1
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Fernández-Moncada I, Lavanco G, Fundazuri UB, Bollmohr N, Mountadem S, Dalla Tor T, Hachaguer P, Julio-Kalajzic F, Gisquet D, Serrat R, Bellocchio L, Cannich A, Fortunato-Marsol B, Nasu Y, Campbell RE, Drago F, Cannizzaro C, Ferreira G, Bouzier-Sore AK, Pellerin L, Bolaños JP, Bonvento G, Barros LF, Oliet SHR, Panatier A, Marsicano G. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice. Nat Commun 2024; 15:6842. [PMID: 39122700 PMCID: PMC11316019 DOI: 10.1038/s41467-024-51008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.
Collapse
Affiliation(s)
| | - Gianluca Lavanco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, ''G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Unai B Fundazuri
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Nasrin Bollmohr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Sarah Mountadem
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Tommaso Dalla Tor
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Pauline Hachaguer
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Doriane Gisquet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Roman Serrat
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec City, QC, Canada
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, F-33000, Bordeaux, France
| | - Luc Pellerin
- Université de Poitiers et CHU de Poitiers, INSERM, IRMETIST, U1313, Poitiers, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Gilles Bonvento
- Universite Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodegeneratives, Fontenay-aux-Roses, France
| | - L Felipe Barros
- Centro de Estudios Cientificos, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Stephane H R Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
3
|
Theparambil SM, Kopach O, Braga A, Nizari S, Hosford PS, Sagi-Kiss V, Hadjihambi A, Konstantinou C, Esteras N, Gutierrez Del Arroyo A, Ackland GL, Teschemacher AG, Dale N, Eckle T, Andrikopoulos P, Rusakov DA, Kasparov S, Gourine AV. Adenosine signalling to astrocytes coordinates brain metabolism and function. Nature 2024; 632:139-146. [PMID: 38961289 PMCID: PMC11291286 DOI: 10.1038/s41586-024-07611-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/27/2024] [Indexed: 07/05/2024]
Abstract
Brain computation performed by billions of nerve cells relies on a sufficient and uninterrupted nutrient and oxygen supply1,2. Astrocytes, the ubiquitous glial neighbours of neurons, govern brain glucose uptake and metabolism3,4, but the exact mechanisms of metabolic coupling between neurons and astrocytes that ensure on-demand support of neuronal energy needs are not fully understood5,6. Here we show, using experimental in vitro and in vivo animal models, that neuronal activity-dependent metabolic activation of astrocytes is mediated by neuromodulator adenosine acting on astrocytic A2B receptors. Stimulation of A2B receptors recruits the canonical cyclic adenosine 3',5'-monophosphate-protein kinase A signalling pathway, leading to rapid activation of astrocyte glucose metabolism and the release of lactate, which supplements the extracellular pool of readily available energy substrates. Experimental mouse models involving conditional deletion of the gene encoding A2B receptors in astrocytes showed that adenosine-mediated metabolic signalling is essential for maintaining synaptic function, especially under conditions of high energy demand or reduced energy supply. Knockdown of A2B receptor expression in astrocytes led to a major reprogramming of brain energy metabolism, prevented synaptic plasticity in the hippocampus, severely impaired recognition memory and disrupted sleep. These data identify the adenosine A2B receptor as an astrocytic sensor of neuronal activity and show that cAMP signalling in astrocytes tunes brain energy metabolism to support its fundamental functions such as sleep and memory.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, UK.
| | - Olga Kopach
- Institute of Neurology, University College London, London, UK
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Virag Sagi-Kiss
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research & Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christos Konstantinou
- The Roger Williams Institute of Hepatology, Foundation for Liver Research & Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Noemi Esteras
- Institute of Neurology, University College London, London, UK
| | - Ana Gutierrez Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anja G Teschemacher
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Tobias Eckle
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Petros Andrikopoulos
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Sergey Kasparov
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
4
|
Theparambil SM, Begum G, Rose CR. pH regulating mechanisms of astrocytes: A critical component in physiology and disease of the brain. Cell Calcium 2024; 120:102882. [PMID: 38631162 PMCID: PMC11423562 DOI: 10.1016/j.ceca.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Faculty of Health and Medicine, Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, Lancaster, UK.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
5
|
Ye Q, Jo J, Wang CY, Oh H, Zhan J, Choy TJ, Kim KI, D'Alessandro A, Reshetnyak YK, Jung SY, Chen Z, Marrelli SP, Lee HK. Astrocytic Slc4a4 regulates blood-brain barrier integrity in healthy and stroke brains via a CCL2-CCR2 pathway and NO dysregulation. Cell Rep 2024; 43:114193. [PMID: 38709635 PMCID: PMC11210630 DOI: 10.1016/j.celrep.2024.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Heavin Oh
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jiangshan Zhan
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Tiffany J Choy
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyoung In Kim
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 77030, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Holmberg SR, Sakamoto Y, Kato A, Romero MF. The role of Na +-coupled bicarbonate transporters (NCBT) in health and disease. Pflugers Arch 2024; 476:479-503. [PMID: 38536494 PMCID: PMC11338471 DOI: 10.1007/s00424-024-02937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.
Collapse
Affiliation(s)
- Shannon R Holmberg
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA
| | - Yohei Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA.
- Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA.
| |
Collapse
|
7
|
Pietrobon D, Conti F. Astrocytic Na +, K + ATPases in physiology and pathophysiology. Cell Calcium 2024; 118:102851. [PMID: 38308916 DOI: 10.1016/j.ceca.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The Na+, K+ ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na+, K+ ATPases, the review focuses on the role of the astrocytic Na+, K+ pumps in extracellular K+ and glutamate homeostasis, intracellular Na+ and Ca2+ homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na+, K+ ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na+, K+ ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na+, K+ ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na+, K+ ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center (PNC), University of Padova, Padova 35131, Italy.
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
8
|
Rose CR, Verkhratsky A. Sodium homeostasis and signalling: The core and the hub of astrocyte function. Cell Calcium 2024; 117:102817. [PMID: 37979342 DOI: 10.1016/j.ceca.2023.102817] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
Neuronal activity and neurochemical stimulation trigger spatio-temporal changes in the cytoplasmic concentration of Na+ ions in astrocytes. These changes constitute the substrate for Na+ signalling and are fundamental for astrocytic excitability. Astrocytic Na+ signals are generated by Na+ influx through neurotransmitter transporters, with primary contribution of glutamate transporters, and through cationic channels; whereas recovery from Na+ transients is mediated mainly by the plasmalemmal Na+/K+ ATPase. Astrocytic Na+ signals regulate the activity of plasmalemmal transporters critical for homeostatic function of astrocytes, thus providing real-time coordination between neuronal activity and astrocytic support.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Alexej Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| |
Collapse
|
9
|
Rabah Y, Francés R, Minatchy J, Guédon L, Desnous C, Plaçais PY, Preat T. Glycolysis-derived alanine from glia fuels neuronal mitochondria for memory in Drosophila. Nat Metab 2023; 5:2002-2019. [PMID: 37932430 PMCID: PMC10663161 DOI: 10.1038/s42255-023-00910-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Glucose is the primary source of energy for the brain; however, it remains controversial whether, upon neuronal activation, glucose is primarily used by neurons for ATP production or if it is partially oxidized in astrocytes, as proposed by the astrocyte-neuron lactate shuttle model for glutamatergic neurons. Thus, an in vivo picture of glucose metabolism during cognitive processes is missing. Here, we uncover in Drosophila melanogaster a glia-to-neuron alanine transfer involving alanine aminotransferase that sustains memory formation. Following associative conditioning, glycolysis in glial cells produces alanine, which is back-converted into pyruvate in cholinergic neurons of the olfactory memory center to uphold their increased mitochondrial needs. Alanine, as a mediator of glia-neuron coupling, could be an alternative to lactate in cholinergic systems. In parallel, a dedicated glial glucose transporter imports glucose specifically for long-term memory, by directly transferring it to neurons for use by the pentose phosphate pathway. Our results demonstrate in vivo the compartmentalization of glucose metabolism between neurons and glial cells during memory formation.
Collapse
Affiliation(s)
- Yasmine Rabah
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Julia Minatchy
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laura Guédon
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Coraline Desnous
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
10
|
Darvishmolla M, Saeedi N, Tavassoli Z, Heysieattalab S, Janahmadi M, Hosseinmardi N. Maladaptive plasticity induced by morphine is mediated by hippocampal astrocytic Connexin-43. Life Sci 2023; 330:121969. [PMID: 37541575 DOI: 10.1016/j.lfs.2023.121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
AIMS Drug addiction is an aberrant learning process that involves the recruitment of memory systems. We have previously demonstrated that morphine exposure causes maladaptive synaptic plasticity which involved hippocampal glial cells, especially astrocytes. Morphine addiction has been associated with astrocytic connexin 43 (Cx43), which plays a role in synaptic homeostasis. This study aimed to examine the role of hippocampal astrocytic Cx43 in morphine-induced maladaptive plasticity as a mechanism of addiction. MAIN METHODS Male rats were injected with morphine (10 mg/kg) subcutaneously every 12 h for nine days to induce dependence. Cx43 was inhibited by TAT-Gap19 (1 μl/1 nmol) microinjection in the CA1 region of the hippocampus 30 min before each morning morphine injection. Field potential recordings were used to assess synaptic plasticity. fEPSP was recorded from the CA1 area following CA3 stimulation. KEY FINDINGS Electrophysiological results showed that morphine treatment altered baseline synaptic responses. It also appears that morphine treatment augmented long-term potentiation (LTP) compared with the control group. Hippocampal astrocytic Cx43 inhibition, with the TAT-Gap19, undermines these effects of morphine on baseline synaptic responses and LTP. Despite this, long-term depression (LTD) did not differ significantly between the groups. Additionally, in the morphine-receiving group, inhibition of Cx43 significantly reduced the paired-pulse index at an 80-millisecond inter-pulse interval when assessing short-term plasticity. SIGNIFICANCE The results of this study demonstrated that inhibiting Cx43 reduced synaptic plasticity induced by morphine. It can be concluded that hippocampal astrocytes through Cx43 are involved in morphine-induced metaplasticity.
Collapse
Affiliation(s)
- Mahgol Darvishmolla
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Saeedi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tavassoli
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mahyar Janahmadi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Guidetti OA, Speelman CP, Bouhlas P. Mapping between cognitive theories and psycho-physiological models of attention system performance. Cereb Cortex 2023; 33:10122-10138. [PMID: 37492014 PMCID: PMC10502801 DOI: 10.1093/cercor/bhad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Declines in the capacity to sustain attention to repetitive, monotonous tasks is a phenomenon known as vigilance decrement (Endsley M, Kiris E. The out-of-the-loop performance problem and level of control in automation. 1995. Hum Factors. 37:32-64). This review compares cognitive theories with psycho-physiological models of vigilance decrement, and a gap is identified in mapping between the 2. That is, theories of vigilance decrement refer to "cognitive" resources; by contrast, psychophysiological models of the cerebral systems associated with attention explain performance functions according to neurochemical resources. A map does not currently exist in the literature that bridges the gap between cognitive theories of vigilance decrement and psychophysiological models of the human attention system. The link between "cognitive resource" theories of vigilance decrement and the psychophysiological models of attention performance is a gap in the literature that this review fills. This comprehensive review provides an expanded psychophysiological understanding of vigilance decrement that could help inform the management of declines in sustained attention capacity in operational settings. In addition, elucidating the link between cognitive theories of vigilance decrement and psychophysiological models of the human attention system might be used to treat and better understand pathologies such as attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Oliver A Guidetti
- Western Australian Department of the Premier and Cabinet, The Cyber Security Research Cooperative, Edith Cowan University, Building 30, 270 Joondalup Dr, Joondalup, Western Australia 6027, Australia
| | - Craig P Speelman
- Department of Psychology, Edith Cowan University, Building 30, 270 Joondalup Dr, Joondalup, Western Australia 6027, Australia
| | - Peter Bouhlas
- Western Australian Department of the Premier and Cabinet, Dumas House, 2 Havelock St, West Perth, Western Australia 6005, Australia
| |
Collapse
|
12
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
13
|
Cauli B, Dusart I, Li D. Lactate as a determinant of neuronal excitability, neuroenergetics and beyond. Neurobiol Dis 2023:106207. [PMID: 37331530 DOI: 10.1016/j.nbd.2023.106207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023] Open
Abstract
Over the last decades, lactate has emerged as important energy substrate for the brain fueling of neurons. A growing body of evidence now indicates that it is also a signaling molecule modulating neuronal excitability and activity as well as brain functions. In this review, we will briefly summarize how different cell types produce and release lactate. We will further describe different signaling mechanisms allowing lactate to fine-tune neuronal excitability and activity, and will finally discuss how these mechanisms could cooperate to modulate neuroenergetics and higher order brain functions both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France.
| | - Isabelle Dusart
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
14
|
Ye Q, Jo J, Wang CY, Oh H, Choy TJ, Kim K, D’Alessandro A, Reshetnyak YK, Jung SY, Chen Z, Marrelli SP, Lee HK. Astrocytic Slc4a4 regulates blood-brain barrier integrity in healthy and stroke brains via a NO-CCL2-CCR2 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535167. [PMID: 37066295 PMCID: PMC10103986 DOI: 10.1101/2023.04.03.535167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests pH homeostasis is a new cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption and reactive gliosis, which were both rescued by pharmacological or genetic inhibition of the NO-CCL2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-NO-CCL2 axis as a pivotal mechanism controlling BBB integrity and repair, while providing insights for a novel therapeutic approach against BBB-related CNS disorders.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Heavin Oh
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Tiffany J. Choy
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Kyoungin Kim
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean P. Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Astroglial CB1 receptors, energy metabolism, and gliotransmission: an integrated signaling system? Essays Biochem 2023; 67:49-61. [PMID: 36645029 DOI: 10.1042/ebc20220089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/17/2023]
Abstract
Astrocytes are key players in brain homeostasis and function. During the last years, several studies have cemented this notion by showing that these cells respond to neuronal signals and, via the release of molecules that modulate and support synaptic activity (gliotransmission) participates in the functions of the so-called tripartite synapse. Thus, besides their established control of brain metabolism, astrocytes can also actively control synaptic activity and behavior. Among the signaling pathways that shape the functions of astrocyte, the cannabinoid type-1 (CB1) receptor is emerging as a critical player in the control of both gliotransmission and the metabolic cooperation between astrocytes and neurons. In the present short review, we describe known and newly discovered properties of the astroglial CB1 receptors and their role in modulating brain function and behavior. Based on this evidence, we finally discuss how the functions and mode of actions of astrocyte CB1 receptors might represent a clear example of the inextricable relationship between energy metabolism and gliotransmission. These tight interactions will need to be taken into account for future research in astrocyte functions and call for a reinforcement of the theoretical and experimental bridges between studies on metabolic and synaptic functions of astrocytes.
Collapse
|
16
|
Schoknecht K, Hirrlinger J, Eilers J. Transient astrocytic accumulation of fluorescein during spreading depolarizations. Neurobiol Dis 2023; 178:106026. [PMID: 36731681 DOI: 10.1016/j.nbd.2023.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Spreading depolarizations (SDs) occur frequently in acute cerebral injuries. They are characterized by a breakdown of transmembrane ion gradients resulting in a reduced extracellular sodium ([Na+]o) and increased extracellular potassium concentration ([K+]o). Elevated [K+]o induces astrocytic swelling, another feature of SD; however, the solutes that drive astrocytic swelling remain incompletely understood. We incidentally found astrocytic accumulation of fluorescein (Fluo) - a low molecular weight anionic dye - during SDs induced by elevated [K+]o. Herein, we aimed to explore the properties of astrocytic Fluo accumulation during SDs, electrical stimulation, [K+]o and glutamate elevation and elucidate underlying mechanisms and its relation to swelling. Experiments were performed in acute neocortical slices from adult male C57Bl6 mice and transgenic mice expressing tdTomato in parvalbumin (PV)-positive neurons. We labeled astrocytes with sulforhodamine-101 (SR-101), measured Fluo kinetics using 2-photon laser scanning microscopy and recorded local field potentials (LFP) to detect SDs. Elevations of [K+]o lead to an increase of the astrocytic Fluo intensity in parallel with astrocytic swelling. Pharmacological inhibitors of sodium‑potassium ATPase (Na/K-ATPase), secondary-active transporters and channels were used to address the underlying mechanisms. Fluo accumulation as well as swelling were only prevented by inhibition of the sodium‑potassium ATPase. Application of glutamate or hypoosmolar solution induced astrocytic swelling independent of Fluo accumulation and glutamate opposed Fluo accumulation when co-administered with high [K+]o. Astrocytes accumulated Fluo and swelled during electrical stimulation and even more during SDs. Taken together, Fluo imaging can be used as a tool to visualize yet unidentified anion fluxes during [K+]o- but not glutamate- or hypoosmolarity induced astrocytic swelling. Fluo imaging may thereby help to elucidate mechanisms of astrocytic swelling and associated fluid movements between brain compartments during physiological and pathological conditions, e.g. SDs.
Collapse
Affiliation(s)
- Karl Schoknecht
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Leipzig, Germany; Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
17
|
Barros LF, Ruminot I, Sotelo-Hitschfeld T, Lerchundi R, Fernández-Moncada I. Metabolic Recruitment in Brain Tissue. Annu Rev Physiol 2023; 85:115-135. [PMID: 36270291 DOI: 10.1146/annurev-physiol-021422-091035] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Information processing imposes urgent metabolic demands on neurons, which have negligible energy stores and restricted access to fuel. Here, we discuss metabolic recruitment, the tissue-level phenomenon whereby active neurons harvest resources from their surroundings. The primary event is the neuronal release of K+ that mirrors workload. Astrocytes sense K+ in exquisite fashion thanks to their unique coexpression of NBCe1 and α2β2 Na+/K+ ATPase, and within seconds switch to Crabtree metabolism, involving GLUT1, aerobic glycolysis, transient suppression of mitochondrial respiration, and lactate export. The lactate surge serves as a secondary recruiter by inhibiting glucose consumption in distant cells. Additional recruiters are glutamate, nitric oxide, and ammonium, which signal over different spatiotemporal domains. The net outcome of these events is that more glucose, lactate, and oxygen are made available. Metabolic recruitment works alongside neurovascular coupling and various averaging strategies to support the inordinate dynamic range of individual neurons.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile;
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile;
| | - T Sotelo-Hitschfeld
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - R Lerchundi
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, Fontenay-aux-Roses, France
| | - I Fernández-Moncada
- NeuroCentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Köhler S, Winkler U, Junge T, Lippmann K, Eilers J, Hirrlinger J. Gray and white matter astrocytes differ in basal metabolism but respond similarly to neuronal activity. Glia 2023; 71:229-244. [PMID: 36063073 DOI: 10.1002/glia.24268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Astrocytes are a heterogeneous population of glial cells in the brain, which adapt their properties to the requirements of the local environment. Two major groups of astrocytes are protoplasmic astrocytes residing in gray matter as well as fibrous astrocytes of white matter. Here, we compared the energy metabolism of astrocytes in the cortex and corpus callosum as representative gray matter and white matter regions, in acute brain slices taking advantage of genetically encoded fluorescent nanosensors for the NADH/NAD+ redox ratio and for ATP. Astrocytes of the corpus callosum presented a more reduced basal NADH/NAD+ redox ratio, and a lower cytosolic concentration of ATP compared to cortical astrocytes. In cortical astrocytes, the neurotransmitter glutamate and increased extracellular concentrations of K+ , typical correlates of neuronal activity, induced a more reduced NADH/NAD+ redox ratio. While application of glutamate decreased [ATP], K+ as well as the combination of glutamate and K+ resulted in an increase of ATP levels. Strikingly, a very similar regulation of metabolism by K+ and glutamate was observed in astrocytes in the corpus callosum. Finally, strong intrinsic neuronal activity provoked by application of bicuculline and withdrawal of Mg2+ caused a shift of the NADH/NAD+ redox ratio to a more reduced state as well as a slight reduction of [ATP] in gray and white matter astrocytes. In summary, the metabolism of astrocytes in cortex and corpus callosum shows distinct basal properties, but qualitatively similar responses to neuronal activity, probably reflecting the different environment and requirements of these brain regions.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Tabea Junge
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Kristina Lippmann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
19
|
Hopper AJ, Beswick‐Jones H, Brown AM. Resilience of compound action potential peaks to high-frequency firing in the mouse optic nerve. Physiol Rep 2023; 11:e15606. [PMID: 36807847 PMCID: PMC9937793 DOI: 10.14814/phy2.15606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
Action potential conduction in axons triggers trans-membrane ion movements, where Na+ enters and K+ leaves axons, leading to disruptions in resting trans-membrane ion gradients that must be restored for optimal axon conduction, an energy dependent process. The higher the stimulus frequency, the greater the ion movements and the resulting energy demand. In the mouse optic nerve (MON), the stimulus evoked compound action potential (CAP) displays a triple peaked profile, consistent with subpopulations of axons classified by size producing the distinct peaks. The three CAP peaks show differential sensitivity to high-frequency firing, with the large axons, which contribute to the 1st peak, more resilient than the small axons, which produce the 3rd peak. Modeling studies predict frequency dependent intra-axonal Na+ accumulation at the nodes of Ranvier, sufficient to attenuate the triple peaked CAP. Short bursts of high-frequency stimulus evoke transient elevations in interstitial K+ ([K+ ]o ), which peak at about 50 Hz. However, powerful astrocytic buffering limits the [K+ ]o increase to levels insufficient to cause CAP attenuation. A post-stimulus [K+ ]o undershoot below baseline coincides with a transient increase in the amplitudes of all three CAP peaks. The volume specific scaling relating energy expenditure to increasing axon size dictates that large axons are more resilient to high-frequency firing than small axons.
Collapse
Affiliation(s)
- Amy J. Hopper
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | | | - Angus M. Brown
- School of Life SciencesUniversity of NottinghamNottinghamUK
- Department of Neurology, School of MedicineUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
20
|
Activity-Dependent Fluctuations in Interstitial [K +]: Investigations Using Ion-Sensitive Microelectrodes. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020523. [PMID: 36677581 PMCID: PMC9865121 DOI: 10.3390/molecules28020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
In the course of action potential firing, all axons and neurons release K+ from the intra- cellular compartment into the interstitial space to counteract the depolarizing effect of Na+ influx, which restores the resting membrane potential. This efflux of K+ from axons results in K+ accumulation in the interstitial space, causing depolarization of the K+ reversal potential (EK), which can prevent subsequent action potentials. To ensure optimal neuronal function, the K+ is buffered by astrocytes, an energy-dependent process, which acts as a sink for interstitial K+, absorbing it at regions of high concentration and distributing it through the syncytium for release in distant regions. Pathological processes in which energy production is compromised, such as anoxia, ischemia, epilepsy and spreading depression, can lead to excessive interstitial K+ accumulation, disrupting sensitive trans-membrane ion gradients and attenuating neuronal activity. The changes that occur in interstitial [K+] resulting from both physiological and pathological processes can be monitored accurately in real time using K+-sensitive microelectrodes, an invaluable tool in electrophysiological studies.
Collapse
|
21
|
Walch E, Fiacco TA. Honey, I shrunk the extracellular space: Measurements and mechanisms of astrocyte swelling. Glia 2022; 70:2013-2031. [PMID: 35635369 PMCID: PMC9474570 DOI: 10.1002/glia.24224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
Abstract
Astrocyte volume fluctuation is a physiological phenomenon tied closely to the activation of neural circuits. Identification of underlying mechanisms has been challenging due in part to use of a wide range of experimental approaches that vary between research groups. Here, we first review the many methods that have been used to measure astrocyte volume changes directly or indirectly. While the field has recently shifted towards volume analysis using fluorescence microscopy to record cell volume changes directly, established metrics corresponding to extracellular space dynamics have also yielded valuable insights. We then turn to analysis of mechanisms of astrocyte swelling derived from many studies, with a focus on volume changes tied to increases in extracellular potassium concentration ([K+ ]o ). The diverse methods that have been utilized to generate the external [K+ ]o environment highlight multiple scenarios of astrocyte swelling mediated by different mechanisms. Classical potassium buffering theories are tempered by many recent studies that point to different swelling pathways optimized at particular [K+ ]o and that depend on local/transient versus more sustained increases in [K+ ]o .
Collapse
Affiliation(s)
- Erin Walch
- Division of Biomedical Sciences, School of MedicineUniversity of California, RiversideRiversideCaliforniaUSA
| | - Todd A. Fiacco
- Department of Molecular, Cell and Systems BiologyUniversity of California, RiversideRiversideCaliforniaUSA
- Center for Glial‐Neuronal InteractionsUniversity of California, RiversideRiversideCaliforniaUSA
| |
Collapse
|
22
|
Hösli L, Binini N, Ferrari KD, Thieren L, Looser ZJ, Zuend M, Zanker HS, Berry S, Holub M, Möbius W, Ruhwedel T, Nave KA, Giaume C, Weber B, Saab AS. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning. Cell Rep 2022; 38:110484. [PMID: 35263595 DOI: 10.1016/j.celrep.2022.110484] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity, and memory are still poorly explored. Astrocytes form large intercellular networks by gap junction coupling, mainly composed of two gap junction channel proteins, connexin 30 (Cx30) and connexin 43 (Cx43). To circumvent developmental perturbations and to test whether astrocytic gap junction coupling is required for hippocampal neural circuit function and behavior, we generate and study inducible, astrocyte-specific Cx30 and Cx43 double knockouts. Surprisingly, disrupting astrocytic coupling in adult mice results in broad activation of astrocytes and microglia, without obvious signs of pathology. We show that hippocampal CA1 neuron excitability, excitatory synaptic transmission, and long-term potentiation are significantly affected. Moreover, behavioral inspection reveals deficits in sensorimotor performance and a complete lack of spatial learning and memory. Together, our findings establish that astrocytic connexins and an intact astroglial network in the adult brain are vital for neural homeostasis, plasticity, and spatial cognition.
Collapse
Affiliation(s)
- Ladina Hösli
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Noemi Binini
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Laetitia Thieren
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Marc Zuend
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Henri S Zanker
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Stewart Berry
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Martin Holub
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Wiebke Möbius
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Torben Ruhwedel
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, 75231 Paris Cedex 05, France
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
23
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
24
|
Involvement of Hippocampal Astrocytic Connexin-43 in Morphine dependence. Physiol Behav 2022; 247:113710. [DOI: 10.1016/j.physbeh.2022.113710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
|
25
|
Ponomareva D, Petukhova E, Bregestovski P. Simultaneous Monitoring of pH and Chloride (Cl -) in Brain Slices of Transgenic Mice. Int J Mol Sci 2021; 22:13601. [PMID: 34948398 PMCID: PMC8708776 DOI: 10.3390/ijms222413601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Optosensorics is the direction of research possessing the possibility of non-invasive monitoring of the concentration of intracellular ions or activity of intracellular components using specific biosensors. In recent years, genetically encoded proteins have been used as effective optosensory means. These probes possess fluorophore groups capable of changing fluorescence when interacting with certain ions or molecules. For monitoring of intracellular concentrations of chloride ([Cl-]i) and hydrogen ([H+] i) the construct, called ClopHensor, which consists of a H+- and Cl--sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a monomeric red fluorescent protein (mDsRed) has been proposed. We recently developed a line of transgenic mice expressing ClopHensor in neurons and obtained the map of its expression in different areas of the brain. The purpose of this study was to examine the effectiveness of transgenic mice expressing ClopHensor for estimation of [H+]i and [Cl-]i concentrations in neurons of brain slices. We performed simultaneous monitoring of [H+]i and [Cl-]i under different experimental conditions including changing of external concentrations of ions (Ca2+, Cl-, K+, Na+) and synaptic stimulation of Shaffer's collaterals of hippocampal slices. The results obtained illuminate different pathways of regulation of Cl- and pH equilibrium in neurons and demonstrate that transgenic mice expressing ClopHensor represent a reliable tool for non-invasive simultaneous monitoring of intracellular Cl- and pH.
Collapse
Affiliation(s)
- Daria Ponomareva
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France;
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| | - Elena Petukhova
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| | - Piotr Bregestovski
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France;
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| |
Collapse
|
26
|
Jo J, Woo J, Cristobal CD, Choi JM, Wang C, Ye Q, Smith JA, Ung K, Liu G, Cortes D, Jung SY, Arenkiel BR, Lee HK. Regional heterogeneity of astrocyte morphogenesis dictated by the formin protein, Daam2, modifies circuit function. EMBO Rep 2021; 22:e53200. [PMID: 34633730 PMCID: PMC8647146 DOI: 10.15252/embr.202153200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
Astrocytes display extraordinary morphological complexity that is essential to support brain circuit development and function. Formin proteins are key regulators of the cytoskeleton; however, their role in astrocyte morphogenesis across diverse brain regions and neural circuits is unknown. Here, we show that loss of the formin protein Daam2 in astrocytes increases morphological complexity in the cortex and olfactory bulb, but elicits opposing effects on astrocytic calcium dynamics. These differential physiological effects result in increased excitatory synaptic activity in the cortex and increased inhibitory synaptic activity in the olfactory bulb, leading to altered olfactory behaviors. Proteomic profiling and immunoprecipitation experiments identify Slc4a4 as a binding partner of Daam2 in the cortex, and combined deletion of Daam2 and Slc4a4 restores the morphological alterations seen in Daam2 mutants. Our results reveal new mechanisms regulating astrocyte morphology and show that congruent changes in astrocyte morphology can differentially influence circuit function.
Collapse
Affiliation(s)
- Juyeon Jo
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Junsung Woo
- Center for Cell and Gene TherapyBaylor College of MedicineHoustonTXUSA
| | - Carlo D Cristobal
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonTXUSA
| | - Jong Min Choi
- Center for Molecular DiscoveryDepartment of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTXUSA
| | - Chih‐Yen Wang
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Qi Ye
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Joshua A Smith
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Kevin Ung
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Gary Liu
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Diego Cortes
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
| | - Sung Yun Jung
- Center for Molecular DiscoveryDepartment of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTXUSA
| | - Benjamin R Arenkiel
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| | - Hyun Kyoung Lee
- Department of PediatricsSection of NeurologyBaylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children’s HospitalHoustonTXUSA
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
27
|
Karagiannis A, Gallopin T, Lacroix A, Plaisier F, Piquet J, Geoffroy H, Hepp R, Naudé J, Le Gac B, Egger R, Lambolez B, Li D, Rossier J, Staiger JF, Imamura H, Seino S, Roeper J, Cauli B. Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity. eLife 2021; 10:e71424. [PMID: 34766906 PMCID: PMC8651295 DOI: 10.7554/elife.71424] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (KATP) channels formed with KCNJ11 and ABCC8 subunits, which we show are functionally expressed in most neocortical neuronal types. We also demonstrate the ability of cortical neurons to take-up and metabolize lactate. We further reveal that ATP is produced by cortical neurons largely via oxidative phosphorylation and only modestly by glycolysis. Our data demonstrate that in active neurons, lactate is preferred to glucose as an energy substrate, and that lactate metabolism shapes neuronal activity in the neocortex through KATP channels. Our results highlight the importance of metabolic crosstalk between neurons and astrocytes for brain function.
Collapse
Affiliation(s)
- Anastassios Karagiannis
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Thierry Gallopin
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Alexandre Lacroix
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Fabrice Plaisier
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Juliette Piquet
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Hélène Geoffroy
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Régine Hepp
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Jérémie Naudé
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Benjamin Le Gac
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Richard Egger
- Institute for Neurophysiology, Goethe University FrankfurtFrankfurtGermany
| | - Bertrand Lambolez
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Jean Rossier
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August- University GöttingenGoettingenGermany
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of MedicineHyogoJapan
| | - Jochen Roeper
- Institute for Neurophysiology, Goethe University FrankfurtFrankfurtGermany
| | - Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| |
Collapse
|
28
|
Horvat A, Zorec R, Vardjan N. Lactate as an Astroglial Signal Augmenting Aerobic Glycolysis and Lipid Metabolism. Front Physiol 2021; 12:735532. [PMID: 34658920 PMCID: PMC8514727 DOI: 10.3389/fphys.2021.735532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/06/2021] [Indexed: 01/16/2023] Open
Abstract
Astrocytes, heterogeneous neuroglial cells, contribute to metabolic homeostasis in the brain by providing energy substrates to neurons. In contrast to predominantly oxidative neurons, astrocytes are considered primarily as glycolytic cells. They take up glucose from the circulation and in the process of aerobic glycolysis (despite the normal oxygen levels) produce L-lactate, which is then released into the extracellular space via lactate transporters and possibly channels. Astroglial L-lactate can enter neurons, where it is used as a metabolic substrate, or exit the brain via the circulation. Recently, L-lactate has also been considered to be a signaling molecule in the brain, but the mechanisms of L-lactate signaling and how it contributes to the brain function remain to be fully elucidated. Here, we provide an overview of L-lactate signaling mechanisms in the brain and present novel insights into the mechanisms of L-lactate signaling via G-protein coupled receptors (GPCRs) with the focus on astrocytes. We discuss how increased extracellular L-lactate upregulates cAMP production in astrocytes, most likely viaL-lactate-sensitive Gs-protein coupled GPCRs. This activates aerobic glycolysis, enhancing L-lactate production and accumulation of lipid droplets, suggesting that L-lactate augments its own production in astrocytes (i.e., metabolic excitability) to provide more L-lactate for neurons and that astrocytes in conditions of increased extracellular L-lactate switch to lipid metabolism.
Collapse
Affiliation(s)
- Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
29
|
Brown MR, Holmes H, Rakshit K, Javeed N, Her TK, Stiller AA, Sen S, Shull GE, Prakash YS, Romero MF, Matveyenko AV. Electrogenic sodium bicarbonate cotransporter NBCe1 regulates pancreatic β cell function in type 2 diabetes. J Clin Invest 2021; 131:142365. [PMID: 34623331 DOI: 10.1172/jci142365] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic β cell failure in type 2 diabetes mellitus (T2DM) is attributed to perturbations of the β cell's transcriptional landscape resulting in impaired glucose-stimulated insulin secretion. Recent studies identified SLC4A4 (a gene encoding an electrogenic Na+-coupled HCO3- cotransporter and intracellular pH regulator, NBCe1) as one of the misexpressed genes in β cells of patients with T2DM. Thus, in the current study, we set out to test the hypothesis that misexpression of SLC4A4/NBCe1 in T2DM β cells contributes to β cell dysfunction and impaired glucose homeostasis. To address this hypothesis, we first confirmed induction of SLC4A4/NBCe1 expression in β cells of patients with T2DM and demonstrated that its expression was associated with loss of β cell transcriptional identity, intracellular alkalinization, and β cell dysfunction. In addition, we generated a β cell-selective Slc4a4/NBCe1-KO mouse model and found that these mice were protected from diet-induced metabolic stress and β cell dysfunction. Importantly, improved glucose tolerance and enhanced β cell function in Slc4a4/NBCe1-deficient mice were due to augmented mitochondrial function and increased expression of genes regulating β cell identity and function. These results suggest that increased β cell expression of SLC4A4/NBCe1 in T2DM plays a contributory role in promotion of β cell failure and should be considered as a potential therapeutic target.
Collapse
Affiliation(s)
- Matthew R Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Heather Holmes
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Tracy K Her
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Alison A Stiller
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Satish Sen
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA.,Department of Anesthesiology
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA.,Division of Nephrology and Hypertension and
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA.,Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
30
|
Jakobsen E, Andersen JV, Christensen SK, Siamka O, Larsen MR, Waagepetersen HS, Aldana BI, Bak LK. Pharmacological inhibition of mitochondrial soluble adenylyl cyclase in astrocytes causes activation of AMP-activated protein kinase and induces breakdown of glycogen. Glia 2021; 69:2828-2844. [PMID: 34378239 DOI: 10.1002/glia.24072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
Mobilization of astrocyte glycogen is key for processes such as synaptic plasticity and memory formation but the link between neuronal activity and glycogen breakdown is not fully known. Activation of cytosolic soluble adenylyl cyclase (sAC) in astrocytes has been suggested to link neuronal depolarization and glycogen breakdown partly based on experiments employing pharmacological inhibition of sAC. However, several studies have revealed that sAC located within mitochondria is a central regulator of respiration and oxidative phosphorylation. Thus, pharmacological sAC inhibition is likely to affect both cytosolic and mitochondrial sAC and if bioenergetic readouts are studied, the observed effects are likely to stem from inhibition of mitochondrial rather than cytosolic sAC. Here, we report that a pharmacologically induced inhibition of sAC activity lowers mitochondrial respiration, induces phosphorylation of the metabolic master switch AMP-activated protein kinase (AMPK), and decreases glycogen stores in cultured primary murine astrocytes. From these data and our discussion of the literature, mitochondrial sAC emerges as a key regulator of astrocyte bioenergetics. Lastly, we discuss the challenges of investigating the functional and metabolic roles of cytosolic versus mitochondrial sAC in astrocytes employing the currently available pharmacological tool compounds.
Collapse
Affiliation(s)
- Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie K Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olga Siamka
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Petit JM, Eren-Koçak E, Karatas H, Magistretti P, Dalkara T. Brain glycogen metabolism: A possible link between sleep disturbances, headache and depression. Sleep Med Rev 2021; 59:101449. [PMID: 33618186 DOI: 10.1016/j.smrv.2021.101449] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
The functions of sleep and its links with neuropsychiatric diseases have long been questioned. Among the numerous hypotheses on sleep function, early studies proposed that sleep helps to replenish glycogen stores consumed during waking. Later studies found increased brain glycogen after sleep deprivation, leading to "glycogenetic" hypothesis, which states that there is a parallel increase in synthesis and utilization of glycogen during wakefulness, whereas decrease in the excitatory transmission creates an imbalance causing accumulation of glycogen during sleep. Glycogen is a vital energy reservoir to match the synaptic demand particularly for re-uptake of potassium and glutamate during intense glutamatergic transmission. Therefore, sleep deprivation-induced transcriptional changes may trigger migraine by reducing glycogen availability, which slows clearance of extracellular potassium and glutamate, hence, creates susceptibility to cortical spreading depolarization, the electrophysiological correlate of migraine aura. Interestingly, chronic stress accompanied by increased glucocorticoid levels and locus coeruleus activity and leading to mood disorders in which sleep disturbances are prevalent, also affects brain glycogen turnover via glucocorticoids, noradrenaline, serotonin and adenosine. These observations altogether suggest that inadequate astrocytic glycogen turnover may be one of the mechanisms linking migraine, mood disorders and sleep.
Collapse
Affiliation(s)
- J-M Petit
- Lausanne University Hospital, Center for Psychiatric Neuroscience, Prilly, Switzerland.
| | - E Eren-Koçak
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Department of Psychiatry, Ankara, Turkey.
| | - H Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| | - P Magistretti
- King Abdullah University of Science and Technology, Saudi Arabia.
| | - T Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| |
Collapse
|
32
|
Fernández-Moncada I, Robles-Maldonado D, Castro P, Alegría K, Epp R, Ruminot I, Barros LF. Bidirectional astrocytic GLUT1 activation by elevated extracellular K . Glia 2020; 69:1012-1021. [PMID: 33277953 DOI: 10.1002/glia.23944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023]
Abstract
The acute rise in interstitial K+ that accompanies neural activity couples the energy demand of neurons to the metabolism of astrocytes. The effects of elevated K+ on astrocytes include activation of aerobic glycolysis, inhibition of mitochondrial respiration and the release of lactate. Using a genetically encoded FRET glucose sensor and a novel protocol based on 3-O-methylglucose trans-acceleration and numerical simulation of glucose dynamics, we report that extracellular K+ is also a potent and reversible modulator of the astrocytic glucose transporter GLUT1. In cultured mouse astrocytes, the stimulatory effect developed within seconds, engaged both the influx and efflux modes of the transporter, and was detected even at 1 mM incremental K+ . The modulation of GLUT1 explains how astrocytes are able to maintain their glucose pool in the face of strong glycolysis stimulation. We propose that the stimulation of GLUT1 by K+ supports the production of lactate by astrocytes and the timely delivery of glucose to active neurons.
Collapse
Affiliation(s)
- Ignacio Fernández-Moncada
- Centro de Estudios Científicos, Valdivia, Chile.,INSERM U1215 NeuroCentre Magendie, Bordeaux, France
| | - Daniel Robles-Maldonado
- Centro de Estudios Científicos, Valdivia, Chile.,Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Robert Epp
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
33
|
Köhler S, Schmidt H, Fülle P, Hirrlinger J, Winkler U. A Dual Nanosensor Approach to Determine the Cytosolic Concentration of ATP in Astrocytes. Front Cell Neurosci 2020; 14:565921. [PMID: 33192312 PMCID: PMC7530325 DOI: 10.3389/fncel.2020.565921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Adenosine triphosphate (ATP) is the central energy carrier of all cells and knowledge on the dynamics of the concentration of ATP ([ATP]) provides important insights into the energetic state of a cell. Several genetically encoded fluorescent nanosensors for ATP were developed, which allow following the cytosolic [ATP] at high spatial and temporal resolution using fluorescence microscopy. However, to calibrate the fluorescent signal to [ATP] has remained challenging. To estimate basal cytosolic [ATP] ([ATP]0) in astrocytes, we here took advantage of two ATP nanosensors of the ATeam-family (ATeam1.03; ATeam1.03YEMK) with different affinities for ATP. Altering [ATP] by external stimuli resulted in characteristic pairs of signal changes of both nanosensors, which depend on [ATP]0. Using this dual nanosensor strategy and epifluorescence microscopy, [ATP]0 was estimated to be around 1.5 mM in primary cultures of cortical astrocytes from mice. Furthermore, in astrocytes in acutely isolated cortical slices from mice expressing both nanosensors after stereotactic injection of AAV-vectors, 2-photon microscopy revealed [ATP]0 of 0.7 mM to 1.3 mM. Finally, the change in [ATP] induced in the cytosol of cultured cortical astrocytes by application of azide, glutamate, and an increased extracellular concentration of K+ were calculated as −0.50 mM, −0.16 mM, and 0.07 mM, respectively. In summary, the dual nanosensor approach adds another option for determining the concentration of [ATP] to the increasing toolbox of fluorescent nanosensors for metabolites. This approach can also be applied to other metabolites when two sensors with different binding properties are available.
Collapse
Affiliation(s)
- Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Paula Fülle
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Wilhelm-Ostwald-Schule, Gymnasium der Stadt Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|
34
|
Theparambil SM, Hosford PS, Ruminot I, Kopach O, Reynolds JR, Sandoval PY, Rusakov DA, Barros LF, Gourine AV. Astrocytes regulate brain extracellular pH via a neuronal activity-dependent bicarbonate shuttle. Nat Commun 2020; 11:5073. [PMID: 33033238 PMCID: PMC7545092 DOI: 10.1038/s41467-020-18756-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brain cells continuously produce and release protons into the extracellular space, with the rate of acid production corresponding to the levels of neuronal activity and metabolism. Efficient buffering and removal of excess H+ is essential for brain function, not least because all the electrogenic and biochemical machinery of synaptic transmission is highly sensitive to changes in pH. Here, we describe an astroglial mechanism that contributes to the protection of the brain milieu from acidification. In vivo and in vitro experiments conducted in rodent models show that at least one third of all astrocytes release bicarbonate to buffer extracellular H+ loads associated with increases in neuronal activity. The underlying signalling mechanism involves activity-dependent release of ATP triggering bicarbonate secretion by astrocytes via activation of metabotropic P2Y1 receptors, recruitment of phospholipase C, release of Ca2+ from the internal stores, and facilitated outward HCO3- transport by the electrogenic sodium bicarbonate cotransporter 1, NBCe1. These results show that astrocytes maintain local brain extracellular pH homeostasis via a neuronal activity-dependent release of bicarbonate. The data provide evidence of another important metabolic housekeeping function of these glial cells.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Iván Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Olga Kopach
- Institute of Neurology, University College London, London, UK
| | | | | | | | | | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
35
|
Rasmussen R, O'Donnell J, Ding F, Nedergaard M. Interstitial ions: A key regulator of state-dependent neural activity? Prog Neurobiol 2020; 193:101802. [PMID: 32413398 PMCID: PMC7331944 DOI: 10.1016/j.pneurobio.2020.101802] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
Throughout the nervous system, ion gradients drive fundamental processes. Yet, the roles of interstitial ions in brain functioning is largely forgotten. Emerging literature is now revitalizing this area of neuroscience by showing that interstitial cations (K+, Ca2+ and Mg2+) are not static quantities but change dynamically across states such as sleep and locomotion. In turn, these state-dependent changes are capable of sculpting neuronal activity; for example, changing the local interstitial ion composition in the cortex is sufficient for modulating the prevalence of slow-frequency neuronal oscillations, or potentiating the gain of visually evoked responses. Disturbances in interstitial ionic homeostasis may also play a central role in the pathogenesis of central nervous system diseases. For example, impairments in K+ buffering occur in a number of neurodegenerative diseases, and abnormalities in neuronal activity in disease models disappear when interstitial K+ is normalized. Here we provide an overview of the roles of interstitial ions in physiology and pathology. We propose the brain uses interstitial ion signaling as a global mechanism to coordinate its complex activity patterns, and ion homeostasis failure contributes to central nervous system diseases affecting cognitive functions and behavior.
Collapse
Affiliation(s)
- Rune Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - John O'Donnell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States.
| |
Collapse
|
36
|
Verkhratsky A, Semyanov A, Zorec R. Physiology of Astroglial Excitability. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa016. [PMID: 35330636 PMCID: PMC8788756 DOI: 10.1093/function/zqaa016] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
Classic physiology divides all neural cells into excitable neurons and nonexcitable neuroglia. Neuroglial cells, chiefly responsible for homeostasis and defense of the nervous tissue, coordinate their complex homeostatic responses with neuronal activity. This coordination reflects a specific form of glial excitability mediated by complex changes in intracellular concentration of ions and second messengers organized in both space and time. Astrocytes are equipped with multiple molecular cascades, which are central for regulating homeostasis of neurotransmitters, ionostasis, synaptic connectivity, and metabolic support of the central nervous system. Astrocytes are further provisioned with multiple receptors for neurotransmitters and neurohormones, which upon activation trigger intracellular signals mediated by Ca2+, Na+, and cyclic AMP. Calcium signals have distinct organization and underlying mechanisms in different astrocytic compartments thus allowing complex spatiotemporal signaling. Signals mediated by fluctuations in cytosolic Na+ are instrumental for coordination of Na+ dependent astrocytic transporters with tissue state and homeostatic demands. Astroglial ionic excitability may also involve K+, H+, and Cl-. The cyclic AMP signalling system is, in comparison to ions, much slower in targeting astroglial effector mechanisms. This evidence review summarizes the concept of astroglial intracellular excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK,Achucarro Center for Neuroscience, Ikerbasque, 48011 Bilbao, Spain,Address correspondence to A.V. (e-mail: )
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia,Faculty of Biology, Moscow State University, Moscow, Russia,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Robert Zorec
- Celica Biomedical, Ljubljana 1000, Slovenia,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
37
|
Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472:1299-1343. [PMID: 32789766 PMCID: PMC7462931 DOI: 10.1007/s00424-020-02441-x] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters in capillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-d-glucose cotransporters SGLT1 are expressed. The glucose transporters mediate uptake of d-glucose across the blood-brain barrier and delivery of d-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demands in response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified and proposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based on experiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and their cerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, and SGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functional changes of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer’s disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy deficiency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome.
Collapse
|
38
|
Lerchundi R, Huang N, Rose CR. Quantitative Imaging of Changes in Astrocytic and Neuronal Adenosine Triphosphate Using Two Different Variants of ATeam. Front Cell Neurosci 2020; 14:80. [PMID: 32372916 PMCID: PMC7186936 DOI: 10.3389/fncel.2020.00080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Genetically encoded nanosensors such as the FRET-based adenosine triphosphate (ATP) sensor ATeam enable the measurement of changes in ATP levels inside cells, promoting our understanding of metabolic interactions between astrocytes and neurons. The sensors are usually well characterized in vitro but display altered properties when expressed inside cells, precluding a meaningful conversion of changes in FRET ratios into changes in intracellular ATP concentrations ([ATP]) on the basis of their in vitro properties. Here, we present an experimental strategy for the intracellular calibration of two different variants of ATeam in organotypic tissue slice culture of the mouse brain. After cell-type-specific expression of the sensors in astrocytes or neurons, slices were first perfused with a saline containing the saponin β-escin to permeabilize plasma membranes for ATP. Next, cells were depleted of ATP by perfusion with ATP-free saline containing metabolic inhibitors. Finally, ATP was re-added at defined concentrations and resulting changes in the FRET ratio recorded. When employing this protocol, ATeam1.03 expressed in astrocytes reliably responds to changes in [ATP], exhibiting an apparent KD of 9.4 mM. The high-affinity sensor ATeam1.03YEMK displayed a significantly lower intracellular KD of 2.7 mM. On the basis of these calibrations, we found that induction of a recurrent neuronal network activity resulted in an initial transient increase in astrocytic [ATP] by ~0.12 mM as detected by ATeam1.03YEMK, a result confirmed using ATeam1.03. In neurons, in contrast, [ATP] immediately started to decline upon initiation of a network activity, amounting to a decrease by an average of 0.29 mM after 2 min. Taken together, our results demonstrate that ATeam1.03YEMK and ATeam1.03 display a significant increase in their apparent KD when expressed inside cells as compared with in vitro. Moreover, they show that both ATeam variants enable the quantitative detection of changes of astrocytic and neuronal [ATP] in the physiological range. ATeam1.03YEMK, however, seems preferable because its KD is close to baseline ATP levels. Finally, our data support the idea that synchronized neuronal activity initially stimulates the generation of ATP in astrocytes, presumably through increased glycolysis, whereas ATP levels in neurons decline.
Collapse
Affiliation(s)
- Rodrigo Lerchundi
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Na Huang
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
39
|
Chowdhury HH. Differences in cytosolic glucose dynamics in astrocytes and adipocytes measured by FRET-based nanosensors. Biophys Chem 2020; 261:106377. [PMID: 32302866 DOI: 10.1016/j.bpc.2020.106377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
The cellular response to fluctuations in blood glucose levels consists of integrative regulation of cell glucose uptake and glucose utilization in the cytosol, resulting in altered levels of glucose in the cytosol. Cytosolic glucose is difficult to be measured in the intact tissue, however recently methods have become available that allow measurements of glucose in single living cells with fluorescence resonance energy transfer (FRET) based protein sensors. By studying the dynamics of cytosolic glucose levels in different experimental settings, we can gain insights into the properties of plasma membrane permeability to glucose and glucose utilization in the cytosol, and how these processes are modulated by different environmental conditions, agents and enzymes. In this review, we compare the cytosolic regulation of glucose in adipocytes and astrocytes - two important regulators of energy balance and glucose homeostasis in whole body and brain, respectively, with particular emphasis on the data obtained with FRET based protein sensors as well as other biochemical and molecular approaches.
Collapse
Affiliation(s)
- Helena H Chowdhury
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, 1000 Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia.
| |
Collapse
|
40
|
Fluid Brain Glycolysis: Limits, Speed, Location, Moonlighting, and the Fates of Glycogen and Lactate. Neurochem Res 2020; 45:1328-1334. [DOI: 10.1007/s11064-020-03005-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/08/2023]
|
41
|
Zuend M, Saab AS, Wyss MT, Ferrari KD, Hösli L, Looser ZJ, Stobart JL, Duran J, Guinovart JJ, Barros LF, Weber B. Arousal-induced cortical activity triggers lactate release from astrocytes. Nat Metab 2020; 2:179-191. [PMID: 32694692 DOI: 10.1038/s42255-020-0170-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
It has been suggested that, in states of arousal, release of noradrenaline and β-adrenergic signalling affect long-term memory formation by stimulating astrocytic lactate production from glycogen. However, the temporal relationship between cortical activity and cellular lactate fluctuations upon changes in arousal remains to be fully established. Also, the role of β-adrenergic signalling and brain glycogen metabolism on neural lactate dynamics in vivo is still unknown. Here, we show that an arousal-induced increase in cortical activity triggers lactate release into the extracellular space, and this correlates with a fast and prominent lactate dip in astrocytes. The immediate drop in astrocytic lactate concentration and the parallel increase in extracellular lactate levels underline an activity-dependent lactate release from astrocytes. Moreover, when β-adrenergic signalling is blocked or the brain is depleted of glycogen, the arousal-evoked cellular lactate surges are significantly reduced. We provide in vivo evidence that cortical activation upon arousal triggers lactate release from astrocytes, a rise in intracellular lactate levels mediated by β-adrenergic signalling and the mobilization of lactate from glycogen stores.
Collapse
Affiliation(s)
- Marc Zuend
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Matthias T Wyss
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ladina Hösli
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jordi Duran
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | | | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Barros LF, Ruminot I, San Martín A, Lerchundi R, Fernández-Moncada I, Baeza-Lehnert F. Aerobic Glycolysis in the Brain: Warburg and Crabtree Contra Pasteur. Neurochem Res 2020; 46:15-22. [PMID: 31981059 DOI: 10.1007/s11064-020-02964-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
Abstract
Information processing is onerous. Curiously, active brain tissue does not fully oxidize glucose and instead generates a local surplus of lactate, a phenomenon termed aerobic glycolysis. Why engage in inefficient ATP production by glycolysis when energy demand is highest and oxygen is plentiful? Aerobic glycolysis is associated to classic biochemical effects known by the names of Pasteur, Warburg and Crabtree. Here we discuss these three interdependent phenomena in brain cells, in light of high-resolution data of neuronal and astrocytic metabolism in culture, tissue slices and in vivo, acquired with genetically-encoded fluorescent sensors. These sensors are synthetic proteins that can be targeted to specific cell types and subcellular compartments, which change their fluorescence in response to variations in metabolite concentration. A major site of acute aerobic glycolysis is the astrocyte. In this cell, a Crabtree effect triggered by K+ coincides with a Warburg effect mediated by NO, superimposed on a slower longer-lasting Warburg effect caused by glutamate and possibly by NH4+. The compounded outcome is that more fuel (lactate) and more oxygen are made available to neurons, on demand. Meanwhile neurons consume both glucose and lactate, maintaining a strict balance between glycolysis and respiration, commanded by the Na+ pump. We conclude that activity-dependent Warburg and Crabtree effects in brain tissue, and the resulting aerobic glycolysis, do not reflect inefficient energy generation but the marshalling of astrocytes for the purpose of neuronal ATP generation. It remains to be seen whether neurons contribute to aerobic glycolysis under physiological conditions.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos-CECs, 5110466, Valdivia, Chile.
| | - Iván Ruminot
- Centro de Estudios Científicos-CECs, 5110466, Valdivia, Chile
| | | | | | | | | |
Collapse
|
43
|
Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM. Energy Dynamics in the Brain: Contributions of Astrocytes to Metabolism and pH Homeostasis. Front Neurosci 2019; 13:1301. [PMID: 31866811 PMCID: PMC6909239 DOI: 10.3389/fnins.2019.01301] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
Regulation of metabolism is complex and involves enzymes and membrane transporters, which form networks to support energy dynamics. Lactate, as a metabolic intermediate from glucose or glycogen breakdown, appears to play a major role as additional energetic substrate, which is shuttled between glycolytic and oxidative cells, both under hypoxic and normoxic conditions. Transport of lactate across the cell membrane is mediated by monocarboxylate transporters (MCTs) in cotransport with H+, which is a substrate, a signal and a modulator of metabolic processes. MCTs form a “transport metabolon” with carbonic anhydrases (CAs), which not only provide a rapid equilibrium between CO2, HCO3– and H+, but, in addition, enhances lactate transport, as found in Xenopus oocytes, employed as heterologous expression system, as well as in astrocytes and cancer cells. Functional interactions between different CA isoforms and MCTs have been found to be isoform-specific, independent of the enzyme’s catalytic activity, and they require physical interaction between the proteins. CAs mediate between different states of metabolic acidosis, induced by glycolysis and oxidative phosphorylation, and play a relay function in coupling pH regulation and metabolism. In the brain, metabolic processes in astrocytes appear to be linked to bicarbonate transport and to neuronal activity. Here, we focus on physiological processes of energy dynamics in astrocytes as well as on the transfer of energetic substrates to neurons.
Collapse
Affiliation(s)
- Joachim W Deitmer
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | | | - Sina I Noor
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hanover, Hanover, Germany
| |
Collapse
|
44
|
Heterogeneity of Astrocytes in Grey and White Matter. Neurochem Res 2019; 46:3-14. [PMID: 31797158 DOI: 10.1007/s11064-019-02926-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood-brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.
Collapse
|
45
|
Contreras-Baeza Y, Ceballo S, Arce-Molina R, Sandoval PY, Alegría K, Barros LF, San Martín A. MitoToxy assay: A novel cell-based method for the assessment of metabolic toxicity in a multiwell plate format using a lactate FRET nanosensor, Laconic. PLoS One 2019; 14:e0224527. [PMID: 31671132 PMCID: PMC6822764 DOI: 10.1371/journal.pone.0224527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial toxicity is a primary source of pre-clinical drug attrition, black box warning and post-market drug withdrawal. Methods that detect mitochondrial toxicity as early as possible during the drug development process are required. Here we introduce a new method for detecting mitochondrial toxicity based on MDA-MB-231 cells stably expressing the genetically encoded FRET lactate indicator, Laconic. The method takes advantage of the high cytosolic lactate accumulation observed during mitochondrial stress, regardless of the specific toxicity mechanism, explained by compensatory glycolytic activation. Using a standard multi-well plate reader, dose-response curve experiments allowed the sensitivity of the methodology to detect metabolic toxicity induced by classical mitochondrial toxicants. Suitability for high-throughput screening applications was evaluated resulting in a Z’-factor > 0.5 and CV% < 20 inter-assay variability. A pilot screening allowed sensitive detection of commercial drugs that were previously withdrawn from the market due to liver/cardiac toxicity issues, such as camptothecin, ciglitazone, troglitazone, rosiglitazone, and terfenadine, in ten minutes. We envisage that the availability of this technology, based on a fluorescent genetically encoded indicator, will allow direct assessment of mitochondrial metabolism, and will make the early detection of mitochondrial toxicity in the drug development process possible, saving time and resources.
Collapse
Affiliation(s)
| | | | - Robinson Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Universidad Austral de Chile (UACh), Valdivia, Chile
| | | | - Karin Alegría
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | | | | |
Collapse
|
46
|
Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, Diuba AV, Dubouskaya TG, Ehrke E, Espindola de Freitas A, Braga de Freitas G, Gonçalves RA, Gupta D, Gupta R, Ha SR, Hemming IA, Jaggar M, Jakobsen E, Kumari P, Lakkappa N, Marsh APL, Mitlöhner J, Ogawa Y, Paidi RK, Ribeiro FC, Salamian A, Saleem S, Sharma S, Silva JM, Singh S, Sulakhiya K, Tefera TW, Vafadari B, Yadav A, Yamazaki R, Seidenbecher CI. The energetic brain - A review from students to students. J Neurochem 2019; 151:139-165. [PMID: 31318452 DOI: 10.1111/jnc.14829] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
Collapse
Affiliation(s)
- Melina Paula Bordone
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Haley E Titus
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elham Amini
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Artem V Diuba
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatsiana G Dubouskaya
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Eric Ehrke
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Andiara Espindola de Freitas
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California, USA
| | | | | | | | - Richa Gupta
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sharon R Ha
- Baylor College of Medicine, Houston, Texas, USA
| | - Isabel A Hemming
- Brain Growth and Disease Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Crawley, Australia
| | - Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Punita Kumari
- Defense Institute of Physiology and allied sciences, Defense Research and Development Organization, Timarpur, Delhi, India
| | - Navya Lakkappa
- Department of Pharmacology, JSS college of Pharmacy, Ooty, India
| | - Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jessica Mitlöhner
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Yuki Ogawa
- The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | | | - Ahmad Salamian
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Suraiya Saleem
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sorabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
| | - Shripriya Singh
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Kunjbihari Sulakhiya
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Tesfaye Wolde Tefera
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Behnam Vafadari
- Institute of environmental medicine, UNIKA-T, Technical University of Munich, Munich, Germany
| | - Anuradha Yadav
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Reiji Yamazaki
- Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
47
|
Dallérac G, Zapata J, Rouach N. Versatile control of synaptic circuits by astrocytes: where, when and how? Nat Rev Neurosci 2019; 19:729-743. [PMID: 30401802 DOI: 10.1038/s41583-018-0080-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Close structural and functional interactions of astrocytes with synapses play an important role in brain function. The repertoire of ways in which astrocytes can regulate synaptic transmission is complex so that they can both promote and dampen synaptic efficacy. Such contrasting effects raise questions regarding the determinants of these divergent astroglial functions. Recent findings provide insights into where, when and how astroglial regulation of synapses takes place by revealing major molecular and functional intrinsic heterogeneity as well as switches in astrocytes occurring during development or specific patterns of neuronal activity. Astrocytes may therefore be seen as boosters or gatekeepers of synaptic circuits depending on their intrinsic and transformative properties throughout life.
Collapse
Affiliation(s)
- Glenn Dallérac
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Jonathan Zapata
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
48
|
Song S, Luo L, Sun B, Sun D. Roles of glial ion transporters in brain diseases. Glia 2019; 68:472-494. [PMID: 31418931 DOI: 10.1002/glia.23699] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Glial ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions of the central nervous system (CNS). In response to acute or chronic brain injuries, these ion transporters can be activated and differentially regulate glial functions, which has subsequent impact on brain injury or tissue repair and functional recovery. In this review, we summarized the current knowledge about major glial ion transporters, including Na+ /H+ exchangers (NHE), Na+ /Ca2+ exchangers (NCX), Na+ -K+ -Cl- cotransporters (NKCC), and Na+ -HCO3 - cotransporters (NBC). In acute neurological diseases, such as ischemic stroke and traumatic brain injury (TBI), these ion transporters are rapidly activated and play significant roles in regulation of the intra- and extracellular pH, Na+ , K+ , and Ca2+ homeostasis, synaptic plasticity, and myelin formation. However, overstimulation of these ion transporters can contribute to glial apoptosis, demyelination, inflammation, and excitotoxicity. In chronic brain diseases, such as glioma, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), glial ion transporters are involved in the glioma Warburg effect, glial activation, neuroinflammation, and neuronal damages. These findings suggest that glial ion transporters are involved in tissue structural and functional restoration, or brain injury and neurological disease development and progression. A better understanding of these ion transporters in acute and chronic neurological diseases will provide insights for their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lanxin Luo
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, Dois Portos, Portugal
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
49
|
Juaristi I, Contreras L, González-Sánchez P, Pérez-Liébana I, González-Moreno L, Pardo B, Del Arco A, Satrústegui J. The Response to Stimulation in Neurons and Astrocytes. Neurochem Res 2019; 44:2385-2391. [PMID: 31016552 DOI: 10.1007/s11064-019-02803-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
The brain uses mainly glucose as fuel with an index of glucose to oxygen utilization close to 6, the maximal index if all glucose was completely oxidized. However, this high oxidative index, contrasts with the metabolic traits of the major cell types in the brain studied in culture, neurons and astrocytes, including the selective use of the malate-aspartate shuttle (MAS) in neurons and the glycerol-phosphate shuttle in astrocytes. Metabolic interactions among these cell types may partly explain the high oxidative index of the brain. In vivo, neuronal activation results in a decrease in the oxygen glucose index, which has been attributed to a stimulation of glycolysis and lactate production in astrocytes in response to glutamate uptake (astrocyte-neuron lactate shuttle, ANLS). Recent findings indicate that this is accompanied with a stimulation of pyruvate formation and astrocyte respiration, indicating that lactate formation is not the only astrocytic response to neuronal activation. ANLS proposes that neurons utilize lactate produced by neighboring astrocytes. Indeed, neurons can use lactate to support an increase in respiration with different workloads, and this depends on the Ca2+ activation of MAS. However, whether this activation operates in the brain, particularly at high stimulation conditions, remains to be established.
Collapse
Affiliation(s)
- Inés Juaristi
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera, 1, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera, 1, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paloma González-Sánchez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera, 1, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Irene Pérez-Liébana
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera, 1, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Luis González-Moreno
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera, 1, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Beatriz Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera, 1, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Araceli Del Arco
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo, Spain
- Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM-CSIC, Toledo, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera, 1, 28049, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| |
Collapse
|
50
|
Baeza-Lehnert F, Saab AS, Gutiérrez R, Larenas V, Díaz E, Horn M, Vargas M, Hösli L, Stobart J, Hirrlinger J, Weber B, Barros LF. Non-Canonical Control of Neuronal Energy Status by the Na + Pump. Cell Metab 2019; 29:668-680.e4. [PMID: 30527744 DOI: 10.1016/j.cmet.2018.11.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/01/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
Abstract
Neurons have limited intracellular energy stores but experience acute and unpredictable increases in energy demand. To better understand how these cells repeatedly transit from a resting to active state without undergoing metabolic stress, we monitored their early metabolic response to neurotransmission using ion-sensitive probes and FRET sensors in vitro and in vivo. A short theta burst triggered immediate Na+ entry, followed by a delayed stimulation of the Na+/K+ ATPase pump. Unexpectedly, cytosolic ATP and ADP levels were unperturbed across a wide range of physiological workloads, revealing strict flux coupling between the Na+ pump and mitochondria. Metabolic flux measurements revealed a "priming" phase of mitochondrial energization by pyruvate, whereas glucose consumption coincided with delayed Na+ pump stimulation. Experiments revealed that the Na+ pump plays a permissive role for mitochondrial ATP production and glycolysis. We conclude that neuronal energy homeostasis is not mediated by adenine nucleotides or by Ca2+, but by a mechanism commanded by the Na+ pump.
Collapse
Affiliation(s)
- Felipe Baeza-Lehnert
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Robin Gutiérrez
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - Valeria Larenas
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile
| | - Esteban Díaz
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - Melanie Horn
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile
| | - Miriam Vargas
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - Ladina Hösli
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Jillian Stobart
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany; Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile.
| |
Collapse
|