1
|
Ziegler AA, Lawton SBR, Grobe CC, Reho JJ, Freudinger BP, Burnett CML, Nakagawa P, Grobe JL, Segar JL. Early-life sodium deprivation programs long-term changes in ingestive behaviors and energy expenditure in C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R576-R592. [PMID: 37720996 PMCID: PMC10866575 DOI: 10.1152/ajpregu.00137.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Postnatal growth failure remains a significant problem for infants born prematurely, despite aggressive efforts to improve perinatal nutrition. Though often dysregulated in early life when children are born preterm, sodium (Na) homeostasis is vital to achieve optimal growth. We hypothesize that insufficient Na supply in this critical period contributes to growth restriction and programmed risks for cardiometabolic disease in later adulthood. Thus, we sought to ascertain the effects of prolonged versus early-life Na depletion on weight gain, body composition, food and water intake behaviors, and energy expenditure in C57BL/6J mice. In one study, mice were provided a low (0.04%)- or normal/high (0.30%)-Na diet between 3 and 18 wk of age. Na-restricted mice demonstrated delayed growth and elevated basal metabolic rate. In a second study, mice were provided 0.04% or 0.30% Na diet between 3 and 6 wk of age and then returned to standard (0.15%)-Na diet through the end of the study. Na-restricted mice exhibited growth delays that quickly caught up on return to standard diet. Between 6 and 18 wk of age, previously restricted mice exhibited sustained, programmed changes in feeding behaviors, reductions in total food intake, and increases in water intake and aerobic energy expenditure while maintaining normal body composition. Although having no effect in control mice, administration of the ganglionic blocker hexamethonium abolished the programmed increase in basal metabolic rate in previously restricted mice. Together these data indicate that early-life Na restriction can cause programmed changes in ingestive behaviors, autonomic function, and energy expenditure that persist well into adulthood.
Collapse
Affiliation(s)
- Alisha A Ziegler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Samuel B R Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Connie C Grobe
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Bonnie P Freudinger
- Engineering Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Colin M L Burnett
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Wisconsin, United States
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Han Y, He Y, Harris L, Xu Y, Wu Q. Identification of a GABAergic neural circuit governing leptin signaling deficiency-induced obesity. eLife 2023; 12:e82649. [PMID: 37043384 PMCID: PMC10097419 DOI: 10.7554/elife.82649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The hormone leptin is known to robustly suppress food intake by acting upon the leptin receptor (LepR) signaling system residing within the agouti-related protein (AgRP) neurons of the hypothalamus. However, clinical studies indicate that leptin is undesirable as a therapeutic regiment for obesity, which is at least partly attributed to the poorly understood complex secondary structure and key signaling mechanism of the leptin-responsive neural circuit. Here, we show that the LepR-expressing portal neurons send GABAergic projections to a cohort of α3-GABAA receptor expressing neurons within the dorsomedial hypothalamic nucleus (DMH) for the control of leptin-mediated obesity phenotype. We identified the DMH as a key brain region that contributes to the regulation of leptin-mediated feeding. Acute activation of the GABAergic AgRP-DMH circuit promoted food intake and glucose intolerance, while activation of post-synaptic MC4R neurons in the DMH elicited exactly opposite phenotypes. Rapid deletion of LepR from AgRP neurons caused an obesity phenotype which can be rescued by blockage of GABAA receptor in the DMH. Consistent with behavioral results, these DMH neurons displayed suppressed neural activities in response to hunger or hyperglycemia. Furthermore, we identified that α3-GABAA receptor signaling within the DMH exerts potent bi-directional regulation of the central effects of leptin on feeding and body weight. Together, our results demonstrate a novel GABAergic neural circuit governing leptin-mediated feeding and energy balance via a unique α3-GABAA signaling within the secondary leptin-responsive neural circuit, constituting a new avenue for therapeutic interventions in the treatment of obesity and associated comorbidities.
Collapse
Affiliation(s)
- Yong Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yang He
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Lauren Harris
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Qi Wu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
3
|
Lin CY, Yeh KY, Lai HH, Her GM. AgRP Neuron-Specific Ablation Represses Appetite, Energy Intake, and Somatic Growth in Larval Zebrafish. Biomedicines 2023; 11:biomedicines11020499. [PMID: 36831035 PMCID: PMC9953713 DOI: 10.3390/biomedicines11020499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Neuronal circuits regulating appetite are dominated by arcuate nucleus neurons, which include appetite-promoting and -suppressing neurons that release the orexigenic neuropeptide agouti-related protein (AgRP) and anorexigenic neuropeptide pro-opiomelanocortin, respectively, to compete for melanocortin receptors to modulate feeding behavior. In this study, we expressed novel agrp promoters, including different lengths of the 5' flanking regions of the agrp gene (4749 bp) in the zebrafish genome. We used the agrp promoter to derive the enhanced green fluorescent protein (EGFP)-nitroreductase (NTR) fusion protein, allowing expression of the green fluorescence signal in the AgRP neurons. Then, we treated the transgenic zebrafish AgRP4.7NTR (Tg [agrp-EGFP-NTR]) with metronidazole to ablate the AgRP neurons in the larvae stage and observed a decline in their appetite and growth. The expression of most orexigenic and growth hormone/insulin-like growth factor axis genes decreased, whereas that of several anorexigenic genes increased. Our findings demonstrate that AgRP is a critical regulator of neuronal signaling for zebrafish appetite and energy intake control. Thus, AgRP4.7NTR can be used as a drug-screening platform for therapeutic targets to treat human appetite disorders, including obesity. Furthermore, the unique agrp promoter we identified can be a powerful tool for research on AgRP neurons, especially AgRP neuron-mediated pathways in the hypothalamus, and appetite.
Collapse
Affiliation(s)
- Chiu-Ya Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 202, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Kun-Yun Yeh
- Division of Hemato-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung City 204, Taiwan
| | - Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-2-2826-7000 (ext. 67990)
| |
Collapse
|
4
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
Frintrop L, Trinh S, Seitz J, Kipp M. The Role of Glial Cells in Regulating Feeding Behavior: Potential Relevance to Anorexia Nervosa. J Clin Med 2021; 11:jcm11010186. [PMID: 35011927 PMCID: PMC8745326 DOI: 10.3390/jcm11010186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 12/16/2022] Open
Abstract
Eating behavior is controlled by hypothalamic circuits in which agouti-related peptide-expressing neurons when activated in the arcuate nucleus, promote food intake while pro-opiomelanocortin-producing neurons promote satiety. The respective neurotransmitters signal to other parts of the hypothalamus such as the paraventricular nucleus as well as several extra-hypothalamic brain regions to orchestrate eating behavior. This complex process of food intake may be influenced by glia cells, in particular astrocytes and microglia. Recent studies showed that GFAP+ astrocyte cell density is reduced in the central nervous system of an experimental anorexia nervosa model. Anorexia nervosa is an eating disorder that causes, among the well-known somatic symptoms, brain volume loss which was associated with neuropsychological deficits while the underlying pathophysiology is unknown. In this review article, we summarize the findings of glia cells in anorexia nervosa animal models and try to deduce which role glia cells might play in the pathophysiology of eating disorders, including anorexia nervosa. A better understanding of glia cell function in the regulation of food intake and eating behavior might lead to the identification of new drug targets.
Collapse
Affiliation(s)
- Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-(0)-381-494-8406
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany;
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, 52074 Aachen, Germany;
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
6
|
Valek L, Tegeder I. Failure of Diphtheria Toxin Model to Induce Parkinson-Like Behavior in Mice. Int J Mol Sci 2021; 22:ijms22179496. [PMID: 34502404 PMCID: PMC8430633 DOI: 10.3390/ijms22179496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
Rodent models of Parkinson’s disease are based on transgenic expression of mutant synuclein, deletion of PD genes, injections of MPTP or rotenone, or seeding of synuclein fibrils. The models show histopathologic features of PD such as Lewi bodies but mostly only subtle in vivo manifestations or systemic toxicity. The models only partly mimic a predominant loss of dopaminergic neurons in the substantia nigra. We therefore generated mice that express the transgenic diphtheria toxin receptor (DTR) specifically in DA neurons by crossing DAT-Cre mice with Rosa26 loxP-STOP-loxP DTR mice. After defining a well-tolerated DTx dose, DAT-DTR and DTR-flfl controls were subjected to non-toxic DTx treatment (5 × 100 pg/g) and subsequent histology and behavioral tests. DAT protein levels were reduced in the midbrain, and tyrosine hydroxylase-positive neurons were reduced in the substantia nigra, whereas the pan-neuronal marker NeuN was not affected. Despite the promising histologic results, there was no difference in motor function tests or open field behavior. These are tests in which double mutant Pink1−/−SNCAA53T Parkinson mice show behavioral abnormalities. Higher doses of DTx were toxic in both groups. The data suggest that DTx treatment in mice with Cre/loxP-driven DAT-DTR expression leads to partial ablation of DA-neurons but without PD-reminiscent behavioral correlates.
Collapse
|
7
|
de Guia RM, Hassing AS, Ma T, Plucinska K, Holst B, Gerhart-Hines Z, Emanuelli B, Treebak JT. Ablation of Nampt in AgRP neurons leads to neurodegeneration and impairs fasting- and ghrelin-mediated food intake. FASEB J 2021; 35:e21450. [PMID: 33788980 DOI: 10.1096/fj.202002740r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Agouti-related protein (AgRP) neurons in the arcuate nucleus of the hypothalamus regulates food intake and whole-body metabolism. NAD+ regulates multiple cellular processes controlling energy metabolism. Yet, its role in hypothalamic AgRP neurons to control food intake is poorly understood. Here, we aimed to assess whether genetic deletion of nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme in NAD+ production, affects AgRP neuronal function to impact whole-body metabolism and food intake. Metabolic parameters during fed and fasted states, and upon systemic ghrelin and leptin administration were studied in AgRP-specific Nampt knockout (ARNKO) mice. We monitored neuropeptide expression levels and density of AgRP neurons in ARNKO mice from embryonic to adult age. NPY cells were used to determine effects of NAMPT inhibition on neuronal viability, energy status, and oxidative stress in vitro. In these cells, NAD+ depletion reduced ATP levels, increased oxidative stress, and promoted cell death. Agrp expression in the hypothalamus of ARNKO mice gradually decreased after weaning due to progressive AgRP neuron degeneration. Adult ARNKO mice had normal glucose and insulin tolerance, but exhibited an elevated respiratory exchange ratio (RER) when fasted. Remarkably, fasting-induced food intake was unaffected in ARNKO mice when evaluated in metabolic cages, but fasting- and ghrelin-induced feeding and body weight gain decreased in ARNKO mice when evaluated outside metabolic cages. Collectively, deletion of Nampt in AgRP neurons causes progressive neurodegeneration and impairs fasting and ghrelin responses in a context-dependent manner. Our data highlight an essential role of Nampt in AgRP neuron function and viability.
Collapse
Affiliation(s)
- Roldan Medina de Guia
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Plucinska
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Han Y, Xia G, Srisai D, Meng F, He Y, Ran Y, He Y, Farias M, Hoang G, Tóth I, Dietrich MO, Chen MH, Xu Y, Wu Q. Deciphering an AgRP-serotoninergic neural circuit in distinct control of energy metabolism from feeding. Nat Commun 2021; 12:3525. [PMID: 34112797 PMCID: PMC8192783 DOI: 10.1038/s41467-021-23846-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Contrasting to the established role of the hypothalamic agouti-related protein (AgRP) neurons in feeding regulation, the neural circuit and signaling mechanisms by which they control energy expenditure remains unclear. Here, we report that energy expenditure is regulated by a subgroup of AgRP neurons that send non-collateral projections to neurons within the dorsal lateral part of dorsal raphe nucleus (dlDRN) expressing the melanocortin 4 receptor (MC4R), which in turn innervate nearby serotonergic (5-HT) neurons. Genetic manipulations reveal a bi-directional control of energy expenditure by this circuit without affecting food intake. Fiber photometry and electrophysiological results indicate that the thermo-sensing MC4RdlDRN neurons integrate pre-synaptic AgRP signaling, thereby modulating the post-synaptic serotonergic pathway. Specifically, the MC4RdlDRN signaling elicits profound, bi-directional, regulation of body weight mainly through sympathetic outflow that reprograms mitochondrial bioenergetics within brown and beige fat while feeding remains intact. Together, we suggest that this AgRP neural circuit plays a unique role in persistent control of energy expenditure and body weight, hinting next-generation therapeutic approaches for obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yong Han
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Guobin Xia
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Dollada Srisai
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Fantao Meng
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanlin He
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, United States
| | - Yali Ran
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Monica Farias
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Giang Hoang
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - István Tóth
- Department of Physiology and Biochemistry, Szent Istvan University, Budapeste, Hungary
- Department of Comparative Medicine and Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcelo O Dietrich
- Department of Comparative Medicine and Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Miao-Hsueh Chen
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qi Wu
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Extra-forebrain impact of antipsychotics indicated by c-Fos or FosB/ΔFosB expression: A minireview. Endocr Regul 2021; 55:120-130. [PMID: 34020528 DOI: 10.2478/enr-2021-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It is apparent that the c-Fos and FosB/ΔFosB immunohistochemistry has generally become a useful tool for determining the different antipsychotic (AP) drugs activities in the brain. It is also noteworthy that there are no spatial limits, while to the extent of their identification over the whole brain axis. In addition, they can be in a parallel manner utilized in the unmasking of the brain cell phenotype character activated by APs and by this way also to identify the possible brain circuits underwent to the APs action. However, up to date, the number of APs involved in the extra-striatal studies is still limited, what prevents the possibility to fully understand their extra-striatal effects as a complex as well as differentiate their extra-striatal impact in qualitative and quantitative dimensions. Actually, it is very believable that more and more anatomical/functional knowledge might bring new insights into the APs extra-striatal actions by identifying new region-specific activities of APs as well as novel cellular targets affected by APs, which might reveal more details of their possible side effects of the extra-striatal origin.
Collapse
|
10
|
Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol 2021; 33:e12952. [PMID: 33656205 DOI: 10.1111/jne.12952] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Food intake and energy expenditure are regulated by peripheral signals providing feedback on nutrient status and adiposity to the central nervous system. One of these signals is the pancreatic hormone, insulin. Unlike peripheral administration of insulin, which often causes weight gain, central administration of insulin leads to a reduction in food intake and body weight when administered long-term. This is a result of feedback processes in regions of the brain that regulate food intake. Within the hypothalamus, the arcuate nucleus (ARC) contains subpopulations of neurones that produce orexinergic neuropeptides agouti-related peptide (AgRP)/neuropeptide Y (NPY) and anorexigenic neuropeptides, pro-opiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular infusion of insulin down-regulates the expression of AgRP/NPY at the same time as up-regulating expression of POMC/CART. Recent evidence suggests that insulin activity within the amygdala may play an important role in regulating energy balance. Insulin infusion into the central nucleus of the amygdala (CeA) can decrease food intake, possibly by modulating activity of NPY and other neurone subpopulations. Insulin signalling within the CeA can also influence stress-induced obesity. Overall, it is evident that the CeA is a critical target for insulin signalling and the regulation of energy balance.
Collapse
Affiliation(s)
| | - Denovan P Begg
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Nilsson IAK, Hökfelt T, Schalling M. The Anorectic Phenotype of the anx/anx Mouse Is Associated with Hypothalamic Dysfunction. NEUROMETHODS 2021:297-317. [DOI: 10.1007/978-1-0716-0924-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Zhu C, Jiang Z, Xu Y, Cai ZL, Jiang Q, Xu Y, Xue M, Arenkiel BR, Wu Q, Shu G, Tong Q. Profound and redundant functions of arcuate neurons in obesity development. Nat Metab 2020; 2:763-774. [PMID: 32719538 PMCID: PMC7687864 DOI: 10.1038/s42255-020-0229-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
The current obesity epidemic faces a lack of mechanistic insights. It is known that the acute activity changes of a growing number of brain neurons rapidly alter feeding behaviour; however, how these changes translate to obesity development and the fundamental mechanism underlying brain neurons in controlling body weight remain elusive. Here, we show that chronic activation of hypothalamic arcuate GABAergic (GABA+), agouti-related protein (AgRP) neurons or arcuate non-AgRP GABA+ neurons leads to obesity, which is similar to the obese phenotype observed in ob/ob mice. Conversely, chronic inhibition of arcuate GABA+, but not AgRP, neurons reduces ageing-related weight gain and corrects ob/ob obesity. These results demonstrate that the modulation of Arc GABA+ neuron activity is a fundamental mechanism of body-weight regulation, and that arcuate GABA+ neurons are the major mediator of leptin action, with a profound and redundant role in obesity development.
Collapse
Affiliation(s)
- Canjun Zhu
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangdong, China
| | - Zhiying Jiang
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Qingyan Jiang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangdong, China
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Qi Wu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gang Shu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangdong, China.
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Neurobiology and Anatomy of McGovern Medical School and Program in Neuroscience of MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
13
|
MacDonald AJ, Ellacott KLJ. Astrocytes in the nucleus of the solitary tract: Contributions to neural circuits controlling physiology. Physiol Behav 2020; 223:112982. [PMID: 32535136 PMCID: PMC7378570 DOI: 10.1016/j.physbeh.2020.112982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
The nucleus of the solitary tract (NTS) is the primary brainstem centre for the integration of physiological information from the periphery transmitted via the vagus nerve. In turn, the NTS feeds into downstream circuits regulating physiological parameters. Astrocytes are glial cells which have key roles in maintaining CNS tissue homeostasis and regulating neuronal communication. Recently an increasing number of studies have implicated astrocytes in the regulation of synaptic transmission and physiology. This review aims to highlight evidence for a role for astrocytes in the functions of the NTS. Astrocytes maintain and modulate NTS synaptic transmission contributing to the control of diverse physiological systems namely cardiovascular, respiratory, glucoregulatory, and gastrointestinal. In addition, it appears these cells may have a role in central control of feeding behaviour. As such these cells are a key component of signal processing and physiological control by the NTS.
Collapse
Affiliation(s)
- Alastair J MacDonald
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Level 4, RILD, Barrack Rd, Exeter EX2 5DW, UK
| | - Kate L J Ellacott
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Level 4, RILD, Barrack Rd, Exeter EX2 5DW, UK.
| |
Collapse
|
14
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
15
|
Nilsson IAK. The anx/anx Mouse - A Valuable Resource in Anorexia Nervosa Research. Front Neurosci 2019; 13:59. [PMID: 30804742 PMCID: PMC6370726 DOI: 10.3389/fnins.2019.00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 01/31/2023] Open
Abstract
Animal models are invaluable resources in research concerning the neurobiology of anorexia nervosa (AN), to a large extent since valid clinical samples are rare. None of the existing models can capture all aspects of AN but they are able to mirror the core features of the disorder e.g., elective starvation, emaciation and premature death. The anorectic anx/anx mouse is of particular value for the understanding of the abnormal response to negative energy balance seen in AN. These mice appear normal at birth but gradually develops starvation and emaciation despite full access to food, and die prematurely around three weeks of age. Several changes in hypothalamic neuropeptidergic and -transmitter systems involved in regulating food intake and metabolism have been documented in the anx/anx mouse. These changes are accompanied by signs of inflammation and degeneration in the same hypothalamic regions; including activation of microglia cells and expression of major histocompatibility complex I by microglia and selective neuronal populations. These aberrances are likely related to the dysfunction of complex I (CI) in the oxidative phosphorylation system of the mitochondria, and subsequent increased oxidative stress, which also has been revealed in the hypothalamus of these mice. Interestingly, a similar CI dysfunction has been shown in leukocytes from patients with AN. In addition, a higher expression of the Neurotrophic Receptor Tyrosine Kinase 3 gene has been shown in the anx/anx hypothalamus. This agrees with AN being associated with specific variants of the genes for brain derived neurotrophic factor and Neurotrophic Receptor Tyrosine Kinase 2. The anx/anx mouse is also glucose intolerant and display pancreatic dysfunction related to increased levels of circulating free fatty acids (FFA) and pancreatic inflammation. An increased incidence of eating disorders has been reported for young diabetic women, and as well has increased levels of circulating FFAs in AN. Also similar to individuals with AN, the anx/anx mouse has reduced leptin and increased cholesterol levels in serum. Thus, the anx/anx mouse shares several characteristics with patients with AN, including emaciation, starvation, premature death, diabetic features, increased FFA and low leptin, and is therefore a unique resource in research on the (neuro)biology of AN.
Collapse
Affiliation(s)
- Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.,Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Iwasaki K, Komiya H, Kakizaki M, Miyoshi C, Abe M, Sakimura K, Funato H, Yanagisawa M. Ablation of Central Serotonergic Neurons Decreased REM Sleep and Attenuated Arousal Response. Front Neurosci 2018; 12:535. [PMID: 30131671 PMCID: PMC6090062 DOI: 10.3389/fnins.2018.00535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
Sleep/wake behavior is regulated by distinct groups of neurons, such as dopaminergic, noradrenergic, and orexinergic neurons. Although monoaminergic neurons are usually considered to be wake-promoting, the role of serotonergic neurons in sleep/wake behavior remains inconclusive because of the effect of serotonin (5-HT)-deficiency on brain development and the compensation for inborn 5-HT deficiency by other sleep/wake-regulating neurons. Here, we performed selective ablation of central 5-HT neurons in the newly developed Rosa-diphtheria toxin receptor (DTR)-tdTomato mouse line that was crossed with Pet1Cre/+ mice to examine the role of 5-HT neurons in the sleep/wake behavior of adult mice. Intracerebroventricular administration of diphtheria toxin completely ablated tdTomato-positive cells in Pet1Cre/+; Rosa-DTR-tdTomato mice. Electroencephalogram/electromyogram-based sleep/wake analysis demonstrated that central 5-HT neuron ablation in adult mice decreased the time spent in rapid eye movement (REM) sleep, which was associated with fewer transitions from non-REM (NREM) sleep to REM sleep than in control mice. Central 5-HT neuron-ablated mice showed attenuated wake response to a novel environment and increased theta power during wakefulness compared to control mice. The current findings indicated that adult 5-HT neurons work to support wakefulness and regulate REM sleep time through a biased transition from NREM sleep to REM sleep.
Collapse
Affiliation(s)
- Kanako Iwasaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Haruna Komiya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
17
|
Rosskothen-Kuhl N, Hildebrandt H, Birkenhäger R, Illing RB. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation. Front Cell Neurosci 2018. [PMID: 29520220 PMCID: PMC5827675 DOI: 10.3389/fncel.2018.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neuron–glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron–glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.
Collapse
Affiliation(s)
- Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Heika Hildebrandt
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Ralf Birkenhäger
- Molecular Biological Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| | - Robert-Benjamin Illing
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Wei YC, Wang SR, Jiao ZL, Zhang W, Lin JK, Li XY, Li SS, Zhang X, Xu XH. Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. Nat Commun 2018; 9:279. [PMID: 29348568 PMCID: PMC5773506 DOI: 10.1038/s41467-017-02648-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/15/2017] [Indexed: 01/05/2023] Open
Abstract
The medial preoptic area (mPOA) differs between males and females in nearly all species examined to date, including humans. Here, using fiber photometry recordings of Ca2+ transients in freely behaving mice, we show ramping activities in the mPOA that precede and correlate with sexually dimorphic display of male-typical mounting and female-typical pup retrieval. Strikingly, optogenetic stimulation of the mPOA elicits similar display of mounting and pup retrieval in both males and females. Furthermore, by means of recording, ablation, optogenetic activation, and inhibition, we show mPOA neurons expressing estrogen receptor alpha (Esr1) are essential for the sexually biased display of these behaviors. Together, these results underscore the shared layout of the brain that can mediate sex-specific behaviors in both male and female mice and provide an important functional frame to decode neural mechanisms governing sexually dimorphic behaviors in the future. The medial preoptic area (mPOA) in a mammalian brain is sexually dimorphic, and yet its exact function in mediating gender-specific behavior remains unclear. Here, Xu and colleagues show that optogenetic manipulation of the mPOA in male mice induce female-stereotyped behaviors and vice versa.
Collapse
Affiliation(s)
- Yi-Chao Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shao-Ran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo-Lei Jiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun-Kai Lin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Yu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai-Shuai Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
19
|
Liver ERα regulates AgRP neuronal activity in the arcuate nucleus of female mice. Sci Rep 2017; 7:1194. [PMID: 28446774 PMCID: PMC5430776 DOI: 10.1038/s41598-017-01393-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/27/2017] [Indexed: 01/22/2023] Open
Abstract
Recent work revealed the major role played by liver Estrogen Receptor α (ERα) in the regulation of metabolic and reproductive functions. By using mutant mice with liver-specific ablation of Erα, we here demonstrate that the hepatic ERα is essential for the modulation of the activity of Agouti Related Protein (AgRP) neurons in relation to the reproductive cycle and diet. Our results suggest that the alterations of hepatic lipid metabolism due to the lack of liver ERα activity are responsible for a neuroinflammatory status that induces refractoriness of AgRP neurons to reproductive and dietary stimuli. The study therefore points to the liver ERα as a necessary sensor for the coordination of systemic energy metabolism and reproductive functions.
Collapse
|
20
|
Yang LK, Tao YX. Biased signaling at neural melanocortin receptors in regulation of energy homeostasis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2486-2495. [PMID: 28433713 DOI: 10.1016/j.bbadis.2017.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
The global prevalence of obesity highlights the importance of understanding on regulation of energy homeostasis. The central melanocortin system is an important intersection connecting the neural pathways controlling satiety and energy expenditure to regulate energy homeostasis by sensing and integrating the signals of external stimuli. In this system, neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy homeostasis. Recently, multiple intracellular signaling pathways and biased signaling at neural MCRs have been discovered, providing new insights into neural MCR signaling. This review attempts to summarize biased signaling including biased receptor mutants (both naturally occurring and lab-generated) and biased ligands at neural MCRs, and to provide a better understanding of obesity pathogenesis and new therapeutic implications for obesity treatment.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
21
|
Anderson EJP, Çakir I, Carrington SJ, Cone RD, Ghamari-Langroudi M, Gillyard T, Gimenez LE, Litt MJ. 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J Mol Endocrinol 2016; 56:T157-74. [PMID: 26939593 PMCID: PMC5027135 DOI: 10.1530/jme-16-0014] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
The melanocortin peptides derived from pro-opiomelanocortin (POMC) were originally understood in terms of the biological actions of α-melanocyte-stimulating hormone (α-MSH) on pigmentation and adrenocorticotrophic hormone on adrenocortical glucocorticoid production. However, the discovery of POMC mRNA and melanocortin peptides in the CNS generated activities directed at understanding the direct biological actions of melanocortins in the brain. Ultimately, discovery of unique melanocortin receptors expressed in the CNS, the melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors, led to the development of pharmacological tools and genetic models leading to the demonstration that the central melanocortin system plays a critical role in the regulation of energy homeostasis. Indeed, mutations in MC4R are now known to be the most common cause of early onset syndromic obesity, accounting for 2-5% of all cases. This review discusses the history of these discoveries, as well as the latest work attempting to understand the molecular and cellular basis of regulation of feeding and energy homeostasis by the predominant melanocortin peptide in the CNS, α-MSH.
Collapse
Affiliation(s)
- Erica J P Anderson
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Isin Çakir
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sheridan J Carrington
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roger D Cone
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taneisha Gillyard
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA Meharry Medical CollegeDepartment of Neuroscience and Pharmacology, Nashville, Tennessee, USA
| | - Luis E Gimenez
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael J Litt
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Webber ES, Bonci A, Krashes MJ. The elegance of energy balance: Insight from circuit-level manipulations. Synapse 2016; 69:461-74. [PMID: 26126768 DOI: 10.1002/syn.21837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 01/24/2023]
Abstract
Mechanisms of energy balance were first examined using very powerful neuroscience techniques such as lesions and electrical stimulation. This early work identified the hypothalamus as a key structure involved in hunger and feeding; however, neural resolution of cell-defined populations contributing to appetite regulation remained elusive. Recent innovations in neuroscience have produced constructs that allow for a high degree of specificity in loss- and gain-of-function manipulations in molecularly circumscribed neural subsets as well as monosynaptic circuit mapping and in vivo neurophysiology. These complimentary techniques have provided researchers an unprecedented amount of empirical agility. As a result, cell populations in two subregions of the hypothalamus have emerged as key players in the physiological control of feeding behavior. The arcuate nucleus of the hypothalamus and the paraventricular nucleus of the hypothalamus contain neural populations that have a direct role in the promotion of hunger and satiety. These include neurons that express agouti-related peptide, pro-opiomelanocortin, single-minded homolog 1 protein, and the melanocortin-4 receptor. This review focuses on how these neural subsets communicate with one another, link up to build elaborate networks, and ultimately contribute to alterations in food intake. The continuing advancement of neuroscience tools, as well as a multimodal integration of findings, will be critical in illuminating an exhaustive and clinically relevant hunger circuit.
Collapse
Affiliation(s)
- Emily S Webber
- Digestive and Kidney Diseases, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes, National Institutes of Health, Bethesda, Maryland
| | - Antonello Bonci
- National Institute of Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Michael J Krashes
- Digestive and Kidney Diseases, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes, National Institutes of Health, Bethesda, Maryland.,National Institute of Drug Abuse, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
23
|
New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism. Proc Natl Acad Sci U S A 2016; 113:3645-50. [PMID: 26976589 DOI: 10.1073/pnas.1602049113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Currently available inducible Cre/loxP systems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-targeting system by introducing an in-frame nonsense mutation into the coding sequence of Cre recombinase (nsCre). Mutant mRNAs transcribed from nsCre transgene can be efficiently translated into full-length, functional Cre recombinase in the presence of nonsense suppressors such as aminoglycosides. In a proof-of-concept model, GABA signaling from hypothalamic neurons expressing agouti-related peptide (AgRP) was genetically inactivated within 4 d after treatment with a synthetic aminoglycoside. Disruption of GABA synthesis in AgRP neurons in young adult mice led to a dramatic loss of body weight due to reduced food intake and elevated energy expenditure; they also manifested glucose intolerance. In contrast, older mice with genetic inactivation of GABA signaling by AgRP neurons had only transient reduction of feeding and body weight; their energy expenditure and glucose tolerance were unaffected. These results indicate that GABAergic signaling from AgRP neurons plays a key role in the control of feeding and metabolism through an age-dependent mechanism. This new genetic technique will augment current tools used to elucidate mechanisms underlying many physiological and neurological processes.
Collapse
|
24
|
Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015; 9:111. [PMID: 26300745 PMCID: PMC4523943 DOI: 10.3389/fnsys.2015.00111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt) neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP) can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT) can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools has greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.
Collapse
Affiliation(s)
- Allison K Graebner
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Manasi Iyer
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Matthew E Carter
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| |
Collapse
|
25
|
Stern JE. Neuroendocrine-autonomic integration in the paraventricular nucleus: novel roles for dendritically released neuropeptides. J Neuroendocrinol 2015; 27:487-97. [PMID: 25546497 PMCID: PMC4447596 DOI: 10.1111/jne.12252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/09/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022]
Abstract
Communication between pairs of neurones in the central nervous system typically involves classical 'hard-wired' synaptic transmission, characterised by high temporal and spatial precision. Over the last two decades, however, knowledge regarding the repertoire of communication modalities used in the brain has notably expanded to include less conventional forms, characterised by a diffuse and less temporally precise transfer of information. These forms are best suited to mediate communication among entire neuronal populations, now recognised to be a fundamental process in the brain for the generation of complex behaviours. In response to an osmotic stressor, the hypothalamic paraventricular nucleus (PVN) generates a multimodal homeostatic response that involves orchestrated neuroendocrine (i.e. systemic release of vasopressin) and autonomic (i.e. sympathetic outflow to the kidneys) components. The precise mechanisms that underlie interpopulation cross-talk between these two distinct neuronal populations, however, remain largely unknown. The present review summarises and discusses a series of recent studies that have identified the dendritic release of neuropeptides as a novel interpopulation signalling modality in the PVN. A current working model is described in which it is proposed that the activity-dependent dendritic release of vasopressin from neurosecretory neurones in the PVN acts in a diffusible manner to increase the activity of distant presympathetic neurones, resulting in an integrated sympathoexcitatory population response, particularly within the context of a hyperosmotic challenge. The cellular mechanism underlying this novel form of intercellular communication, as well as its physiological and pathophysiological implications, is discussed.
Collapse
Affiliation(s)
- J E Stern
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
26
|
Blevins JE, Baskin DG. Translational and therapeutic potential of oxytocin as an anti-obesity strategy: Insights from rodents, nonhuman primates and humans. Physiol Behav 2015; 152:438-49. [PMID: 26013577 DOI: 10.1016/j.physbeh.2015.05.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
The fact that more than 78 million adults in the US are considered overweight or obese highlights the need to develop new, effective strategies to treat obesity and its associated complications, including type 2 diabetes, kidney disease and cardiovascular disease. While the neurohypophyseal peptide oxytocin (OT) is well recognized for its peripheral effects to stimulate uterine contraction during parturition and milk ejection during lactation, release of OT within the brain is implicated in prosocial behaviors and in the regulation of energy balance. Previous findings indicate that chronic administration of OT decreases food intake and weight gain or elicits weight loss in diet-induced obese (DIO) mice and rats. Furthermore, chronic systemic treatment with OT largely reproduces the effects of central administration to reduce weight gain in DIO and genetically obese rodents at doses that do not appear to result in tolerance. These findings have now been recently extended to more translational models of obesity showing that chronic subcutaneous or intranasal OT treatment is sufficient to elicit body weight loss in DIO nonhuman primates and pre-diabetic obese humans. This review assesses the potential use of OT as a therapeutic strategy for treatment of obesity in rodents, nonhuman primates, and humans, and identifies potential mechanisms that mediate this effect.
Collapse
Affiliation(s)
- James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Denis G Baskin
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
27
|
Wellhauser L, Gojska NM, Belsham DD. Delineating the regulation of energy homeostasis using hypothalamic cell models. Front Neuroendocrinol 2015; 36:130-49. [PMID: 25223866 DOI: 10.1016/j.yfrne.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function.
Collapse
Affiliation(s)
- Leigh Wellhauser
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Nicole M Gojska
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Denise D Belsham
- Departments of Physiology, Medicine and OB/GYN, University of Toronto, Toronto, Ontario M5G 1A8, Canada; Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
28
|
Jeong JK, Kim JG, Lee BJ. Participation of the central melanocortin system in metabolic regulation and energy homeostasis. Cell Mol Life Sci 2014; 71:3799-809. [PMID: 24894870 PMCID: PMC11113577 DOI: 10.1007/s00018-014-1650-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/23/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Obesity and metabolic disorders, such as type 2 diabetes and hypertension, have attracted considerable attention as life-threatening diseases not only in developed countries but also worldwide. Additionally, the rate of obesity in young people all over the world is rapidly increasing. Accumulated evidence suggests that the central nervous system may participate in the development of and/or protection from obesity. For example, in the brain, the hypothalamic melanocortin system senses and integrates central and peripheral metabolic signals and controls the degree of energy expenditure and feeding behavior, in concert with metabolic status, to regulate whole-body energy homeostasis. Currently, researchers are studying the mechanisms by which peripheral metabolic molecules control feeding behavior and energy balance through the central melanocortin system. Accordingly, recent studies have revealed that some inflammatory molecules and transcription factors participate in feeding behavior and energy balance by controlling the central melanocortin pathway, and have thus become new candidates as therapeutic targets to fight metabolic diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77004 USA
| | - Jae Geun Kim
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749 South Korea
| |
Collapse
|
29
|
Seli E, Babayev E, Collins SC, Nemeth G, Horvath TL. Minireview: Metabolism of female reproduction: regulatory mechanisms and clinical implications. Mol Endocrinol 2014; 28:790-804. [PMID: 24678733 DOI: 10.1210/me.2013-1413] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Female fertility is highly dependent on successful regulation of energy metabolism. Central processes in the hypothalamus monitor the metabolic state of the organism and, together with metabolic hormones, drive the peripheral availability of energy for cellular functions. In the ovary, the oocyte and neighboring somatic cells of the follicle work in unison to achieve successful metabolism of carbohydrates, amino acids, and lipids. Metabolic disturbances such as anorexia nervosa, obesity, and diabetes mellitus have clinically important consequences on human reproduction. In this article, we review the metabolic determinants of female reproduction and their role in infertility.
Collapse
Affiliation(s)
- Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences (E.S., E.B., S.C., T.L.H.), Yale School of Medicine, New Haven, Connecticut 06520; Department of Obstetrics and Gynecology (G.N., T.L.H.), University of Szeged, Faculty of Medicine, Szeged, Hungary 6701; Department of Comparative Medicine (T.L.H.), Yale School of Medicine, New Haven, Connecticut 06520; and the Department of Neurobiology (T.L.H.), Yale School of Medicine, New Haven, Connecticut 06520
| | | | | | | | | |
Collapse
|
30
|
Abstract
Aversive visceral stimuli, such as those associated with sickness, suppress appetite. Yet an understanding of the neural mechanisms underlying illness-related anorexia has remained elusive. Carter et al. (2013) now identify a specific hindbrain → amygdala circuit that contributes to illness-induced loss of appetite.
Collapse
Affiliation(s)
- Alastair S Garfield
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| | | |
Collapse
|
31
|
Abstract
Obesity and its associated metabolic disorders are growing health concerns in the US and worldwide. In the US alone, more than two-thirds of the adult population is classified as either overweight or obese [1], highlighting the need to develop new, effective treatments for these conditions. Whereas the hormone oxytocin is well known for its peripheral effects on uterine contraction during parturition and milk ejection during lactation, release of oxytocin from somatodendrites and axonal terminals within the central nervous system (CNS) is implicated in both the formation of prosocial behaviors and in the control of energy balance. Recent findings demonstrate that chronic administration of oxytocin reduces food intake and body weight in diet-induced obese (DIO) and genetically obese rodents with impaired or defective leptin signaling. Importantly, chronic systemic administration of oxytocin out to 6 weeks recapitulates the effects of central administration on body weight loss in DIO rodents at doses that do not result in the development of tolerance. Furthermore, these effects are coupled with induction of Fos (a marker of neuronal activation) in hindbrain areas (e.g. dorsal vagal complex (DVC)) linked to the control of meal size and forebrain areas (e.g. hypothalamus, amygdala) linked to the regulation of food intake and body weight. This review assesses the potential central and peripheral targets by which oxytocin may inhibit body weight gain, its regulation by anorexigenic and orexigenic signals, and its potential use as a therapy that can circumvent leptin resistance and reverse the behavioral and metabolic abnormalities associated with DIO and genetically obese models.
Collapse
Affiliation(s)
- James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, 98108, USA,
| | | |
Collapse
|
32
|
Wu Q, Zheng R, Srisai D, McKnight GS, Palmiter RD. NR2B subunit of the NMDA glutamate receptor regulates appetite in the parabrachial nucleus. Proc Natl Acad Sci U S A 2013; 110:14765-70. [PMID: 23964123 PMCID: PMC3767546 DOI: 10.1073/pnas.1314137110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diphtheria toxin-mediated, acute ablation of hypothalamic neurons expressing agouti-related protein (AgRP) in adult mice leads to anorexia and starvation within 7 d that is caused by hyperactivity of neurons within the parabrachial nucleus (PBN). Because NMDA glutamate receptors are involved in various synaptic plasticity-based behavioral modifications, we hypothesized that modulation of the NR2A and NR2B subunits of the NMDA receptor in PBN neurons could contribute to the anorexia phenotype. We observed by Western blot analyses that ablation of AgRP neurons results in enhanced expression of NR2B along with a modest suppression of NR2A. Interestingly, systemic administration of LiCl in a critical time window before AgRP neuron ablation abolished the anorectic response. LiCl treatment suppressed NR2B levels in the PBN and ameliorated the local Fos induction that is associated with anorexia. This protective role of LiCl on feeding was blunted in vagotomized mice. Chronic infusion of RO25-6981, a selective NR2B inhibitor, into the PBN recapitulated the role of LiCl in maintaining feeding after AgRP neuron ablation. We suggest that the accumulation of NR2B subunits in the PBN contributes to aphagia in response to AgRP neuron ablation and may be involved in other forms of anorexia.
Collapse
Affiliation(s)
- Qi Wu
- Departments of Biochemistry and
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195; and
- Department of Pharmacology and
- Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | | | - Dollada Srisai
- Department of Pharmacology and
- Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | | | - Richard D. Palmiter
- Departments of Biochemistry and
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195; and
| |
Collapse
|
33
|
Abstract
Neural processes that direct an animal's actions toward environmental goals are critical elements for understanding behavior. The hypothalamus is closely associated with motivated behaviors required for survival and reproduction. Intense feeding, drinking, aggressive, and sexual behaviors can be produced by a simple neuronal stimulus applied to discrete hypothalamic regions. What can these "evoked behaviors" teach us about the neural processes that determine behavioral intent and intensity? Small populations of neurons sufficient to evoke a complex motivated behavior may be used as entry points to identify circuits that energize and direct behavior to specific goals. Here, I review recent applications of molecular genetic, optogenetic, and pharmacogenetic approaches that overcome previous limitations for analyzing anatomically complex hypothalamic circuits and their interactions with the rest of the brain. These new tools have the potential to bridge the gaps between neurobiological and psychological thinking about the mechanisms of complex motivated behavior.
Collapse
Affiliation(s)
- Scott M Sternson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
34
|
Liu T, Wang Q, Berglund ED, Tong Q. Action of Neurotransmitter: A Key to Unlock the AgRP Neuron Feeding Circuit. Front Neurosci 2013; 6:200. [PMID: 23346045 PMCID: PMC3549528 DOI: 10.3389/fnins.2012.00200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/31/2012] [Indexed: 01/08/2023] Open
Abstract
The current obesity epidemic and lack of efficient therapeutics demand a clear understanding of the mechanism underlying body weight regulation. Despite intensive research focus on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. Exciting studies in last decades have established the importance of hypothalamic agouti-related protein-expressing neurons (AgRP neurons) in the regulation of body weight homeostasis. AgRP neurons are both required and sufficient for feeding regulation. The activity of AgRP neurons is intricately regulated by nutritional hormones as well as synaptic inputs from upstream neurons. Changes in AgRP neuron activity lead to alterations in the release of mediators, including neuropeptides Neuropeptide Y (NPY) and AgRP, and fast-acting neurotransmitter GABA. Recent studies based on mouse genetics, novel optogenetics, and designer receptor exclusively activated by designer drugs have identified a critical role for GABA release from AgRP neurons in the parabrachial nucleus and paraventricular hypothalamus in feeding control. This review will summarize recent findings about AgRP neuron-mediated control of feeding circuits with a focus on the role of neurotransmitters. Given the limited knowledge on feeding regulation, understanding the action of neurotransmitters may be a key to unlock neurocircuitry that governs feeding.
Collapse
Affiliation(s)
- Tiemin Liu
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas Dallas, TX, USA
| | | | | | | |
Collapse
|
35
|
Dietrich MO, Horvath TL. Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci 2013; 36:65-73. [PMID: 23318157 DOI: 10.1016/j.tins.2012.12.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 12/31/2022]
Abstract
The past 20 years witnessed an enormous leap in understanding of the central regulation of whole-body energy metabolism. Genetic tools have enabled identification of the region-specific expression of peripheral metabolic hormone receptors and have identified neuronal circuits that mediate the action of these hormones on behavior and peripheral tissue functions. One of the surprising findings of recent years is the observation that brain circuits involved in metabolism regulation remain plastic through adulthood. In this review, we discuss these findings and focus on the role of neurons and glial cells in the dynamic process of plasticity, which is fundamental to the regulation of physiological and pathological metabolic events.
Collapse
Affiliation(s)
- Marcelo O Dietrich
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
36
|
|
37
|
Dietrich MO, Horvath TL. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nat Rev Drug Discov 2012; 11:675-91. [DOI: 10.1038/nrd3739] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Dietrich MO, Bober J, Ferreira JG, Tellez LA, Mineur YS, Souza DO, Gao XB, Picciotto MR, Araújo I, Liu ZW, Horvath TL. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nat Neurosci 2012; 15:1108-10. [PMID: 22729177 DOI: 10.1038/nn.3147] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/25/2012] [Indexed: 11/09/2022]
Abstract
It is not known whether behaviors unrelated to feeding are affected by hypothalamic regulators of hunger. We found that impairment of Agouti-related protein (AgRP) circuitry by either Sirt1 knockdown in AgRP-expressing neurons or early postnatal ablation of these neurons increased exploratory behavior and enhanced responses to cocaine. In AgRP circuit-impaired mice, ventral tegmental dopamine neurons exhibited enhanced spike timing-dependent long-term potentiation, altered amplitude of miniature postsynaptic currents and elevated dopamine in basal forebrain. Thus, AgRP neurons determine the set point of the reward circuitry and associated behaviors.
Collapse
Affiliation(s)
- Marcelo O Dietrich
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wu Q, Clark MS, Palmiter RD. Deciphering a neuronal circuit that mediates appetite. Nature 2012; 483:594-7. [PMID: 22419158 DOI: 10.1038/nature10899] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/24/2012] [Indexed: 11/09/2022]
Abstract
Hypothalamic neurons that co-express agouti-related protein (AgRP), neuropeptide Y and γ-aminobutyric acid (GABA) are known to promote feeding and weight gain by integration of various nutritional, hormonal, and neuronal signals. Ablation of these neurons in mice leads to cessation of feeding that is accompanied by activation of Fos in most regions where they project. Previous experiments have indicated that the ensuing starvation is due to aberrant activation of the parabrachial nucleus (PBN) and it could be prevented by facilitating GABA(A) receptor signalling in the PBN within a critical adaptation period. We speculated that loss of GABA signalling from AgRP-expressing neurons (AgRP neurons) within the PBN results in unopposed excitation of the PBN, which in turn inhibits feeding. However, the source of the excitatory inputs to the PBN was unknown. Here we show that glutamatergic neurons in the nucleus tractus solitarius (NTS) and caudal serotonergic neurons control the excitability of PBN neurons and inhibit feeding. Blockade of serotonin (5-HT(3)) receptor signalling in the NTS by either the chronic administration of ondansetron or the genetic inactivation of Tph2 in caudal serotonergic neurons that project to the NTS protects against starvation when AgRP neurons are ablated. Likewise, genetic inactivation of glutamatergic signalling by the NTS onto N-methyl D-aspartate-type glutamate receptors in the PBN prevents starvation. We also show that suppressing glutamatergic output of the PBN reinstates normal appetite after AgRP neuron ablation, whereas it promotes weight gain without AgRP neuron ablation. Thus we identify the PBN as a hub that integrates signals from several brain regions to bidirectionally modulate feeding and body weight.
Collapse
Affiliation(s)
- Qi Wu
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
40
|
Cansell C, Denis RGP, Joly-Amado A, Castel J, Luquet S. Arcuate AgRP neurons and the regulation of energy balance. Front Endocrinol (Lausanne) 2012; 3:169. [PMID: 23293630 PMCID: PMC3530831 DOI: 10.3389/fendo.2012.00169] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/05/2012] [Indexed: 11/13/2022] Open
Abstract
The arcuate nucleus of the hypothalamus contains at least two populations of neurons that continuously monitor signals reflecting energy status and promote the appropriate behavioral and metabolic responses to changes in energy demand. Activation of neurons making pro-opiomelanocortin (POMC) decreases food intake and increases energy expenditure through activation of G protein-coupled melanocortin receptors via the release of α-melanocyte-stimulating hormone. Until recently, the prevailing idea was that the neighboring neurons [agouti-related protein (AgRP) neurons] co-expressing the orexigenic neuropeptides, AgRP, and neuropeptide Y increase feeding by opposing the anorexigenic actions of the POMC neurons. However, it has now been demonstrated that only AgRP neurons activation - not POMC neurons inhibition - is necessary and sufficient to promote feeding. Projections of AgRP-expressing axons innervate mesolimbic, midbrain, and pontine structures where they regulate feeding and feeding-independent functions such as reward or peripheral nutrient partitioning. AgRP neurons also make gamma aminobutyric acid , which is now thought to mediate many of critical functions of these neurons in a melanocortin-independent manner and on a timescale compatible with neuromodulation.
Collapse
Affiliation(s)
- Céline Cansell
- Unité de Biologie Fonctionnelle et Adaptative, CNRS-EAC 4413, Sorbonne Paris Cité, Université Paris Diderot-Paris 7Paris, France
| | - Raphaël G. P. Denis
- Unité de Biologie Fonctionnelle et Adaptative, CNRS-EAC 4413, Sorbonne Paris Cité, Université Paris Diderot-Paris 7Paris, France
| | - Aurélie Joly-Amado
- Unité de Biologie Fonctionnelle et Adaptative, CNRS-EAC 4413, Sorbonne Paris Cité, Université Paris Diderot-Paris 7Paris, France
| | - Julien Castel
- Unité de Biologie Fonctionnelle et Adaptative, CNRS-EAC 4413, Sorbonne Paris Cité, Université Paris Diderot-Paris 7Paris, France
- Centre National de la Recherche Scientifique EAC 4413Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, CNRS-EAC 4413, Sorbonne Paris Cité, Université Paris Diderot-Paris 7Paris, France
- Centre National de la Recherche Scientifique EAC 4413Paris, France
- *Correspondence: Serge Luquet, Unité de Biologie Fonctionnelle et Adaptative, CNRS-EAC 4413, Sorbonne Paris Cité, Université Paris Diderot-Paris 7, 4 rue Marie-Andrée Lagroua Weill-Hallé, Bâtiment Buffon, Case courrier 7126, 75205 Paris Cedex 13, France. e-mail:
| |
Collapse
|
41
|
Wu Q, Palmiter RD. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur J Pharmacol 2011; 660:21-7. [PMID: 21211531 DOI: 10.1016/j.ejphar.2010.10.110] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/30/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022]
Abstract
The hypothalamic arcuate nucleus contains two anatomically and functionally distinct populations of neurons-the agouti-related peptide (AgRP)- and pro-opiomelanocortin (POMC)-expressing neurons that integrate various nutritional, hormonal, and neuronal signals to regulate food intake and energy expenditure, and thereby help achieve energy homeostasis. AgRP neurons, also co-release neuropeptide Y (NPY) and γ-aminobutyric acid (GABA) to promote feeding and inhibit metabolism through at least three possible mechanisms: (1) suppression of the melanocortin signaling system through competitive binding of AgRP with the melanocortin 4 receptors; (2) NPY-mediated inhibition of post-synaptic neurons that reside in hypothalamic nuclei; (3) GABAergic inhibition of POMC neurons in their post-synaptic targets including the parabrachial nucleus (PBN), a brainstem structure that relays gustatory and visceral sensory information. Acute ablation of AgRP neurons in adult mice by the action of diphtheria toxin (DT) results in precipitous reduction of food intake, and eventually leads to starvation within 6days of DT treatment. Chronic delivery of bretazenil, a GABA(A) receptor partial agonist, into the PBN is sufficient to restore feeding and body weight when AgRP neurons are ablated, whereas chronic blockade of melanocortin 4 receptor signaling is inadequate. This review summarizes the physiological roles of a neural circuitry regulated by AgRP neurons in control of feeding behavior with particular emphasis of the GABA output to the parabrachial nucleus. We also describe a compensatory mechanism that is gradually engaged after ablation of AgRP neurons that allows mice to continue eating without them.
Collapse
Affiliation(s)
- Qi Wu
- Howard Hughes Medical Institute and Departments of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
42
|
Sinno MH, Coquerel Q, Boukhettala N, Coëffier M, Gallas S, Terashi M, Ibrahim A, Breuillé D, Déchelotte P, Fetissov SO. Chemotherapy-induced anorexia is accompanied by activation of brain pathways signaling dehydration. Physiol Behav 2010; 101:639-48. [DOI: 10.1016/j.physbeh.2010.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/17/2010] [Accepted: 09/22/2010] [Indexed: 02/07/2023]
|
43
|
Nilsson IAK, Thams S, Lindfors C, Bergstrand A, Cullheim S, Hökfelt T, Johansen JE. Evidence of hypothalamic degeneration in the anorectic anx/anx mouse. Glia 2010; 59:45-57. [DOI: 10.1002/glia.21075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/08/2010] [Accepted: 08/11/2010] [Indexed: 12/28/2022]
|
44
|
Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol 2010; 31:452-78. [PMID: 20624415 DOI: 10.1016/j.yfrne.2010.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 01/03/2023]
Abstract
Dioxins are ubiquitous environmental contaminants that have attracted toxicological interest not only for the potential risk they pose to human health but also because of their unique mechanism of action. This mechanism involves a specific, phylogenetically old intracellular receptor (the aryl hydrocarbon receptor, AHR) which has recently proven to have an integral regulatory role in a number of physiological processes, but whose endogenous ligand is still elusive. A major acute impact of dioxins in laboratory animals is the wasting syndrome, which represents a puzzling and dramatic perturbation of the regulatory systems for energy balance. A single dose of the most potent dioxin, TCDD, can permanently readjust the defended body weight set-point level thus providing a potentially useful tool and model for physiological research. Recent evidence of response-selective modulation of AHR action by alternative ligands suggests further that even therapeutic implications might be possible in the future.
Collapse
|
45
|
Wang H, Xu H, Niu J, Mei F, Li X, Kong J, Cai W, Xiao L. Haloperidol activates quiescent oligodendroglia precursor cells in the adult mouse brain. Schizophr Res 2010; 119:164-74. [PMID: 20346631 DOI: 10.1016/j.schres.2010.02.1068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
Recent human studies suggest that abnormal development of oligodendrocytes (OLs) is an important component in the pathophysiology of schizophrenia. However, less information is available regarding effects of antipsychotics on OLs' development. In the present study, young adult C57BL/6 mice were given haloperidol (HAL; 2mg/kg/day) in their drinking water for three or six weeks. At the conclusion of the drug treatment, mice were sacrificed and the numbers of NG2- and Olig2-expressing cells in the brain regions of the corpus callosum, hippocampus and cerebral cortex were quantified. NG2 is a specific marker for oligodendroglia precursor cells (OPCs); Olig2 marks glial progenitors. HAL treatment for three weeks increased the number of NG2-expressing cells in the corpus callosum; HAL treatment for three and six weeks increased the numbers of Olig2-expressing cells in all three brain regions and increased the levels of Olig2 expression in the same brain regions. These results suggest that HAL treatment activates adult OPCs, which divide infrequently under normal conditions but respond to a variety of insulting factors by proliferation and differentiation. However, our further observations showed no changes in the number of mature OLs and the amount of myelin basic protein in HAL-treated mice, suggesting the drug treatment has no effect on the maturation of OLs. In addition, HAL treatment did not increase the numbers of GFAP- and CD68-expressing cells, suggesting that no gliosis and inflammatory responses occurred while the drug activated the quiescent OPCs in adult brain. These results suggest that HAL treatment may target the development of OLs.
Collapse
Affiliation(s)
- Hanzhi Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The brain controls energy homeostasis and body weight by integrating various metabolic signals. Leptin, an adipose-derived hormone, conveys critical information about peripheral energy storage and availability to the brain. Leptin decreases body weight by both suppressing appetite and promoting energy expenditure. Leptin directly targets hypothalamic neurons, including AgRP and POMC neurons. These leptin-responsive neurons widely connect to other neurons in the brain, forming a sophisticated neurocircuitry that controls energy intake and expenditure. The anorexigenic actions of leptin are mediated by LEPRb, the long form of the leptin receptor, in the hypothalamus. LEPRb activates both JAK2-dependent and -independent pathways, including the STAT3, PI 3-kinase, MAPK, AMPK, and mTOR pathways. These pathways act coordinately to form a network that fully mediates leptin response. LEPRb signaling is regulated by both positive (e.g., SH2B1) and negative (e.g., SOCS3 and PTP1B) regulators and by endoplasmic reticulum stress. Leptin resistance, a primary risk factor for obesity, likely results from impairment in leptin transport, LEPRb signaling, and/or the neurocircuitry of energy balance.
Collapse
Affiliation(s)
- David L Morris
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Mchigan 48109-0622, USA
| | | |
Collapse
|
47
|
Shifting the paradigm: new approaches for characterizing and classifying neurons. Curr Opin Neurobiol 2009; 19:530-6. [PMID: 19896835 DOI: 10.1016/j.conb.2009.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 09/30/2009] [Indexed: 12/12/2022]
Abstract
Efforts to characterize and classify the cellular components of the nervous system have a rich history in modern neuroscience, and closely mirror the development of new techniques to assay cellular properties. Recent advances in high-throughput histology, genetics and neuroinformatics hold great promise for systematic and reproducible measurement and community databasing of cellular properties. In particular, transgenic approaches to reproducibly target and manipulate specific cell types in mice are rapidly advancing. Cre recombinase-based approaches in particular allow the coupling of cell type specificity with a wide variety of genetic tools for visualization, molecular profiling, tract tracing and functional manipulation. The reproducible multimodal characterization allowed by these transgenics provides a means to classify, building cellular taxonomies based on measurement of many phenotypic properties, as well as manipulate, moving beyond classification to understand the functional role of specific cell types and circuits in complex behaviors.
Collapse
|
48
|
Büch TRH, Heling D, Damm E, Gudermann T, Breit A. Pertussis toxin-sensitive signaling of melanocortin-4 receptors in hypothalamic GT1-7 cells defines agouti-related protein as a biased agonist. J Biol Chem 2009; 284:26411-20. [PMID: 19648111 DOI: 10.1074/jbc.m109.039339] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanocortin-4 receptor (MC4R)-induced anorexigenic signaling in the hypothalamus controls body weight and energy homeostasis. So far, MC4R-induced signaling has been exclusively attributed to its coupling to G(s) proteins. In line with this monogamous G protein coupling profile, most MC4R mutants isolated from obese individuals showed a reduced ability to activate G(s). However, some mutants displayed enhanced G(s) coupling, suggesting that signaling pathways independent of G(s) may be involved in MC4R-mediated anorexigenic signaling. Here we report that the G(s) signaling-deficient MC4R-D90N mutant activates G proteins in a pertussis toxin-sensitive manner, indicating that this mutant is able to selectively interact with G(i/o) proteins. Analyzing a hypothalamic cell line (GT1-7 cells), we observed activation of pertussis toxin-sensitive G proteins by the wild-type MC4R as well, reflecting multiple coupling of the MC4R to G(s) and G(i/o) proteins in an endogenous cell system. Surprisingly, the agouti-related protein, which has been classified as a MC4R antagonist, selectively activates G(i/o) signaling in GT1-7 cells. Thus, the agouti-related protein antagonizes melanocortin-dependent G(s) activation not only by competitive antagonism but additionally by initiating G(i/o) protein-induced signaling as a biased agonist.
Collapse
Affiliation(s)
- Thomas R H Büch
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München
| | | | | | | | | |
Collapse
|
49
|
Abstract
In the arcuate nucleus of the hypothalamus, neurons that produce the neuropeptides NPY and AgRP play a vital role in the maintenance of energy homeostasis. In this issue, Wu et al. (2009) show that these neurons modulate feeding behavior in mice by providing GABAergic input to the parabrachial nucleus in the brainstem.
Collapse
Affiliation(s)
- Marcelo O Dietrich
- Program on Cell and Neurobiology of Energy Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
50
|
Wu Q, Boyle MP, Palmiter RD. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 2009; 137:1225-34. [PMID: 19563755 DOI: 10.1016/j.cell.2009.04.022] [Citation(s) in RCA: 342] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 02/09/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Neurons in the arcuate nucleus that produce AgRP, NPY, and GABA (AgRP neurons) promote feeding. Ablation of AgRP neurons in adult mice results in Fos activation in postsynaptic neurons and starvation. Loss of GABA is implicated in starvation because chronic subcutaneous delivery of bretazenil (a GABA(A) receptor partial agonist) suppresses Fos activation and maintains feeding during ablation of AgRP neurons. Moreover, under these conditions, direct delivery of bretazenil into the parabrachial nucleus (PBN), a direct target of AgRP neurons that also relays gustatory and visceral sensory information, is sufficient to maintain feeding. Conversely, inactivation of GABA biosynthesis in the ARC or blockade of GABA(A) receptors in the PBN of mice promote anorexia. We suggest that activation of the PBN by AgRP neuron ablation or gastrointestinal malaise inhibits feeding. Chronic delivery of bretazenil during loss of AgRP neurons provides time to establish compensatory mechanisms that eventually allow mice to eat.
Collapse
Affiliation(s)
- Qi Wu
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|