|
Vinci M, Greco D, Treccarichi S, Chiavetta V, Figura MG, Musumeci A, Greco V, Federico C, Calì F, Saccone S. Bioinformatic Evaluation of KLF13 Genetic Variant: Implications for Neurodevelopmental and Psychiatric Symptoms. Genes (Basel) 2024; 15:1056. [PMID: 39202416 PMCID: PMC11354057 DOI: 10.3390/genes15081056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The Krüppel-like factor (KLF) family represents a group of transcription factors (TFs) performing different biological processes that are crucial for proper neuronal function, including neuronal development, synaptic plasticity, and neuronal survival. As reported, genetic variants within the KLF family have been associated with a wide spectrum of neurodevelopmental and psychiatric symptoms. In a patient exhibiting attention deficit hyperactivity disorder (ADHD) combined with both neurodevelopmental and psychiatric symptoms, whole-exome sequencing (WES) analysis revealed a de novo heterozygous variant within the Krüppel-like factor 13 (KLF13) gene, which belongs to the KLF family and regulates axonal growth, development, and regeneration in mice. Moreover, in silico analyses pertaining to the likely pathogenic significance of the variant and the impact of the mutation on the KLF13 protein structure suggested a potential deleterious effect. In fact, the variant was localized in correspondence to the starting residue of the N-terminal domain of KLF13, essential for protein-protein interactions, DNA binding, and transcriptional activation or repression. This study aims to highlight the potential involvement of the KLF13 gene in neurodevelopmental and psychiatric disorders. Nevertheless, we cannot rule out that excluded variants, those undetectable by WES, or the polygenic risk may have contributed to the patient's phenotype given ADHD's high polygenic risk. However, further functional studies are required to validate its potential contribution to these disorders.
Collapse
Affiliation(s)
- Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Donatella Greco
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Valeria Chiavetta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Maria Grazia Figura
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Vittoria Greco
- Department of Biomedical Science, University of Messina, 98122 Messina, Italy;
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| |
Collapse
|
10
|
Rasetto NB, Giacomini D, Berardino AA, Waichman TV, Beckel MS, Di Bella DJ, Brown J, Davies-Sala MG, Gerhardinger C, Lie DC, Arlotta P, Chernomoretz A, Schinder AF. Transcriptional dynamics orchestrating the development and integration of neurons born in the adult hippocampus. SCIENCE ADVANCES 2024; 10:eadp6039. [PMID: 39028813 PMCID: PMC11259177 DOI: 10.1126/sciadv.adp6039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing. Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple immature stages bearing increasing levels of effector genes supporting growth, excitability, and synaptogenesis. Analysis of differential gene expression, pseudo-time trajectory, and transcription factors (TFs) revealed critical transitions defining four cellular states: quiescent RGLs, proliferative progenitors, immature aGCs, and mature aGCs. Becoming mature aGCs involved a transcriptional switch that shuts down pathways promoting cell growth, such SoxC TFs, to activate programs that likely control neuronal homeostasis. aGCs overexpressing Sox4 or Sox11 remained immature. Our results unveil precise molecular mechanisms driving adult RGLs through the pathway of neuronal differentiation.
Collapse
Affiliation(s)
- Natalí B. Rasetto
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Damiana Giacomini
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Ariel A. Berardino
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Tomás Vega Waichman
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Maximiliano S. Beckel
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Daniela J. Di Bella
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Juliana Brown
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - M. Georgina Davies-Sala
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Chiara Gerhardinger
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dieter Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paola Arlotta
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ariel Chernomoretz
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
- University of Buenos Aires, School of Science, Phys Dept and INFINA (CONICET-UBA), Buenos Aires, Argentina
| | - Alejandro F. Schinder
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| |
Collapse
|
11
|
Rasetto NB, Giacomini D, Berardino AA, Waichman TV, Beckel MS, Di Bella DJ, Brown J, Davies-Sala MG, Gerhardinger C, Lie DC, Arlotta P, Chernomoretz A, Schinder AF. Transcriptional dynamics orchestrating the development and integration of neurons born in the adult hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565477. [PMID: 38260428 PMCID: PMC10802403 DOI: 10.1101/2023.11.03.565477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The adult hippocampus generates new granule cells (aGCs) that exhibit distinct functional capabilities along development, conveying a unique form of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like neural stem cells (RGL) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to follow newborn aGCs along differentiation using single-nuclei RNA sequencing (snRNA-seq). Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple sequential immature stages bearing increasing levels of effector genes supporting growth, excitability and synaptogenesis. Remarkably, four discrete cellular states were defined by the expression of distinct sets of transcription factors (TFs): quiescent neural stem cells, proliferative progenitors, postmitotic immature aGCs, and mature aGCs. The transition from immature to mature aCGs involved a transcriptional switch that shutdown molecular cascades promoting cell growth, such as the SoxC family of TFs, to activate programs controlling neuronal homeostasis. Indeed, aGCs overexpressing Sox4 or Sox11 remained stalled at the immature state. Our results unveil precise molecular mechanisms driving adult neural stem cells through the pathway of neuronal differentiation.
Collapse
|
12
|
Oakley RH, Riddick NV, Moy SS, Cidlowski JA. Imbalanced glucocorticoid and mineralocorticoid stress hormone receptor function has sex-dependent and independent regulatory effects in the mouse hippocampus. Neurobiol Stress 2024; 28:100589. [PMID: 38075021 PMCID: PMC10709088 DOI: 10.1016/j.ynstr.2023.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 02/12/2024] Open
Abstract
Many stress-related neuropsychiatric disorders display pronounced sex differences in their frequency and clinical symptoms. Glucocorticoids are primary stress hormones that have been implicated in the development of these disorders but whether they contribute to the observed sex bias is poorly understood. Glucocorticoids signal through two closely related nuclear receptors, the glucocorticoid (GR) and mineralocorticoid receptor (MR). To elucidate the sex-specific and independent actions of glucocorticoids in the hippocampus, we developed knockout mice lacking hippocampal GR, MR, or both GR and MR. Mice deficient in hippocampal MR or both GR and MR showed an altered molecular phenotype of CA2 neurons and reduced anxiety-like behavior in both sexes, but altered stress adaptation behavior only in females and enhanced fear-motivated cue learning only in males. All three knockout mouse models displayed reduced sociability but only in male mice. Male and female mice deficient in both hippocampal GR and MR exhibited extensive neurodegeneration in the dentate gyrus. Global transcriptomic analysis revealed a marked expansion in the number of dysregulated genes in the hippocampus of female knockout mice compared to their male counterparts; however, the overall patterns of gene dysregulation were remarkably similar in both sexes. Within and across sex comparisons identified key GR and MR target genes and associated signaling pathways underlying the knockout phenotypes. These findings define major sex-dependent and independent effects of GR/MR imbalances on gene expression and functional profiles in the hippocampus and inform new strategies for treating men and women with stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Robert H. Oakley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Natallia V. Riddick
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sheryl S. Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John A. Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
13
|
Simmen FA, Alhallak I, Simmen RCM. Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis. Cancers (Basel) 2023; 15:5667. [PMID: 38067370 PMCID: PMC10705314 DOI: 10.3390/cancers15235667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
14
|
Li X, Wang G, Li W, Wang X, Wu J, He Y, Li X, Sun X, Zhang M, Guo Y. Histone deacetylase 9 plays a role in sevoflurane-induced neuronal differentiation inhibition by inactivating cAMP-response element binding protein transcription and inhibiting the expression of neurotrophin-3. FASEB J 2023; 37:e23164. [PMID: 37688590 DOI: 10.1096/fj.202300168r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
Postoperative cognitive decline (POCD) is a common and serious complication following anesthesia and surgery; however, the precise mechanisms of POCD remain unclear. Our previous research showed that sevoflurane impairs adult hippocampal neurogenesis (AHN) and thus cognitive function in the aged brain by affecting neurotrophin-3 (NT-3) expression; however, the signaling mechanism involved remains unexplored. In this study, we found a dramatic decrease in the proportion of differentiated neurons with increasing concentrations of sevoflurane, and the inhibition of neural stem cell differentiation was partially reversed after the administration of exogenous NT-3. Understanding the molecular underpinnings by which sevoflurane affects NT-3 is key to counteracting cognitive dysfunction. Here, we report that sevoflurane administration for 2 days resulted in upregulation of histone deacetylase 9 (HDAC9) expression, which led to transcriptional inactivation of cAMP-response element binding protein (CREB). Due to the colocalization of HDAC9 and CREB within cells, this may be related to the interaction between HDAC9 and CREB. Anyway, this ultimately led to reduced NT-3 expression and inhibition of neural stem cell differentiation. Furthermore, knockdown of HDAC9 rescued the transcriptional activation of CREB after sevoflurane exposure, while reversing the downregulation of NT-3 expression and inhibition of neural stem cell differentiation. In summary, this study identifies a unique mechanism by which sevoflurane can inhibit CREB transcription through HDAC9, and this process reduces NT-3 levels and ultimately inhibits neuronal differentiation. This finding may reveal a new strategy to prevent sevoflurane-induced neuronal dysfunction.
Collapse
Affiliation(s)
- Xinlei Li
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Wei Li
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xu Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jiangnan Wu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingxue He
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaowei Li
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaobin Sun
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yanjing Guo
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
15
|
Mugnaini M, Trinchero MF, Schinder AF, Piatti VC, Kropff E. Unique potential of immature adult-born neurons for the remodeling of CA3 spatial maps. Cell Rep 2023; 42:113086. [PMID: 37676761 PMCID: PMC11342238 DOI: 10.1016/j.celrep.2023.113086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Mammalian hippocampal circuits undergo extensive remodeling through adult neurogenesis. While this process has been widely studied, the specific contribution of adult-born granule cells (aGCs) to spatial operations in the hippocampus remains unknown. Here, we show that optogenetic activation of 4-week-old (young) aGCs in free-foraging mice produces a non-reversible reconfiguration of spatial maps in proximal CA3 while rarely evoking neural activity. Stimulation of the same neuronal cohort on subsequent days recruits CA3 neurons with increased efficacy but fails to induce further remapping. In contrast, stimulation of 8-week-old (mature) aGCs can reliably activate CA3 cells but produces no alterations in spatial maps. Our results reveal a unique role of young aGCs in remodeling CA3 representations, a potential that can be depleted and is lost with maturation. This ability could contribute to generate orthogonalized downstream codes supporting pattern separation.
Collapse
Affiliation(s)
- Matías Mugnaini
- Department of Physiology, Molecular and Cellular Biology Dr. Héctor Maldonado, Faculty of Exact and Natural Science, University of Buenos Aires, Buenos Aires C1428EGA, Argentina; Laboratory of Physiology and Algorithms of the Brain, Leloir Institute (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina
| | - Mariela F Trinchero
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina
| | - Alejandro F Schinder
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina.
| | - Verónica C Piatti
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina.
| | - Emilio Kropff
- Laboratory of Physiology and Algorithms of the Brain, Leloir Institute (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
16
|
Drepanos L, Gans IM, Grendler J, Guitar S, Fuqua JH, Maki NJ, Tilden AR, Graber JH, Coffman JA. Loss of Krüppel-like factor 9 deregulates both physiological gene expression and development. Sci Rep 2023; 13:12239. [PMID: 37507475 PMCID: PMC10382561 DOI: 10.1038/s41598-023-39453-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Krüppel-like factor 9 (Klf9) is a ubiquitously expressed transcription factor that is a feedforward regulator of multiple stress-responsive and endocrine signaling pathways. We previously described how loss of Klf9 function affects the transcriptome of zebrafish larvae sampled at a single time point 5 days post-fertilization (dpf). However, klf9 expression oscillates diurnally, and the sampled time point corresponded to its expression nadir. To determine if the transcriptomic effects of the klf9-/- mutation vary with time of day, we performed bulk RNA-seq on 5 dpf zebrafish embryos sampled at three timepoints encompassing the predawn peak and midmorning nadir of klf9 expression. We found that while the major effects of the klf9-/- mutation that we reported previously are robust to time of day, the mutation has additional effects that manifest only at the predawn time point. We used a published single-cell atlas of zebrafish development to associate the effects of the klf9-/- mutation with different cell types and found that the mutation increased mRNA associated with digestive organs (liver, pancreas, and intestine) and decreased mRNA associated with differentiating neurons and blood. Measurements from confocally-imaged larvae suggest that overrepresentation of liver mRNA in klf9-/- mutants is due to development of enlarged livers.
Collapse
Affiliation(s)
| | - Ian M Gans
- MDI Biological Laboratory, Salisbury Cove, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | | | | | | | | | | | | | - James A Coffman
- MDI Biological Laboratory, Salisbury Cove, ME, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
17
|
Kennedy CL, Price EM, Mifsud KR, Salatino S, Sharma E, Engledow S, Broxholme J, Goss HM, Reul JM. Genomic regulation of Krüppel-like-factor family members by corticosteroid receptors in the rat brain. Neurobiol Stress 2023; 23:100532. [PMID: 36942087 PMCID: PMC10024234 DOI: 10.1016/j.ynstr.2023.100532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) mediate glucocorticoid hormone (GC) action in the hippocampus. These receptors bind to glucocorticoid responsive elements (GREs) within target genes, eliciting transcriptional effects in response to stress and circadian variation. Until recently, little was known about the genome-wide targets of hippocampal MRs and GRs under physiological conditions. Following on from our genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus, we investigated the Krüppel-like factors (KLFs) as targets of MRs and GRs throughout the brain under circadian variation and after acute stress. In particular, Klf2, Klf9 and Klf15 are known to be stress and/or GC responsive and play a role in neurobiological processes including synaptic plasticity and neuronal differentiation. We found increased binding of MR and GR to GREs within Klf2, Klf9 and Klf15 in the hippocampus, amygdala, prefrontal cortex, and neocortex after acute stress and resulting from circadian variation, which was accompanied by upregulation of corresponding hnRNA and mRNA levels. Adrenalectomy abolished transcriptional upregulation of specific Klf genes. These results show that MRs and GRs regulate Klf gene expression throughout the brain following exposure to acute stress or in response to circadian variation, likely alongside other transcription factors.
Collapse
Affiliation(s)
- Clare L.M. Kennedy
- Neuro-Epigenetics Research Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emily M. Price
- Neuro-Epigenetics Research Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Karen R. Mifsud
- Neuro-Epigenetics Research Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Silvia Salatino
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Simon Engledow
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Hannah M. Goss
- Neuro-Epigenetics Research Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Johannes M.H.M. Reul
- Neuro-Epigenetics Research Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
- Corresponding author.
| |
Collapse
|
18
|
Zhang Q, Liu J, Chen L, Zhang M. Promoting Endogenous Neurogenesis as a Treatment for Alzheimer's Disease. Mol Neurobiol 2023; 60:1353-1368. [PMID: 36445633 DOI: 10.1007/s12035-022-03145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most universal neurodegenerative disorder characterized by memory loss and cognitive impairment. AD is biologically defined by production and aggregation of misfolded protein including extracellular amyloid β (Aβ) peptide and intracellular microtubule-associated protein tau tangles in neurons, leading to irreversible neuronal loss. At present, regulation of endogenous neurogenesis to supplement lost neurons has been proposed as a promising strategy for treatment of AD. However, the exact underlying mechanisms of impaired neurogenesis in AD have not been fully explained and effective treatments targeting neurogenesis for AD are limited. In this review, we mainly focus on the latest research of impaired neurogenesis in AD. Then we discuss the factors affecting stages of neurogenesis and the interplay between neural stem cells (NSCs) and neurogenic niche under AD pathological conditions. This review aims to explore potential therapeutic strategies that promote endogenous neurogenesis for AD treatments.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jingyue Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China. .,School of Nursing, Jilin University, Changchun, China.
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
19
|
Mating experiences with the same partner enhanced mating activities of naïve male medaka fish. Sci Rep 2022; 12:19665. [PMID: 36385126 PMCID: PMC9668913 DOI: 10.1038/s41598-022-23871-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Mating experience shapes male mating behavior across species, from insects, fish, and birds, to rodents. Here, we investigated the effect of multiple mating experiences on male mating behavior in "naïve" (defined as sexually inexperienced) male medaka fish. The latency to mate with the same female partner significantly decreased after the second encounter, whereas when the partner was changed, the latency to mate was not decreased. These findings suggest that mating experiences enhanced the mating activity of naïve males for the familiar female, but not for an unfamiliar female. In contrast, the mating experiences of "experienced" (defined as those having mated > 7 times) males with the same partner did not influence their latency to mate. Furthermore, we identified 10 highly and differentially expressed genes in the brains of the naïve males after the mating experience and revealed 3 genes that are required for a functional cascade of the thyroid hormone system. Together, these findings suggest that the mating experience of naïve male medaka fish influences their mating behaviors, with neural changes triggered by thyroid hormone activation in the brain.
Collapse
|
20
|
Marks WD, Yokose J, Kitamura T, Ogawa SK. Neuronal Ensembles Organize Activity to Generate Contextual Memory. Front Behav Neurosci 2022; 16:805132. [PMID: 35368306 PMCID: PMC8965349 DOI: 10.3389/fnbeh.2022.805132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Contextual learning is a critical component of episodic memory and important for living in any environment. Context can be described as the attributes of a location that are not the location itself. This includes a variety of non-spatial information that can be derived from sensory systems (sounds, smells, lighting, etc.) and internal state. In this review, we first address the behavioral underpinnings of contextual memory and the development of context memory theory, with a particular focus on the contextual fear conditioning paradigm as a means of assessing contextual learning and the underlying processes contributing to it. We then present the various neural centers that play roles in contextual learning. We continue with a discussion of the current knowledge of the neural circuitry and physiological processes that underlie contextual representations in the Entorhinal cortex-Hippocampal (EC-HPC) circuit, as the most well studied contributor to contextual memory, focusing on the role of ensemble activity as a representation of context with a description of remapping, and pattern separation and completion in the processing of contextual information. We then discuss other critical regions involved in contextual memory formation and retrieval. We finally consider the engram assembly as an indicator of stored contextual memories and discuss its potential contribution to contextual memory.
Collapse
Affiliation(s)
- William D. Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sachie K. Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
21
|
Guo N, McDermott KD, Shih YT, Zanga H, Ghosh D, Herber C, Meara WR, Coleman J, Zagouras A, Wong LP, Sadreyev R, Gonçalves JT, Sahay A. Transcriptional regulation of neural stem cell expansion in the adult hippocampus. eLife 2022; 11:e72195. [PMID: 34982030 PMCID: PMC8820733 DOI: 10.7554/elife.72195] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Experience governs neurogenesis from radial-glial neural stem cells (RGLs) in the adult hippocampus to support memory. Transcription factors (TFs) in RGLs integrate physiological signals to dictate self-renewal division mode. Whereas asymmetric RGL divisions drive neurogenesis during favorable conditions, symmetric divisions prevent premature neurogenesis while amplifying RGLs to anticipate future neurogenic demands. The identities of TFs regulating RGL symmetric self-renewal, unlike those that regulate RGL asymmetric self-renewal, are not known. Here, we show in mice that the TF Kruppel-like factor 9 (Klf9) is elevated in quiescent RGLs and inducible, deletion of Klf9 promotes RGL activation state. Clonal analysis and longitudinal intravital two-photon imaging directly demonstrate that Klf9 functions as a brake on RGL symmetric self-renewal. In vivo translational profiling of RGLs lacking Klf9 generated a molecular blueprint for RGL symmetric self-renewal that was characterized by upregulation of genetic programs underlying Notch and mitogen signaling, cell cycle, fatty acid oxidation, and lipogenesis. Together, these observations identify Klf9 as a transcriptional regulator of neural stem cell expansion in the adult hippocampus.
Collapse
Affiliation(s)
- Nannan Guo
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- BROAD Institute of Harvard and MITCambridgeUnited States
| | - Kelsey D McDermott
- Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine; Dominick Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Yu-Tzu Shih
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- BROAD Institute of Harvard and MITCambridgeUnited States
| | - Haley Zanga
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- BROAD Institute of Harvard and MITCambridgeUnited States
| | - Debolina Ghosh
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Charlotte Herber
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - William R Meara
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - James Coleman
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Alexia Zagouras
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - J Tiago Gonçalves
- Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine; Dominick Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- BROAD Institute of Harvard and MITCambridgeUnited States
| |
Collapse
|
22
|
Espina JEC, Bagamasbad PD. Synergistic gene regulation by thyroid hormone and glucocorticoid in the hippocampus. VITAMINS AND HORMONES 2021; 118:35-81. [PMID: 35180933 DOI: 10.1016/bs.vh.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hippocampus is considered the center for learning and memory in the brain, and its development and function is greatly affected by the thyroid and stress axes. Thyroid hormone (TH) and glucocorticoids (GC) are known to have a synergistic effect on developmental programs across several vertebrate species, and their effects on hippocampal structure and function are well-documented. However, there are few studies that focus on the processes and genes that are cooperatively regulated by the two hormone axes. Cross-regulation of the thyroid and stress axes in the hippocampus occurs on multiple levels such that TH can regulate the expression of the GC receptor (GR) while GC can modulate tissue sensitivity to TH by controlling the expression of TH receptor (TR) and enzymes involved in TH biosynthesis. Thyroid hormone and GC are also known to synergistically regulate the transcription of genes associated with neuronal function and development. Synergistic gene regulation by TH and GC may occur through the direct, cooperative action of TR and GR on common target genes, or by indirect mechanisms involving gene regulatory cascades activated by TR and GR. In this chapter, we describe the known physiological effects and underlying molecular mechanisms of TH and GC synergistic gene regulation in the hippocampus.
Collapse
Affiliation(s)
- Jose Ezekiel C Espina
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
23
|
Gillotin S, Sahni V, Lepko T, Hanspal MA, Swartz JE, Alexopoulou Z, Marshall FH. Targeting impaired adult hippocampal neurogenesis in ageing by leveraging intrinsic mechanisms regulating Neural Stem Cell activity. Ageing Res Rev 2021; 71:101447. [PMID: 34403830 DOI: 10.1016/j.arr.2021.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Deficits in adult neurogenesis may contribute to the aetiology of many neurodevelopmental, psychiatric and neurodegenerative diseases. Genetic ablation of neurogenesis provides proof of concept that adult neurogenesis is required to sustain complex and dynamic cognitive functions, such as learning and memory, mostly by providing a high degree of plasticity to neuronal circuits. In addition, adult neurogenesis is reactive to external stimuli and the environment making it particularly susceptible to impairment and consequently contributing to comorbidity. In the human brain, the dentate gyrus of the hippocampus is the main active source of neural stem cells that generate granule neurons throughout life. The regulation and preservation of the pool of neural stem cells is central to ensure continuous and healthy adult hippocampal neurogenesis (AHN). Recent advances in genetic and metabolic profiling alongside development of more predictive animal models have contributed to the development of new concepts and the emergence of molecular mechanisms that could pave the way to the implementation of new therapeutic strategies to treat neurological diseases. In this review, we discuss emerging molecular mechanisms underlying AHN that could be embraced in drug discovery to generate novel concepts and targets to treat diseases of ageing including neurodegeneration. To support this, we review cellular and molecular mechanisms that have recently been identified to assess how AHN is sustained throughout life and how AHN is associated with diseases. We also provide an outlook on strategies for developing correlated biomarkers that may accelerate the translation of pre-clinical and clinical data and review clinical trials for which modulation of AHN is part of the therapeutic strategy.
Collapse
|
24
|
Marks WD, Yamamoto N, Kitamura T. Complementary roles of differential medial entorhinal cortex inputs to the hippocampus for the formation and integration of temporal and contextual memory (Systems Neuroscience). Eur J Neurosci 2021; 54:6762-6779. [PMID: 32277786 PMCID: PMC8187108 DOI: 10.1111/ejn.14737] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 11/29/2022]
Abstract
In humans and rodents, the entorhinal cortical (EC)-hippocampal (HPC) circuit is crucial for the formation and recall of memory, preserving both spatial information and temporal information about the occurrence of past events. Both modeling and experimental studies have revealed circuits within this network that play crucial roles in encoding space and context. However, our understanding about the time-related aspects of memory is just beginning to be understood. In this review, we first describe updates regarding recent anatomical discoveries for the EC-HPC network, as several important neural circuits critical for memory formation have been discovered by newly developed neural tracing technologies. Second, we examine the complementary roles of multiple medial entorhinal cortical inputs, including newly discovered circuits, into the hippocampus for the temporal and spatial aspects of memory. Finally, we will discuss how temporal and contextual memory information is integrated in HPC cornu ammonis 1 cells. We provide new insights into the neural circuit mechanisms for anatomical and functional segregation and integration of the temporal and spatial aspects of memory encoding in the EC-HPC networks.
Collapse
Affiliation(s)
- William D. Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| |
Collapse
|
25
|
Berdenis van Berlekom A, Notman N, Sneeboer MAM, Snijders GJLJ, Houtepen LC, Nispeling DM, He Y, Dracheva S, Hol EM, Kahn RS, de Witte LD, Boks MP. DNA methylation differences in cortical grey and white matter in schizophrenia. Epigenomics 2021; 13:1157-1169. [PMID: 34323598 PMCID: PMC8386513 DOI: 10.2217/epi-2021-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/09/2021] [Indexed: 01/27/2023] Open
Abstract
Aim: Identify grey- and white-matter-specific DNA-methylation differences between schizophrenia (SCZ) patients and controls in postmortem brain cortical tissue. Materials & methods: Grey and white matter were separated from postmortem brain tissue of the superior temporal and medial frontal gyrus from SCZ (n = 10) and control (n = 11) cases. Genome-wide DNA-methylation analysis was performed using the Infinium EPIC Methylation Array (Illumina, CA, USA). Results: Four differentially methylated regions associated with SCZ status and tissue type (grey vs white matter) were identified within or near KLF9, SFXN1, SPRED2 and ALS2CL genes. Gene-expression analysis showed differential expression of KLF9 and SFXN1 in SCZ. Conclusion: Our data show distinct differences in DNA methylation between grey and white matter that are unique to SCZ, providing new leads to unravel the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Amber Berdenis van Berlekom
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina Notman
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marjolein AM Sneeboer
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gijsje JLJ Snijders
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lotte C Houtepen
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Danny M Nispeling
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yujie He
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Lot D de Witte
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
26
|
Lafontaine N, Campbell PJ, Castillo-Fernandez JE, Mullin S, Lim EM, Kendrew P, Lewer M, Brown SJ, Huang RC, Melton PE, Mori TA, Beilin LJ, Dudbridge F, Spector TD, Wright MJ, Martin NG, McRae AF, Panicker V, Zhu G, Walsh JP, Bell JT, Wilson SG. Epigenome-Wide Association Study of Thyroid Function Traits Identifies Novel Associations of fT3 With KLF9 and DOT1L. J Clin Endocrinol Metab 2021; 106:e2191-e2202. [PMID: 33484127 PMCID: PMC8063248 DOI: 10.1210/clinem/dgaa975] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Circulating concentrations of free triiodothyronine (fT3), free thyroxine (fT4), and thyrotropin (TSH) are partly heritable traits. Recent studies have advanced knowledge of their genetic architecture. Epigenetic modifications, such as DNA methylation (DNAm), may be important in pituitary-thyroid axis regulation and action, but data are limited. OBJECTIVE To identify novel associations between fT3, fT4, and TSH and differentially methylated positions (DMPs) in the genome in subjects from 2 Australian cohorts. METHOD We performed an epigenome-wide association study (EWAS) of thyroid function parameters and DNAm using participants from: Brisbane Systems Genetics Study (median age 14.2 years, n = 563) and the Raine Study (median age 17.0 years, n = 863). Plasma fT3, fT4, and TSH were measured by immunoassay. DNAm levels in blood were assessed using Illumina HumanMethylation450 BeadChip arrays. Analyses employed generalized linear mixed models to test association between DNAm and thyroid function parameters. Data from the 2 cohorts were meta-analyzed. RESULTS We identified 2 DMPs with epigenome-wide significant (P < 2.4E-7) associations with TSH and 6 with fT3, including cg00049440 in KLF9 (P = 2.88E-10) and cg04173586 in DOT1L (P = 2.09E-16), both genes known to be induced by fT3. All DMPs had a positive association between DNAm and TSH and a negative association between DNAm and fT3. There were no DMPs significantly associated with fT4. We identified 23 differentially methylated regions associated with fT3, fT4, or TSH. CONCLUSIONS This study has demonstrated associations between blood-based DNAm and both fT3 and TSH. This may provide insight into mechanisms underlying thyroid hormone action and/or pituitary-thyroid axis function.
Collapse
Affiliation(s)
- Nicole Lafontaine
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
- Correspondence: Nicole Lafontaine, MBBS, BMedSci, RACP, Department of Endocrinology & Diabetes, Level 1, Building C, QEII Medical Centre, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, WA 6009, Australia.
| | - Purdey J Campbell
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | | | - Shelby Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Ee Mun Lim
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Pathwest Laboratory Medicine, Nedlands, WA, Australia
| | | | | | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Phillip E Melton
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Lawrence J Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | | | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Vijay Panicker
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
27
|
Ávila-Mendoza J, Subramani A, Denver RJ. Krüppel-Like Factors 9 and 13 Block Axon Growth by Transcriptional Repression of Key Components of the cAMP Signaling Pathway. Front Mol Neurosci 2020; 13:602638. [PMID: 33281552 PMCID: PMC7689098 DOI: 10.3389/fnmol.2020.602638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/21/2020] [Indexed: 01/11/2023] Open
Abstract
Krüppel-like factors (KLFs) are zinc finger transcription factors implicated in diverse biological processes, including differentiation of neural cells. The ability of mammalian neurons to elongate axons decreases during postnatal development in parallel with a decrease in cAMP, and increase in expression of several Klf genes. The paralogous KLFs 9 and 13 inhibit neurite outgrowth, and we hypothesized that their actions are mediated through repression of cAMP signaling. To test this we used the adult mouse hippocampus-derived cell line HT22 engineered to control expression of Klf9 or Klf13 with doxycycline, or made deficient for these Klfs by CRISPR/Cas9 genome editing. We also used primary hippocampal cells isolated from wild type, Klf9–/– and Klf13–/– mice. Forced expression of Klf9 or Klf13 in HT22 changed the mRNA levels of several genes involved with cAMP signaling; the predominant action was gene repression, and KLF13 influenced ∼4 times more genes than KLF9. KLF9 and KLF13 repressed promoter activity of the protein kinase a catalytic subunit alpha gene in transfection-reporter assays; KLF13, but not KLF9 repressed the calmodulin 3 promoter. Forskolin activation of a cAMP-dependent promoter was reduced after forced expression of Klf9 or Klf13, but was enhanced in Klf gene knockout cells. Forced expression of Klf9 or Klf13 blocked cAMP-dependent neurite outgrowth in HT22 cells, and axon growth in primary hippocampal neurons, while Klf gene knockout enhanced the effect of elevated cAMP. Taken together, our findings show that KLF9 and KLF13 inhibit neurite/axon growth in hippocampal neurons, in part, by inhibiting the cAMP signaling pathway.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
28
|
Ribeiro MM, Okawa S, Del Sol A. TransSynW: A single-cell RNA-sequencing based web application to guide cell conversion experiments. Stem Cells Transl Med 2020; 10:230-238. [PMID: 33125830 PMCID: PMC7848352 DOI: 10.1002/sctm.20-0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
Generation of desired cell types by cell conversion remains a challenge. In particular, derivation of novel cell subtypes identified by single‐cell technologies will open up new strategies for cell therapies. The recent increase in the generation of single‐cell RNA‐sequencing (scRNA‐seq) data and the concomitant increase in the interest expressed by researchers in generating a wide range of functional cells prompted us to develop a computational tool for tackling this challenge. Here we introduce a web application, TransSynW, which uses scRNA‐seq data for predicting cell conversion transcription factors (TFs) for user‐specified cell populations. TransSynW prioritizes pioneer factors among predicted conversion TFs to facilitate chromatin opening often required for cell conversion. In addition, it predicts marker genes for assessing the performance of cell conversion experiments. Furthermore, TransSynW does not require users' knowledge of computer programming and computational resources. We applied TransSynW to different levels of cell conversion specificity, which recapitulated known conversion TFs at each level. We foresee that TransSynW will be a valuable tool for guiding experimentalists to design novel protocols for cell conversion in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Mariana Messias Ribeiro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
29
|
Huang C, Li J, Zhang X, Xiong T, Ye J, Yu J, Gui Y. The miR-140-5p/KLF9/KCNQ1 axis promotes the progression of renal cell carcinoma. FASEB J 2020; 34:10623-10639. [PMID: 32596959 DOI: 10.1096/fj.202000088rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
Although renal cell carcinoma (RCC) is a common malignant urological cancer, its pathogenesis remains unclear. Previous studies have indicated that miR-140-5p acts as a tumor suppressor in various tumors, including bladder cancer, hepatocellular carcinoma, and gastric cancer, but its biological function in RCC remains unknown. In the present study, we found that miR-140-5p was upregulated in RCC tissues, whereas Krüppel-like factor 9 (KLF9) was downregulated and correlated inversely with miR-140-5p in RCC tissues. miR-140-5p promoted the proliferation, migration, and invasion of RCC cells in vitro, and knockdown of miR-140-5p significantly suppressed tumor growth and lung metastasis in nude mouse model of RCC. We also found that miR-140-5p significantly suppressed the expression of KLF9 by binding to the 3'-UTR of KLF9 mRNA and that KLF9, as a transcription factor, upregulates KCNQ1 (also called Kv 7.1 and Kv LQT1) expression by binding to the site (-841/-827) in the KCNQ1 promoter region in RCC cells. Moreover, forced expression of KCNQ1 decreased the growth and metastasis of RCC cells. These results suggest that the miR-140-5p/KLF9/KCNQ1 axis functions as a key signaling pathway in RCC progression and metastasis and represents a potential target of RCC therapies.
Collapse
Affiliation(s)
- Chenchen Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Anhui Medical University, Hefei, China
| | - Jianfa Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Xiaoting Zhang
- Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, China
| | - Tiefu Xiong
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Jing Yu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Ávila-Mendoza J, Subramani A, Sifuentes CJ, Denver RJ. Molecular Mechanisms for Krüppel-Like Factor 13 Actions in Hippocampal Neurons. Mol Neurobiol 2020; 57:3785-3802. [PMID: 32578009 DOI: 10.1007/s12035-020-01971-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
Krüppel-like factors (KLFs) play key roles in nervous system development and function. Several KLFs are known to promote, and then maintain neural cell differentiation. Our previous work focused on the actions of KLF9 in mouse hippocampal neurons. Here we investigated genomic targets and functions of KLF9's paralog KLF13, with the goal of understanding how these two closely related transcription factors influence hippocampal cell function, proliferation, survival, and regeneration. We engineered the adult mouse hippocampus-derived cell line HT22 to control Klf13 expression with doxycycline. We also generated HT22 Klf13 knock out cells, and we analyzed primary hippocampal cells from wild type and Klf13-/- mice. RNA sequencing showed that KLF13, like KLF9, acts predominantly as a transcriptional repressor in hippocampal neurons and can regulate other Klf genes. Pathway analysis revealed that genes regulated by KLF13 are involved in cell cycle, cell survival, cytoarchitecture regulation, among others. Chromatin-streptavidin sequencing conducted on chromatin isolated from HT22 cells expressing biotinylated KLF13 identified 9506 genomic targets; 79% were located within 1-kb upstream of transcription start sites. Transfection-reporter assays confirmed that KLF13 can directly regulate transcriptional activity of its target genes. Comparison of the target genes of KLF9 and KLF13 found that they share some functions that were likely present in their common ancestor, but they have also acquired distinct functions during evolution. Flow cytometry showed that KLF13 promotes cell cycle progression, and it protects cells from glutamate-induced excitotoxic damage. Taken together, our findings establish novel roles and molecular mechanisms for KLF13 actions in mammalian hippocampal neurons.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christopher J Sifuentes
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA
- Takara Bio USA Inc., Mountain View, CA, 94043, USA
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
31
|
Bobkova NV, Poltavtseva RA, Leonov SV, Sukhikh GT. Neuroregeneration: Regulation in Neurodegenerative Diseases and Aging. BIOCHEMISTRY (MOSCOW) 2020; 85:S108-S130. [PMID: 32087056 DOI: 10.1134/s0006297920140060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It had been commonly believed for a long time, that once established, degeneration of the central nervous system (CNS) is irreparable, and that adult person merely cannot restore dead or injured neurons. The existence of stem cells (SCs) in the mature brain, an organ with minimal regenerative ability, had been ignored for many years. Currently accepted that specific structures of the adult brain contain neural SCs (NSCs) that can self-renew and generate terminally differentiated brain cells, including neurons and glia. However, their contribution to the regulation of brain activity and brain regeneration in natural aging and pathology is still a subject of ongoing studies. Since the 1970s, when Fuad Lechin suggested the existence of repair mechanisms in the brain, new exhilarating data from scientists around the world have expanded our knowledge on the mechanisms implicated in the generation of various cell phenotypes supporting the brain, regulation of brain activity by these newly generated cells, and participation of SCs in brain homeostasis and regeneration. The prospects of the SC research are truthfully infinite and hitherto challenging to forecast. Once researchers resolve the issues regarding SC expansion and maintenance, the implementation of the SC-based platform could help to treat tissues and organs impaired or damaged in many devastating human diseases. Over the past 10 years, the number of studies on SCs has increased exponentially, and we have already become witnesses of crucial discoveries in SC biology. Comprehension of the mechanisms of neurogenesis regulation is essential for the development of new therapeutic approaches for currently incurable neurodegenerative diseases and neuroblastomas. In this review, we present the latest achievements in this fast-moving field and discuss essential aspects of NSC biology, including SC regulation by hormones, neurotransmitters, and transcription factors, along with the achievements of genetic and chemical reprogramming for the safe use of SCs in vitro and in vivo.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - R A Poltavtseva
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia
| | - S V Leonov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Moscow Institute of Physics and Technology (National Research University), The Phystech School of Biological and Medical Physics, Dolgoprudny, Moscow Region, 141700, Russia
| | - G T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia.
| |
Collapse
|
32
|
Chen S, Gu S, Xu M, Mei D, Xiao Y, Chen K, Yan Z. Krüppel-like factor 9 promotes neuroblastoma differentiation via targeting the sonic hedgehog signaling pathway. Pediatr Blood Cancer 2020; 67:e28108. [PMID: 31782614 DOI: 10.1002/pbc.28108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/02/2019] [Accepted: 11/10/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is a deadly solid tumor of children. Krüppel-like factor 9 (KLF9) has prodifferentiation and tumor suppression functions in several types of cancers. Here, we aimed to investigate the effects of KLF9 on NB differentiation and growth and to elucidate the underlying mechanism. PROCEDURE Sixty-five NB paraffin samples were assessed for expression levels of KLF9 and sonic hedgehog (SHH) signaling pathway proteins by immunohistochemistry. The associations between expression of KLF9 and the SHH pathway components and patients' clinicopathologic characteristics were estimated. The impacts of KLF9 on cell differentiation, proliferation, and invasion were investigated in two NB cell lines (SH-SY5Y and IMR32). Additionally, chromatin immunoprecipitation (ChIP) and luciferase reporter assays were used to elucidate the mechanism by which KLF9 regulates SHH signaling. RESULTS Differentiating NB specimens showed significantly higher KLF9 expression levels than undifferentiated/poorly differentiated ones. Moreover, increased KLF9 expression was associated with favorable prognoses in patients with NB. A negative correlation was found between KLF9 and SHH signaling expression levels in NB specimens. In vitro assays revealed that KLF9 promoted the differentiation of NB cells and inhibited their proliferation and invasion via suppression of the SHH pathway. Furthermore, KLF9 binding sites in the SHH promoter were identified by ChIP and luciferase reporter assays. CONCLUSIONS KLF9 exerts prodifferentiation and growth-inhibition effects on NB via suppression of the SHH pathway, suggesting a potential role of KLF9 in NB therapy.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Pediatric Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Song Gu
- Department of Pediatric Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Min Xu
- Department of Pediatric Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dongyu Mei
- Department of Pediatric Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yongtao Xiao
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhilong Yan
- Department of Pediatric Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
33
|
Zhang Y, Gao Q, Wu Z, Xue H, Liu B, Zhao P. Dexmedetomidine Promotes Hippocampal Neurogenesis and Improves Spatial Learning and Memory in Neonatal Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4439-4449. [PMID: 32099322 PMCID: PMC6997224 DOI: 10.2147/dddt.s228220] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Background Dexmedetomidine (Dex) is a highly selective α2-adrenoceptor agonist used as an off-label medication for pediatric sedation and analgesia. Recently, Dex was reported to exhibit neuroprotective efficacy in several brain injury models. Here we investigate whether neonatal Dex administration promotes hippocampal neurogenesis and enhances hippocampus-dependent spatial learning and memory under physiological conditions. Methods Postnatal day 7 (P7) pups were administered saline (vehicle control) or Dex (10, 20, or 40 µg/kg) by intraperitoneal injection. Neurogenesis and astrogenesis were examined in brain slices by BrdU immunostaining on P8 and changes in the expression levels of GDNF, NCAM, CREB, PSD95, and GAP43 were assessed by Western blotting on P35, respectively. Open field and Morris water maze (MWM) tests were conducted from P28 to P36 in order to assess effects on general motor activity and spatial learning, respectively. Results Dexmedetomidine at 20 µg/kg significantly enhanced neurogenesis and astrogenesis in hippocampus and upregulated GDNF, NCAM, CREB, PSD95, and GAP43 compared to vehicle and other Dex doses. Moreover, 20 µg/kg Dex-injected rats showed no changes in motor or anxiety-like behavior but performed better in the MWM test compared to all other groups. Conclusion Neonatal injection of Dex (20 µg/kg) enhances spatial learning and memory in rat pups, potentially by promoting hippocampal neurogenesis and synaptic plasticity via activation of GDNF/NCAM/CREB signaling.
Collapse
Affiliation(s)
- Yahan Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Qiushi Gao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Hang Xue
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Bo Liu
- Department of Animal Laboratory of Experimental Research Center, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
34
|
Besnard A, Langberg T, Levinson S, Chu D, Vicidomini C, Scobie KN, Dwork AJ, Arango V, Rosoklija GB, Mann JJ, Hen R, Leonardo ED, Boldrini M, Sahay A. Targeting Kruppel-like Factor 9 in Excitatory Neurons Protects against Chronic Stress-Induced Impairments in Dendritic Spines and Fear Responses. Cell Rep 2019; 23:3183-3196. [PMID: 29898391 PMCID: PMC7453932 DOI: 10.1016/j.celrep.2018.05.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 04/09/2018] [Accepted: 05/14/2018] [Indexed: 11/01/2022] Open
Abstract
Stress exposure is associated with the pathogenesis of psychiatric disorders, including post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). Here, we show in rodents that chronic stress exposure rapidly and transiently elevates hippocampal expression of Kruppel-like factor 9 (Klf9). Inducible genetic silencing of Klf9 expression in excitatory forebrain neurons in adulthood prior to, but not after, onset of stressor prevented chronic restraint stress (CRS)-induced potentiation of contextual fear acquisition in female mice and chronic corticosterone (CORT) exposure-induced fear generalization in male mice. Klf9 silencing prevented chronic CORT and CRS induced enlargement of dendritic spines in the ventral hippocampus of male and female mice, respectively. KLF9 mRNA density was increased in the anterior dentate gyrus of women, but not men, with more severe recent stressful life events and increased mortality. Thus, Klf9 functions as a stress-responsive transcription factor that mediates circuit and behavioral resilience in a sex-specific manner.
Collapse
Affiliation(s)
- Antoine Besnard
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Tomer Langberg
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Sally Levinson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Duong Chu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Cinzia Vicidomini
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Kimberly N Scobie
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Divisions of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY 10032, USA; Macedonian Academy of Sciences & Arts, Skopje 1000, Republic of Macedonia
| | - Victoria Arango
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Divisions of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Gorazd B Rosoklija
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Divisions of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY 10032, USA; Macedonian Academy of Sciences & Arts, Skopje 1000, Republic of Macedonia
| | - J John Mann
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Divisions of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY 10032, USA
| | - René Hen
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - E David Leonardo
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Maura Boldrini
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Divisions of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA; BROAD Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
35
|
Li J, Abe K, Milanesi A, Liu YY, Brent GA. Thyroid Hormone Protects Primary Cortical Neurons Exposed to Hypoxia by Reducing DNA Methylation and Apoptosis. Endocrinology 2019; 160:2243-2256. [PMID: 31095291 DOI: 10.1210/en.2019-00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/10/2019] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury (TBI) is associated with disruption of cerebral blood flow leading to localized brain hypoxia. Thyroid hormone (TH) treatment, administered shortly after injury, has been shown to promote neural protection in rodent TBI models. The mechanism of TH protection, however, is not established. We used mouse primary cortical neurons to investigate the effectiveness and possible pathways of T3-promoted cell survival after exposure to hypoxic injury. Cultured primary cortical neurons were exposed to hypoxia (0.2% oxygen) for 7 hours with or without T3 (5 nM). T3 treatment enhanced DNA 5-hydroxymethylcytosine levels and attenuated the hypoxia-induced increase in DNA 5-methylcytosine (5-mc). In the presence of T3, mRNA expression of Tet family genes was increased and DNA methyltransferase (Dnmt) 3a and Dnmt3b were downregulated, compared with conditions in the absence of T3. These T3-induced changes decreased hypoxia-induced DNA de novo methylation, which reduced hypoxia-induced neuronal damage and apoptosis. We used RNA sequencing to characterize T3-regulated genes in cortical neurons under hypoxic conditions and identified 22 genes that were upregulated and 15 genes that were downregulated. Krüppel-like factor 9 (KLF9), a multifunctional transcription factor that plays a key role in central nervous system development, was highly upregulated by T3 treatment in hypoxic conditions. Knockdown of the KLF9 gene resulted in early apoptosis and abolished the beneficial role of T3 in neuronal survival. KLF9 mediates, in part, the neuronal protective role of T3. T3 treatment reduces hypoxic damage, although pathways that reduce DNA methylation and apoptosis remain to be elucidated.
Collapse
Affiliation(s)
- Jianrong Li
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Kiyomi Abe
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Anna Milanesi
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Yan-Yun Liu
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Gregory A Brent
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| |
Collapse
|
36
|
Bagamasbad PD, Espina JEC, Knoedler JR, Subramani A, Harden AJ, Denver RJ. Coordinated transcriptional regulation by thyroid hormone and glucocorticoid interaction in adult mouse hippocampus-derived neuronal cells. PLoS One 2019; 14:e0220378. [PMID: 31348800 PMCID: PMC6660079 DOI: 10.1371/journal.pone.0220378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 12/04/2022] Open
Abstract
The hippocampus is a well-known target of thyroid hormone (TH; e.g., 3,5,3'-triiodothyronine-T3) and glucocorticoid (GC; e.g., corticosterone-CORT) action. Despite evidence that TH and GC play critical roles in neural development and function, few studies have identified genes and patterns of gene regulation influenced by the interaction of these hormones at a genome-wide scale. In this study we investigated gene regulation by T3, CORT, and T3 + CORT in the mouse hippocampus-derived cell line HT-22. We treated cells with T3, CORT, or T3 + CORT for 4 hr before cell harvest and RNA isolation for microarray analysis. We identified 9 genes regulated by T3, 432 genes by CORT, and 412 genes by T3 + CORT. Among the 432 CORT-regulated genes, there were 203 genes that exhibited an altered CORT response in the presence of T3, suggesting that T3 plays a significant role in modulating CORT-regulated genes. We also found 80 genes synergistically induced, and 73 genes synergistically repressed by T3 + CORT treatment. We performed in silico analysis using publicly available mouse neuronal chromatin immunoprecipitation-sequencing datasets and identified a considerable number of synergistically regulated genes with TH receptor and GC receptor peaks mapping within 1 kb of chromatin marks indicative of hormone-responsive enhancer regions. Functional annotation clustering of synergistically regulated genes reveal the relevance of proteasomal-dependent degradation, neuroprotective effect of growth hormones, and neuroinflammatory responses as key pathways to how TH and GC may coordinately influence learning and memory. Taken together, our transcriptome data represents a promising exploratory dataset for further study of common molecular mechanisms behind synergistic TH and GC gene regulation, and identify specific genes and their role in processes mediated by cross-talk between the thyroid and stress axes in a mammalian hippocampal model system.
Collapse
Affiliation(s)
- Pia D. Bagamasbad
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Jose Ezekiel C. Espina
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Joseph R. Knoedler
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ariel J. Harden
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
37
|
The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 2019; 24:67-87. [PMID: 29679070 PMCID: PMC6195869 DOI: 10.1038/s41380-018-0036-2] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by a number of environmental and cell-intrinsic factors to adapt to environmental changes. Accumulating evidence suggests that adult-born neurons may play distinct physiological roles in hippocampus-dependent functions, such as memory encoding and mood regulation. In addition, several brain diseases, such as neurological diseases and mood disorders, have deleterious effects on adult hippocampal neurogenesis, and some symptoms of those diseases can be partially explained by the dysregulation of adult hippocampal neurogenesis. Here we review a possible link between the physiological functions of adult-born neurons and their roles in pathological conditions.
Collapse
|
38
|
Dard RF, Dahan L, Rampon C. Targeting hippocampal adult neurogenesis using transcription factors to reduce Alzheimer's disease-associated memory impairments. Hippocampus 2018; 29:579-586. [DOI: 10.1002/hipo.23052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/10/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Robin F. Dard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI); Université de Toulouse, UPS; CNRS; Toulouse France
- Master BioSciences; ENS de Lyon, Université de Lyon; France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI); Université de Toulouse, UPS; CNRS; Toulouse France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI); Université de Toulouse, UPS; CNRS; Toulouse France
| |
Collapse
|
39
|
Mamet J, Klukinov M, Harris S, Manning DC, Xie S, Pascual C, Taylor BK, Donahue RR, Yeomans DC. Intrathecal administration of AYX2 DNA-decoy produces a long-term pain treatment in rat models of chronic pain by inhibiting the KLF6, KLF9 and KLF15 transcription factors. Mol Pain 2018; 13:1744806917727917. [PMID: 28814144 PMCID: PMC5582654 DOI: 10.1177/1744806917727917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Nociception is maintained by genome-wide regulation of transcription in the dorsal root ganglia—spinal cord network. Hence, transcription factors constitute a promising class of targets for breakthrough pharmacological interventions to treat chronic pain. DNA decoys are oligonucleotides and specific inhibitors of transcription factor activities. A methodological series of in vivo–in vitro screening cycles was performed with decoy/transcription factor couples to identify targets capable of producing a robust and long-lasting inhibition of established chronic pain. Decoys were injected intrathecally and their efficacy was tested in the spared nerve injury and chronic constriction injury models of chronic pain in rats using repetitive von Frey testing. Results Results demonstrated that a one-time administration of decoys binding to the Kruppel-like transcription factors (KLFs) 6, 9, and 15 produces a significant and weeks–month long reduction in mechanical hypersensitivity compared to controls. In the spared nerve injury model, decoy efficacy was correlated to its capacity to bind KLF15 and KLF9 at a specific ratio, while in the chronic constriction injury model, efficacy was correlated to the combined binding capacity to KLF6 and KLF9. AYX2, an 18-bp DNA decoy binding KLF6, KLF9, and KLF15, was optimized for clinical development, and it demonstrated significant efficacy in these models. Conclusions These data highlight KLF6, KLF9, and KLF15 as transcription factors required for the maintenance of chronic pain and illustrate the potential therapeutic benefits of AYX2 for the treatment of chronic pain.
Collapse
|
40
|
Guo N, Soden ME, Herber C, Kim MT, Besnard A, Lin P, Ma X, Cepko CL, Zweifel LS, Sahay A. Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat Med 2018. [PMID: 29529016 PMCID: PMC5893385 DOI: 10.1038/nm.4491] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Memories become less precise and generalize over time as memory traces re-organize in hippocampal-cortical networks. Increased time-dependent loss of memory precision characterizes overgeneralization of fear in post-traumatic stress disorder (PTSD) and age-related cognitive impairments. In the hippocampal dentate gyrus (DG), memories are thought to be encoded by so-called “engram-bearing” dentate granule cells (eDGCs). Here we show using rodents that contextual fear conditioning increases connectivity between eDGCs and inhibitory interneurons in the downstream hippocampal CA3 region. We identify actin-binding LIM protein 3 (abLIM3) as a mossy fiber terminal localized cytoskeletal factor, whose levels decrease upon learning. Downregulation of abLIM3 in DGCs was sufficient to increase connectivity with CA3 stratum lucidum interneurons (SLINs), promote parvalbumin (PV) SLIN activation, enhance feed-forward inhibition onto CA3, and maintain a fear memory engram in the dentate gyrus (DG) over time. Furthermore, abLIM3 downregulation in DGCs conferred conditioned context-specific reactivation of memory traces in hippocampal-cortical and amygdalar networks and decreased fear memory generalization at remote time points. Consistent with age-related hyperactivity of CA3, learning failed to increase DGC-SLIN connectivity in 17 month-old mice, whereas abLIM3 downregulation was sufficient to restore DGC-SLIN connectivity, increase PV-SLIN activation and improve remote memory precision. These studies exemplify a connectivity-based strategy targeting a molecular brake of feedforward inhibition in DG-CA3 that may be harnessed to decrease time-dependent memory generalization in PTSD and improve memory precision in aging.
Collapse
Affiliation(s)
- Nannan Guo
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marta E Soden
- Department of Pharmacology, University of Washington, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Charlotte Herber
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Michael TaeWoo Kim
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antoine Besnard
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paoyan Lin
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiang Ma
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Constance L Cepko
- Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,BROAD Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
42
|
Gil-Ibañez P, García-García F, Dopazo J, Bernal J, Morte B. Global Transcriptome Analysis of Primary Cerebrocortical Cells: Identification of Genes Regulated by Triiodothyronine in Specific Cell Types. Cereb Cortex 2018; 27:706-717. [PMID: 26534908 DOI: 10.1093/cercor/bhv273] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormones, thyroxine, and triiodothyronine (T3) are crucial for cerebral cortex development acting through regulation of gene expression. To define the transcriptional program under T3 regulation, we have performed RNA-Seq of T3-treated and untreated primary mouse cerebrocortical cells. The expression of 1145 genes or 7.7% of expressed genes was changed upon T3 addition, of which 371 responded to T3 in the presence of cycloheximide indicating direct transcriptional regulation. The results were compared with available transcriptomic datasets of defined cellular types. In this way, we could identify targets of T3 within genes enriched in astrocytes and neurons, in specific layers including the subplate, and in specific neurons such as prepronociceptin, cholecystokinin, or cortistatin neurons. The subplate and the prepronociceptin neurons appear as potentially major targets of T3 action. T3 upregulates mostly genes related to cell membrane events, such as G-protein signaling, neurotransmission, and ion transport and downregulates genes involved in nuclear events associated with the M phase of cell cycle, such as chromosome organization and segregation. Remarkably, the transcriptomic changes induced by T3 sustain the transition from fetal to adult patterns of gene expression. The results allow defining in molecular terms the elusive role of thyroid hormones on neocortical development.
Collapse
Affiliation(s)
- Pilar Gil-Ibañez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Francisco García-García
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joaquín Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.,Functional Genomics Node, INB at CIPF, Valencia, Spain
| | - Juan Bernal
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Beatriz Morte
- Center for Biomedical Research on Rare Diseases, Madrid, Spain
| |
Collapse
|
43
|
Filipkowski RK, Kaczmarek L. Severely impaired adult brain neurogenesis in cyclin D2 knock-out mice produces very limited phenotypic changes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:63-67. [PMID: 28433461 DOI: 10.1016/j.pnpbp.2017.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 01/02/2023]
Abstract
The discovery of new neurons being produced in the brains of adult mammals (adult brain neurogenesis) began a quest to determine the function(s) of these cells. Major hypotheses in the field have assumed that these neurons play pivotal role, in particular, in learning and memory phenomena, mood control, and epileptogenesis. In our studies summarized herein, we used cyclin D2 knockout (KO) mice, as we have shown that cyclin D2 is the key factor in adult brain neurogenesis and thus its lack produces profound impairment of the process. On the other hand, developmental neurogenesis responsible for the brain formation depends only slightly on cyclin D2, as the mutants display minor structural abnormalities, such as smaller hippocampus and more severe disturbances in the structure of the olfactory bulbs. Surprisingly, the studies have revealed that cyclin D2 KO mice did not show major deficits in several behavioral paradigms assessing hippocampal learning and memory. Furthermore, missing adult brain neurogenesis affected neither action of antidepressants, nor epileptogenesis. On the other hand, minor deficits observed in cyclin D2 KO mice in fine tuning of cognitive functions, species-typical behaviors and alcohol consumption might be explained by a reduced hippocampal size and/or other developmentally driven brain impairments observed in these mutant mice. In aggregate, surprisingly, missing almost entirely adult brain neurogenesis produces only very limited behavioral phenotype that could be attributed to the consequences of the development-dependent minor brain abnormalities.
Collapse
Affiliation(s)
- Robert K Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland.
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093 Warsaw, Poland.
| |
Collapse
|
44
|
Bai XY, Li S, Wang M, Li X, Yang Y, Xu Z, Li B, Li Y, Xia K, Chen H, Wu H. Krüppel-like factor 9 down-regulates matrix metalloproteinase 9 transcription and suppresses human breast cancer invasion. Cancer Lett 2018; 412:224-235. [DOI: 10.1016/j.canlet.2017.10.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
|
45
|
Lysophospholipid-Related Diseases and PPARγ Signaling Pathway. Int J Mol Sci 2017; 18:ijms18122730. [PMID: 29258184 PMCID: PMC5751331 DOI: 10.3390/ijms18122730] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/04/2023] Open
Abstract
The nuclear receptor superfamily includes ligand-inducible transcription factors that play diverse roles in cell metabolism and are associated with pathologies such as cardiovascular diseases. Lysophosphatidic acid (LPA) belongs to a family of lipid mediators. LPA and its naturally occurring analogues interact with G protein-coupled receptors on the cell surface and an intracellular nuclear hormone receptor. In addition, several enzymes that utilize LPA as a substrate or generate it as a product are under its regulatory control. Recent studies have demonstrated that the endogenously produced peroxisome proliferator-activated receptor gamma (PPARγ) antagonist cyclic phosphatidic acid (cPA), which is structurally similar to LPA, inhibits cancer cell invasion and metastasis in vitro and in vivo. We recently observed that cPA negatively regulates PPARγ function by stabilizing the binding of the co-repressor protein, a silencing mediator of retinoic acid, and the thyroid hormone receptor. We also showed that cPA prevents neointima formation, adipocyte differentiation, lipid accumulation, and upregulation of PPARγ target gene transcription. The present review discusses the arbitrary aspects of the physiological and pathophysiological actions of lysophospholipids in vascular and nervous system biology.
Collapse
|
46
|
Alisch RS, Van Hulle C, Chopra P, Bhattacharyya A, Zhang SC, Davidson RJ, Kalin NH, Goldsmith HH. A multi-dimensional characterization of anxiety in monozygotic twin pairs reveals susceptibility loci in humans. Transl Psychiatry 2017; 7:1282. [PMID: 29225348 PMCID: PMC5802687 DOI: 10.1038/s41398-017-0047-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
The etiology of individual differences in human anxiousness is complex and includes contributions from genetic, epigenetic (i.e., DNA methylation) and environmental factors. Past genomic approaches have been limited in their ability to detect human anxiety-related differences in these factors. To overcome these limitations, we employed both a multi-dimensional characterization method, to select monozygotic twin pairs discordant for anxiety, and whole genome DNA methylation sequencing. This approach revealed 230 anxiety-related differentially methylated loci that were annotated to 183 genes, including several known stress-related genes such as NAV1, IGF2, GNAS, and CRTC1. As an initial validation of these findings, we tested the significance of an overlap of these data with anxiety-related differentially methylated loci that we previously reported from a key neural circuit of anxiety (i.e., the central nucleus of the amygdala) in young monkeys and found a significant overlap (P-value < 0.05) of anxiety-related differentially methylated genes, including GNAS, SYN3, and JAG2. Finally, sequence motif predictions of all the human differentially methylated regions indicated an enrichment of five transcription factor binding motifs, suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding of these transcripts. Together, these data demonstrate environmentally sensitive factors that may underlie the development of human anxiety.
Collapse
Affiliation(s)
- Reid S Alisch
- Departments of Psychiatry, University of Wisconsin, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA.
| | | | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Su-Chun Zhang
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Departments of Neuroscience, University of Wisconsin, Madison, WI, USA
- Departments of Neurology, University of Wisconsin, Madison, WI, USA
| | - Richard J Davidson
- Departments of Psychiatry, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Departments of Psychology, University of Wisconsin, Madison, WI, USA
- Center for Healthy Minds, Madison, WI, USA
| | - Ned H Kalin
- Departments of Psychiatry, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - H Hill Goldsmith
- Waisman Center, University of Wisconsin, Madison, WI, USA.
- Departments of Psychology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
47
|
Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res 2017; 373:693-709. [PMID: 29185071 DOI: 10.1007/s00441-017-2735-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022]
Abstract
Adult hippocampal neurogenesis is the process by which new functional neurons are added to the adult dentate gyrus of the hippocampus. Animal studies have shown that the degree of adult hippocampal neurogenesis is regulated by local environmental cues as well as neural network activities. Furthermore, accumulating evidence has suggested that adult hippocampal neurogenesis plays prominent roles in hippocampus-dependent brain functions. In this review, we summarize the mechanisms underlying the regulation of adult hippocampal neurogenesis at various developmental stages and propose how adult-born neurons contribute to structural and functional hippocampal plasticity.
Collapse
|
48
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
49
|
Chen F, Moran JT, Zhang Y, Ates KM, Yu D, Schrader LA, Das PM, Jones FE, Hall BJ. The transcription factor NeuroD2 coordinates synaptic innervation and cell intrinsic properties to control excitability of cortical pyramidal neurons. J Physiol 2017; 594:3729-44. [PMID: 27146976 DOI: 10.1113/jp271953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Synaptic excitation and inhibition must be properly balanced in individual neurons and neuronal networks to allow proper brain function. Disrupting this balance may lead to autism spectral disorders and epilepsy. We show the basic helix-loop-helix transcription factor NeuroD2 promotes inhibitory synaptic drive but also decreases cell-intrinsic neuronal excitability of cortical pyramidal neurons both in vitro and in vivo. We identify two genes potentially downstream of NeuroD2-mediated transcription that regulate these parameters: gastrin-releasing peptide and the small conductance, calcium-activated potassium channel, SK2. Our results reveal an important function for NeuroD2 in balancing synaptic neurotransmission and intrinsic excitability. Our results offer insight into how synaptic innervation and intrinsic excitability are coordinated during cortical development. ABSTRACT Synaptic excitation and inhibition must be properly balanced in individual neurons and neuronal networks for proper brain function. Disruption of this balance during development may lead to autism spectral disorders and epilepsy. Synaptic excitation is counterbalanced by synaptic inhibition but also by attenuation of cell-intrinsic neuronal excitability. To maintain proper excitation levels during development, neurons must sense activity over time and regulate the expression of genes that control these parameters. While this is a critical process, little is known about the transcription factors involved in coordinating gene expression to control excitatory/inhibitory synaptic balance. We show here that the basic helix-loop-helix transcription factor NeuroD2 promotes inhibitory synaptic drive but also decreases cell-intrinsic neuronal excitability of cortical pyramidal neurons both in vitro and in vivo as shown by ex vivo analysis of a NeuroD2 knockout mouse. Using microarray analysis and comparing wild-type and NeuroD2 knockout cortical networks, we identified two potential gene targets of NeuroD2 that contribute to these processes: gastrin-releasing peptide (GRP) and the small conductance, calcium-activated potassium channel, SK2. We found that the GRP receptor antagonist RC-3059 and the SK2 specific blocker apamin partially reversed the effects of increased NeuroD2 expression on inhibitory synaptic drive and action potential repolarization, respectively. Our results reveal an important function for NeuroD2 in balancing synaptic neurotransmission and intrinsic excitability and offer insight into how these processes are coordinated during cortical development.
Collapse
Affiliation(s)
- Fading Chen
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Jacqueline T Moran
- The Neuroscience Program, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Yihui Zhang
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Kristin M Ates
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,The Neuroscience Program, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Diankun Yu
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Laura A Schrader
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,The Neuroscience Program, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Partha M Das
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Frank E Jones
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Benjamin J Hall
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,The Neuroscience Program, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Neuroscience, Ophthalmology and Rare Diseases, F. Hoffmann-La Roche, Basel Innovation Centre, Basel, 4070, Switzerland
| |
Collapse
|
50
|
Abstract
Millions of individuals suffer from age-related cognitive decline, defined by impaired memory precision. Increased understanding of hippocampal circuit mechanisms underlying memory formation suggests a role for computational processes such as pattern separation and pattern completion in memory precision. We describe evidence implicating the dentate gyrus-CA3 circuit in pattern separation and completion, and examine alterations in dentate gyrus-CA3 circuit structure and function with aging. We discuss the role of adult hippocampal neurogenesis in memory precision in adulthood and aging, as well as the circuit mechanisms underlying the integration and encoding functions of adult-born dentate granule cells. We posit that understanding these circuit mechanisms will permit generation of circuit-based endophenotypes that will edify new therapeutic strategies to optimize hippocampal encoding during aging.
Collapse
Affiliation(s)
- Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- BROAD Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|