1
|
Bafna A, Banks G, Vasilyev V, Dallmann R, Hastings MH, Nolan PM. Zinc finger homeobox-3 (ZFHX3) orchestrates genome-wide daily gene expression in the suprachiasmatic nucleus. eLife 2025; 14:RP102019. [PMID: 40117332 PMCID: PMC11928027 DOI: 10.7554/elife.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
The mammalian suprachiasmatic nucleus (SCN), situated in the ventral hypothalamus, directs daily cellular and physiological rhythms across the body. The SCN clockwork is a self-sustaining transcriptional-translational feedback loop (TTFL) that in turn coordinates the expression of clock-controlled genes (CCGs) directing circadian programmes of SCN cellular activity. In the mouse, the transcription factor, ZFHX3 (zinc finger homeobox-3), is necessary for the development of the SCN and influences circadian behaviour in the adult. The molecular mechanisms by which ZFHX3 affects the SCN at transcriptomic and genomic levels are, however, poorly defined. Here, we used chromatin immunoprecipitation sequencing to map the genomic localization of ZFHX3-binding sites in SCN chromatin. To test for function, we then conducted comprehensive RNA sequencing at six distinct times-of-day to compare the SCN transcriptional profiles of control and ZFHX3-conditional null mutants. We show that the genome-wide occupancy of ZFHX3 occurs predominantly around gene transcription start sites, co-localizing with known histone modifications, and preferentially partnering with clock transcription factors (CLOCK, BMAL1) to regulate clock gene(s) transcription. Correspondingly, we show that the conditional loss of ZFHX3 in the adult has a dramatic effect on the SCN transcriptome, including changes in the levels of transcripts encoding elements of numerous neuropeptide neurotransmitter systems while attenuating the daily oscillation of the clock TF Bmal1. Furthermore, various TTFL genes and CCGs exhibited altered circadian expression profiles, consistent with an advanced in daily behavioural rhythms under 12 h light-12 h dark conditions. Together, these findings reveal the extensive genome-wide regulation mediated by ZFHX3 in the central clock that orchestrates daily timekeeping in mammals.
Collapse
Affiliation(s)
- Akanksha Bafna
- Medical Research Council, Harwell Science Campus, Didcot, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxfordshire, United Kingdom
| | - Gareth Banks
- Medical Research Council, Harwell Science Campus, Didcot, United Kingdom
- Nottingham Trent University, Nottingham, United Kingdom
| | - Vadim Vasilyev
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | | | - Patrick M Nolan
- Medical Research Council, Harwell Science Campus, Didcot, United Kingdom
| |
Collapse
|
2
|
Liu J, Cao Y, Fan T, Zhao J, Zhu T, Gao H, Tao F, Zhu B. The association between outdoor artificial light at night exposure and antenatal depression and anxiety symptoms: A retrospective cohort study in China. ENVIRONMENTAL RESEARCH 2025; 266:120515. [PMID: 39631650 DOI: 10.1016/j.envres.2024.120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Outdoor artificial light at night (ALAN) has emerged as a significant source of environmental pollution, however its association with antenatal depression and anxiety symptoms has been rarely explored before. METHODS This study was based on a cohort study conducted at the Maternal and Child Health Care Center in Ma'anshan City, Anhui Province, China, which ultimately included 1047 pregnant women. Depression and anxiety symptoms were evaluated utilizing the self-administered Patient Health Questionnaire (PHQ-9) and the 7-item Generalized Anxiety Scale (GAD-7), respectively. Exposure levels to outdoor ALAN were calculated utilizing satellite data and the participants' usual addresses. Logistic regression and restricted cubic spline were used to assess the association between exposure to outdoor ALAN and depression and anxiety symptoms in pregnant women. RESULTS After adjusting for confounding factors, high ALAN exposure during the pre-pregnancy period (ORdepression = 3.16, 95% CI: 1.14-8.75; ORanxiety = 3.09, 95% CI: 1.51-6.28) and first trimester (ORdepression = 2.90, 95% CI: 1.13-7.45; ORanxiety = 3.11, 95% CI: 1.55-6.25) were associated with increased risks of antenatal depression and anxiety symptoms. Restricted cubic spline analyses showed the above associations were not nonlinear. CONCLUSION Our study is the first to propose that exposure to high levels of outdoor ALAN three months before pregnancy and during the first trimester of pregnancy is a risk factor for antenatal depression and anxiety symptoms.
Collapse
Affiliation(s)
- Jingjing Liu
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yidan Cao
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tuyan Fan
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiawen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Tianli Zhu
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fangbiao Tao
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Beibei Zhu
- Anhui Medical University, School of Public Health, Department of Maternal, Child and Adolescent Health, Center for Big Data and Population Health of IHM, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
Nikhil K, Singhal B, Granados-Fuentes D, Li JS, Kiss IZ, Herzog ED. The Functional Connectome Mediating Circadian Synchrony in the Suprachiasmatic Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627294. [PMID: 39713450 PMCID: PMC11661124 DOI: 10.1101/2024.12.06.627294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Circadian rhythms in mammals arise from the spatiotemporal synchronization of ~20,000 neuronal clocks in the Suprachiasmatic Nucleus (SCN). While anatomical, molecular, and genetic approaches have revealed diverse cell types and signaling mechanisms, the network wiring that enables SCN cells to communicate and synchronize remains unclear. To overcome the challenges of revealing functional connectivity from fixed tissue, we developed MITE (Mutual Information & Transfer Entropy), an information theory approach that infers directed cell-cell connections with high fidelity. By analyzing 3447 hours of continuously recorded clock gene expression from 9011 cells in 17 mice, we found that the functional connectome of SCN was highly conserved bilaterally and across mice, sparse, and organized into a dorsomedial and a ventrolateral module. While most connections were local, we discovered long-range connections from ventral cells to cells in both the ventral and dorsal SCN. Based on their functional connectivity, SCN cells can be characterized as circadian signal generators, broadcasters, sinks, or bridges. For example, a subset of VIP neurons acts as hubs that generate circadian signals critical to synchronize daily rhythms across the SCN neural network. Simulations of the experimentally inferred SCN networks recapitulated the stereotypical dorsal-to-ventral wave of daily PER2 expression and ability to spontaneously synchronize, revealing that SCN emergent dynamics are sculpted by cell-cell connectivity. We conclude that MITE provides a powerful method to infer functional connectomes, and that the conserved architecture of cell-cell connections mediates circadian synchrony across space and time in the mammalian SCN.
Collapse
Affiliation(s)
- K.L. Nikhil
- Department of Biology, Washington University in Saint Louis, USA
| | - Bharat Singhal
- Department of Electrical and Systems Engineering, Washington University in Saint Louis, USA
| | | | - Jr-Shin Li
- Department of Electrical and Systems Engineering, Washington University in Saint Louis, USA
| | | | - Erik D. Herzog
- Department of Biology, Washington University in Saint Louis, USA
| |
Collapse
|
4
|
Cox OH, Gianonni-Guzmán MA, Cartailler JP, Cottam MA, McMahon DG. Transcriptomic Plasticity of the Circadian Clock in Response to Photoperiod: A Study in Male Melatonin-Competent Mice. J Biol Rhythms 2024; 39:423-439. [PMID: 39096022 PMCID: PMC11425976 DOI: 10.1177/07487304241265439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Seasonal daylength, or circadian photoperiod, is a pervasive environmental signal that profoundly influences physiology and behavior. In mammals, the central circadian clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus where it receives retinal input and synchronizes, or entrains, organismal physiology and behavior to the prevailing light cycle. The process of entrainment induces sustained plasticity in the SCN, but the molecular mechanisms underlying SCN plasticity are incompletely understood. Entrainment to different photoperiods persistently alters the timing, waveform, period, and light resetting properties of the SCN clock and its driven rhythms. To elucidate novel candidate genes for molecular mechanisms of photoperiod plasticity, we performed RNA sequencing on whole SCN dissected from mice raised in long (light:dark [LD] 16:8) and short (LD 8:16) photoperiods. Fewer rhythmic genes were detected in mice subjected to long photoperiod, and in general, the timing of gene expression rhythms was advanced 4-6 h. However, a few genes showed significant delays, including Gem. There were significant changes in the expression of the clock-associated gene Timeless and in SCN genes related to light responses, neuropeptides, gamma aminobutyric acid (GABA), ion channels, and serotonin. Particularly striking were differences in the expression of the neuropeptide signaling genes Prokr2 and Cck, as well as convergent regulation of the expression of 3 SCN light response genes, Dusp4, Rasd1, and Gem. Transcriptional modulation of Dusp4 and Rasd1 and phase regulation of Gem are compelling candidate molecular mechanisms for plasticity in the SCN light response through their modulation of the critical NMDAR-MAPK/ERK-CREB/CRE light signaling pathway in SCN neurons. Modulation of Prokr2 and Cck may critically support SCN neural network reconfiguration during photoperiodic entrainment. Our findings identify the SCN light response and neuropeptide signaling gene sets as rich substrates for elucidating novel mechanisms of photoperiod plasticity. Data are also available at http://circadianphotoperiodseq.com/, where users can view the expression and rhythmic properties of genes across these photoperiod conditions.
Collapse
Affiliation(s)
- Olivia H. Cox
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee
| | | | - Jean-Philippe Cartailler
- The Vanderbilt Creative Data Solutions Shared Resource, Vanderbilt University, Nashville, Tennessee
| | - Matthew A. Cottam
- The Vanderbilt Creative Data Solutions Shared Resource, Vanderbilt University, Nashville, Tennessee
| | - Douglas G. McMahon
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
5
|
Damara M, Misra N, Chambon P. A high-light therapy restores the circadian clock and corrects the pathological syndrome generated in restricted-fed mice. Proc Natl Acad Sci U S A 2024; 121:e2403770121. [PMID: 39074282 PMCID: PMC11317564 DOI: 10.1073/pnas.2403770121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/22/2024] [Indexed: 07/31/2024] Open
Abstract
Time-restricted feeding (RF) is known to shift the phasing of gene expression in most primary metabolic tissues, whereas a time misalignment between the suprachiasmatic nucleus circadian clock (SCNCC) and its peripheral CCs (PCC's) is known to induce various pathophysiological conditions, including a metabolic syndrome. We now report that a unique "light therapy," involving different light intensities (TZT0-ZT12150-TZT0-ZT12700 lx, TZT0-ZT1275-TZT0-ZT12150 lx, and TZT0-ZT12350-TZT0-ZT12700 lx), realigns the RF-generated misalignment between the SCNCC and the PCC's. Using such high-light regime, we show that through shifting the SCNCC and its activity, it is possible in a RF and "night-shifted mouse model" to prevent/correct pathophysiologies (e.g., a metabolic syndrome, a loss of memory, cardiovascular abnormalities). Our data indicate that such a "high-light regime" could be used as a unique chronotherapy, for those working on night shifts or suffering from jet-lag, in order to realign their SCNCC and PCC's, thereby preventing the generation of pathophysiological conditions.
Collapse
Affiliation(s)
- Manohar Damara
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR 7104, Inserm UMR-S 1258, IllkirchF-67400, France
| | - Nisha Misra
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR 7104, Inserm UMR-S 1258, IllkirchF-67400, France
| | - Pierre Chambon
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR 7104, Inserm UMR-S 1258, IllkirchF-67400, France
| |
Collapse
|
6
|
Mishra HK, Wei H, LeRoux M, Ko I, Rohr KE, Nievergelt CM, Maihofer AX, Shilling P, Alda M, Berrettini WH, Calabrese JR, Coryell WH, Frye M, Gershon E, McInnis MG, Nurnberger J, Oedegaard KJ, Zandi PP, Kelsoe JR, McCarthy MJ. Differential contributions of circadian clock genes to cell survival in bipolar disorder patient derived neuronal progenitor cells distinguishes lithium responders and non-responders. RESEARCH SQUARE 2024:rs.3.rs-4331810. [PMID: 38746315 PMCID: PMC11092846 DOI: 10.21203/rs.3.rs-4331810/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Bipolar disorder (BD) is characterized by disrupted circadian rhythms and neuronal loss. Lithium is neuroprotective and used to treat BD, but outcomes are variable. Past research identified that circadian rhythms in BD patient neurons are associated with lithium response (Li-R) or non-response (Li-NR). However, the underlying cellular mechanisms remain unknown. To study interactions among circadian clock genes and cell survival, and their role in BD and predicting lithium response, we tested selected genes (PER1, BMAL1 and REV-ERBα) and small molecule modulators of ROR/REV-ERB nuclear receptors in models of cell survival using mouse neurons and stem-cell derived neuronal progenitor cells (NPC) from BD patients and controls. In apoptosis assays using staurosporine (STS), lithium was neuroprotective. Knockdown of PER1, BMAL1 and REV-ERBα modified cell survival across models. In NPCs, reduced expression of PER1 and BMAL1 led to more extensive cell death in Li-NR vs. Li-R. Reduced REV-ERBα expression caused more extensive cell death in BD vs. control NPCs, without distinguishing Li-R and Li-NR. In IMHN, The REV-ERB agonist GSK4112 had strong effects on circadian rhythm amplitude, and was neuroprotective in mouse neurons and control NPCs, but not in BD NPCs. Expression of cell survival genes following STS and GSK4112 treatments revealed BD-associated, and Li-R associated differences in expression profiles. We conclude that the neuroprotective response to lithium is similar in NPCs from Li-R and Li-NR. However, knockdown of circadian clock genes or stimulation of REV-ERBs reveal distinct contributions to cell death in BD patient NPCs, some of which distinguish Li-R and Li-NR.
Collapse
|
7
|
Cox OH, Gianonni-Guzmán MA, Cartailler JP, Cottam MA, McMahon DG. Gene expression plasticity of the mammalian brain circadian clock in response to photoperiod. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580759. [PMID: 38586021 PMCID: PMC10996532 DOI: 10.1101/2024.02.16.580759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Seasonal daylength, or circadian photoperiod, is a pervasive environmental signal that profoundly influences physiology and behavior. In mammals, the central circadian clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus where it receives retinal input and synchronizes, or entrains, organismal physiology and behavior to the prevailing light cycle. The process of entrainment induces sustained plasticity in the SCN, but the molecular mechanisms underlying SCN plasticity are incompletely understood. Entrainment to different photoperiods persistently alters the timing, waveform, period, and light resetting properties of the SCN clock and its driven rhythms. To elucidate novel molecular mechanisms of photoperiod plasticity, we performed RNAseq on whole SCN dissected from mice raised in Long (LD 16:8) and Short (LD 8:16) photoperiods. Fewer rhythmic genes were detected in Long photoperiod and in general the timing of gene expression rhythms was advanced 4-6 hours. However, a few genes showed significant delays, including Gem . There were significant changes in the expression clock-associated gene Timeless and in SCN genes related to light responses, neuropeptides, GABA, ion channels, and serotonin. Particularly striking were differences in the expression of the neuropeptide signaling genes Prokr2 and Cck , as well as convergent regulation of the expression of three SCN light response genes, Dusp4 , Rasd1 , and Gem . Transcriptional modulation of Dusp4 and Rasd1, and phase regulation of Gem, are compelling candidate molecular mechanisms for plasticity in the SCN light response through their modulation of the critical NMDAR-MAPK/ERK-CREB/CRE light signaling pathway in SCN neurons. Modulation of Prokr2 and Cck may critically support SCN neural network reconfiguration during photoperiodic entrainment. Our findings identify the SCN light response and neuropeptide signaling gene sets as rich substrates for elucidating novel mechanisms of photoperiod plasticity.
Collapse
|
8
|
Kahan A, Mahe K, Dutta S, Kassraian P, Wang A, Gradinaru V. Immediate responses to ambient light in vivo reveal distinct subpopulations of suprachiasmatic VIP neurons. iScience 2023; 26:107865. [PMID: 37766975 PMCID: PMC10520357 DOI: 10.1016/j.isci.2023.107865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm pacemaker, the suprachiasmatic nucleus (SCN), mediates light entrainment via vasoactive intestinal peptide (VIP) neurons (SCNVIP). Yet, how these neurons uniquely respond and connect to intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin (Opn4) has not been determined functionally in freely behaving animals. To address this, we first used monosynaptic tracing from SCNVIP neurons in mice and identified two SCNVIP subpopulations. Second, we recorded calcium changes in response to ambient light, at both bulk and single-cell levels, and found two unique activity patterns in response to high- and low-intensity blue light. The activity patterns of both subpopulations could be manipulated by application of an Opn4 antagonist. These results suggest that the two SCNVIP subpopulations connect to two types of Opn4-expressing ipRGCs, likely M1 and M2, but only one is responsive to red light. These findings have important implications for our basic understanding of non-image-forming circadian light processing.
Collapse
Affiliation(s)
- Anat Kahan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Karan Mahe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sayan Dutta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pegah Kassraian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Wang Y, Beukeboom LW, Wertheim B, Hut RA. Transcriptomic Analysis of Light-Induced Genes in Nasonia vitripennis: Possible Implications for Circadian Light Entrainment Pathways. BIOLOGY 2023; 12:1215. [PMID: 37759614 PMCID: PMC10525998 DOI: 10.3390/biology12091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Circadian entrainment to the environmental day-night cycle is essential for the optimal use of environmental resources. In insects, opsin-based photoreception in the compound eye and ocelli and CRYPTOCHROME1 (CRY1) in circadian clock neurons are thought to be involved in sensing photic information, but the genetic regulation of circadian light entrainment in species without light-sensitive CRY1 remains unclear. To elucidate a possible CRY1-independent light transduction cascade, we analyzed light-induced gene expression through RNA-sequencing in Nasonia vitripennis. Entrained wasps were subjected to a light pulse in the subjective night to reset the circadian clock, and light-induced changes in gene expression were characterized at four different time points in wasp heads. We used co-expression, functional annotation, and transcription factor binding motif analyses to gain insight into the molecular pathways in response to acute light stimulus and to form hypotheses about the circadian light-resetting pathway. Maximal gene induction was found after 2 h of light stimulation (1432 genes), and this included the opsin gene opblue and the core clock genes cry2 and npas2. Pathway and cluster analyses revealed light activation of glutamatergic and GABA-ergic neurotransmission, including CREB and AP-1 transcription pathway signaling. This suggests that circadian photic entrainment in Nasonia may require pathways that are similar to those in mammals. We propose a model for hymenopteran circadian light-resetting that involves opsin-based photoreception, glutamatergic neurotransmission, and gene induction of cry2 and npas2 to reset the circadian clock.
Collapse
Affiliation(s)
- Yifan Wang
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, The Netherlands; (L.W.B.); (R.A.H.)
| | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, The Netherlands; (L.W.B.); (R.A.H.)
| | | |
Collapse
|
10
|
Halawani D, Wang Y, Ramakrishnan A, Estill M, He X, Shen L, Friedel RH, Zou H. Circadian clock regulator Bmal1 gates axon regeneration via Tet3 epigenetics in mouse sensory neurons. Nat Commun 2023; 14:5165. [PMID: 37620297 PMCID: PMC10449865 DOI: 10.1038/s41467-023-40816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Axon regeneration of dorsal root ganglia (DRG) neurons after peripheral axotomy involves reconfiguration of gene regulatory circuits to establish regenerative gene programs. However, the underlying mechanisms remain unclear. Here, through an unbiased survey, we show that the binding motif of Bmal1, a central transcription factor of the circadian clock, is enriched in differentially hydroxymethylated regions (DhMRs) of mouse DRG after peripheral lesion. By applying conditional deletion of Bmal1 in neurons, in vitro and in vivo neurite outgrowth assays, as well as transcriptomic profiling, we demonstrate that Bmal1 inhibits axon regeneration, in part through a functional link with the epigenetic factor Tet3. Mechanistically, we reveal that Bmal1 acts as a gatekeeper of neuroepigenetic responses to axonal injury by limiting Tet3 expression and restricting 5hmC modifications. Bmal1-regulated genes not only concern axon growth, but also stress responses and energy homeostasis. Furthermore, we uncover an epigenetic rhythm of diurnal oscillation of Tet3 and 5hmC levels in DRG neurons, corresponding to time-of-day effect on axon growth potential. Collectively, our studies demonstrate that targeting Bmal1 enhances axon regeneration.
Collapse
Affiliation(s)
- Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiqun Wang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, China
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Starnes AN, Jones JR. Inputs and Outputs of the Mammalian Circadian Clock. BIOLOGY 2023; 12:508. [PMID: 37106709 PMCID: PMC10136320 DOI: 10.3390/biology12040508] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Circadian rhythms in mammals are coordinated by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Light and other environmental inputs change the timing of the SCN neural network oscillator, which, in turn, sends output signals that entrain daily behavioral and physiological rhythms. While much is known about the molecular, neuronal, and network properties of the SCN itself, the circuits linking the outside world to the SCN and the SCN to rhythmic outputs are understudied. In this article, we review our current understanding of the synaptic and non-synaptic inputs onto and outputs from the SCN. We propose that a more complete description of SCN connectivity is needed to better explain how rhythms in nearly all behaviors and physiological processes are generated and to determine how, mechanistically, these rhythms are disrupted by disease or lifestyle.
Collapse
Affiliation(s)
| | - Jeff R. Jones
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Zhang S, Feng X. Effect of 17β-trenbolone exposure during adolescence on the circadian rhythm in male mice. CHEMOSPHERE 2022; 288:132496. [PMID: 34627821 DOI: 10.1016/j.chemosphere.2021.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The suprachiasmatic nucleus (SCN) is the main control area of the clock rhythm in the mammalian brain. It drives daily behaviours and rhythms by synchronizing or suppressing the oscillations of clock genes in peripheral tissue. It is an important brain tissue structure that affects rhythm stability. SCN has high plasticity and is easily affected by the external environment. In this experiment, we found that exposure to the endocrine disruptor 17β-trenbolone (17β-TBOH) affects the rhythmic function of SCN in the brains of adolescent male balb/c mice. Behavioural results showed that exposure to 17β-TBOH disrupted daily activity-rest rhythms, reduced the robustness of endogenous rhythms, altered sleep-wake-related behaviours, and increased the stress to light stimulation. At the cellular level, exposure to 17β-TBOH decreased the c-fos immune response of SCN neurons to the large phase shift, indicating that it affected the coupling ability of SCN neurons. At the molecular level, exposure to 17β-TBOH interfered with the daily expression of hormones, changed the expression levels of the core clock genes and cell communication genes in the SCN, and affected the expression of wake-up genes in the hypothalamus. Finally, we observed the effect of exposure to 17β-TBOH on energy metabolism. The results showed that 17β-TBOH reduced the metabolic response and affected the metabolic function of the liver. This study revealed the influence of environmental endocrine disrupting chemicals (EDCs) on rhythms and metabolic disorders, and provides references for follow-up research.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
13
|
Young CJ, Lyons D, Piggins HD. Circadian Influences on the Habenula and Their Potential Contribution to Neuropsychiatric Disorders. Front Behav Neurosci 2022; 15:815700. [PMID: 35153695 PMCID: PMC8831701 DOI: 10.3389/fnbeh.2021.815700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
The neural circadian system consists of the master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) communicating time of day cues to the rest of the body including other brain areas that also rhythmically express circadian clock genes. Over the past 16 years, evidence has emerged to indicate that the habenula of the epithalamus is a candidate extra-SCN circadian oscillator. When isolated from the SCN, the habenula sustains rhythms in clock gene expression and neuronal activity, with the lateral habenula expressing more robust rhythms than the adjacent medial habenula. The lateral habenula is responsive to putative SCN output factors as well as light information conveyed to the perihabenula area. Neuronal activity in the lateral habenula is altered in depression and intriguingly disruptions in circadian rhythms can elevate risk of developing mental health disorders including depression. In this review, we will principally focus on how circadian and light signals affect the lateral habenula and evaluate the possibility that alteration in these influences contribute to mental health disorders.
Collapse
|
14
|
Bano-Otalora B, Martial F, Harding C, Bechtold DA, Allen AE, Brown TM, Belle MDC, Lucas RJ. Bright daytime light enhances circadian amplitude in a diurnal mammal. Proc Natl Acad Sci U S A 2021; 118:e2100094118. [PMID: 34031246 PMCID: PMC8179182 DOI: 10.1073/pnas.2100094118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian circadian rhythms are orchestrated by a master pacemaker in the hypothalamic suprachiasmatic nuclei (SCN), which receives information about the 24 h light-dark cycle from the retina. The accepted function of this light signal is to reset circadian phase in order to ensure appropriate synchronization with the celestial day. Here, we ask whether light also impacts another key property of the circadian oscillation, its amplitude. To this end, we measured circadian rhythms in behavioral activity, body temperature, and SCN electrophysiological activity in the diurnal murid rodent Rhabdomys pumilio following stable entrainment to 12:12 light-dark cycles at four different daytime intensities (ranging from 18 to 1,900 lx melanopic equivalent daylight illuminance). R. pumilio showed strongly diurnal activity and body temperature rhythms in all conditions, but measures of rhythm robustness were positively correlated with daytime irradiance under both entrainment and subsequent free run. Whole-cell and extracellular recordings of electrophysiological activity in ex vivo SCN revealed substantial differences in electrophysiological activity between dim and bright light conditions. At lower daytime irradiance, daytime peaks in SCN spontaneous firing rate and membrane depolarization were substantially depressed, leading to an overall marked reduction in the amplitude of circadian rhythms in spontaneous activity. Our data reveal a previously unappreciated impact of daytime light intensity on SCN physiology and the amplitude of circadian rhythms and highlight the potential importance of daytime light exposure for circadian health.
Collapse
Affiliation(s)
- Beatriz Bano-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Franck Martial
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Court Harding
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Annette E Allen
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Timothy M Brown
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mino D C Belle
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX4 4PS, United Kingdom
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
15
|
Manoogian ENC, Kumar A, Obed D, Bergan J, Bittman EL. Suprachiasmatic function in a circadian period mutant: Duper alters light-induced activation of vasoactive intestinal peptide cells and PERIOD1 immunostaining. Eur J Neurosci 2019; 48:3319-3334. [PMID: 30346078 DOI: 10.1111/ejn.14214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 11/28/2022]
Abstract
Mammalian circadian rhythms are entrained by photic stimuli that are relayed by retinal projections to the core of the suprachiasmatic nucleus (SCN). Neuronal activation, as demonstrated by expression of the immediate early gene c-fos, leads to transcription of the core clock gene per1. The duper mutation in hamsters shortens circadian period and amplifies light-induced phase shifts. We performed two experiments to compare the number of c-FOS immunoreactive (ir) and PER1-ir cells, and the intensity of staining, in the SCN of wild-type (WT) and duper hamsters at various intervals after presentation of a 15-min light pulse in the early subjective night. Light-induced c-FOS-ir within 1 hr in the dorsocaudal SCN of duper, but not WT hamsters. In cells that express vasoactive intestinal peptide (VIP), which plays a critical role in synchronization of SCN cellular oscillators, light-induced c-FOS-ir was greater in duper than WT hamsters. After the light pulse, PER1-ir cells were found in more medial portions of the SCN than FOS-ir, and appeared with a longer latency and over a longer time course, in VIP cells of duper than wild-type hamsters. Our results indicate that the duper allele alters SCN function in ways that may contribute to changes in free running period and phase resetting.
Collapse
Affiliation(s)
- Emily N C Manoogian
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Ajay Kumar
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Doha Obed
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Joseph Bergan
- Psychological and Brain Sciences and Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Eric L Bittman
- Department of Biology, Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
16
|
Kim P, Oster H, Lehnert H, Schmid SM, Salamat N, Barclay JL, Maronde E, Inder W, Rawashdeh O. Coupling the Circadian Clock to Homeostasis: The Role of Period in Timing Physiology. Endocr Rev 2019; 40:66-95. [PMID: 30169559 DOI: 10.1210/er.2018-00049] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
A plethora of physiological processes show stable and synchronized daily oscillations that are either driven or modulated by biological clocks. A circadian pacemaker located in the suprachiasmatic nucleus of the ventral hypothalamus coordinates 24-hour oscillations of central and peripheral physiology with the environment. The circadian clockwork involved in driving rhythmic physiology is composed of various clock genes that are interlocked via a complex feedback loop to generate precise yet plastic oscillations of ∼24 hours. This review focuses on the specific role of the core clockwork gene Period1 and its paralogs on intra-oscillator and extra-oscillator functions, including, but not limited to, hippocampus-dependent processes, cardiovascular function, appetite control, as well as glucose and lipid homeostasis. Alterations in Period gene function have been implicated in a wide range of physical and mental disorders. At the same time, a variety of conditions including metabolic disorders also impact clock gene expression, resulting in circadian disruptions, which in turn often exacerbates the disease state.
Collapse
Affiliation(s)
- Pureum Kim
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Sebastian M Schmid
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Salamat
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Erik Maronde
- Department of Anatomy, Goethe University Frankfurt, Frankfurt, Germany
| | - Warrick Inder
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Sumová A, Čečmanová V. Mystery of rhythmic signal emergence within the suprachiasmatic nuclei. Eur J Neurosci 2018; 51:300-309. [PMID: 30188597 DOI: 10.1111/ejn.14141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
The circadian system provides organisms with a temporal organization that optimizes their adaptation to environmental fluctuations on a 24-hr basis. In mammals, the circadian clock in the suprachiasmatic nuclei (SCN) develops during the perinatal period. The rhythmicity first appears at the level of individual SCN neurons during the fetal stage, and this step is often misinterpreted as the time of complete SCN clock development. However, the process is only finalized when the SCN begin to play a role of the central clock in the body, that is, when they are able to generate robust rhythmicity at the cell population level, entrain the rhythmic signal with external light-dark cycles and convey this signal to the rest of the body. The development is gradual and correlates with morphological maturation of the SCN structural complexity, which is based on intercellular network formation. The aim of this review is to summarize events related to the first emergence of circadian oscillations in the fetal SCN clock. Although a large amount of data on ontogenesis of the circadian system have been accumulated, how exactly the immature SCN converts into a functional central clock has still remained rather elusive. In this review, the hypothesis of how the SCN attains its rhythmicity at the tissue level is discussed in context with the recent advances in the field. For an extensive summary of the complete ontogenetic development of the circadian system, the readers are referred to other previously published reviews.
Collapse
Affiliation(s)
- Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vendula Čečmanová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
18
|
McNeill JK, Walton JC, Albers HE. Functional Significance of the Excitatory Effects of GABA in the Suprachiasmatic Nucleus. J Biol Rhythms 2018; 33:376-387. [PMID: 29974800 DOI: 10.1177/0748730418782820] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over 90% of neurons within the suprachiasmatic nucleus (SCN) express γ-aminobutyric acid (GABA). Although GABA is primarily an inhibitory neurotransmitter, in vitro studies suggest that the activation of GABAA receptors (GABAAR) elicits excitation in the adult SCN. The ratio of excitatory to inhibitory responses to GABA depends on the balance of chloride influx by Na+-K+-Cl- cotransporter 1 (NKCC1) and chloride efflux by K+-Cl- cotransporters (KCCs). Excitatory responses to GABA can be blocked by inhibition of the inward chloride cotransporter, NKCC1, with the loop diuretic bumetanide. Here we investigated the role of NKCC1 activity in phase shifting the circadian pacemaker in response to photic and nonphotic signals in male Syrian hamsters housed in constant darkness. In the early subjective night (CT 13.5), injection of bumetanide into the SCN reduced light-induced phase delays. However, during the late subjective night (CT 19), bumetanide administration did not alter light-induced phase advances. Injection of bumetanide during the subjective day (CT 6) did not alter the phase of free-running circadian rhythms but attenuated phase advances induced by injection of the GABAAR agonist muscimol into the SCN. These data support the hypothesis that the excitatory effects of endogenously released GABA contribute to the ability of light to induce phase delays, thereby contributing to the most important function of the circadian system, its entrainment with the day-night cycle. Further, the finding that bumetanide inhibits the phase-advancing effects of muscimol during the subjective day supports the hypothesis that the excitatory responses to GABA also contribute to the ability of nonphotic stimuli to phase shift the circadian pacemaker.
Collapse
Affiliation(s)
- John K McNeill
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - James C Walton
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - H Elliott Albers
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
19
|
Tackenberg MC, McMahon DG. Photoperiodic Programming of the SCN and Its Role in Photoperiodic Output. Neural Plast 2018; 2018:8217345. [PMID: 29552032 PMCID: PMC5818903 DOI: 10.1155/2018/8217345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
Though the seasonal response of organisms to changing day lengths is a phenomenon that has been scientifically reported for nearly a century, significant questions remain about how photoperiod is encoded and effected neurobiologically. In mammals, early work identified the master circadian clock, the suprachiasmatic nuclei (SCN), as a tentative encoder of photoperiodic information. Here, we provide an overview of research on the SCN as a coordinator of photoperiodic responses, the intercellular coupling changes that accompany that coordination, as well as the SCN's role in a putative brain network controlling photoperiodic input and output. Lastly, we discuss the importance of photoperiodic research in the context of tangible benefits to human health that have been realized through this research as well as challenges that remain.
Collapse
Affiliation(s)
| | - Douglas G. McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
20
|
Mezan S, Feuz JD, Deplancke B, Kadener S. PDF Signaling Is an Integral Part of the Drosophila Circadian Molecular Oscillator. Cell Rep 2017; 17:708-719. [PMID: 27732848 PMCID: PMC5081397 DOI: 10.1016/j.celrep.2016.09.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/12/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks generate 24-hr rhythms in physiology and behavior. Despite numerous studies, it is still uncertain how circadian rhythms emerge from their molecular and neural constituents. Here, we demonstrate a tight connection between the molecular and neuronal circadian networks. Using fluorescent transcriptional reporters in a Drosophila ex vivo brain culture system, we identified a reciprocal negative regulation between the master circadian regulator CLK and expression of pdf, the main circadian neuropeptide. We show that PDF feedback is required for maintaining normal oscillation pattern in CLK-driven transcription. Interestingly, we found that CLK and neuronal firing suppresses pdf transcription, likely through a common pathway involving the transcription factors DHR38 and SR, establishing a direct link between electric activity and the circadian system. In sum, our work provides evidence for the existence of an uncharacterized CLK-PDF feedback loop that tightly wraps together the molecular oscillator with the circadian neuronal network in Drosophila. Monitoring circadian transcription ex vivo using fluorescent reporters CLK activation in the LNvs provokes downregulation in CLK activity in LNds and DNs Reciprocal negative regulation of CLK activity and pdf transcription and signaling PDF signaling is required for the normal oscillation pattern in CLK activity
Collapse
Affiliation(s)
- Shaul Mezan
- Biological Chemistry Department, Silberman Institute of Life Sciences, the Hebrew University, Jerusalem 91904, Israel
| | - Jean Daniel Feuz
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, the Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
21
|
Paul JR, McKeown AS, Davis JA, Totsch SK, Mintz EM, Kraft TW, Cowell RM, Gamble KL. Glycogen synthase kinase 3 regulates photic signaling in the suprachiasmatic nucleus. Eur J Neurosci 2017; 45:1102-1110. [PMID: 28244152 PMCID: PMC5395359 DOI: 10.1111/ejn.13549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/21/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine-threonine kinase that regulates mammalian circadian rhythms at the behavioral, molecular and neurophysiological levels. In the central circadian pacemaker, the suprachiasmatic nucleus (SCN), inhibitory phosphorylation of GSK3 exhibits a rhythm across the 24 h day. We have recently shown that GSK3 is capable of influencing both the molecular clock and SCN neuronal activity rhythms. However, it is not known whether GSK3 regulates the response to environmental cues such as light. The goal of this study was to test the hypothesis that GSK3 activation mediates light-induced SCN excitability and photic entrainment. Immunofluorescence staining in the SCN of mice showed that late-night light exposure significantly increased GSK3 activity (decreased pGSK3β levels) 30-60 min after the light-pulse. In addition, pharmacological inhibition of GSK3 blocked the expected light-induced excitability in SCN neurons; however, this effect was not associated with changes in resting membrane potential or input resistance. Behaviorally, mice with constitutively active GSK3 (GSK3-KI) re-entrained to a 6-h phase advance in the light-dark cycle in significantly fewer days than WT control animals. Furthermore, the behavioral and SCN neuronal activity of GSK3-KI mice was phase-advanced compared to WT, in both normal and light-exposed conditions. Finally, GSK3-KI mice exhibited normal negative-masking behavior and electroretinographic responses to light, suggesting that the enhanced photic entrainment is not due to an overall increased sensitivity to light in these animals. Taken together, these results provide strong evidence that GSK3 activation contributes to light-induced phase-resetting at both the neurophysiological and behavioral levels.
Collapse
Affiliation(s)
- Jodi R. Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA, 35294
| | - Alex S. McKeown
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, USA, 35294
| | - Jennifer A. Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA, 35294
| | - Stacie K. Totsch
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA, 35294
| | - Eric M. Mintz
- Department of Biological Sciences, Kent State University, Kent, OH, USA, 44242
| | - Timothy W. Kraft
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, USA, 35294
| | - Rita M. Cowell
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA, 35294
| | - Karen L. Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA, 35294
| |
Collapse
|
22
|
Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH. Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-Autonomous and Circuit-Level Mechanisms. Cold Spring Harb Perspect Biol 2017; 9:9/1/a027706. [PMID: 28049647 DOI: 10.1101/cshperspect.a027706] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the principal circadian clock of the brain, directing daily cycles of behavior and physiology. SCN neurons contain a cell-autonomous transcription-based clockwork but, in turn, circuit-level interactions synchronize the 20,000 or so SCN neurons into a robust and coherent daily timer. Synchronization requires neuropeptide signaling, regulated by a reciprocal interdependence between the molecular clockwork and rhythmic electrical activity, which in turn depends on a daytime Na+ drive and nighttime K+ drag. Recent studies exploiting intersectional genetics have started to identify the pacemaking roles of particular neuronal groups in the SCN. They support the idea that timekeeping involves nonlinear and hierarchical computations that create and incorporate timing information through the interactions between key groups of neurons within the SCN circuit. The field is now poised to elucidate these computations, their underlying cellular mechanisms, and how the SCN clock interacts with subordinate circadian clocks across the brain to determine the timing and efficiency of the sleep-wake cycle, and how perturbations of this coherence contribute to neurological and psychiatric illness.
Collapse
Affiliation(s)
- Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899
| | - Tracey Hermanstyne
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899
| | - Nicola J Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
23
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
24
|
Bedont JL, LeGates TA, Buhr E, Bathini A, Ling JP, Bell B, Wu MN, Wong PC, Van Gelder RN, Mongrain V, Hattar S, Blackshaw S. An LHX1-Regulated Transcriptional Network Controls Sleep/Wake Coupling and Thermal Resistance of the Central Circadian Clockworks. Curr Biol 2016; 27:128-136. [PMID: 28017605 DOI: 10.1016/j.cub.2016.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/03/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the central circadian clock in mammals. It is entrained by light but resistant to temperature shifts that entrain peripheral clocks [1-5]. The SCN expresses many functionally important neuropeptides, including vasoactive intestinal peptide (VIP), which drives light entrainment, synchrony, and amplitude of SCN cellular clocks and organizes circadian behavior [5-16]. The transcription factor LHX1 drives SCN Vip expression, and cellular desynchrony in Lhx1-deficient SCN largely results from Vip loss [17, 18]. LHX1 regulates many genes other than Vip, yet activity rhythms in Lhx1-deficient mice are similar to Vip-/- mice under light-dark cycles and only somewhat worse in constant conditions. We suspected that LHX1 targets other than Vip have circadian functions overlooked in previous studies. In this study, we compared circadian sleep and temperature rhythms of Lhx1- and Vip-deficient mice and found loss of acute light control of sleep in Lhx1 but not Vip mutants. We also found loss of circadian resistance to fever in Lhx1 but not Vip mice, which was partially recapitulated by heat application to cultured Lhx1-deficient SCN. Having identified VIP-independent functions of LHX1, we mapped the VIP-independent transcriptional network downstream of LHX1 and a largely separable VIP-dependent transcriptional network. The VIP-independent network does not affect core clock amplitude and synchrony, unlike the VIP-dependent network. These studies identify Lhx1 as the first gene required for temperature resistance of the SCN clockworks and demonstrate that acute light control of sleep is routed through the SCN and its immediate output regions.
Collapse
Affiliation(s)
- Joseph L Bedont
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tara A LeGates
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ethan Buhr
- Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA
| | - Abhijith Bathini
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan P Ling
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Benjamin Bell
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark N Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Philip C Wong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Valerie Mongrain
- Department of Neuroscience, Université de Montreal, Montreal, QC H3C 3J7, Canada
| | - Samer Hattar
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
25
|
Jones JR, McMahon DG. The core clock gene Per1 phases molecular and electrical circadian rhythms in SCN neurons. PeerJ 2016; 4:e2297. [PMID: 27602274 PMCID: PMC4991845 DOI: 10.7717/peerj.2297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022] Open
Abstract
The brain’s biological clock, the suprachiasmatic nucleus (SCN), exhibits endogenous 24-hour rhythms in gene expression and spontaneous firing rate; however, the functional relationship between these neuronal rhythms is not fully understood. Here, we used a Per1::GFP transgenic mouse line that allows for the simultaneous quantification of molecular clock state and firing rate in SCN neurons to examine the relationship between these key components of the circadian clock. We find that there is a stable, phased relationship between E-box-driven clock gene expression and spontaneous firing rate in SCN neurons and that these relationships are independent of light input onto the system or of GABAA receptor-mediated synaptic activity. Importantly, the concordant phasing of gene and neural rhythms is disrupted in the absence of the homologous clock gene Per1, but persists in the absence of the core clock gene Per2. These results suggest that Per1 plays a unique, non-redundant role in phasing gene expression and firing rate rhythms in SCN neurons to increase the robustness of cellular timekeeping.
Collapse
Affiliation(s)
- Jeff R Jones
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, United States; Current affiliation: Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Douglas G McMahon
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, United States; Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
26
|
Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016; 230:R27-49. [PMID: 27154335 PMCID: PMC4938744 DOI: 10.1530/joe-16-0054] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the master circadian clock that coordinates daily rhythms in behavior and physiology in mammals. Like other hypothalamic nuclei, the SCN displays an impressive array of distinct cell types characterized by differences in neurotransmitter and neuropeptide expression. Individual SCN neurons and glia are able to display self-sustained circadian rhythms in cellular function that are regulated at the molecular level by a 24h transcriptional-translational feedback loop. Remarkably, SCN cells are able to harmonize with one another to sustain coherent rhythms at the tissue level. Mechanisms of cellular communication in the SCN network are not completely understood, but recent progress has provided insight into the functional roles of several SCN signaling factors. This review discusses SCN organization, how intercellular communication is critical for maintaining network function, and the signaling mechanisms that play a role in this process. Despite recent progress, our understanding of SCN circuitry and coupling is far from complete. Further work is needed to map SCN circuitry fully and define the signaling mechanisms that allow for collective timekeeping in the SCN network.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical SciencesMarquette University, Milwaukee, WI, USA
| |
Collapse
|
27
|
Hastings MH, Herzog ED. Clock Genes, Oscillators, and Cellular Networks in the Suprachiasmatic Nuclei. J Biol Rhythms 2016; 19:400-13. [PMID: 15534320 DOI: 10.1177/0748730404268786] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian SCN contains a biological clock that drives remarkably precise circadian rhythms in vivo and in vitro. Recent advances have revealed molecular and cellular mechanisms required for the generation of these daily rhythms and their synchronization between SCN neurons and to the environmental light cycle. This review of the evidence for a cell-autonomous circadian pacemaker within specialized neurons of the SCN focuses on 6 genes implicated within the pace making mechanism, an additional 4 genes implicated in pathways from the pacemaker, and the intercellular and intracellular mechanisms that synchronize SCN neurons to each other and to solar time.
Collapse
Affiliation(s)
- Michael H Hastings
- MRC Laboratory of Molecular Biology, Division of Neurobiology, Cambridge, UK.
| | | |
Collapse
|
28
|
Abstract
Although impressive progress has been made in understanding the molecular basis of pacemaker function in the suprachiasmatic nucleus (SCN), fundamental questions about cellular and regional heterogeneity within the SCN, andhowthis heterogeneity might contribute toSCNpacemaker function at a tissue level, have remained unresolved. To reexamine cellular and regional heterogeneity within the SCN, the authors have focused on two key questions: which SCN cells are endogenously rhythmic and/or directly light responsive? Observations of endogenous rhythms of electrical activity, gene/protein expression, and protein phosphorylation suggest that the SCN in mammals examined to dateis composed of anatomically distinct rhythmic and nonrhythmic components. Endogenously rhythmic neurons are primarily found in rostral, dorsomedial, and ventromedial portions of the nucleus; at mid and caudal levels, the distribution of endogenously rhythmic cells in the SCN has the appearance of a “shell.” The majority of nonrhythmic cells, by contrast, are located in a central “core” region of the SCN, which is complementary to the shell. The location of light-responsive cells, defined by direct retinohypothalamic input and light-induced gene expression, largely overlaps the location of nonrhythmic cells in the SCN core, although, in hamsters and mice light-responsive cells are also present in the ventral portion of the rhythmic shell. While the relative positions of rhythmic and light-responsive components of the SCN are similar between species, the precise boundaries of these components, and neurochemical phenotype of cells within them, are variable. Intercellular communication between these components may bea key featurer esponsiblefor theuniquepace maker properties of the SCN observed at a tissue and whole animal level.
Collapse
Affiliation(s)
- Han S Lee
- Department of Cell Biology, Neurobiology and Anatomy, Neuroscience Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | |
Collapse
|
29
|
Abstract
The SCN of the mammalian hypothalamus comprises a self-sustained, biological clock that generates endogenous ca. 24-h (circadian) rhythms. Circadian rhythmicity in the SCN originates from the interaction of a defined set of “clock genes” that participate in transcription/translation feedback loops. In order for the SCN to serve as an internal clock that times an internal day corresponding to the external solar day, the intracellular molecular oscillations must be output as physiological signals and be reset by appropriate environmental inputs. Here, the authors consider the mechanisms by which the SCN circadian pacemaker encodes rhythmic output and light input. In particular, they focus on the ionic mechanisms by which SCN neurons encode clock gene output as circa-dian rhythms in spike frequency, as well as cellular and molecular mechanisms by which SCN neurons encode circadian light input through phase heterogeneity in the SCN network. The authors propose that there are 2 distinct classes of ionic mechanisms supporting spike frequency rhythms output—modulation of basal membrane potential and conductance versus modulation of spike production—whereas light input is transformed by cellular communication within the SCN network and encoded by the relative phase relationships among SCN neurons.
Collapse
Affiliation(s)
- Sandra J Kuhlman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
30
|
Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ. Neural correlates of individual differences in circadian behaviour. Proc Biol Sci 2016; 282:rspb.2015.0769. [PMID: 26108632 DOI: 10.1098/rspb.2015.0769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Daily rhythms in mammals are controlled by the circadian system, which is a collection of biological clocks regulated by a central pacemaker within the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. Changes in SCN function have pronounced consequences for behaviour and physiology; however, few studies have examined whether individual differences in circadian behaviour reflect changes in SCN function. Here, PERIOD2::LUCIFERASE mice were exposed to a behavioural assay to characterize individual differences in baseline entrainment, rate of re-entrainment and free-running rhythms. SCN slices were then collected for ex vivo bioluminescence imaging to gain insight into how the properties of the SCN clock influence individual differences in behavioural rhythms. First, individual differences in the timing of locomotor activity rhythms were positively correlated with the timing of SCN rhythms. Second, slower adjustment during simulated jetlag was associated with a larger degree of phase heterogeneity among SCN neurons. Collectively, these findings highlight the role of the SCN network in determining individual differences in circadian behaviour. Furthermore, these results reveal novel ways that the network organization of the SCN influences plasticity at the behavioural level, and lend insight into potential interventions designed to modulate the rate of resynchronization during transmeridian travel and shift work.
Collapse
Affiliation(s)
- Jennifer A Evans
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA 30310, USA
| | - Tanya L Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, MA 01002, USA
| | - Oscar Castanon-Cervantes
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA 30310, USA
| | - Alec J Davidson
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA 30310, USA
| |
Collapse
|
31
|
de Assis LVM, Moraes MN, da Silveira Cruz-Machado S, Castrucci AML. The effect of white light on normal and malignant murine melanocytes: A link between opsins, clock genes, and melanogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1119-33. [PMID: 26947915 DOI: 10.1016/j.bbamcr.2016.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/26/2022]
Abstract
The skin possesses a photosensitive system comprised of opsins whose function is not fully understood, and clock genes which exert an important regulatory role in skin biology. Here, we evaluated the presence of opsins in normal (Melan-a cells) and malignant (B16-F10 cells) murine melanocytes. Both cell lines express Opn2, Opn4--for the first time reported in these cell types--as well as S-opsin. OPN4 protein was found in a small area capping the cell nuclei of B16-F10 cells kept in constant dark (DD); twenty-four hours after the white light pulse (WLP), OPN4 was found in the cell membrane. Despite the fact that B16-F10 cells expressed less Opn2 and Opn4 than Melan-a cells, our data indicate that the malignant melanocytes exhibited increased photoresponsiveness. The clock gene machinery is also severely downregulated in B16-F10 cells as compared to Melan-a cells. Per1, Per2, and Bmal1 expression increased in B16-F10 cells in response to WLP. Although no response in clock gene expression to WLP was observed in Melan-a cells, gene correlational data suggest a minor effect of WLP. In contrast to opsins and clock genes, melanogenesis is significantly upregulated in malignant melanocytes in comparison to Melan-a cells. Tyrosinase expression increased after WLP only in B16-F10 cells; however no increase in melanin content after WLP was seen in either cell line. Our findings may prove useful in the treatment and the development of new pharmacological approaches of depigmentation diseases and skin cancer.
Collapse
Affiliation(s)
- L V M de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - M N Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - S da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - A M L Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Evans JA, Gorman MR. In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms. Neuroscience 2016; 320:259-80. [PMID: 26861419 DOI: 10.1016/j.neuroscience.2016.01.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
The suprachiasmatic nucleus (SCN) is a network of neural oscillators that program daily rhythms in mammalian behavior and physiology. Over the last decade much has been learned about how SCN clock neurons coordinate together in time and space to form a cohesive population. Despite this insight, much remains unknown about how SCN neurons communicate with one another to produce emergent properties of the network. Here we review the current understanding of communication among SCN clock cells and highlight a collection of formal assays where changes in SCN interactions provide for plasticity in the waveform of circadian rhythms in behavior. Future studies that pair analytical behavioral assays with modern neuroscience techniques have the potential to provide deeper insight into SCN circuit mechanisms.
Collapse
Affiliation(s)
- J A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| | - M R Gorman
- Department of Psychology, University of San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Kudo T, Block GD, Colwell CS. The Circadian Clock Gene Period1 Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus. ASN Neuro 2015; 7:7/6/1759091415610761. [PMID: 26553726 PMCID: PMC4710129 DOI: 10.1177/1759091415610761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca2+]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca2+]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca2+]i-activated channel is one of the targets.
Collapse
Affiliation(s)
- Takashi Kudo
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Gene D Block
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Harrison EM, Gorman MR. Rapid Adjustment of Circadian Clocks to Simulated Travel to Time Zones across the Globe. J Biol Rhythms 2015; 30:557-62. [PMID: 26275871 DOI: 10.1177/0748730415598875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Daily rhythms in mammalian physiology and behavior are generated by a central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN), the timing of which is set by light from the environment. When the ambient light-dark cycle is shifted, as occurs with travel across time zones, the SCN and its output rhythms must reset or re-entrain their phases to match the new schedule-a sluggish process requiring about 1 day per hour shift. Using a global assay of circadian resetting to 6 equidistant time-zone meridians, we document this characteristically slow and distance-dependent resetting of Syrian hamsters under typical laboratory lighting conditions, which mimic summer day lengths. The circadian pacemaker, however, is additionally entrainable with respect to its waveform (i.e., the shape of the 24-h oscillation) allowing for tracking of seasonally varying day lengths. We here demonstrate an unprecedented, light exposure-based acceleration in phase resetting following 2 manipulations of circadian waveform. Adaptation of circadian waveforms to long winter nights (8 h light, 16 h dark) doubled the shift response in the first 3 days after the shift. Moreover, a bifurcated waveform induced by exposure to a novel 24-h light-dark-light-dark cycle permitted nearly instant resetting to phase shifts from 4 to 12 h in magnitude, representing a 71% reduction in the mismatch between the activity rhythm and the new photocycle. Thus, a marked enhancement of phase shifting can be induced via nonpharmacological, noninvasive manipulation of the circadian pacemaker waveform in a model species for mammalian circadian rhythmicity. Given the evidence of conserved flexibility in the human pacemaker waveform, these findings raise the promise of flexible resetting applicable to circadian disruption in shift workers, frequent time-zone travelers, and any individual forced to adjust to challenging schedules.
Collapse
Affiliation(s)
- Elizabeth M Harrison
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USADepartment of Psychology, University of California, San Diego, La Jolla, California, USA
| | - Michael R Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USADepartment of Psychology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
35
|
Ramkisoensing A, Meijer JH. Synchronization of Biological Clock Neurons by Light and Peripheral Feedback Systems Promotes Circadian Rhythms and Health. Front Neurol 2015; 6:128. [PMID: 26097465 PMCID: PMC4456861 DOI: 10.3389/fneur.2015.00128] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN) functions as a circadian clock that drives 24-h rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which individual neurons function as cell-autonomous oscillators. The production of a coherent output rhythm is dependent upon mutual synchronization among single cells and requires both synaptic communication and gap junctions. Changes in phase-synchronization between individual cells have consequences on the amplitude of the SCN’s electrical activity rhythm, and these changes play a major role in the ability to adapt to seasonal changes. Both aging and sleep deprivation negatively affect the circadian amplitude of the SCN, whereas behavioral activity (i.e., exercise) has a positive effect on amplitude. Given that the amplitude of the SCN’s electrical activity rhythm is essential for achieving robust rhythmicity in physiology and behavior, the mechanisms that underlie neuronal synchronization warrant further study. A growing body of evidence suggests that the functional integrity of the SCN contributes to health, well-being, cognitive performance, and alertness; in contrast, deterioration of the 24-h rhythm is a risk factor for neurodegenerative disease, cancer, depression, and sleep disorders.
Collapse
Affiliation(s)
- Ashna Ramkisoensing
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center , Leiden , Netherlands
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
36
|
Vosko A, van Diepen HC, Kuljis D, Chiu AM, Heyer D, Terra H, Carpenter E, Michel S, Meijer JH, Colwell CS. Role of vasoactive intestinal peptide in the light input to the circadian system. Eur J Neurosci 2015; 42:1839-48. [PMID: 25885685 DOI: 10.1111/ejn.12919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
The neuropeptide vasoactive intestinal peptide (VIP) is expressed at high levels in a subset of neurons in the ventral region of the suprachiasmatic nucleus (SCN). While VIP is known to be important for the synchronization of the SCN network, the role of VIP in photic regulation of the circadian system has received less attention. In the present study, we found that the light-evoked increase in electrical activity in vivo was unaltered by the loss of VIP. In the absence of VIP, the ventral SCN still exhibited N-methyl-d-aspartate-evoked responses in a brain slice preparation, although the absolute levels of neural activity before and after treatment were significantly reduced. Next, we used calcium imaging techniques to determine if the loss of VIP altered the calcium influx due to retinohypothalamic tract stimulation. The magnitude of the evoked calcium influx was not reduced in the ventral SCN, but did decline in the dorsal SCN regions. We examined the time course of the photic induction of Period1 in the SCN using in situ hybridization in VIP-mutant mice. We found that the initial induction of Period1 was not reduced by the loss of this signaling peptide. However, the sustained increase in Period1 expression (after 30 min) was significantly reduced. Similar results were found by measuring the light induction of cFOS in the SCN. These findings suggest that VIP is critical for longer-term changes within the SCN circuit, but does not play a role in the acute light response.
Collapse
Affiliation(s)
- Andrew Vosko
- Department of Structural Medicine, Rocky Vista University, Parker, CO, USA
| | - Hester C van Diepen
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dika Kuljis
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| | - Andrew M Chiu
- Medical Scientist Training Program, Northwestern University, Evanston, IL, USA
| | - Djai Heyer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Huub Terra
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen Carpenter
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| | - Stephan Michel
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johanna H Meijer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
37
|
Hummer DL, Ehlen JC, Larkin TE, McNeill JK, Pamplin JR, Walker CA, Walker PV, Dhanraj DR, Albers HE. Sustained activation of GABAA receptors in the suprachiasmatic nucleus mediates light-induced phase delays of the circadian clock: a novel function of ionotropic receptors. Eur J Neurosci 2015; 42:1830-8. [PMID: 25865743 DOI: 10.1111/ejn.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 01/16/2023]
Abstract
The suprachiasmatic nucleus (SCN) contains a circadian clock that generates endogenous rhythmicity and entrains that rhythmicity with the day-night cycle. The neurochemical events that transduce photic input within the SCN and mediate entrainment by resetting the molecular clock have yet to be defined. Because GABA is contained in nearly all SCN neurons we tested the hypothesis that GABA serves as this signal in studies employing Syrian hamsters (Mesocricetus auratus). Activation of GABAA receptors was found to be necessary and sufficient for light to induce phase delays of the clock. Remarkably, the sustained activation of GABAA receptors for more than three consecutive hours was necessary to phase-delay the clock. The duration of GABAA receptor activation required to induce phase delays would not have been predicted by either the prevalent theory of circadian entrainment or by expectations regarding the duration of ionotropic receptor activation necessary to produce functional responses. Taken together, these data identify a novel neurochemical mechanism essential for phase-delaying the 'master' circadian clock within the SCN as well as identifying an unprecedented action of an amino acid neurotransmitter involving the sustained activation of ionotropic receptors.
Collapse
Affiliation(s)
- Daniel L Hummer
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Department of Psychology, Morehouse College, Atlanta, GA, USA
| | - J Christopher Ehlen
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tony E Larkin
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Department of Psychology, Morehouse College, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - John K McNeill
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - John R Pamplin
- Department of Psychology, Morehouse College, Atlanta, GA, USA
| | - Colton A Walker
- Department of Psychology, Morehouse College, Atlanta, GA, USA
| | | | - Daryl R Dhanraj
- Department of Psychology, Morehouse College, Atlanta, GA, USA
| | - H Elliott Albers
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
38
|
Coomans CP, Ramkisoensing A, Meijer JH. The suprachiasmatic nuclei as a seasonal clock. Front Neuroendocrinol 2015; 37:29-42. [PMID: 25451984 DOI: 10.1016/j.yfrne.2014.11.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 12/23/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) contains a central clock that synchronizes daily (i.e., 24-h) rhythms in physiology and behavior. SCN neurons are cell-autonomous oscillators that act synchronously to produce a coherent circadian rhythm. In addition, the SCN helps regulate seasonal rhythmicity. Photic information is perceived by the SCN and transmitted to the pineal gland, where it regulates melatonin production. Within the SCN, adaptations to changing photoperiod are reflected in changes in neurotransmitters and clock gene expression, resulting in waveform changes in rhythmic electrical activity, a major output of the SCN. Efferent pathways regulate the seasonal timing of breeding and hibernation. In humans, seasonal physiology and behavioral rhythms are also present, and the human SCN has seasonally rhythmic neurotransmitter levels and morphology. In summary, the SCN perceives and encodes changes in day length and drives seasonal changes in downstream pathways and structures in order to adapt to the changing seasons.
Collapse
Affiliation(s)
- Claudia P Coomans
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ashna Ramkisoensing
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
39
|
Jones JR, Tackenberg MC, McMahon DG. Manipulating circadian clock neuron firing rate resets molecular circadian rhythms and behavior. Nat Neurosci 2015; 18:373-5. [PMID: 25643294 PMCID: PMC4502919 DOI: 10.1038/nn.3937] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/06/2015] [Indexed: 12/15/2022]
Abstract
To examine the interaction between molecular, electrical and behavioral circadian rhythms, we combined optogenetic manipulation of suprachiasmatic nucleus (SCN) firing rate with bioluminescence imaging and locomotor activity monitoring. Manipulating firing rate reset circadian rhythms both ex vivo and in vivo, and this resetting required spikes and network communication. This suggests that SCN firing rate is fundamental to circadian pacemaking as both an input to and output of the molecular clockworks.
Collapse
Affiliation(s)
- Jeff R. Jones
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
| | | | - Douglas G. McMahon
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
40
|
Hablitz LM, Molzof HE, Paul JR, Johnson RL, Gamble KL. Suprachiasmatic nucleus function and circadian entrainment are modulated by G protein-coupled inwardly rectifying (GIRK) channels. J Physiol 2014; 592:5079-92. [PMID: 25217379 DOI: 10.1113/jphysiol.2014.282079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
G protein signalling within the central circadian oscillator, the suprachiasmatic nucleus (SCN), is essential for conveying time-of-day information. We sought to determine whether G protein-coupled inwardly rectifying potassium channels (GIRKs) modulate SCN physiology and circadian behaviour. We show that GIRK current and GIRK2 protein expression are greater during the day. Pharmacological inhibition of GIRKs and genetic loss of GIRK2 depolarized the day-time resting membrane potential of SCN neurons compared to controls. Behaviourally, GIRK2 knockout (KO) mice failed to shorten free running period in response to wheel access in constant darkness and entrained more rapidly to a 6 h advance of a 12 h:12 h light-dark (LD) cycle than wild-type (WT) littermate controls. We next examined whether these effects were due to disrupted signalling of neuropeptide Y (NPY), which is known to mediate non-photic phase shifts, attenuate photic phase shifts and activate GIRKs. Indeed, GIRK2 KO SCN slices had significantly fewer silent cells in response to NPY, likely contributing to the absence of NPY-induced phase advances of PER2::LUC rhythms in organotypic SCN cultures from GIRK2 KO mice. Finally, GIRK channel activation is sufficient to cause a non-photic-like phase advance of PER2::LUC rhythms on a Per2(Luc+/-) background. These results suggest that rhythmic regulation of GIRK2 protein and channel function in the SCN contributes to day-time resting membrane potential, providing a mechanism for the fine tuning responses to non-photic and photic stimuli. Further investigation could provide insight into disorders with circadian disruption comorbidities such as epilepsy and addiction, in which GIRK channels have been implicated.
Collapse
Affiliation(s)
- L M Hablitz
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - H E Molzof
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - R L Johnson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - K L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
41
|
Stepanyuk AR, Belan PV, Kononenko NI. A model for the fast synchronous oscillations of firing rate in rat suprachiasmatic nucleus neurons cultured in a multielectrode array dish. PLoS One 2014; 9:e106152. [PMID: 25192180 PMCID: PMC4156468 DOI: 10.1371/journal.pone.0106152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 08/03/2014] [Indexed: 12/27/2022] Open
Abstract
When dispersed and cultured in a multielectrode dish (MED), suprachiasmatic nucleus (SCN) neurons express fast oscillations of firing rate (FOFR; fast relative to the circadian cycle), with burst duration ∼10 min, and interburst interval varying from 20 to 60 min in different cells but remaining nevertheless rather regular in individual cells. In many cases, separate neurons in distant parts of the 1 mm recording area of a MED exhibited correlated FOFR. Neither the mechanism of FOFR nor the mechanism of their synchronization among neurons is known. Based on recent data implicating vasoactive intestinal polypeptide (VIP) as a key intercellular synchronizing agent, we built a model in which VIP acts as both a feedback regulator to generate FOFR in individual neurons, and a diffusible synchronizing agent to produce coherent electrical output of a neuronal network. In our model, VIP binding to its (VPAC2) receptors acts through Gs G-proteins to activate adenylyl cyclase (AC), increase intracellular cAMP, and open cyclic-nucleotide-gated (CNG) cation channels, thus depolarizing the cell and generating neuronal firing to release VIP. In parallel, slowly developing homologous desensitization and internalization of VPAC2 receptors terminates elevation of cAMP and thereby provides an interpulse silent interval. Through mathematical modeling, we show that this VIP/VPAC2/AC/cAMP/CNG-channel mechanism is sufficient for generating reliable FOFR in single neurons. When our model for FOFR is combined with a published model of synchronization of circadian rhythms based on VIP/VPAC2 and Per gene regulation synchronization of circadian rhythms is significantly accelerated. These results suggest that (a) auto/paracrine regulation by VIP/VPAC2 and intracellular AC/cAMP/CNG-channels are sufficient to provide robust FOFR and synchrony among neurons in a heterogeneous network, and (b) this system may also participate in synchronization of circadian rhythms.
Collapse
Affiliation(s)
- Andrey R. Stepanyuk
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
- * E-mail:
| | - Pavel V. Belan
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
| | - Nikolai I. Kononenko
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
| |
Collapse
|
42
|
Bedont JL, LeGates TA, Slat EA, Byerly MS, Wang H, Hu J, Rupp AC, Qian J, Wong GW, Herzog ED, Hattar S, Blackshaw S. Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep 2014; 7:609-22. [PMID: 24767996 PMCID: PMC4254772 DOI: 10.1016/j.celrep.2014.03.060] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/23/2014] [Accepted: 03/21/2014] [Indexed: 12/27/2022] Open
Abstract
Vertebrate circadian rhythms are organized by the hypothalamic suprachiasmatic nucleus (SCN). Despite its physiological importance, SCN development is poorly understood. Here, we show that Lim homeodomain transcription factor 1 (Lhx1) is essential for terminal differentiation and function of the SCN. Deletion of Lhx1 in the developing SCN results in loss of SCN-enriched neuropeptides involved in synchronization and coupling to downstream oscillators, among other aspects of circadian function. Intact, albeit damped, clock gene expression rhythms persist in Lhx1-deficient SCN; however, circadian activity rhythms are highly disorganized and susceptible to surprising changes in period, phase, and consolidation following neuropeptide infusion. Our results identify a factor required for SCN terminal differentiation. In addition, our in vivo study of combinatorial SCN neuropeptide disruption uncovered synergies among SCN-enriched neuropeptides in regulating normal circadian function. These animals provide a platform for studying the central oscillator's role in physiology and cognition.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tara A LeGates
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emily A Slat
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Mardi S Byerly
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hong Wang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jianfei Hu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alan C Rupp
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Samer Hattar
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
43
|
Adachi AA, Fujioka A, Nagano M, Masumoto KH, Takumi T, Yoshimura T, Ebihara S, Mori K, Yokota Y, Shigeyoshi Y. Helix-loop-helix Protein Id2 Stabilizes Mammalian Circadian Oscillation Under Constant Light Conditions. Zoolog Sci 2013; 30:1011-8. [DOI: 10.2108/zsj.30.1011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Abstract
Humans and other organisms have adapted to a consistent and predictable 24-h solar cycle, but over the past ~130 years the widespread adoption of electric light has transformed our environment. Instead of aligning behavioral and physiological processes to the natural solar cycle, individuals respond to artificial light cycles created by social and work schedules. Urban light pollution, night shift work, transmeridian travel, televisions and computers have dramatically altered the timing of light used to entrain biological rhythms. In humans and other mammals, light is detected by the retina and intrinsically photosensitive retinal ganglion cells project this information both to the circadian system and limbic brain regions. Therefore, it is possible that exposure to light at night, which has become pervasive, may disrupt both circadian timing and mood. Notably, the rate of major depression has increased in recent decades, in parallel with increasing exposure to light at night. Strong evidence already links circadian disruption to major depression and other mood disorders. Emerging evidence from the past few years suggests that exposure to light at night also negatively influences mood. In this review, we discuss evidence from recent human and rodent studies supporting the novel hypothesis that nighttime exposure to light disrupts circadian organization and contributes to depressed mood.
Collapse
Affiliation(s)
- T A Bedrosian
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | |
Collapse
|
45
|
Kudo T, Tahara Y, Gamble KL, McMahon DG, Block GD, Colwell CS. Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus. J Neurophysiol 2013; 110:1097-106. [PMID: 23741043 DOI: 10.1152/jn.00114.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide vasoactive intestinal peptide (VIP) is expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN). While VIP is known to be important to the input and output pathways from the SCN, the physiological effects of VIP on electrical activity of SCN neurons are not well known. Here the impact of VIP on firing rate of SCN neurons was investigated in mouse slice cultures recorded during the night. The application of VIP produced an increase in electrical activity in SCN slices that lasted several hours after treatment. This is a novel mechanism by which this peptide can produce long-term changes in central nervous system physiology. The increase in action potential frequency was blocked by a VIP receptor antagonist and lost in a VIP receptor knockout mouse. In addition, inhibitors of both the Epac family of cAMP binding proteins and cAMP-dependent protein kinase (PKA) blocked the induction by VIP. The persistent increase in spike rate following VIP application was not seen in SCN neurons from mice deficient in Kv3 channel proteins and was dependent on the clock protein PER1. These findings suggest that VIP regulates the long-term firing rate of SCN neurons through a VIPR2-mediated increase in the cAMP pathway and implicate the fast delayed rectifier (FDR) potassium currents as one of the targets of this regulation.
Collapse
Affiliation(s)
- Takashi Kudo
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, CA 90024, USA
| | | | | | | | | | | |
Collapse
|
46
|
Bedrosian TA, Galan A, Vaughn CA, Weil ZM, Nelson RJ. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters. J Neuroendocrinol 2013; 25:590-6. [PMID: 23489976 DOI: 10.1111/jne.12036] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 02/27/2013] [Accepted: 03/07/2013] [Indexed: 01/06/2023]
Abstract
Humans and other organisms have adapted to a 24-h solar cycle in response to life on Earth. The rotation of the planet on its axis and its revolution around the sun cause predictable daily and seasonal patterns in day length. To successfully anticipate and adapt to these patterns in the environment, a variety of biological processes oscillate with a daily rhythm of approximately 24 h in length. These rhythms arise from hierarchally-coupled cellular clocks generated by positive and negative transcription factors of core circadian clock gene expression. From these endogenous cellular clocks, overt rhythms in activity and patterns in hormone secretion and other homeostatic processes emerge. These circadian rhythms in physiology and behaviour can be organised by a variety of cues, although they are most potently entrained by light. In recent history, there has been a major change from naturally-occurring light cycles set by the sun, to artificial and sometimes erratic light cycles determined by the use of electric lighting. Virtually every individual living in an industrialised country experiences light at night (LAN) but, despite its prevalence, the biological effects of such unnatural lighting have not been fully considered. Using female Siberian hamsters (Phodopus sungorus), we investigated the effects of chronic nightly exposure to dim light on daily rhythms in locomotor activity, serum cortisol concentrations and brain expression of circadian clock proteins (i.e. PER1, PER2, BMAL1). Although locomotor activity remained entrained to the light cycle, the diurnal fluctuation of cortisol concentrations was blunted and the expression patterns of clock proteins in the suprachiasmatic nucleus and hippocampus were altered. These results demonstrate that chronic exposure to dim LAN can dramatically affect fundamental cellular function and emergent physiology.
Collapse
Affiliation(s)
- T A Bedrosian
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Investigators typically study one function of the circadian visual system at a time, be it photoreception, transmission of photic information to the suprachiasmatic nucleus (SCN), light control of rhythm phase, locomotor activity, or gene expression. There are good reasons for such a focused approach, but sometimes it is advantageous to look at the broader picture, asking how all the parts and functions complete the whole. Here, several seemingly disparate functions of the circadian visual system are examined. They share common characteristics with respect to regulation by light and, to the extent known, share a common input neuroanatomy. The argument presented is that the 3 hypothalamically mediated effects of light for which there are the most data, circadian clock phase shifts, suppression of nocturnal locomotion (“negative masking”), and suppression of nocturnal pineal function, are regulated by a common photic input pathway terminating in the SCN. For each, light triggers a relatively fixed interval response that is irradiance-dependent, the effective stimulus can be very brief light exposure, and the response continues to completion in the absence of additional light. The presence of a triggered, fixed-length response interval is of particular importance to the understanding of the circuitry and mechanisms regulating circadian rhythm phase shifts because it implies that the SCN clock response to light is not instantaneous. It also may explain why certain stimuli (neuropeptide Y or novel wheel running) administered many minutes after light exposure are able to block light-induced phase shifts. The understanding of negative masking is complicated by the fact that it can be represented as a positive change, that is, light-induced sleep, not just as a reduction in locomotion. Acute nocturnal light exposure also induces adrenal hormone secretion and a rapid drop in body temperature, physiological responses that appear to be regulated similarly to the other light effects. The likelihood of a common regulatory basis for the several responses suggests that additional light-induced responses will be forthcoming and raises questions about the relationships between light, SCN cellular anatomy, the molecular clockworks of SCN neurons, and SCN throughput mechanisms for regulating disparate downstream activities.
Collapse
Affiliation(s)
- Lawrence P. Morin
- Department of Psychiatry, Stony Brook Medical Center, Stony Brook University, Stony Brook, NY
| |
Collapse
|
48
|
Montgomery JR, Whitt JP, Wright BN, Lai MH, Meredith AL. Mis-expression of the BK K(+) channel disrupts suprachiasmatic nucleus circuit rhythmicity and alters clock-controlled behavior. Am J Physiol Cell Physiol 2012; 304:C299-311. [PMID: 23174562 DOI: 10.1152/ajpcell.00302.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In mammals, almost all aspects of circadian rhythmicity are attributed to activity in a discrete neural circuit of the hypothalamus, the suprachiasmatic nucleus (SCN). A 24-h rhythm in spontaneous firing is the fundamental neural intermediary to circadian behavior, but the ionic mechanisms that pattern circuit rhythmicity, and the integrated impact on behavior, are not well studied. Here, we demonstrate that daily modulation of a major component of the nighttime-phased suppressive K(+) current, encoded by the BK Ca(2+)-activated K(+) current channel (K(Ca)1.1 or Kcnma1), is a critical arbiter of circadian rhythmicity in the SCN circuit. Aberrant induction of BK current during the day in transgenic mice using a Per1 promoter (Tg-BK(R207Q)) reduced SCN firing or silenced neurons, decreasing the circadian amplitude of the ensemble circuit rhythm. Changes in cellular and circuit excitability in Tg-BK(R207Q) SCNs were correlated with elongated behavioral active periods and enhanced responses to phase-shifting stimuli. Unexpectedly, despite the severe reduction in circuit amplitude, circadian behavioral amplitudes in Tg-BK(R207Q) mice were relatively normal. These data demonstrate that downregulation of the BK current during the day is essential for the high amplitude neural activity pattern in the SCN that restricts locomotor activity to the appropriate phase and maintains the clock's robustness against perturbation. However, a residually rhythmic subset prevails over the ensemble circuit to drive the fundamental circadian behavioral rhythm.
Collapse
Affiliation(s)
- Jenna R Montgomery
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
49
|
Paul JR, Johnson RL, Jope RS, Gamble KL. Disruption of circadian rhythmicity and suprachiasmatic action potential frequency in a mouse model with constitutive activation of glycogen synthase kinase 3. Neuroscience 2012; 226:1-9. [PMID: 22986169 DOI: 10.1016/j.neuroscience.2012.08.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/11/2012] [Accepted: 08/24/2012] [Indexed: 12/21/2022]
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase that has been implicated in psychiatric diseases, neurodevelopment, and circadian regulation. Both GSK3 isoforms, α and β, exhibit a 24-h variation of inhibitory phosphorylation within the suprachiasmatic nucleus (SCN), the primary circadian pacemaker. We examined the hypothesis that rhythmic GSK3 activity is critical for robust circadian rhythmicity using GSK3α(21A/21A)/β(9A/9A) knock-in mice with serine-alanine substitutions at the inhibitory phosphorylation sites, making both forms constitutively active. We monitored wheel-running locomotor activity of GSK3 knock-in mice and used loose-patch electrophysiology to examine the effect of chronic GSK3 activity on circadian behavior and SCN neuronal activity. Double transgenic GSK3α/β knock-in mice exhibit disrupted behavioral rhythmicity, including significantly decreased rhythmic amplitude, lengthened active period, and increased activity bouts per day. This behavioral disruption was dependent on chronic activation of both GSK3 isoforms and was not seen in single transgenic GSK3α or GSK3β knock-in mice. Underlying the behavioral changes, SCN neurons from double transgenic GSK3α/β knock-in mice exhibited significantly higher spike rates during the subjective night compared to those from wild-type controls, with no differences detected during the subjective day. These results suggest that constitutive activation of GSK3 results in the loss of the typical day/night variation of SCN neuronal activity. Together, these results implicate GSK3 activity as a critical regulator of circadian behavior and neurophysiological rhythms. Because GSK3 has been implicated in numerous pathologies, understanding how GSK3 modulates circadian rhythms and neurophysiological activity may lead to novel therapeutics for pathological disorders and circadian rhythm dysfunction.
Collapse
Affiliation(s)
- J R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | | | |
Collapse
|
50
|
Besing RC, Hablitz LM, Paul JR, Johnson RL, Prosser RA, Gamble KL. Neuropeptide Y-induced phase shifts of PER2::LUC rhythms are mediated by long-term suppression of neuronal excitability in a phase-specific manner. Chronobiol Int 2012; 29:91-102. [PMID: 22324550 DOI: 10.3109/07420528.2011.649382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endogenous circadian rhythms are entrained to the 24-h light/dark cycle by both light and nonphotic stimuli. During the day, nonphotic stimuli, such as novel wheel-induced exercise, produce large phase advances. Neuropeptide Y (NPY) release from the thalamus onto suprachiasmatic nucleus (SCN) neurons at least partially mediates this nonphotic signal. The authors examined the hypothesis that NPY-induced phase advances are accompanied by suppression of PER2 and are mediated by long-term depression of neuronal excitability in a phase-specific manner. First, it was found that NPY-induced phase advances in PER2::LUC SCN cultures are largest when NPY (2.35 µM) is given in the early part of the day (circadian time [CT] 0-6). In addition, PER2::LUC levels in NPY-treated (compared to vehicle-treated) samples were suppressed beginning 6-7 h after treatment. Similar NPY application to organotypic Per1::GFP SCN cultures resulted in long-term suppression of spike rate of green fluorescent protein-positive (GFP+) cells when slices were treated with NPY during the early or middle of the day (zeitgeber time [ZT] 2 or 6), but not during the late day (ZT 10). Furthermore, 1-h bath application of NPY to acute SCN brain slices decreased general neuronal activity measured through extracellular recordings. Finally, NPY-induced phase advances of PER2::LUC rhythms were blocked by latent depolarization with 34.5 mM K(+) 3 h after NPY application. These results suggest that NPY-induced phase advances may be mediated by long-term depression of neuronal excitability. This model is consistent with findings in other brain regions that NPY-induced persistent hyperpolarization underlies mechanisms of energy homeostasis, anxiety-related behavior, and thalamocortical synchronous firing.
Collapse
Affiliation(s)
- Rachel C Besing
- Department of Psychiatry and Behavioral Neurobiology , University of Alabama at Birmingham , Birmingham, AL 35294-0017, USA
| | | | | | | | | | | |
Collapse
|