1
|
Khodyreva SN, Dyrkheeva NS, Lavrik OI. Proteins Associated with Neurodegenerative Diseases: Link to DNA Repair. Biomedicines 2024; 12:2808. [PMID: 39767715 PMCID: PMC11673744 DOI: 10.3390/biomedicines12122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The nervous system is susceptible to DNA damage and DNA repair defects, and if DNA damage is not repaired, neuronal cells can die, causing neurodegenerative diseases in humans. The overall picture of what is known about DNA repair mechanisms in the nervous system is still unclear. The current challenge is to use the accumulated knowledge of basic science on DNA repair to improve the treatment of neurodegenerative disorders. In this review, we summarize the current understanding of the function of DNA damage repair, in particular, the base excision repair and double-strand break repair pathways as being the most important in nervous system cells. We summarize recent data on the proteins involved in DNA repair associated with neurodegenerative diseases, with particular emphasis on PARP1 and ND-associated proteins, which are involved in DNA repair and have the ability to undergo liquid-liquid phase separation.
Collapse
Affiliation(s)
- Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| |
Collapse
|
2
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
3
|
Sterling NA, Terry BK, McDonnell JM, Kim S. P53 independent pathogenic mechanisms contribute to BubR1 microcephaly. Front Cell Dev Biol 2023; 11:1282182. [PMID: 37900274 PMCID: PMC10602889 DOI: 10.3389/fcell.2023.1282182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
The mosaic variegated aneuploidy (MVA)-associated gene Budding Uninhibited by Benzimidazole 1B (BUB1B) encodes BUBR1, a core member of the spindle assembly checkpoint complex that ensures kinetochore-spindle attachment for faithful chromosome segregation. BUB1B mutation in humans and its deletion in mice cause microcephaly. In the absence of BubR1 in mice, massive cell death reduces cortical cells during neurogenesis. However, the molecular and cellular mechanisms triggering cell death are unknown. In this study, we performed three-dimensional imaging analysis of mitotic BubR1-deficient neural progenitors in a murine model to show profound chromosomal segregation defects and structural abnormalities. Chromosomal defects and accompanying DNA damage result in P53 activation and apoptotic cell death in BubR1 mutants. To test whether the P53 cell death pathway is responsible for cortical cell loss, we co-deleted Trp53 in BubR1-deficient cortices. Remarkably, we discovered that residual apoptotic cell death remains in double mutants lacking P53, suggesting P53-independent apoptosis. Furthermore, the minimal rescue of cortical size and cortical neuron numbers in double mutant mice suggests the compelling extent of alternative death mechanisms in the absence of P53. This study demonstrates a potential pathogenic mechanism for microcephaly in MVA patients and uncovers the existence of powerful means of eliminating unfit cells even when the P53 death pathway is disabled.
Collapse
Affiliation(s)
- Noelle A. Sterling
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Biomedical Sciences Graduate Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Bethany K. Terry
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Biomedical Sciences Graduate Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Julia M. McDonnell
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Seonhee Kim
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
4
|
An entosis-like process induces mitotic disruption in Pals1 microcephaly pathogenesis. Nat Commun 2023; 14:82. [PMID: 36604424 PMCID: PMC9816111 DOI: 10.1038/s41467-022-35719-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Entosis is cell cannibalism utilized by tumor cells to engulf live neighboring cells for pro- or anti-tumorigenic purposes. It is unknown whether this extraordinary cellular event can be pathogenic in other diseases such as microcephaly, a condition characterized by a smaller than normal brain at birth. We find that mice mutant for the human microcephaly-causing gene Pals1, which exhibit diminished cortices due to massive cell death, also exhibit nuclei enveloped by plasma membranes inside of dividing cells. These cell-in-cell (CIC) structures represent a dynamic process accompanied by lengthened mitosis and cytokinesis abnormalities. As shown in tumor cells, ROCK inhibition completely abrogates CIC structures and restores the normal length of mitosis. Moreover, genetic elimination of Trp53 produces a remarkable rescue of cortical size along with substantial reductions of CIC structures and cell death. These results provide a novel pathogenic mechanism by which microcephaly is produced through entotic cell cannibalism.
Collapse
|
5
|
Exploring the Origin and Physiological Significance of DNA Double Strand Breaks in the Developing Neuroretina. Int J Mol Sci 2022; 23:ijms23126449. [PMID: 35742893 PMCID: PMC9224223 DOI: 10.3390/ijms23126449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic mosaicism is an intriguing physiological feature of the mammalian brain that generates altered genetic information and provides cellular, and prospectively functional, diversity in a manner similar to that of the immune system. However, both its origin and its physiological significance remain poorly characterized. Most, if not all, cases of somatic mosaicism require prior generation and repair of DNA double strand breaks (DSBs). The relationship between DSB generation, neurogenesis, and early neuronal cell death revealed by our studies in the developing retina provides new perspectives on the different mechanisms that contribute to DNA rearrangements in the developing brain. Here, we speculate on the physiological significance of these findings.
Collapse
|
6
|
Costantino I, Nicodemus J, Chun J. Genomic Mosaicism Formed by Somatic Variation in the Aging and Diseased Brain. Genes (Basel) 2021; 12:1071. [PMID: 34356087 PMCID: PMC8305509 DOI: 10.3390/genes12071071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past 20 years, analyses of single brain cell genomes have revealed that the brain is composed of cells with myriad distinct genomes: the brain is a genomic mosaic, generated by a host of DNA sequence-altering processes that occur somatically and do not affect the germline. As such, these sequence changes are not heritable. Some processes appear to occur during neurogenesis, when cells are mitotic, whereas others may also function in post-mitotic cells. Here, we review multiple forms of DNA sequence alterations that have now been documented: aneuploidies and aneusomies, smaller copy number variations (CNVs), somatic repeat expansions, retrotransposons, genomic cDNAs (gencDNAs) associated with somatic gene recombination (SGR), and single nucleotide variations (SNVs). A catch-all term of DNA content variation (DCV) has also been used to describe the overall phenomenon, which can include multiple forms within a single cell's genome. A requisite step in the analyses of genomic mosaicism is ongoing technology development, which is also discussed. Genomic mosaicism alters one of the most stable biological molecules, DNA, which may have many repercussions, ranging from normal functions including effects of aging, to creating dysfunction that occurs in neurodegenerative and other brain diseases, most of which show sporadic presentation, unlinked to causal, heritable genes.
Collapse
Affiliation(s)
- Isabel Costantino
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juliet Nicodemus
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
| |
Collapse
|
7
|
McDonald WS, Miyamoto K, Rivera R, Kennedy G, Almeida BSV, Kingsbury MA, Chun J. Altered cleavage plane orientation with increased genomic aneuploidy produced by receptor-mediated lysophosphatidic acid (LPA) signaling in mouse cerebral cortical neural progenitor cells. Mol Brain 2020; 13:169. [PMID: 33317583 PMCID: PMC7734743 DOI: 10.1186/s13041-020-00709-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023] Open
Abstract
The brain is composed of cells having distinct genomic DNA sequences that arise post-zygotically, known as somatic genomic mosaicism (SGM). One form of SGM is aneuploidy-the gain and/or loss of chromosomes-which is associated with mitotic spindle defects. The mitotic spindle orientation determines cleavage plane positioning and, therefore, neural progenitor cell (NPC) fate during cerebral cortical development. Here we report receptor-mediated signaling by lysophosphatidic acid (LPA) as a novel extracellular signal that influences cleavage plane orientation and produces alterations in SGM by inducing aneuploidy during murine cortical neurogenesis. LPA is a bioactive lipid whose actions are mediated by six G protein-coupled receptors, LPA1-LPA6. RNAscope and qPCR assessment of all six LPA receptor genes, and exogenous LPA exposure in LPA receptor (Lpar)-null mice, revealed involvement of Lpar1 and Lpar2 in the orientation of the mitotic spindle. Lpar1 signaling increased non-vertical cleavage in vivo by disrupting cell-cell adhesion, leading to breakdown of the ependymal cell layer. In addition, genomic alterations were significantly increased after LPA exposure, through production of chromosomal aneuploidy in NPCs. These results identify LPA as a receptor-mediated signal that alters both NPC fate and genomes during cortical neurogenesis, thus representing an extracellular signaling mechanism that can produce stable genomic changes in NPCs and their progeny. Normal LPA signaling in early life could therefore influence both the developing and adult brain, whereas its pathological disruption could contribute to a range of neurological and psychiatric diseases, via long-lasting somatic genomic alterations.
Collapse
Affiliation(s)
- Whitney S McDonald
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA.,The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kyoko Miyamoto
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA.,The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Grace Kennedy
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA.,The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | | | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA. .,The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Chronister WD, Burbulis IE, Wierman MB, Wolpert MJ, Haakenson MF, Smith ACB, Kleinman JE, Hyde TM, Weinberger DR, Bekiranov S, McConnell MJ. Neurons with Complex Karyotypes Are Rare in Aged Human Neocortex. Cell Rep 2020; 26:825-835.e7. [PMID: 30673605 DOI: 10.1016/j.celrep.2018.12.107] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022] Open
Abstract
A subset of human neocortical neurons harbors complex karyotypes wherein megabase-scale copy-number variants (CNVs) alter allelic diversity. Divergent levels of neurons with complex karyotypes (CNV neurons) are reported in different individuals, yet genome-wide and familial studies implicitly assume a single brain genome when assessing the genetic risk architecture of neurological disease. We assembled a brain CNV atlas using a robust computational approach applied to a new dataset (>800 neurons from 5 neurotypical individuals) and to published data from 10 additional neurotypical individuals. The atlas reveals that the frequency of neocortical neurons with complex karyotypes varies widely among individuals, but this variability is not readily accounted for by tissue quality or CNV detection approach. Rather, the age of the individual is anti-correlated with CNV neuron frequency. Fewer CNV neurons are observed in aged individuals than in young individuals.
Collapse
Affiliation(s)
- William D Chronister
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Universidad San Sebastian, Escuela de Medicina, Sede de la Patagonia, Puerto Montt, Chile
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Matthew J Wolpert
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark F Haakenson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Aiden C B Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Child Health Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
9
|
Oota S. Somatic mutations - Evolution within the individual. Methods 2019; 176:91-98. [PMID: 31711929 DOI: 10.1016/j.ymeth.2019.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023] Open
Abstract
With the rapid advancement of sequencing technologies over the last two decades, it is becoming feasible to detect rare variants from somatic tissue samples. Studying such somatic mutations can provide deep insights into various senescence-related diseases, including cancer, inflammation, and sporadic psychiatric disorders. While it is still a difficult task to identify true somatic mutations, relentless efforts to combine experimental and computational methods have made it possible to obtain reliable data. Furthermore, state-of-the-art machine learning approaches have drastically improved the efficiency and sensitivity of these methods. Meanwhile, we can regard somatic mutations as a counterpart of germline mutations, and it is possible to apply well-formulated mathematical frameworks developed for population genetics and molecular evolution to analyze this 'somatic evolution'. For example, retrospective cell lineage tracing is a promising technique to elucidate the mechanism of pre-diseases using single-cell RNA-sequencing (scRNA-seq) data.
Collapse
Affiliation(s)
- Satoshi Oota
- Image Processing Research Team, Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
10
|
Potter H, Chial HJ, Caneus J, Elos M, Elder N, Borysov S, Granic A. Chromosome Instability and Mosaic Aneuploidy in Neurodegenerative and Neurodevelopmental Disorders. Front Genet 2019; 10:1092. [PMID: 31788001 PMCID: PMC6855267 DOI: 10.3389/fgene.2019.01092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Evidence from multiple laboratories has accumulated to show that mosaic neuronal aneuploidy and consequent apoptosis characterizes and may underlie neuronal loss in many neurodegenerative diseases, particularly Alzheimer’s disease and frontotemporal dementia. Furthermore, several neurodevelopmental disorders, including Seckel syndrome, ataxia telangiectasia, Nijmegen breakage syndrome, Niemann–Pick type C, and Down syndrome, have been shown to also exhibit mosaic aneuploidy in neurons in the brain and in other cells throughout the body. Together, these results indicate that both neurodegenerative and neurodevelopmental disorders with apparently different pathogenic causes share a cell cycle defect that leads to mosaic aneuploidy in many cell types. When such mosaic aneuploidy arises in neurons in the brain, it promotes apoptosis and may at least partly underlie the cognitive deficits that characterize the neurological symptoms of these disorders. These findings have implications for both diagnosis and treatment/prevention.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Heidi J Chial
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Julbert Caneus
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
| | - Mihret Elos
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Nina Elder
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Sergiy Borysov
- Department of Math and Science, Saint Leo University, Saint Leo, FL, United States
| | - Antoneta Granic
- AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle University Institute for Ageing, NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
Michel N, Majumdar UB, Lannigan J, McConnell MJ. Imaging Flow Cytometry Quantifies Neural Genome Dynamics. Cytometry A 2019; 95:825-835. [PMID: 31063256 PMCID: PMC7851630 DOI: 10.1002/cyto.a.23783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Somatic mosaicism is a common consequence of normal development. DNA repair is simply not perfect, and each cell's genome incurs continuous DNA damage as a consequence of transcription, replication, and other cell biological stressors. Brain somatic mosaicism is particularly noteworthy because the vast majority of an individual's neurons are with that individual for life and neural circuits give rise directly to behavioral phenotypes. Brain somatic mosaicism, now revealed and tractable due to advances in single cell 'omic approaches, has emerged as an intriguing and unexplored aspect of neuronal diversity. Furthermore, the study of DNA damage during early neurodevelopment, when the rate of mutagenesis is high, is the perfect starting point to understand the origins of brain mosaicism. Flow cytometry is a highly efficient technique to study cell cycle and intracellular proteins of interest, particularly those related to DNA damage, but it lacks the high resolution of microscopy to examine the localization of these proteins. In this study, we outline a novel single-cell approach to quantify DNA double-strand break (DNA DSB) dynamics during early human neurodevelopment by applying imaging flow cytometry (IFC) to human-induced pluripotent stem cell-derived neural progenitor cells (NPCs) undergoing neurogenesis. We establish an increase of DNA DSBs by quantifying γH2AX foci in mildly stressed NPCs using various single-cell approaches in addition to IFC including fluorescent microscopy, conventional flow cytometry, and measuring DNA DSBs with the comet assay. We demonstrate the dose-dependent sensitive detection of γH2AX foci through IFC and reveal the dynamics of DNA DSBs in proliferating and differentiating neural cells in early neurogenesis. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Nadine Michel
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Neuroscience Graduate Program, Charlottesville, Virginia 22908
| | - Usnish B. Majumdar
- Department of Health System Design and Global Health, Icahn School of Medicine, 1 Gustave L. Levy Pl, New York, NY 10029
| | - Joanne Lannigan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Flow Cytometry Core Facility, 1340 Jefferson Park Ave., Pinn Hall, Room 2011, Charlottesville, Virginia 22908-0734
| | - Michael J. McConnell
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Neuroscience Graduate Program, Charlottesville, Virginia 22908
- Department of Neuroscience, University of Virginia School of Medicine, Neuroscience Graduate Program, Charlottesville, Virginia 22908
| |
Collapse
|
12
|
Iourov IY, Vorsanova SG, Yurov YB, Kutsev SI. Ontogenetic and Pathogenetic Views on Somatic Chromosomal Mosaicism. Genes (Basel) 2019; 10:E379. [PMID: 31109140 PMCID: PMC6562967 DOI: 10.3390/genes10050379] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Intercellular karyotypic variability has been a focus of genetic research for more than 50 years. It has been repeatedly shown that chromosome heterogeneity manifesting as chromosomal mosaicism is associated with a variety of human diseases. Due to the ability of changing dynamically throughout the ontogeny, chromosomal mosaicism may mediate genome/chromosome instability and intercellular diversity in health and disease in a bottleneck fashion. However, the ubiquity of negligibly small populations of cells with abnormal karyotypes results in difficulties of the interpretation and detection, which may be nonetheless solved by post-genomic cytogenomic technologies. In the post-genomic era, it has become possible to uncover molecular and cellular pathways to genome/chromosome instability (chromosomal mosaicism or heterogeneity) using advanced whole-genome scanning technologies and bioinformatic tools. Furthermore, the opportunities to determine the effect of chromosomal abnormalities on the cellular phenotype seem to be useful for uncovering the intrinsic consequences of chromosomal mosaicism. Accordingly, a post-genomic review of chromosomal mosaicism in the ontogenetic and pathogenetic contexts appears to be required. Here, we review chromosomal mosaicism in its widest sense and discuss further directions of cyto(post)genomic research dedicated to chromosomal heterogeneity.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Sergei I Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia.
- Molecular & Cell Genetics Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
| |
Collapse
|
13
|
The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 2019; 24:67-87. [PMID: 29679070 PMCID: PMC6195869 DOI: 10.1038/s41380-018-0036-2] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by a number of environmental and cell-intrinsic factors to adapt to environmental changes. Accumulating evidence suggests that adult-born neurons may play distinct physiological roles in hippocampus-dependent functions, such as memory encoding and mood regulation. In addition, several brain diseases, such as neurological diseases and mood disorders, have deleterious effects on adult hippocampal neurogenesis, and some symptoms of those diseases can be partially explained by the dysregulation of adult hippocampal neurogenesis. Here we review a possible link between the physiological functions of adult-born neurons and their roles in pathological conditions.
Collapse
|
14
|
Rohrback S, Siddoway B, Liu CS, Chun J. Genomic mosaicism in the developing and adult brain. Dev Neurobiol 2018; 78:1026-1048. [PMID: 30027562 PMCID: PMC6214721 DOI: 10.1002/dneu.22626] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
Since the discovery of DNA, the normal developing and functioning brain has been assumed to be composed of cells with identical genomes, which remains the dominant view even today. However, this pervasive assumption is incorrect, as proven by increasing numbers of reports within the last 20 years that have identified multiple forms of somatically produced genomic mosaicism (GM), wherein brain cells-especially neurons-from a single individual show diverse alterations in DNA, distinct from the germline. Critically, these changes alter the actual DNA nucleotide sequences-in contrast to epigenetic mechanisms-and almost certainly contribute to the remarkably diverse phenotypes of single brain cells, including single-cell transcriptomic profiles. Here, we review the history of GM within the normal brain, including its major forms, initiating mechanisms, and possible functions. GM forms include aneuploidies and aneusomies, smaller copy number variations (CNVs), long interspersed nuclear element type 1 (LINE1) repeat elements, and single nucleotide variations (SNVs), as well as DNA content variation (DCV) that reflects all forms of GM with greatest coverage of large, brain cell populations. In addition, technical considerations are examined, along with relationships among GM forms and multiple brain diseases. GM affecting genes and loci within the brain contrast with current neural discovery approaches that rely on sequencing nonbrain DNA (e.g., genome-wide association studies (GWAS)). Increasing knowledge of neural GM has implications for mechanisms of development, diversity, and function, as well as understanding diseases, particularly considering the overwhelming prevalence of sporadic brain diseases that are unlinked to germline mutations. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
- Suzanne Rohrback
- Biomedical Sciences Graduate Program, School of MedicineUniversity of California San DiegoLa JollaCalifornia92093
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
- Present address:
Illumina, Inc.San DiegoCA 92122USA
| | - Benjamin Siddoway
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| | - Christine S. Liu
- Biomedical Sciences Graduate Program, School of MedicineUniversity of California San DiegoLa JollaCalifornia92093
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| |
Collapse
|
15
|
Submegabase copy number variations arise during cerebral cortical neurogenesis as revealed by single-cell whole-genome sequencing. Proc Natl Acad Sci U S A 2018; 115:10804-10809. [PMID: 30262650 PMCID: PMC6196524 DOI: 10.1073/pnas.1812702115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reports of copy number variations (CNVs) within single human brain cells have been limited to megabase-scale alterations in relatively few cells, leaving unclear when CNVs first arise and whether their generation is regulated. Answering these questions has been limited by an absence of experimentation with model organisms that allow developmental assessments infeasible with human samples. Here, we identify the existence and developmental dynamics of cerebral cortical CNVs in mouse, showing that their prevalence increases through midneurogenesis. Our improved sequencing approach also allowed characterization of previously undocumented neural CNVs below 1 Mb in size, comprising half of all alterations. These data demonstrate the existence of myriad CNVs, which genomically diversify neural cells before incorporation into the mature organization of the brain. Somatic copy number variations (CNVs) exist in the brain, but their genesis, prevalence, forms, and biological impact remain unclear, even within experimentally tractable animal models. We combined a transposase-based amplification (TbA) methodology for single-cell whole-genome sequencing with a bioinformatic approach for filtering unreliable CNVs (FUnC), developed from machine learning trained on lymphocyte V(D)J recombination. TbA–FUnC offered superior genomic coverage and removed >90% of false-positive CNV calls, allowing extensive examination of submegabase CNVs from over 500 cells throughout the neurogenic period of cerebral cortical development in Mus musculus. Thousands of previously undocumented CNVs were identified. Half were less than 1 Mb in size, with deletions 4× more common than amplification events, and were randomly distributed throughout the genome. However, CNV prevalence during embryonic cortical development was nonrandom, peaking at midneurogenesis with levels triple those found at younger ages before falling to intermediate quantities. These data identify pervasive small and large CNVs as early contributors to neural genomic mosaicism, producing genomically diverse cellular building blocks that form the highly organized, mature brain.
Collapse
|
16
|
McConnell MJ, Moran JV, Abyzov A, Akbarian S, Bae T, Cortes-Ciriano I, Erwin JA, Fasching L, Flasch DA, Freed D, Ganz J, Jaffe AE, Kwan KY, Kwon M, Lodato MA, Mills RE, Paquola ACM, Rodin RE, Rosenbluh C, Sestan N, Sherman MA, Shin JH, Song S, Straub RE, Thorpe J, Weinberger DR, Urban AE, Zhou B, Gage FH, Lehner T, Senthil G, Walsh CA, Chess A, Courchesne E, Gleeson JG, Kidd JM, Park PJ, Pevsner J, Vaccarino FM. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 2017; 356:356/6336/eaal1641. [PMID: 28450582 DOI: 10.1126/science.aal1641] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk. During brain development, progenitor cells undergo billions of cell divisions to generate the ~80 billion neurons in the brain. The failure to accurately repair DNA damage arising during replication, transcription, and cellular metabolism amid this dramatic cellular expansion can lead to somatic mutations. Somatic mutations that alter subsets of neuronal transcriptomes and proteomes can, in turn, affect cell proliferation and survival and lead to neurodevelopmental disorders. The long life span of individual neurons and the direct relationship between neural circuits and behavior suggest that somatic mutations in small populations of neurons can significantly affect individual neurodevelopment. The Brain Somatic Mosaicism Network has been founded to study somatic mosaicism both in neurotypical human brains and in the context of complex neuropsychiatric disorders.
Collapse
|
17
|
Fielder E, von Zglinicki T, Jurk D. The DNA Damage Response in Neurons: Die by Apoptosis or Survive in a Senescence-Like State? J Alzheimers Dis 2017; 60:S107-S131. [PMID: 28436392 DOI: 10.3233/jad-161221] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons are exposed to high levels of DNA damage from both physiological and pathological sources. Neurons are post-mitotic and their loss cannot be easily recovered from; to cope with DNA damage a complex pathway called the DNA damage response (DDR) has evolved. This recognizes the damage, and through kinases such as ataxia-telangiectasia mutated (ATM) recruits and activates downstream factors that mediate either apoptosis or survival. This choice between these opposing outcomes integrates many inputs primarily through a number of key cross-road proteins, including ATM, p53, and p21. Evidence of re-entry into the cell-cycle by neurons can be seen in aging and diseases such as Alzheimer's disease. This aberrant cell-cycle re-entry is lethal and can lead to the apoptotic death of the neuron. Many downstream factors of the DDR promote cell-cycle arrest in response to damage and appear to protect neurons from apoptotic death. However, neurons surviving with a persistently activated DDR show all the features known from cell senescence; including metabolic dysregulation, mitochondrial dysfunction, and the hyper-production of pro-oxidant, pro-inflammatory and matrix-remodeling factors. These cells, termed senescence-like neurons, can negatively influence the extracellular environment and may promote induction of the same phenotype in surrounding cells, as well as driving aging and age-related diseases. Recently developed interventions targeting the DDR and/or the senescent phenotype in a range of non-neuronal tissues are being reviewed as they might become of therapeutic interest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Edward Fielder
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas von Zglinicki
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Diana Jurk
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
18
|
Abstract
Somatic mosaicism refers to the fact that cells within an organism have different genomes. It is now clear that somatic mosaicism occurs in all brains and that somatic mutations in a subset of cells can cause various rare neurodevelopmental disorders. However, for most individuals, the extent and consequences of somatic mosaicism are largely unknown. The complexity and unique features of the brain suggest that somatic mosaicism can play an important role in behavior and cognition. Here we review recent manuscripts showing instances of somatic mosaicism in the brain and estimating its extent and possible biological consequences. The consequences of somatic mosaicism span vast dimensions -from a single-locus variant, to genes and gene networks, to cells, to the interactions of the mosaic cells via neural networks affecting behavior and cognition. We highlight how systems biology approaches are particularly well suited for the complex emerging field of brain somatic mosaicism.
Collapse
Affiliation(s)
| | | | - Fred H Gage
- Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
19
|
Potter H, Granic A, Caneus J. Role of Trisomy 21 Mosaicism in Sporadic and Familial Alzheimer's Disease. Curr Alzheimer Res 2016; 13:7-17. [PMID: 26651340 PMCID: PMC5570437 DOI: 10.2174/156720501301151207100616] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/13/2015] [Accepted: 08/30/2015] [Indexed: 02/07/2023]
Abstract
Trisomy 21 and the consequent extra copy of the amyloid precursor protein (APP) gene and increased beta-amyloid (Aβ) peptide production underlie the universal development of Alzheimer's disease (AD) pathology and high risk of AD dementia in people with Down syndrome (DS). Trisomy 21 and other forms of aneuploidy also arise among neurons and peripheral cells in both sporadic and familial AD and in mouse and cell models thereof, reinforcing the conclusion that AD and DS are two sides of the same coin. The demonstration that 90% of the neurodegeneration in AD can be attributed to the selective loss of aneuploid neurons generated over the course of the disease indicates that aneuploidy is an essential feature of the pathogenic pathway leading to the depletion of neuronal cell populations. Trisomy 21 mosaicism also occurs in neurons and other cells from patients with Niemann-Pick C1 disease and from patients with familial or sporadic frontotemporal lobar degeneration (FTLD), as well as in their corresponding mouse and cell models. Biochemical studies have shown that Aβ induces mitotic spindle defects, chromosome mis-segregation, and aneuploidy in cultured cells by inhibiting specific microtubule motors required for mitosis. These data indicate that neuronal trisomy 21 and other types of aneuploidy characterize and likely contribute to multiple neurodegenerative diseases and are a valid target for therapeutic intervention. For example, reducing extracellular calcium or treating cells with lithium chloride (LiCl) blocks the induction of trisomy 21 by Aβ. The latter finding is relevant in light of recent reports of a lowered risk of dementia in bipolar patients treated with LiCl and in the stabilization of cognition in AD patients treated with LiCl.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology and Linda Crnic Institute for Down Syndrome, 12700 E. 19th Ave room 4010, mail stop 8608, Aurora CO 80045, USA.
| | | | | |
Collapse
|
20
|
Abstract
DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.
Collapse
Affiliation(s)
- Hei-man Chow
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
21
|
Iourov IY, Vorsanova SG, Yurov YB. In silico molecular cytogenetics: a bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol Cytogenet 2014; 7:98. [PMID: 25525469 PMCID: PMC4269961 DOI: 10.1186/s13039-014-0098-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 01/08/2023] Open
Abstract
Background The availability of multiple in silico tools for prioritizing genetic variants widens the possibilities for converting genomic data into biological knowledge. However, in molecular cytogenetics, bioinformatic analyses are generally limited to result visualization or database mining for finding similar cytogenetic data. Obviously, the potential of bioinformatics might go beyond these applications. On the other hand, the requirements for performing successful in silico analyses (i.e. deep knowledge of computer science, statistics etc.) can hinder the implementation of bioinformatics in clinical and basic molecular cytogenetic research. Here, we propose a bioinformatic approach to prioritization of genomic variations that is able to solve these problems. Results Selecting gene expression as an initial criterion, we have proposed a bioinformatic approach combining filtering and ranking prioritization strategies, which includes analyzing metabolome and interactome data on proteins encoded by candidate genes. To finalize the prioritization of genetic variants, genomic, epigenomic, interactomic and metabolomic data fusion has been made. Structural abnormalities and aneuploidy revealed by array CGH and FISH have been evaluated to test the approach through determining genotype-phenotype correlations, which have been found similar to those of previous studies. Additionally, we have been able to prioritize copy number variations (CNV) (i.e. differentiate between benign CNV and CNV with phenotypic outcome). Finally, the approach has been applied to prioritize genetic variants in cases of somatic mosaicism (including tissue-specific mosaicism). Conclusions In order to provide for an in silico evaluation of molecular cytogenetic data, we have proposed a bioinformatic approach to prioritization of candidate genes and CNV. While having the disadvantage of possible unavailability of gene expression data or lack of expression variability between genes of interest, the approach provides several advantages. These are (i) the versatility due to independence from specific databases/tools or software, (ii) relative algorithm simplicity (possibility to avoid sophisticated computational/statistical methodology) and (iii) applicability to molecular cytogenetic data because of the chromosome-centric nature. In conclusion, the approach is able to become useful for increasing the yield of molecular cytogenetic techniques.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Mental Health Research Center, Russian Academy of Medical Sciences, 117152 Moscow, Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, 125412 Moscow, Russia ; Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Moscow, 123995 Russia
| | - Svetlana G Vorsanova
- Mental Health Research Center, Russian Academy of Medical Sciences, 117152 Moscow, Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Yuri B Yurov
- Mental Health Research Center, Russian Academy of Medical Sciences, 117152 Moscow, Russia ; Russian National Research Medical University named after N.I. Pirogov, Separated Structural Unit "Clinical Research Institute of Pediatrics", Ministry of Health of Russian Federation, 125412 Moscow, Russia
| |
Collapse
|
22
|
Herrup K. ATM and the epigenetics of the neuronal genome. Mech Ageing Dev 2013; 134:434-9. [PMID: 23707635 DOI: 10.1016/j.mad.2013.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/01/2013] [Accepted: 05/17/2013] [Indexed: 01/28/2023]
Abstract
Ataxia-telangiectasia (A-T) is a neurodegenerative syndrome caused by the mutation of the ATM gene. The ATM protein is a PI3kinase family member best known for its role in the DNA damage response. While repair of DNA damage is a critical function that every CNS neuron must perform, a growing body of evidence indicates that the full range of ATM functions includes some that are unrelated to DNA damage yet are essential to neuronal survival and normal function. For example, ATM participates in the regulation of synaptic vesicle trafficking and is essential for the maintenance of normal LTP. In addition ATM helps to ensure the cytoplasmic localization of HDAC4 and thus maintains the histone 'code' of the neuronal genome by suppressing genome-wide histone deacetylation, which alters the message and protein levels of many genes that are important for neuronal survival and function. The growing list of ATM functions that go beyond its role in the DNA damage response offers a new perspective on why individuals with A-T express such a wide range of neurological symptoms, and suggests that not all A-T symptoms need to be understood in the context of the DNA repair process.
Collapse
Affiliation(s)
- Karl Herrup
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
23
|
Granic A, Potter H. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis. PLoS One 2013; 8:e60718. [PMID: 23593294 PMCID: PMC3625184 DOI: 10.1371/journal.pone.0060718] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/01/2013] [Indexed: 12/17/2022] Open
Abstract
Elevated low-density lipoprotein (LDL)-cholesterol is a risk factor for both Alzheimer's disease (AD) and Atherosclerosis (CVD), suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy-in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß) inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1) high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis' first prediction, 2) Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3) oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL), induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4) LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5) cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6) ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol's aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol consumption reduces the risk of developing atherosclerosis or AD. These results suggest a novel, cell cycle mechanism by which aberrant cholesterol homeostasis promotes neurodegeneration and atherosclerosis by disrupting chromosome segregation and potentially other aspects of microtubule physiology.
Collapse
Affiliation(s)
- Antoneta Granic
- Department of Neurology and Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Huntington Potter
- Department of Neurology and Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
24
|
Abstract
Long interspersed element-1 (LINE-1 or L1) is a repetitive DNA retrotransposon capable of duplication by a copy-and-paste genetic mechanism. Scattered throughout mammalian genomes, L1 is typically quiescent in most somatic cell types. In developing neurons, however, L1 can express and retrotranspose at high frequency. The L1 element can insert into various genomic locations including intragenic regions. These insertions can alter the dynamic of the neuronal transcriptome by changing the expression pattern of several nearby genes. The consequences of L1 genomic alterations in somatic cells are still under investigation, but the high level of mutagenesis within neurons suggests that each neuron is genetically unique. Furthermore, some neurological diseases, such as Rett syndrome and ataxia telangiectasia, misregulate L1 retrotransposition, which could contribute to some pathological aspects. In this review, we survey the literature related to neurodevelopmental retrotransposition and discuss possible relevance to neuronal function, evolution, and neurological disease.
Collapse
Affiliation(s)
- Charles A Thomas
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
25
|
Aneuploid cells are differentially susceptible to caspase-mediated death during embryonic cerebral cortical development. J Neurosci 2013; 32:16213-22. [PMID: 23152605 DOI: 10.1523/jneurosci.3706-12.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neural progenitor cells, neurons, and glia of the normal vertebrate brain are diversely aneuploid, forming mosaics of intermixed aneuploid and euploid cells. The functional significance of neural mosaic aneuploidy is not known; however, the generation of aneuploidy during embryonic neurogenesis, coincident with caspase-dependent programmed cell death (PCD), suggests that a cell's karyotype could influence its survival within the CNS. To address this hypothesis, PCD in the mouse embryonic cerebral cortex was attenuated by global pharmacological inhibition of caspases or genetic removal of caspase-3 or caspase-9. The chromosomal repertoire of individual brain cells was then assessed by chromosome counting, spectral karyotyping, fluorescence in situ hybridization, and DNA content flow cytometry. Reducing PCD resulted in markedly enhanced mosaicism that was comprised of increased numbers of cells with the following: (1) numerical aneuploidy (chromosome losses or gains); (2) extreme forms of numerical aneuploidy (>5 chromosomes lost or gained); and (3) rare karyotypes, including those with coincident chromosome loss and gain, or absence of both members of a chromosome pair (nullisomy). Interestingly, mildly aneuploid (<5 chromosomes lost or gained) populations remained comparatively unchanged. These data demonstrate functional non-equivalence of distinguishable aneuploidies on neural cell survival, providing evidence that somatically generated, cell-autonomous genomic alterations have consequences for neural development and possibly other brain functions.
Collapse
|
26
|
Cell cycle activation and aneuploid neurons in Alzheimer's disease. Mol Neurobiol 2012; 46:125-35. [PMID: 22528601 DOI: 10.1007/s12035-012-8262-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/20/2012] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder, characterized by synaptic degeneration associated with fibrillar aggregates of the amyloid-ß peptide and the microtubule-associated protein tau. The progression of neurofibrillary degeneration throughout the brain during AD follows a predictive pattern which provides the basis for the neuropathological staging of the disease. This pattern of selective neuronal vulnerability against neurofibrillary degeneration matches the regional degree of neuronal plasticity and inversely recapitulates ontogenetic and phylogenetic brain development which links neurodegenerative cell death to neuroplasticity and brain development. Here, we summarize recent evidence for a loss of neuronal differentiation control as a critical pathogenetic event in AD, associated with a reactivation of the cell cycle and a partial or full replication of DNA giving rise to neurons with a content of DNA above the diploid level. Neurons with an aneuploid set of chromosomes are also present at a low frequency in the normal brain where they appear to be well tolerated. In AD, however, where the number of aneuploid neurons is highly increased, a rather selective cell death of neurons with this chromosomal aberrancy occurs. This finding add aneuploidy to the list of critical molecular events that are shared between neurodegeneration and oncogenesis. It defines a molecular signature for neuronal vulnerability and directs our attention to a failure of neuronal differentiation control as a critical pathogenetic event and potential therapeutic target in AD.
Collapse
|
27
|
CASE MICHAELA, MACMILLAN HUGHR. ON SIMULATING THE GENERATION OF MOSAICISM DURING MAMMALIAN CEREBRAL CORTICAL DEVELOPMENT. J BIOL SYST 2011. [DOI: 10.1142/s0218339009002740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Renewed calls for a systems biology reflect the hope hat enduring biological questions at single-cell and cell-population scales will be resolved as modern molecular biology, with its reductionist program, approaches a nearly-complete characterization of the molecular mechanisms of specific cellular processes. Due to the confounding complexity of biological organization across these scales, computational science is sought to complement the intuition of experimentalists. However, with respect to the molecular basis of cellular processes during development and disease, a gulf between feasible simulations and realistic biology persists. Formidable are the mathematical and computational challenges to conducting and validating cell population-scale simulations, drawn from single-cell level and molecular level details. Nonetheless, in some biological contexts, a focus on core processes crafted by evolution can yield coarse-grained mathematical models that retain explanatory potential despite drastic simplification of known biochemical kinetics.In this article, we bring this modeling philosophy to bear on the nature of neural progenitor cell decision making during mammalian cerebral cortical development. Specifically, we present the computational component to a research program addressing developmental links between (i) the cellular response to endogenous DNA damage, (ii) primary mechanisms of neuronal genetic heterogeneity, or mosaicism, and (iii) the cell fate decision making that defines the population kinetics of neurogenesis.
Collapse
Affiliation(s)
- MICHAEL A. CASE
- Department of Mathematical Sciences, Clemson University, Box 340975, Clemson, SC, 29634-0975, USA
| | - HUGH R. MACMILLAN
- Department of Mathematical Sciences, Clemson University, Box 340975, Clemson, SC, 29634-0975, USA
| |
Collapse
|
28
|
Westra JW, Rivera RR, Bushman DM, Yung YC, Peterson SE, Barral S, Chun J. Neuronal DNA content variation (DCV) with regional and individual differences in the human brain. J Comp Neurol 2010; 518:3981-4000. [PMID: 20737596 DOI: 10.1002/cne.22436] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is widely assumed that the human brain contains genetically identical cells through which postgenomic mechanisms contribute to its enormous diversity and complexity. The relatively recent identification of neural cells throughout the neuraxis showing somatically generated mosaic aneuploidy indicates that the vertebrate brain can be genomically heterogeneous (Rehen et al. [2001] Proc. Natl. Acad. Sci. U. S. A. 98:13361-13366; Rehen et al. [2005] J. Neurosci. 25:2176-2180; Yurov et al. [2007] PLoS ONE:e558; Westra et al. [2008] J. Comp. Neurol. 507:1944-1951). The extent of human neural aneuploidy is currently unknown because of technically limited sample sizes, but is reported to be small (Iourov et al. [2006] Int. Rev. Cytol. 249:143-191). During efforts to interrogate larger cell populations by using DNA content analyses, a surprising result was obtained: human frontal cortex brain cells were found to display "DNA content variation (DCV)" characterized by an increased range of DNA content both in cell populations and within single cells. On average, DNA content increased by approximately 250 megabases, often representing a substantial fraction of cells within a given sample. DCV within individual human brains showed regional variation, with increased prevalence in the frontal cortex and less variation in the cerebellum. Further, DCV varied between individual brains. These results identify DCV as a new feature of the human brain, encompassing and further extending genomic alterations produced by aneuploidy, which may contribute to neural diversity in normal and pathophysiological states, altered functions of normal and disease-linked genes, and differences among individuals.
Collapse
Affiliation(s)
- Jurjen W Westra
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 2010; 33:345-54. [PMID: 20471112 DOI: 10.1016/j.tins.2010.04.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/06/2010] [Accepted: 04/12/2010] [Indexed: 11/22/2022]
Abstract
LINE-1 (L1) elements are retrotransposons that insert extra copies of themselves throughout the genome using a 'copy and paste' mechanism. L1s comprise nearly approximately 20% of the human genome and are able to influence chromosome integrity and gene expression upon reinsertion. Recent studies show that L1 elements are active and 'jumping' during neuronal differentiation. New somatic L1 insertions could generate 'genomic plasticity' in neurons by causing variation in genomic DNA sequences and by altering the transcriptome of individual cells. Thus, L1-induced variation could affect neuronal plasticity and behavior. We discuss potential consequences of L1-induced neuronal diversity and propose that a mechanism for generating diversity in the brain could broaden the spectrum of behavioral phenotypes that can originate from any single genome.
Collapse
|
30
|
Thompson SL, Compton DA. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. ACTA ACUST UNITED AC 2010; 188:369-81. [PMID: 20123995 PMCID: PMC2819684 DOI: 10.1083/jcb.200905057] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Most solid tumors are aneuploid, and it has been proposed that aneuploidy is the consequence of an elevated rate of chromosome missegregation in a process called chromosomal instability (CIN). However, the relationship of aneuploidy and CIN is unclear because the proliferation of cultured diploid cells is compromised by chromosome missegregation. The mechanism for this intolerance of nondiploid genomes is unknown. In this study, we show that in otherwise diploid human cells, chromosome missegregation causes a cell cycle delay with nuclear accumulation of the tumor suppressor p53 and the cyclin kinase inhibitor p21. Deletion of the p53 gene permits the accumulation of nondiploid cells such that CIN generates cells with aneuploid genomes that resemble many human tumors. Thus, the p53 pathway plays an important role in limiting the propagation of aneuploid human cells in culture to preserve the diploid karyotype of the population. These data fit with the concordance of aneuploidy and disruption of the p53 pathway in many tumors, but the presence of aneuploid cells in some normal human and mouse tissues indicates that there are known exceptions to the involvement of p53 in aneuploid cells and that tissue context may be important in how cells respond to aneuploidy.
Collapse
Affiliation(s)
- Sarah L Thompson
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
31
|
Yurov YB, Vorsanova SG, Iourov IY. GIN'n'CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny. Mol Cytogenet 2009; 2:23. [PMID: 19939257 PMCID: PMC2787505 DOI: 10.1186/1755-8166-2-23] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/25/2009] [Indexed: 08/30/2023] Open
Abstract
Genomic instability (GIN) and chromosome instability (CIN) are two closely related ways to produce a variety of pathogenic conditions, i.e. cancer, neurodegeneration, chromosomal and genomic diseases. The GIN and CIN manifestation that possesses the most appreciable impact on cell physiology and viability is aneuploidy. The latter has been consistently shown to be associated with aging. Classically, it has been considered that a failure of mitotic machinery leads to aneuploidy acquiring throughout aging in dividing cells. Paradoxically, this model is inapplicable for the human brain, which is composed of post-mitotic cells persisting throughout the lifetime. To solve this paradox, we have focused on mosaic neural aneuploidy, a remarkable biomarker of GIN and CIN in the normal and diseased brain (i.e. Alzheimer's disease and ataxia-telangiectasia). Looking through the available data on genomic variations in the developing and adult human central nervous system, we were able to propose a hypothesis suggesting that neural aneuploidy produced during early brain development plays a crucial role of genetic determinant of aging in the healthy and diseased brain.
Collapse
Affiliation(s)
- Yuri B Yurov
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow 119152, Russia.
| | | | | |
Collapse
|
32
|
Yung YC, Kennedy G, Chun J. Identification of neural programmed cell death through the detection of DNA fragmentation in situ and by PCR. ACTA ACUST UNITED AC 2009; Chapter 3:Unit 3.8. [PMID: 19575470 DOI: 10.1002/0471142301.ns0308s48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Programmed cell death is a fundamental process for the development and somatic maintenance of organisms. This unit describes methods for visualizing both dying cells in situ and for detection of nucleosomal ladders. A description of various current detection strategies is provided, as well as support protocols for preparing positive and negative controls and for preparing genomic DNA.
Collapse
Affiliation(s)
- Yun C Yung
- Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
33
|
Fernandes A, Marinho P, Sartore R, Paulsen B, Mariante R, Castilho L, Rehen S. Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz J Med Biol Res 2009; 42:515-22. [DOI: 10.1590/s0100-879x2009000600007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 04/13/2009] [Indexed: 01/19/2023] Open
Affiliation(s)
| | - P.A.N. Marinho
- Universidade Federal do Rio de Janeiro; Universidade Federal do Rio de Janeiro
| | | | | | | | | | | |
Collapse
|
34
|
Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Yurov YB. Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet 2009; 18:2656-69. [PMID: 19414482 DOI: 10.1093/hmg/ddp207] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ataxia telangiectasia (AT) is a chromosome instability (CIN) neurological syndrome arising from DNA damage response defects due to ATM gene mutations. The hallmark of AT is progressive cerebellar degeneration. However, the intrinsic cause of the neurodegeneration remains poorly understood. To highlight the relationship between CIN and neurodegeneration in AT, we monitored aneuploidy and interphase chromosome breaks (chromosomal biomarkers of genomic instability) in the normal and diseased brain. We observed a 2-3-fold increase of stochastic aneuploidy affecting different chromosomes in the cerebellum and the cerebrum of the AT brain. The global aneuploidization of the brain is, therefore, a new genetic phenomenon featuring AT. Degenerating cerebellum in AT was remarkably featured by a dramatic 5-20-fold increase of non-random DNA double-strand breaks and aneuploidy affecting chromosomes 14 and, to a lesser extend, chromosomes 7 and X. Novel recurrent chromosome hot spots associated with cerebellar degeneration were mapped within 14q12. In silico analysis has revealed that this genomic region contains two candidate genes (FOXG1B and NOVA1). The existence of non-random breaks disrupting specific chromosomal loci in neural cells with DNA repair deficiency supports the hypothesis that neuronal genome may undergo programmed somatic rearrangements. Investigating chromosome integrity in neural cells, we provide the first evidence that increased CIN can result into neurodegeneration, whereas it is generally assumed to be associated with cancer. Our data suggest that mosaic instability of somatic genome in cells of the central nervous system is more significant genetic factor predisposing to the brain pathology than previously recognized.
Collapse
Affiliation(s)
- Ivan Y Iourov
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Zagorodnoe sh. 2, Moscow 119152, Russia
| | | | | | | | | |
Collapse
|
35
|
Arendt T, Mosch B, Morawski M. Neuronal aneuploidy in health and disease: a cytomic approach to understand the molecular individuality of neurons. Int J Mol Sci 2009; 10:1609-1627. [PMID: 19468329 PMCID: PMC2680637 DOI: 10.3390/ijms10041609] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 02/07/2023] Open
Abstract
Structural variation in the human genome is likely to be an important mechanism for neuronal diversity and brain disease. A combination of multiple different forms of aneuploid cells due to loss or gain of whole chromosomes giving rise to cellular diversity at the genomic level have been described in neurons of the normal and diseased adult human brain. Here, we describe recent advances in molecular neuropathology based on the combination of slide-based cytometry with molecular biological techniques that will contribute to the understanding of genetic neuronal heterogeneity in the CNS and its potential impact on Alzheimer's disease and age-related disorders.
Collapse
Affiliation(s)
- Thomas Arendt
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +49-341-9725721; Fax: +49-341-9725729
| | | | | |
Collapse
|
36
|
Iourov IY, Vorsanova SG, Liehr T, Yurov YB. Aneuploidy in the normal, Alzheimer's disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 2009; 34:212-20. [PMID: 19344645 DOI: 10.1016/j.nbd.2009.01.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 10/21/2022] Open
Abstract
Recently it has been suggested that the human brain contains aneuploid cells; however the nature and magnitude of neural aneuploidy in health and disease remain obscure. Here, we have monitored aneuploidy in the cerebral cortex of the normal, Alzheimer's disease (AD) and ataxia telangiectasia (AT) brain by molecular cytogenetic approaches scoring more than 480,000 neural cells. Using arbitrarily selected set of DNA probes for chromosomes 1, 7, 11, 13, 14, 17, 18, 21, X and Y we have determined the mean rate of stochastic aneuploidy per chromosome as 0.5% in the normal human brain (95%CI 0.2-0.7%; SD 0.2%). The overall proportion of aneuploid cells in the normal brain has been estimated at approximately 10%. In the AT brain, we observed a 2-to-5 fold increase of stochastic aneuploidy randomly affecting different chromosomes (mean 2.1%; 95%CI - 1.5-2.6%; SD 0.8%). The overall proportion of aneuploid cells in the brain of AT individuals was estimated at approximately 20-50%. Compared with sex- and age-matched controls, the level of stochastic aneuploidy in the AD brain was not significantly increased. However, a dramatic 10-fold increase of chromosome 21-specific aneuploidy (both hypoploidy and hyperploidy) was detected in the AD cerebral cortex (6-15% versus 0.8-1.8% in control). We conclude that somatic mosaic aneuploidy differentially contributes to intercellular genomic variation in the normal, AD and AT brain. Neural aneuploidy leading to altered cellular physiology may significantly contribute to the pathogenesis of neurodegenerative diseases. These data indicate neural aneuploidy to be a newly identified feature of neurodegenerative diseases, similar to other devastative disorders hallmarked by aneuploidy such as chromosome syndromes and cancer.
Collapse
Affiliation(s)
- Ivan Y Iourov
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
37
|
Chun J, Blaschke AJ. Identification of neural programmed cell death through the detection of DNA fragmentation in situ and by PCR. ACTA ACUST UNITED AC 2008; Chapter 3:Unit 3.8. [PMID: 18428472 DOI: 10.1002/0471142301.ns0308s00] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A universal feature in the development of multicellular organisms is a physiological form of cell death called programmed cell death (PCD). A subset of PCD is apoptosis, which is defined by characteristic morphological changes and genomic DNA fragmentation producing what are referred to as nucleosomal ladders. To understand how PCD operates in a developing tissue or in a tissue following an experimental procedure, dying cells must be identified in relation to their surviving neighbors. One way to accomplish this is to visualize fragmented DNA in situ, in conjunction with gel electrophoresis of isolated DNA to visualize the nucleosomal ladders associated with apoptosis. Two approaches are presented in this unit: in situ end-labeling plus (ISEL+), a technique to identify dying cells in tissue sections or cell cultures of central nervous system (CNS) tissue (optimized for embryonic samples); and the use of ligation-mediated polymerase chain reaction (LMPCR) to identify nucleosomal ladders from intact tissues. Also included are procedures for preparing thymocyte cell cultures for use as controls in the ISEL+ procedure and for isolating genomic DNA for LMPCR.
Collapse
Affiliation(s)
- J Chun
- University of California at San Diego School of Medicine, La Jolla, California, USA
| | | |
Collapse
|
38
|
Frappart PO, McKinnon PJ. Ataxia-telangiectasia and related diseases. Neuromolecular Med 2008; 8:495-511. [PMID: 17028372 DOI: 10.1385/nmm:8:4:495] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 11/30/1999] [Accepted: 02/02/2006] [Indexed: 01/23/2023]
Abstract
Appropriate cellular signaling responses to DNA damage and the ability to repair DNA are fundamental processes that are required for organismal survival. Ataxia-telangiectasia (A-T) is a rare neurodegenerative disease that results from defective DNA damage signaling. Understanding the molecular basis of A-T has provided many critical insights into the cellular response to DNA double-strand breaks (DSBs). A-T is a syndrome that shows pronounced neurodegeneration of the nervous system coincident with immune deficiency, radiosensitivity, and cancer proneness. A-T results from inactivation of the A-T mutated (ATM) kinase, a critical protein kinase that regulates the response to DNA-DSBs by selective phosphorylation of a variety of substrates. Therefore, understanding the ATM signaling program has important biological ramifications for nervous system homeostasis. Underscoring the importance of the DNA-DSBs response in the nervous system are other diseases related to A-T that also result from defects in this signaling pathway. In particular, defects in the DNA damage sensor, the Mre11-RAD50-NBS1 complex, also lead to syndromes with neurological deficits and overlapping phenotypes to A-T. Collectively, these diseases highlight the critical importance of appropriate responses to DNA-DSBs to maintain homeostasis in the nervous system.
Collapse
Affiliation(s)
- Pierre-Olivier Frappart
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
39
|
Gatti RA, Boder E, Good RA. Immunodeficiency, radiosensitivity, and the XCIND syndrome. Immunol Res 2008; 38:87-101. [PMID: 17917014 DOI: 10.1007/s12026-007-0018-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/11/2022]
Abstract
Through the analysis of a rare disorder called ataxia-telangiectasia (A-T), many important biological lessons have been gleaned. Today, it is clear that the underlying defect of A-T lies in the nucleus, as an inability to repair or process double strand breaks. More important, by the A-T phenotype now allows us to appreciate a much more general distinction between immunodeficiencies that are radiosensitive and those that are not.
Collapse
Affiliation(s)
- Richard A Gatti
- Department of Pathology & Laboratory Medicine, UCLA David Geffin School of Medicine, Los Angeles, CA 90095-1732, USA.
| | | | | |
Collapse
|
40
|
Abstract
Neural stem and progenitor cells (referred to here as NSCs), located in the proliferative zones of embryonic brains, can be seen undergoing mitosis at the ventricular surface. Mitotic NSCs can be arrested in metaphase and chromosome "spreads" produced to reveal their chromosomal complement. Studies in mice and humans have revealed a prominent developmental presence of aneuploid NSCs, whereas other chromosomal defects, such as interchromosomal translocations and partial chromosomal deletions/insertions, are extremely rare (1,2). Aneuploidy is defined as the loss or gain of whole chromosomes, resulting in cells that deviate from the normal diploid number of chromosomes (46 in humans, 40 in mice). In NSCs, aneuploidy can occur as a result of mis-segregation during mitosis, through events such as lagging chromosomes, supernumerary centrosomes, and nondisjunction events (3). The percentage of aneuploid NSCs can be altered by in vivo and in vitro growth conditions as well as through genetic deletion of genes involved in DNA surveillance and repair (1,4). Aneuploidy can be detected by classical cytogenetic methods such as counting the number of chromosomes visualized by DNA dyes (e.g., 4,6-diamidino-2-phenylindole) by using standard light or fluorescence microscopy. Precise chromosome identification is much more difficult: classical methods using banding patterns or size to assign identity are very time consuming even under ideal conditions, and they are notoriously difficult in mice, which often have ambiguous banding patterns and acrocentric chromosomes. A comparatively new technique that allows the unambiguous identification of chromosomes in mice and humans is "spectral karyotyping" or SKY, developed by Ried et al. at the National Institutes of Health for the study of cancer cells (5). This technique uses chromosomal "paints" that are hybridized to chromosome spreads to produce a distinct spectral output for each chromosome. SKY offers superior speed and sensitivity in its ability to detect many types of chromosomal defects, including deletions, insertions, translocations, and aneuploidy.
Collapse
Affiliation(s)
- Suzanne E Peterson
- Department of Molecular Biology, Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Defects in cellular DNA repair processes have been linked to genome instability, heritable cancers, and premature aging syndromes. Yet defects in some repair processes manifest themselves primarily in neuronal tissues. This review focuses on studies defining the molecular defects associated with several human neurological disorders, particularly ataxia with oculomotor apraxia 1 (AOA1) and spinocerebellar ataxia with axonal neuropathy 1 (SCAN1). A picture is emerging to suggest that brain cells, due to their nonproliferative nature, may be particularly prone to the progressive accumulation of unrepaired DNA lesions.
Collapse
Affiliation(s)
- Ulrich Rass
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | | | |
Collapse
|
42
|
Weaver BAA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 2007; 11:25-36. [PMID: 17189716 DOI: 10.1016/j.ccr.2006.12.003] [Citation(s) in RCA: 561] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/26/2006] [Accepted: 12/04/2006] [Indexed: 12/22/2022]
Abstract
An abnormal chromosome number, aneuploidy, is a common characteristic of tumor cells. Boveri proposed nearly 100 years ago that aneuploidy causes tumorigenesis, but this has remained untested due to the difficulty of selectively generating aneuploidy. Cells and mice with reduced levels of the mitosis-specific, centromere-linked motor protein CENP-E are now shown to develop aneuploidy and chromosomal instability in vitro and in vivo. An increased rate of aneuploidy does drive an elevated level of spontaneous lymphomas and lung tumors in aged animals. Remarkably, however, in examples of chemically or genetically induced tumor formation, an increased rate of aneuploidy is a more effective inhibitor than initiator of tumorigenesis. These findings reveal a role of aneuploidy and chromosomal instability in preventing tumorigenesis.
Collapse
Affiliation(s)
- Beth A A Weaver
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
43
|
Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BSV, Kingsbury MA, Cabral KMS, McConnell MJ, Anliker B, Fontanoz M, Chun J. Constitutional aneuploidy in the normal human brain. J Neurosci 2006; 25:2176-80. [PMID: 15745943 PMCID: PMC6726097 DOI: 10.1523/jneurosci.4560-04.2005] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mouse brain contains genetically distinct cells that differ with respect to chromosome number manifested as aneuploidy (Rehen et al., 2001); however, the relevance to humans is not known. Here, using double-label fluorescence in situ hybridization for the autosome chromosome 21 (chromosome 21 point probes combined with chromosome 21 "paint" probes), along with immunocytochemistry and cell sorting, we present evidence for chromosome gain and loss in the human brain. Chromosome 21 aneuploid cells constitute approximately 4% of the estimated one trillion cells in the human brain and include non-neuronal cells and postmitotic neurons identified by the neuronspecific nuclear protein marker. In comparison, human interphase lymphocytes present chromosome 21 aneuploidy rates of 0.6%. Together, these data demonstrate that human brain cells (both neurons and non-neuronal cells) can be aneuploid and that the resulting genetic mosaicism is a normal feature of the human CNS.
Collapse
Affiliation(s)
- Stevens K Rehen
- Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Iourov IY, Vorsanova SG, Yurov YB. Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 249:143-91. [PMID: 16697283 DOI: 10.1016/s0074-7696(06)49003-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromosomal mosaicism is still a genetic enigma. Although the mechanisms and consequences of this phenomenon have been studied for over 50 years, there are a number of gaps in our knowledge concerning causes, genetic mechanisms, and phenotypic manifestations of chromosomal mosaicism. Neuronal cell-specific chromosomal mosaicism is not an exception. Originally, neuronal cells of the mammalian brain were assumed to possess identical genomes. However, recent studies have shown chromosomal variations, manifested as chromosome abnormalities in cells of the developing and adult mammalian nervous system. Here, we review data obtained on the variation in chromosome complement in mammalian neuronal cells and hypothesize about the possible relevance of large-scale genomic (i.e., chromosomal) variations to brain development and functions as well as neurodevelopmental and neurodegenerative disorders. We propose to cover the term "molecular neurocytogenetics to cover all studies the aim of which is to reveal chromosome variations and organization in the mammalian brain.
Collapse
Affiliation(s)
- Ivan Y Iourov
- National Research Center of Mental Health, Russian Academy of Sciences, Moscow, Russia 119152
| | | | | |
Collapse
|
45
|
Abstract
Adult neurogenesis is studied in vivo using thymidine analogues such as bromodeoxyuridine (BrdU) to label DNA synthesis during the S phase of the cell cycle. However, BrdU may also label DNA synthesis events not directly related to cell proliferation, such as DNA repair and/or abortive reentry into the cell cycle, which can occur as part of an apoptotic process in postmitotic neurons. In this study, we used three well-characterized models of injury-induced neuronal apoptosis and the combined visualization of cell birth (BrdU labeling) and death (Tdt-mediated dUTP-biotin nick end labeling) to investigate the specificity of BrdU incorporation in the adult mouse brain in vivo. We present evidence that BrdU is not significantly incorporated during DNA repair and that labeling is not detected in vulnerable or dying postmitotic neurons, even when a high dose of BrdU is directly infused into the brain. These findings have important implications for a controversy surrounding adult neurogenesis: the connection between cell cycle reactivation and apoptosis of terminally differentiated neurons.
Collapse
Affiliation(s)
- Sylvian Bauer
- Biology Division, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
46
|
Hales BF. DNA repair disorders causing malformations. Curr Opin Genet Dev 2005; 15:234-40. [PMID: 15917197 DOI: 10.1016/j.gde.2005.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 03/18/2005] [Indexed: 12/26/2022]
Abstract
DNA damage contributes significantly to the abnormal development or demise of the conceptus. The widely differing phenotypes that result from mutations in DNA repair genes suggest that these genes play critical roles during development, even in the absence of exogenous DNA-damaging agents. Molecules that sense DNA damage and regulate DNA repair, cell cycle checkpoints and apoptosis act as teratogen suppressor genes, protecting the conceptus against insult from DNA damaging teratogens.
Collapse
Affiliation(s)
- Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
47
|
|
48
|
Kingsbury MA, Friedman B, McConnell MJ, Rehen SK, Yang AH, Kaushal D, Chun J. Aneuploid neurons are functionally active and integrated into brain circuitry. Proc Natl Acad Sci U S A 2005; 102:6143-7. [PMID: 15837924 PMCID: PMC1087909 DOI: 10.1073/pnas.0408171102] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The existence of aneuploid cells within the mammalian brain has suggested the influence of genetic mosaicism on normal neural circuitry. However, aneuploid cells might instead be glia, nonneural, or dying cells, which are irrelevant to direct neuronal signaling. Combining retrograde labeling with FISH for chromosome-specific loci, distantly labeled aneuploid neurons were observed in expected anatomical projection areas. Coincident labeling for immediate early gene expression indicated that these aneuploid neurons were functionally active. These results demonstrate that functioning neurons with aneuploid genomes form genetically mosaic neural circuitries as part of the normal organization of the mammalian brain.
Collapse
Affiliation(s)
- M A Kingsbury
- Department of Molecular Biology, Helen L. Dorris Institute for the Study of Neurological and Psychiatric Disorders of Children and Adolescents, The Scripps Research Institute, 10550 North Torrey Pines Road, ICND 118, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Frappart PO, Tong WM, Demuth I, Radovanovic I, Herceg Z, Aguzzi A, Digweed M, Wang ZQ. An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat Med 2005; 11:538-44. [PMID: 15821748 DOI: 10.1038/nm1228] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 02/25/2005] [Indexed: 12/21/2022]
Abstract
Nijmegen breakage syndrome (NBS), ataxia telangiectasia and ataxia telangiectasia-like disorder (ATLD) show overlapping phenotypes such as growth retardation, microcephaly, cerebellar developmental defects and ataxia. However, the molecular pathogenesis of these neurological defects remains elusive. Here we show that inactivation of the Nbn gene (also known as Nbs1) in mouse neural tissues results in a combination of the neurological anomalies characteristic of NBS, ataxia telangiectasia and ATLD, including microcephaly, growth retardation, cerebellar defects and ataxia. Loss of Nbn causes proliferation arrest of granule cell progenitors and apoptosis of postmitotic neurons in the cerebellum. Furthermore, Nbn-deficient neuroprogenitors show proliferation defects (but not increased apoptosis) and contain more chromosomal breaks, which are accompanied by ataxia telangiectasia mutated protein (ATM)-mediated p53 activation. Notably, depletion of p53 substantially rescues the neurological defects of Nbn mutant mice. This study gives insight into the physiological function of NBS1 (the Nbn gene product) and the function of the DNA damage response in the neurological anomalies of NBS, ataxia telangiectasia and ATLD.
Collapse
|
50
|
Yang Y, Herrup K. Loss of neuronal cell cycle control in ataxia-telangiectasia: a unified disease mechanism. J Neurosci 2005; 25:2522-9. [PMID: 15758161 PMCID: PMC6725172 DOI: 10.1523/jneurosci.4946-04.2005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2004] [Revised: 01/23/2005] [Accepted: 01/23/2005] [Indexed: 12/30/2022] Open
Abstract
In ataxia-telangiectasia (A-T), the loss of the ataxia-telangiectasia mutated (ATM) kinase leads to a failure of cell cycle checkpoints and DNA double-strand break detection resulting in cellular radiation sensitivity and a predisposition to cancer. There is also a significant loss of neurons, in particular cerebellar granule and Purkinje cells. Mice homozygous for null alleles of atm reproduce the radiation sensitivity and high-tumor incidence of the human disease but show no significant nerve cell loss. Using immunocytochemistry, we found the re-expression of cell cycle proteins in Purkinje cells and striatal neurons in both human and mouse A-T. In the mouse, we used fluorescent in situ hybridization (FISH) to document that DNA replication accompanies the reappearance of these proteins in at-risk neuronal cells. We also found the presence of significant cell cycle activity in the Purkinje cells of the atm+/- heterozygote mouse. The cell cycle events in mouse cerebellum occur primarily during the third postnatal week by both FISH and immunocytochemistry. Thus, the initiation of this ectopic cell division occurs just as the final stages of Purkinje cell development are being completed. These results suggest that loss of cell cycle control represents a common disease mechanism that underlies the defects in the affected tissues in both human and mouse diseases.
Collapse
Affiliation(s)
- Yan Yang
- Department of Neurology, Alzheimer Research Laboratory (E504), Case School of Medicine, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|