1
|
Kim J, Bustamante E, Sotonyi P, Maxwell N, Parameswaran P, Kent JK, Wetsel WC, Soderblom EJ, Rácz B, Soderling SH. Presynaptic Rac1 in the hippocampus selectively regulates working memory. eLife 2024; 13:RP97289. [PMID: 39046788 PMCID: PMC11268886 DOI: 10.7554/elife.97289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Jaebin Kim
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Edwin Bustamante
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Peter Sotonyi
- Department of Anatomy and Histology, University of Veterinary MedicineBudapestHungary
| | - Nicholas Maxwell
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Pooja Parameswaran
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Julie K Kent
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - William C Wetsel
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Psychiatry and Behavioral Sciences, Duke University School of MedicineDurhamUnited States
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Erik J Soderblom
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Proteomics and Metabolomics Shared Resource and Center for Genomic and Computational Biology, Duke University School of MedicineDurhamUnited States
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary MedicineBudapestHungary
| | - Scott H Soderling
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
2
|
Kim J, Bustamante E, Sotonyi P, Maxwell ND, Parameswaran P, Kent JK, Wetsel WC, Soderblom EJ, Rácz B, Soderling SH. Presynaptic Rac1 in the hippocampus selectively regulates working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585488. [PMID: 38562715 PMCID: PMC10983896 DOI: 10.1101/2024.03.18.585488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory is selectively impaired following the expression of a genetically encoded Rac1-inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Jaebin Kim
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Edwin Bustamante
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Peter Sotonyi
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Nicholas D Maxwell
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Pooja Parameswaran
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Julie K Kent
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical School, Durham, North Carolina, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina, USA
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
3
|
Stress-Sensitive Protein Rac1 and Its Involvement in Neurodevelopmental Disorders. Neural Plast 2020; 2020:8894372. [PMID: 33299404 PMCID: PMC7707960 DOI: 10.1155/2020/8894372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) is a small GTPase that is well known for its sensitivity to the environmental stress of a cell or an organism. It senses the external signals which are transmitted from membrane-bound receptors and induces downstream signaling cascades to exert its physiological functions. Rac1 is an important regulator of a variety of cellular processes, such as cytoskeletal organization, generation of oxidative products, and gene expression. In particular, Rac1 has a significant influence on certain brain functions like neuronal migration, synaptic plasticity, and memory formation via regulation of actin dynamics in neurons. Abnormal Rac1 expression and activity have been observed in multiple neurological diseases. Here, we review recent findings to delineate the role of Rac1 signaling in neurodevelopmental disorders associated with abnormal spine morphology, synaptogenesis, and synaptic plasticity. Moreover, certain novel inhibitors of Rac1 and related pathways are discussed as potential avenues toward future treatment for these diseases.
Collapse
|
4
|
Zhu X, Xu A, Zhang Y, Huo N, Cong R, Ma L, Chu Z, Tang Z, Kang X, Xian S, Xu X. ITPKA1 Promotes Growth, Migration and Invasion of Renal Cell Carcinoma via Activation of mTOR Signaling Pathway. Onco Targets Ther 2020; 13:10515-10523. [PMID: 33116630 PMCID: PMC7573328 DOI: 10.2147/ott.s266095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background Renal cell cancer (RCC) is one of the most lethal malignancies of the kidney in adults. mTOR (mammalian target of rapamycin) signaling pathway plays a pivotal role in RCC tumorigenesis and progression and inhibitors targeting the mTOR pathway have been widely used in advanced RCC treatment. Therefore, it is of great significance to explore the potential regulators of the mTOR pathway as RCC therapeutic targets. Materials and Methods Bioinformatics analysis was used to screen out the most significant differentially expressed genes in the RCC dataset of The Cancer Genome Atlas (TCGA). Real-time PCR and Western-blot analysis were utilized to examine the expression of inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) in four RCC cell lines and one human embryonic kidney cell line. Cell counting Kit-8 and colony formation assay were performed to estimate the effect of ITPKA on the proliferation ability of RCC cells. Wound healing and Transwell assays were used to test the effect of ITPKA on RCC cell migration and invasion. Xenograft formation assay was performed in nude mice to investigate the effect of ITPKA in vivo. mTORC1 pathway inhibitor was added to explore the mechanisms by which ITPKA regulates RCC cell growth and progression. Results Based on bioinformatics analysis, ITPKA is screened out as one of the most significant differentially expressed genes in RCC. ITPKA is upregulated and positively correlated with RCC malignancy and poorer prognosis. ITPKA promotes RCC growth, migration and invasion in cultured cells, and accelerates tumor growth in nude mice. Mechanistically, ITPKA stimulates the mTORC1 signaling pathway which is a requirement for ITPKA modulation of RCC cell proliferation, migration and invasion. Conclusion Our data demonstrate a critical regulatory role of the ITPKA in RCC and suggest that ITPKA/mTORC1 axis may be a promising target for diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Infectious Disease, Army No.82 Group Military Hospital, Baoding, People's Republic of China.,Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - An Xu
- Department of Oncology, Second Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yang Zhang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Nan Huo
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Rui Cong
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Luyuan Ma
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Zhong Chu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Zhi Tang
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Xiaofeng Kang
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Shaozhong Xian
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaojie Xu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| |
Collapse
|
5
|
Blechner C, Becker L, Fuchs H, Rathkolb B, Prehn C, Adler T, Calzada-Wack J, Garrett L, Gailus-Durner V, Morellini F, Conrad S, Hölter SM, Wolf E, Klopstock T, Adamski J, Busch D, de Angelis MH, Schmeisser MJ, Windhorst S. Physiological relevance of the neuronal isoform of inositol-1,4,5-trisphosphate 3-kinases in mice. Neurosci Lett 2020; 735:135206. [PMID: 32593773 DOI: 10.1016/j.neulet.2020.135206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) is the neuronal isoform of ITPKs and exhibits both actin bundling and InsP3kinase activity. In addition to neurons, ITPKA is ectopically expressed in tumor cells, where its oncogenic activity increases tumor cell malignancy. In order to analyze the physiological relevance of ITPKA, here we performed a broad phenotypic screening of itpka deficient mice. Our data show that among the neurobehavioral tests analyzed, itpka deficient mice reacted faster to a hotplate, prepulse inhibition was impaired and the accelerating rotarod test showed decreased latency of itpka deficient mice to fall. These data indicate that ITPKA is involved in the regulation of nociceptive pathways, sensorimotor gating and motor learning. Analysis of extracerebral functions in control and itpka deficient mice revealed significantly reduced glucose, lactate, and triglyceride plasma concentrations in itpka deficient mice. Based on this finding, expression of ITPKA was analyzed in extracerebral tissues and the highest level was found in the small intestine. However, functional studies on CaCo-2 control and ITPKA depleted cells showed that glucose, as well as triglyceride uptake, were not significantly different between the cell lines. Altogether, these data show that ITPKA exhibits distinct functions in the central nervous system and reveal an involvement of ITPKA in energy metabolism.
Collapse
Affiliation(s)
- Christine Blechner
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Geman Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Cornelia Prehn
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Fabio Morellini
- Behavioral Biology, Center for Molecular Neurobiology Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | - Susanne Conrad
- Forschungstierhaltung University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Thomas Klopstock
- Dept. of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1a, 80336, Munich, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE), Site Munich, 80336, München, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336, Munich, Germany
| | - Jerzy Adamski
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
| | - Dirk Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 81675, Munich, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Geman Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany; Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| |
Collapse
|
6
|
Mo SJ, Cho Y, Choi BI, Lee D, Kim H. PKA-dependent phosphorylation of IP3K-A at Ser119 regulates a binding affinity with EB3. Biochem Biophys Res Commun 2019; 508:52-59. [PMID: 30466786 DOI: 10.1016/j.bbrc.2018.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
Microtubule-associated end-binding protein 3 (EB3) accumulates asymmetrically at the tip-end of growing microtubules, providing a central platform for linking various cellular components. EB3 orchestrates microtubule dynamics and targeting, enabling diverse processes within neurons. Inositol 1, 4, 5-trisphosphate 3-kinase A (IP3K-A; also known as ITPKA) is a neuron-enriched protein that binds to microtubules by PKA-dependent manners. In this study, we found that IP3K-A binds to EB3 and their binding affinity is precisely regulated by protein kinase A (PKA)-dependent phosphorylation of IP3K-A at Ser119 (pSer119). We also revealed that the complex of IP3K-A and EB3 dissociates and reassociates rapidly during chemically induced LTP (cLTP) condition. This dynamic rearrangement of IP3K-A and EB3 complex will contribute remodeling of microtubule cytoskeleton allowing effective structural plasticity in response to synaptic stimulations.
Collapse
Affiliation(s)
- Seo Jung Mo
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Yongsang Cho
- Gachon Liberal Arts College, Gachon University, Seongnam-si, Republic of Korea
| | - Byung-Il Choi
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dongmin Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Elich M, Sauer K. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides. Front Immunol 2018; 9:931. [PMID: 29780388 PMCID: PMC5945867 DOI: 10.3389/fimmu.2018.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.
Collapse
Affiliation(s)
- Mila Elich
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Karsten Sauer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Oncology R&D, Pfizer Worldwide R&D, San Diego, CA, United States
| |
Collapse
|
8
|
Choi B, Lee HW, Mo S, Kim JY, Kim HW, Rhyu IJ, Hong E, Lee YK, Choi JS, Kim CH, Kim H. Inositol 1,4,5-trisphosphate 3-kinase A overexpressed in mouse forebrain modulates synaptic transmission and mGluR-LTD of CA1 pyramidal neurons. PLoS One 2018; 13:e0193859. [PMID: 29617377 PMCID: PMC5884490 DOI: 10.1371/journal.pone.0193859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022] Open
Abstract
Inositol 1,4,5-trisphosphate 3-kinase A (IP3K-A) regulates the level of the inositol polyphosphates, inositol trisphosphate (IP3) and inositol tetrakisphosphate to modulate cellular signaling and intracellular calcium homeostasis in the central nervous system. IP3K-A binds to F-actin in an activity-dependent manner and accumulates in dendritic spines, where it is involved in the regulation of synaptic plasticity. IP3K-A knockout mice exhibit deficits in some forms of hippocampus-dependent learning and synaptic plasticity, such as long-term potentiation in the dentate gyrus synapses of the hippocampus. In the present study, to further elucidate the role of IP3K-A in the brain, we developed a transgenic (Tg) mouse line in which IP3K-A is conditionally overexpressed approximately 3-fold in the excitatory neurons of forebrain regions, including the hippocampus. The Tg mice showed an increase in both presynaptic release probability of evoked responses, along with bigger synaptic vesicle pools, and miniature excitatory postsynaptic current amplitude, although the spine density or the expression levels of the postsynaptic density-related proteins NR2B, synaptotagmin 1, and PSD-95 were not affected. Hippocampal-dependent learning and memory tasks, including novel object recognition and radial arm maze tasks, were partially impaired in Tg mice. Furthermore, (R,S)-3,5-dihydroxyphenylglycine-induced metabotropic glutamate receptor long-term depression was inhibited in Tg mice and this inhibition was dependent on protein kinase C but not on the IP3 receptor. Long-term potentiation and depression dependent on N-methyl-d-aspartate receptor were marginally affected in Tg mice. In summary, this study shows that overexpressed IP3K-A plays a role in some forms of hippocampus-dependent learning and memory tasks as well as in synaptic transmission and plasticity by regulating both presynaptic and postsynaptic functions.
Collapse
Affiliation(s)
- Byungil Choi
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Seojung Mo
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Jin Yong Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Hyun Wook Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Eunhwa Hong
- Department of Psychology, Korea University, Seoul, Korea
| | - Yeon Kyung Lee
- Department of Psychology, Korea University, Seoul, Korea
| | - June-Seek Choi
- Department of Psychology, Korea University, Seoul, Korea
| | - Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology and Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
- * E-mail: (C-HK); (HK)
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
- * E-mail: (C-HK); (HK)
| |
Collapse
|
9
|
Brain-Specific SNAP-25 Deletion Leads to Elevated Extracellular Glutamate Level and Schizophrenia-Like Behavior in Mice. Neural Plast 2017; 2017:4526417. [PMID: 29318050 PMCID: PMC5727794 DOI: 10.1155/2017/4526417] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/31/2017] [Accepted: 10/15/2017] [Indexed: 12/21/2022] Open
Abstract
Several studies have associated reduced expression of synaptosomal-associated protein of 25 kDa (SNAP-25) with schizophrenia, yet little is known about its role in the illness. In this paper, a forebrain glutamatergic neuron-specific SNAP-25 knockout mouse model was constructed and studied to explore the possible pathogenetic role of SNAP-25 in schizophrenia. We showed that SNAP-25 conditional knockout (cKO) mice exhibited typical schizophrenia-like phenotype. A significantly elevated extracellular glutamate level was detected in the cerebral cortex of the mouse model. Compared with Ctrls, SNAP-25 was dramatically reduced by about 60% both in cytoplasm and in membrane fractions of cerebral cortex of cKOs, while the other two core members of SNARE complex: Syntaxin-1 (increased ~80%) and Vamp2 (increased ~96%) were significantly increased in cell membrane part. Riluzole, a glutamate release inhibitor, significantly attenuated the locomotor hyperactivity deficits in cKO mice. Our findings provide in vivo functional evidence showing a critical role of SNAP-25 dysfunction on synaptic transmission, which contributes to the developmental of schizophrenia. It is suggested that a SNAP-25 cKO mouse, a valuable model for schizophrenia, could address questions regarding presynaptic alterations that contribute to the etiopathophysiology of SZ and help to consummate the pre- and postsynaptic glutamatergic pathogenesis of the illness.
Collapse
|
10
|
Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) is frequently over-expressed and functions as an oncogene in several tumor types. Biochem Pharmacol 2017; 137:1-9. [PMID: 28377279 DOI: 10.1016/j.bcp.2017.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/29/2017] [Indexed: 01/22/2023]
Abstract
At present targeted tumor therapy is based on inhibition of proteins or protein mutants that are up-regulated in tumor but not in corresponding normal cells. The actin bundling Inositol-trisphosphate 3-kinase A (ITPKA) belongs to such molecular targets. ITPKA is expressed in a broad range of tumor types but shows limited expression in normal cells. In lung and breast cancer expression of ITPKA is stimulated by gene body methylation which increases with increasing malignancy of these tumors but is not detectable in the corresponding normal tissues. Since ITPKA gene body methylation occurs early in tumor development, it could serve as biomarker for early detection of lung cancer. Detailed mechanistic studies revealed that down-regulation of ITPKA in lung adenocarcinoma cancers reduced both, tumor growth and metastasis. It is assumed that tumor growth is stimulated by the InsP3Kinase activity of ITPKA and metastasis by its actin bundling activity. A selective inhibitor against the InsP3Kinase activity of ITPKA has been identified but compounds inhibiting the actin bundling activity are not available yet. Since no curative therapy option for metastatic lung or breast tumors exist, therapies that block activities of ITPKA may offer new options for patients with these tumors. Thus, efforts should be made to develop clinical drugs that selectively target InsP3Kinase activity as well as actin bundling activity of ITPKA.
Collapse
|
11
|
Becker N, Kucharski R, Rössler W, Maleszka R. Age-dependent transcriptional and epigenomic responses to light exposure in the honey bee brain. FEBS Open Bio 2016; 6:622-39. [PMID: 27398303 PMCID: PMC4932443 DOI: 10.1002/2211-5463.12084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 01/21/2023] Open
Abstract
Light is a powerful environmental stimulus of special importance in social honey bees that undergo a behavioral transition from in-hive to outdoor foraging duties. Our previous work has shown that light exposure induces structural neuronal plasticity in the mushroom bodies (MBs), a brain center implicated in processing inputs from sensory modalities. Here, we extended these analyses to the molecular level to unravel light-induced transcriptomic and epigenomic changes in the honey bee brain. We have compared gene expression in brain compartments of 1- and 7-day-old light-exposed honey bees with age-matched dark-kept individuals. We have found a number of differentially expressed genes (DEGs), both novel and conserved, including several genes with reported roles in neuronal plasticity. Most of the DEGs show age-related changes in the amplitude of light-induced expression and are likely to be both developmentally and environmentally regulated. Some of the DEGs are either known to be methylated or are implicated in epigenetic processes suggesting that responses to light exposure are at least partly regulated at the epigenome level. Consistent with this idea light alters the DNA methylation pattern of bgm, one of the DEGs affected by light exposure, and the expression of microRNA miR-932. This confirms the usefulness of our approach to identify candidate genes for neuronal plasticity and provides evidence for the role of epigenetic processes in driving the molecular responses to visual stimulation.
Collapse
Affiliation(s)
- Nils Becker
- Behavioral Physiology and Sociobiology Biozentrum University of Würzburg Germany
| | - Robert Kucharski
- Research School of Biology The Australian National University Acton Australia
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology Biozentrum University of Würzburg Germany
| | - Ryszard Maleszka
- Research School of Biology The Australian National University Acton Australia
| |
Collapse
|
12
|
The role of inositol 1,4,5-trisphosphate 3-kinase A in regulating emotional behavior and amygdala function. Sci Rep 2016; 6:23757. [PMID: 27053114 PMCID: PMC4823716 DOI: 10.1038/srep23757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
Inositol 1,4,5-trisphosphate 3-kinase A (IP3K-A) is a molecule enriched in the brain and neurons that regulates intracellular calcium levels via signaling through the inositol trisphosphate receptor. In the present study, we found that IP3K-A expression is highly enriched in the central nucleus of the amygdala (CeA), which plays a pivotal role in the processing and expression of emotional phenotypes in mammals. Genetic abrogation of IP3K-A altered amygdala gene expression, particularly in genes involved in key intracellular signaling pathways and genes mediating fear- and anxiety-related behaviors. In agreement with the changes in amygdala gene expression profiles, IP3K-A knockout (KO) mice displayed more robust responses to aversive stimuli and spent less time in the open arms of the elevated plus maze, indicating high levels of innate fear and anxiety. In addition to behavioral phenotypes, decreased excitatory and inhibitory postsynaptic current and reduced c-Fos immunoreactivity in the CeA of IP3K-A KO mice suggest that IP3K-A has a profound influence on the basal activities of fear- and anxiety-mediating amygdala circuitry. In conclusion, our findings collectively demonstrate that IP3K-A plays an important role in regulating affective states by modulating metabotropic receptor signaling pathways and neural activity in the amygdala.
Collapse
|
13
|
Erneux C, Ghosh S, Koenig S. Inositol(1,4,5)P3 3-kinase isoenzymes: Catalytic properties and importance of targeting to F-actin to understand function. Adv Biol Regul 2016; 60:135-143. [PMID: 26446452 DOI: 10.1016/j.jbior.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) 3-kinases (Itpks) catalyze the phosphorylation of inositol(1,4,5)trisphosphate into inositol(1,3,4,5)tetrakisphosphate (Ins(1,3,4,5)P4). Three isoenzymes Itpka/b and c have been identified in human, rat and mouse. They share a catalytic domain relatively well conserved at the C-terminal end and a quite isoenzyme specific regulatory domain at the N-terminal end of the protein. Activity determined in cell homogenates with Ins(1,4,5)P3 and ATP as substrate is generally very low compared to Ins(1,4,5)P3 5-phosphatase, except in a few tissues such as brain, testis, thymus or intestine. Activity is very much Ca(2+) sensitive and increased in the presence of Ca(2+)/calmodulin (CaM) as compared to EGTA alone. When challenged after receptor activation, activity could be further activated several fold, e.g. in rat brain cortical slices stimulated by carbachol or in human astrocytoma cells stimulated by purinergic agonists. Two of the three isoenzymes show an unexpected cytoskeletal localization for Itpka/b or at the leading edge for Itpkb. This is explained by the presence of an F-actin binding site at the N-terminal part of the two isoenzymes. This interaction confers to Itpka the properties of an F-actin bundling protein with two major consequences: i) it can reorganize the cytoskeletal network, particularly in dendritic spines, and ii) can provide an opportunity for Ins(1,3,4,5)P4 to act very locally as second messenger.
Collapse
Affiliation(s)
- Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium.
| | - Somadri Ghosh
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Sandra Koenig
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
14
|
Köster JD, Leggewie B, Blechner C, Brandt N, Fester L, Rune G, Schweizer M, Kindler S, Windhorst S. Inositol-1,4,5-trisphosphate-3-kinase-A controls morphology of hippocampal dendritic spines. Cell Signal 2015; 28:83-90. [PMID: 26519023 DOI: 10.1016/j.cellsig.2015.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 01/10/2023]
Abstract
Long-lasting synaptic plasticity is often accompanied by morphological changes as well as formation and/or loss of dendritic spines. Since the spine cytoskeleton mainly consists of actin filaments, morphological changes are primarily controlled by actin binding proteins (ABPs). Inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) is a neuron-specific, actin bundling protein concentrated at dendritic spines. Here, we demonstrate that ITPKA depletion in mice increases the number of hippocampal spine-synapses while reducing average spine length. By employing actin to ABP ratios similar to those occurring at post synaptic densities, in addition to cross-linking actin filaments, ITPKA strongly inhibits Arp2/3-complex induced actin filament branching by displacing the complex from F-actin. In summary, our data show that in vivo ITPKA negatively regulates formation and/or maintenance of synaptic contacts in the mammalian brain. On the molecular level this effect appears to result from the ITPKA-mediated inhibition of Arp2/3-complex F-actin branching activity.
Collapse
Affiliation(s)
- Jan-Dietrich Köster
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Birthe Leggewie
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Christine Blechner
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Nicola Brandt
- Department of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Lars Fester
- Department of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Gabriele Rune
- Department of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | - Stefan Kindler
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| |
Collapse
|
15
|
ITPKA expression is a novel prognostic factor in hepatocellular carcinoma. Diagn Pathol 2015; 10:136. [PMID: 26249031 PMCID: PMC4528344 DOI: 10.1186/s13000-015-0374-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022] Open
Abstract
Background Inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) has recently been found to be implicated in the tumor progression of various cancers. However, the expression and the prognostic value of ITPKA in hepatocellular carcinoma (HCC) remains unexplored. The aim of this study is to investigate the clinical significance of ITPKA expression in HCC. Methods We determined the expression level of ITPKA in 135 cases of HCC tissues and the matched adjacent nontumorous tissues by quantitative real-time RT-PCR. The correlation between ITPKA expression and prognosis of HCC patients was further evaluated by univariate and multivariate analysis. Multivariate analysis of the prognostic factors was performed with Cox proportional hazards model. Results Up-regulation of ITPKA occurred in 48.9 % of primary HCCs compared with their nontumor counterparts (P < 0.001). In addition, high expression of ITPKA was significantly associated with vascular invasion (P = 0.001) and TNM stage (P = 0.005). Kaplan–Meier analysis showed that the 5-year overall survival (OS) and relapse-free survival (RFS) rate in the group with high expression of ITPKA is poorer than that in low expression group (32.2 and 26.8 % versus 59.2 and 57.7 %). Univariate and multivariate analyses revealed that ITPKA was an independent prognostic factor for OS and RFS. Moreover, Stratified analysis revealed that its prognostic significance still existed within the subgroup of patients with early clinical stage (TNM stage I) or normal serum AFP level (≤25 μg/L). Conclusion Our data indicated that ITPKA expression was significantly up-regulated in HCC and could serve as a potential novel prognostic biomarker for HCC patients after surgery.
Collapse
|
16
|
Kim IH, Rossi MA, Aryal DK, Racz B, Kim N, Uezu A, Wang F, Wetsel WC, Weinberg RJ, Yin H, Soderling SH. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat Neurosci 2015; 18:883-91. [PMID: 25938885 PMCID: PMC4459733 DOI: 10.1038/nn.4015] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/08/2015] [Indexed: 02/06/2023]
Abstract
Psychiatric and neurodevelopmental disorders may arise from anomalies in long-range neuronal connectivity downstream of pathologies in dendritic spines. However, the mechanisms that may link spine pathology to circuit abnormalities relevant to atypical behavior remain unknown. Using a mouse model to conditionally disrupt a critical regulator of the dendritic spine cytoskeleton, the actin-related protein 2/3 complex (Arp2/3), we report here a molecular mechanism that unexpectedly reveals the inter-relationship of progressive spine pruning, elevated frontal cortical excitation of pyramidal neurons and striatal hyperdopaminergia in a cortical-to-midbrain circuit abnormality. The main symptomatic manifestations of this circuit abnormality are psychomotor agitation and stereotypical behaviors, which are relieved by antipsychotics. Moreover, this antipsychotic-responsive locomotion can be mimicked in wild-type mice by optogenetic activation of this circuit. Collectively these results reveal molecular and neural-circuit mechanisms, illustrating how diverse pathologies may converge to drive behaviors relevant to psychiatric disorders.
Collapse
Affiliation(s)
- Il Hwan Kim
- Departments of Cell Biology, Duke University Medical School, Durham, North Carolina
| | - Mark A. Rossi
- Departments of Psychology and Neuroscience, Duke University Medical School, Durham, North Carolina
| | - Dipendra K. Aryal
- Departments of Psychiatry and Behavioral Sciences and Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina
| | - Bence Racz
- Departments of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Namsoo Kim
- Departments of Psychology and Neuroscience, Duke University Medical School, Durham, North Carolina
| | - Akiyoshi Uezu
- Departments of Cell Biology, Duke University Medical School, Durham, North Carolina
| | - Fan Wang
- Departments of Neurobiology, Duke University Medical School, Durham, North Carolina
| | - William C. Wetsel
- Departments of Cell Biology, Duke University Medical School, Durham, North Carolina
- Departments of Neurobiology, Duke University Medical School, Durham, North Carolina
- Departments of Psychiatry and Behavioral Sciences and Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| | - Henry Yin
- Departments of Psychology and Neuroscience, Duke University Medical School, Durham, North Carolina
| | - Scott H. Soderling
- Departments of Cell Biology, Duke University Medical School, Durham, North Carolina
- Departments of Neurobiology, Duke University Medical School, Durham, North Carolina
| |
Collapse
|
17
|
Tejada-Simon MV. Modulation of actin dynamics by Rac1 to target cognitive function. J Neurochem 2015; 133:767-79. [PMID: 25818528 DOI: 10.1111/jnc.13100] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/14/2022]
Abstract
The small GTPase Rac1 is well known for regulating actin cytoskeleton reorganization in cells. Formation of extensions at the surface of the cell is required for migration and even for cell invasion and metastases. Because an elevated level and hyperactivation of this protein has been associated with metastasis in cancer, direct regulators of Rac1 are currently envisioned as a potential strategy to treat certain cancers. Less research, however, has been done regarding the role of this small GTP-binding protein in brain development, where it has an important role in dendritic spine morphogenesis through the regulation of actin. Alteration of dendritic development and spinogenesis has been often associated with mental disorders. Rac1 is associated with and required for learning and the formation of memories in the brain. Rac1 appears to be dysregulated in certain neurodevelopmental disorders that present all these three alterations: mental retardation, atypical synaptic plasticity and aberrant spine morphology. Thus, to develop novel therapies for rescuing cognitive impairment, a reasonable approach might be to target this protein, Rac1, which plays a pivotal role in directing signals that regulate actin dynamics, which in turn might have an effect in spine cytoarchitecture and synaptic function. It is possible that novel drugs that regulate Rac1 activation and function could modulate actin cytoskeleton and spine dynamics, representing potential candidates to repair intellectual disability in disorders associated with spine abnormalities. Herein, we present a list of the current Rac1 inhibitors that might fulfill this role together with a summary of the latest findings concerning their function as they relate to neuronal studies. While the small GTPase Rac1 is well known for regulating actin cytoskeleton reorganization in different type of cells, it appears to be also required for learning and the formation of memories in the brain. Abnormal regulation of this protein has been associated with cognitive disabilities, atypical synaptic plasticity and abnormal morphology of dendritic spines in certain neurodevelopmental disorders. Thus, modulation of Rac1 activity using novel inhibitors might be a strategy to reestablish cognitive function.
Collapse
Affiliation(s)
- Maria V Tejada-Simon
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA.,Department of Biology, University of Houston, Houston, Texas, USA.,Department of Psychology, University of Houston, Houston, Texas, USA.,Biology of Behavior Institute (BoBI), University of Houston, Houston, Texas, USA
| |
Collapse
|
18
|
Ashour DJ, Pelka B, Jaaks P, Wundenberg T, Blechner C, Zobiak B, Failla AV, Windhorst S. The catalytic domain of inositol-1,4,5-trisphosphate 3-kinase-a contributes to ITPKA-induced modulation of F-actin. Cytoskeleton (Hoboken) 2015; 72:93-100. [DOI: 10.1002/cm.21208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Dina Julia Ashour
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| | - Benjamin Pelka
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| | - Patricia Jaaks
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| | - Torsten Wundenberg
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| | - Christine Blechner
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| | - Bernd Zobiak
- Microscopy Imaging Facility; University Medical Center Hamburg-Eppendorf; Martinistrasse Hamburg Germany
| | - Antonio Virgilio Failla
- Microscopy Imaging Facility; University Medical Center Hamburg-Eppendorf; Martinistrasse Hamburg Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| |
Collapse
|
19
|
Kim IH, Wang H, Soderling SH, Yasuda R. Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall. eLife 2014; 3. [PMID: 25006034 PMCID: PMC4115656 DOI: 10.7554/elife.02839] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/06/2014] [Indexed: 12/17/2022] Open
Abstract
Cdc42 is a signaling protein important for reorganization of actin cytoskeleton and morphogenesis of cells. However, the functional role of Cdc42 in synaptic plasticity and in behaviors such as learning and memory are not well understood. Here we report that postnatal forebrain deletion of Cdc42 leads to deficits in synaptic plasticity and in remote memory recall using conditional knockout of Cdc42. We found that deletion of Cdc42 impaired LTP in the Schaffer collateral synapses and postsynaptic structural plasticity of dendritic spines in CA1 pyramidal neurons in the hippocampus. Additionally, loss of Cdc42 did not affect memory acquisition, but instead significantly impaired remote memory recall. Together these results indicate that the postnatal functions of Cdc42 may be crucial for the synaptic plasticity in hippocampal neurons, which contribute to the capacity for remote memory recall.
Collapse
Affiliation(s)
- Il Hwan Kim
- Department of Cell Biology, Duke University Medical School, Durham, United States
| | - Hong Wang
- Department of Neurobiology, Duke University Medical School, Durham, United States
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, United States
| | - Ryohei Yasuda
- Department of Neurobiology, Duke University Medical School, Durham, United States
| |
Collapse
|
20
|
Lamprecht R. The actin cytoskeleton in memory formation. Prog Neurobiol 2014; 117:1-19. [DOI: 10.1016/j.pneurobio.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 01/21/2023]
|
21
|
Lee D, Han S, Woo S, Lee HW, Sun W, Kim H. Enhanced expression and purification of inositol 1,4,5-trisphosphate 3-kinase A through use of the pCold1-GST vector and a C-terminal hexahistidine tag in Escherichia coli. Protein Expr Purif 2014; 97:72-80. [PMID: 24576661 DOI: 10.1016/j.pep.2014.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
Inositol 1,4,5-trisphosphate 3-kinase A (IP3K-A, alternative name: ITPKA) is a neuron-specific enzyme that converts 1,4,5-trisphosphate (IP3) into inositol 1,3,4,5-tetrakisphosphate (IP4) through its kinase domain. In addition, transient overexpression of IP3K-A induces morphological changes in dendritic spines of excitatory synapses in a kinase-independent manner, apparently by modulating the organization of the neuronal cytoskeleton. Although the procurement of a purified recombinant IP3K-A protein would be indispensable for the biochemical elucidation of its physiological roles, production of recombinant IP3K-A has proven technically challenging in conventional Escherichia coli expression systems. These difficulties stem from low enzyme solubility, as well as poor protein quality caused by the tendency of IP3K-A to split into partial fragments. In present study, we newly introduced cold-shock expression vector (pCold1) together with a C-terminal hexahistidine tag (C-HIS) to enhance the expression levels of recombinant IP3K-A in E. coli. Importantly, when compared with other commonly-employed bacterial expression systems, the pCold1 system improved the yield and the purity of full-length IP3K-A due to the exclusion of truncated enzyme forms, and also enhanced the solubility of the enzyme. Furthermore, the functional integrity of purified IP3K-A was confirmed in both kinase activity assay and microtubule binding assay. Recombinant IP3K-A acquired via this modified protocol will be expected to facilitate the exploration of the enzyme's biochemical profile, both structurally and functionally.
Collapse
Affiliation(s)
- Dongmin Lee
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, Republic of Korea
| | - Seungrie Han
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, Republic of Korea
| | - Seungkyun Woo
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, Republic of Korea
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, Republic of Korea
| | - Woong Sun
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, Republic of Korea.
| |
Collapse
|
22
|
Stimulation of MMP-1 and CCL2 by NAMPT in PDL cells. Mediators Inflamm 2013; 2013:437123. [PMID: 24058270 PMCID: PMC3766615 DOI: 10.1155/2013/437123] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/18/2013] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is an inflammatory disease caused by pathogenic microorganisms and characterized by the destruction of the periodontium. Obese individuals have an increased risk of periodontitis, and elevated circulating levels of adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), may be a pathomechanistic link between both diseases. The aim of this in vitro study was to examine the regulation of periodontal ligament (PDL) cells by NAMPT and its production under inflammatory and infectious conditions. NAMPT caused a significant upregulation of 9 genes and downregulation of 3 genes, as analyzed by microarray analysis. Eight of these genes could be confirmed by real-time PCR: NAMPT induced a significant upregulation of EGR1, MMP-1, SYT7, ITPKA, CCL2, NTM, IGF2BP3, and NRP1. NAMPT also increased significantly the MMP-1 and CCL2 protein synthesis. NAMPT was significantly induced by interleukin-1β and the periodontal microorganism P. gingivalis. NAMPT may contribute to periodontitis through upregulation of MMP-1 and CCL2 in PDL cells. Increased NAMPT levels, as found in obesity, may therefore represent a mechanism whereby obesity could confer an increased risk of periodontitis. Furthermore, microbial and inflammatory signals may enhance the NAMPT synthesis in PDL cells and thereby contribute to the increased gingival and serum levels of this adipokine, as found in periodontitis.
Collapse
|
23
|
Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. J Neurosci 2013; 33:6081-92. [PMID: 23554489 DOI: 10.1523/jneurosci.0035-13.2013] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite evidence for a strong genetic contribution to several major psychiatric disorders, individual candidate genes account for only a small fraction of these disorders, leading to the suggestion that multigenetic pathways may be involved. Several known genetic risk factors for psychiatric disease are related to the regulation of actin polymerization, which plays a key role in synaptic plasticity. To gain insight into and test the possible pathogenetic role of this pathway, we designed a conditional knock-out of the Arp2/3 complex, a conserved final output for actin signaling pathways that orchestrates de novo actin polymerization. Here we report that postnatal loss of the Arp2/3 subunit ArpC3 in forebrain excitatory neurons leads to an asymmetric structural plasticity of dendritic spines, followed by a progressive loss of spine synapses. This progression of synaptic deficits corresponds with an evolution of distinct cognitive, psychomotor, and social disturbances as the mice age. Together, these results point to the dysfunction of actin signaling, specifically that which converges to regulate Arp2/3, as an important cellular pathway that may contribute to the etiology of complex psychiatric disorders.
Collapse
|
24
|
Lee D, Lee HW, Hong S, Choi BI, Kim HW, Han SB, Kim IH, Bae JY, Bae YC, Rhyu IJ, Sun W, Kim H. Inositol 1,4,5-trisphosphate 3-kinase A is a novel microtubule-associated protein: PKA-dependent phosphoregulation of microtubule binding affinity. J Biol Chem 2012; 287:15981-95. [PMID: 22389500 DOI: 10.1074/jbc.m112.344101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Inositol 1,4,5-trisphosphate 3-kinase A (IP(3)K-A) is a brain specific and F-actin-binding protein. We recently demonstrated that IP(3)K-A modulates a structural reorganization of dendritic spines through F-actin remodeling, which is required for synaptic plasticity and memory formation in brain. However, detailed functions of IP(3)K-A and its regulatory mechanisms involved in the neuronal cytoskeletal dynamics still remain unknown. In the present study, we identified tubulin as a candidate of IP(3)K-A-binding protein through proteomic screening. By various in vitro and in vivo approaches, we demonstrated that IP(3)K-A was a novel microtubule-associated protein (MAP), and the N terminus of IP(3)K-A was a critical region for direct binding to tubulin in dendritic shaft of hippocampal neurons. Moreover, PKA phosphorylated Ser-119 within IP(3)K-A, leading to a significant reduction of microtubule binding affinity. These results suggest that PKA-dependent phosphorylation and microtubule binding of IP(3)K-A are involved in its regulatory mechanism for activity-dependent neuronal events such as local calcium signaling and its synaptic targeting.
Collapse
Affiliation(s)
- Dongmin Lee
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Windhorst S, Minge D, Bähring R, Hüser S, Schob C, Blechner C, Lin HY, Mayr GW, Kindler S. Inositol-1,4,5-trisphosphate 3-kinase A regulates dendritic morphology and shapes synaptic Ca2+ transients. Cell Signal 2012; 24:750-7. [DOI: 10.1016/j.cellsig.2011.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/25/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
|
26
|
Abstract
The inositol (1,4,5) trisphosphate 3-kinases comprise a family of enzymes (A, B, and C) that phosphorylate the calcium mobilising molecule inositol (1,4,5) trisphosphate (IP3) to generate inositol (1,3,4,5) tetrakisphosphate. This molecule can function as a second messenger, but its roles are not completely understood. The A isoform of inositol (1,4,5) trisphosphate 3-kinase localises to filamentous actin within dendritic spines in the hippocampus and is implicated in the regulation of spine morphology and long term potentiation, however the mechanisms through which it signals in neuronal cells are not completely understood. We have used NGF driven neurite outgrowth from PC12 cells as a platform to examine the impact of signaling via inositol (1,4,5) trisphosphate 3-kinase activity in a neuronal cell. We have found that the catalytic activity of the enzyme opposes neurite outgrowth, whilst pharmacological inhibition of inositol (1,4,5) trisphosphate 3-kinase leads to a significant increase in neurite outgrowth, and we show that the reduction in neurite outgrowth in response to inositol (1,4,5) trisphosphate 3-kinase activity correlates with reduced ERK activity as determined by western blotting using phosphorylation-specific antibodies. Our findings suggest a novel neuronal signaling pathway linking metabolism of IP3 to signaling via ERK.
Collapse
|
27
|
Rietman ML, Sommeijer JP, Levelt CN, Heimel JA. Candidate genes in ocular dominance plasticity. Front Neurosci 2012; 6:11. [PMID: 22347157 PMCID: PMC3269753 DOI: 10.3389/fnins.2012.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/16/2012] [Indexed: 11/16/2022] Open
Abstract
Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated the level of plasticity with the gene expression data in the neocortex that have become available for these same strains. We propose that genes with a high correlation are likely to play a role in OD plasticity. We have tested this hypothesis for genes whose inactivation is known to affect OD plasticity. The expression levels of these genes indeed correlated with OD plasticity if their levels showed strong differences between the BXD strains. To narrow down our candidate list of correlated genes, we have selected only those genes that were previously found to be regulated by visual experience and associated with pathways implicated in OD plasticity. This resulted in a list of 32 candidate genes. The list contained unproven, but not unexpected candidates such as the genes for IGF-1, NCAM1, NOGO-A, the gamma2 subunit of the GABA(A) receptor, acetylcholine esterase, and the catalytic subunit of cAMP-dependent protein kinase A. This demonstrates the viability of our approach. More interestingly, the following novel candidate genes were identified: Akap7, Akt1, Camk2d, Cckbr, Cd44, Crim1, Ctdsp2, Dnajc5, Gnai1, Itpka, Mapk8, Nbea, Nfatc3, Nlk, Npy5r, Phf21a, Phip, Ppm1l, Ppp1r1b, Rbbp4, Slc1a3, Slit2, Socs2, Spock3, St8sia1, Zfp207. Whether all these novel candidates indeed function in OD plasticity remains to be established, but possible roles of some of them are discussed in the article.
Collapse
Affiliation(s)
- M Liset Rietman
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
28
|
Nanavati D, Austin DR, Catapano LA, Luckenbaugh DA, Dosemeci A, Manji HK, Chen G, Markey SP. The effects of chronic treatment with mood stabilizers on the rat hippocampal post-synaptic density proteome. J Neurochem 2011; 119:617-29. [PMID: 21838781 PMCID: PMC3192943 DOI: 10.1111/j.1471-4159.2011.07424.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bipolar disorder is a devastating illness that is marked by recurrent episodes of mania and depression. There is growing evidence that the disease is correlated with disruptions in synaptic plasticity cascades involved in cognition and mood regulation. Alleviating the symptoms of bipolar disorder involves chronic treatment with mood stabilizers like lithium or valproate. These two structurally dissimilar drugs are known to alter prominent signaling cascades in the hippocampus, but their effects on the post-synaptic density complex remain undefined. In this work, we utilized mass spectrometry for quantitative profiling of the rat hippocampal post-synaptic proteome to investigate the effects of chronic mood stabilizer treatment. Our data show that in response to chronic treatment of mood stabilizers there were not gross qualitative changes but rather subtle quantitative perturbations in post-synaptic density proteome linked to several key signaling pathways. Our data specifically support the changes in actin dynamics on valproate treatment. Using label-free quantification methods, we report that lithium and valproate significantly altered the abundance of 21 and 43 proteins, respectively. Seven proteins were affected similarly by both lithium and valproate: Ank3, glutamate receptor 3, dynein heavy chain 1, and four isoforms of the 14-3-3 family. Immunoblotting the same samples confirmed the changes in Ank3 and glutamate receptor 3 abundance. Our findings support the hypotheses that BPD is a synaptic disorder and that mood stabilizers modulate the protein signaling complex in the hippocampal post-synaptic density.
Collapse
Affiliation(s)
- Dhaval Nanavati
- Laboratory of Neurotoxicology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel R. Austin
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa A. Catapano
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A. Luckenbaugh
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayse Dosemeci
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Husseini K. Manji
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guang Chen
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanford P. Markey
- Laboratory of Neurotoxicology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Lu Y, Zha XM, Kim EY, Schachtele S, Dailey ME, Hall DD, Strack S, Green SH, Hoffman DA, Hell JW. A kinase anchor protein 150 (AKAP150)-associated protein kinase A limits dendritic spine density. J Biol Chem 2011; 286:26496-506. [PMID: 21652711 PMCID: PMC3143614 DOI: 10.1074/jbc.m111.254912] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/02/2011] [Indexed: 02/03/2023] Open
Abstract
The A kinase anchor protein AKAP150 recruits the cAMP-dependent protein kinase (PKA) to dendritic spines. Here we show that in AKAP150 (AKAP5) knock-out (KO) mice frequency of miniature excitatory post-synaptic currents (mEPSC) and inhibitory post-synaptic currents (mIPSC) are elevated at 2 weeks and, more modestly, 4 weeks of age in the hippocampal CA1 area versus litter mate WT mice. Linear spine density and ratio of AMPAR to NMDAR EPSC amplitudes were also increased. Amplitude and decay time of mEPSCs, decay time of mIPSCs, and spine size were unaltered. Mice in which the PKA anchoring C-terminal 36 residues of AKAP150 are deleted (D36) showed similar changes. Furthermore, whereas acute stimulation of PKA (2-4 h) increases spine density, prolonged PKA stimulation (48 h) reduces spine density in apical dendrites of CA1 pyramidal neurons in organotypic slice cultures. The data from the AKAP150 mutant mice show that AKAP150-anchored PKA chronically limits the number of spines with functional AMPARs at 2-4 weeks of age. However, synaptic transmission and spine density was normal at 8 weeks in KO and D36 mice. Thus AKAP150-independent mechanisms correct the aberrantly high number of active spines in juvenile AKAP150 KO and D36 mice during development.
Collapse
Affiliation(s)
- Yuan Lu
- From the Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine and
- the Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Xiang-ming Zha
- the Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa 52242
- the Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, Alabama 36688
| | - Eun Young Kim
- the Molecular Neurophysiology and Biophysics Unit, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Scott Schachtele
- the Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Michael E. Dailey
- the Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Duane D. Hall
- From the Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine and
| | - Stefan Strack
- From the Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine and
| | - Steven H. Green
- the Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Dax A. Hoffman
- the Molecular Neurophysiology and Biophysics Unit, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Johannes W. Hell
- From the Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine and
- the Department of Pharmacology, School of Medicine, University of California, Davis, California 95615
| |
Collapse
|
30
|
Chang L, Schwarzenbach H, Meyer-Staeckling S, Brandt B, Mayr GW, Weitzel JM, Windhorst S. Expression Regulation of the Metastasis-Promoting Protein InsP3-Kinase-A in Tumor Cells. Mol Cancer Res 2011; 9:497-506. [PMID: 21460179 DOI: 10.1158/1541-7786.mcr-10-0556] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Under physiologic conditions, the inositol-1,4,5-trisphosphate (InsP(3))-metabolizing, F-actin-bundling InsP(3)-kinase-A (ITPKA) is expressed only in neurons. Tumor cells that have gained the ability to express ITPKA show an increased metastatic potential due to the migration-promoting properties of ITPKA. Here we investigated the mechanism how tumor cells have gained the ability to reexpress ITPKA by using a breast cancer cell line (T47D) with no expression and a lung carcinoma cell line (H1299) with ectopic ITPKA expression. Cloning of a 1,250-bp ITPKA promoter fragment revealed that methylation of CpG islands was reduced in H1299 as compared with T47D cells, but DNA demethylation did not alter the expression of ITPKA. Instead, we showed that the repressor-element-1-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF), which suppresses expression of neuronal genes in nonneuronal tissues, regulates expression of ITPKA. Knockdown of REST/NRSF induced expression of ITPKA in T47D cells, whereas its overexpression in H1299 cells strongly reduced the level of ITPKA. In T47D cells, REST/NRSF was bound to the RE-1 site of the ITPKA promoter and strongly reduced its activity. In H1299 cells, in contrast, expressing comparable REST/NRSF levels as T47D cells, REST/NRSF only slightly reduced ITPKA promoter activity. This reduced suppressor activity most likely results from expression of a dominant-negative isoform of REST/NRSF, REST4, which impairs binding of REST/NRSF to the RE-1 site. Thus, ITPKA may belong to the neuronal metastasis-promoting proteins whose ectopic reexpression in tumor cells is associated with impaired REST/NRSF activity. Mol Cancer Res; 9(4); 1-10. ©2011 AACR.
Collapse
Affiliation(s)
- Lydia Chang
- Universitätsklinikum Hamburg-Eppendorf, Hamburg; and 3Leibniz-Institut für Nutztierbiologie, Dummerstorf, Dummerstorf, Mecklenburg-Vorpommern, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Second messenger molecules relay, amplify, and diversify cell surface receptor signals. Two important examples are phosphorylated D-myo-inositol derivatives, such as phosphoinositide lipids within cellular membranes, and soluble inositol phosphates. Here, we review how phosphoinositide metabolism generates multiple second messengers with important roles in T-cell development and function. They include soluble inositol(1,4,5)trisphosphate, long known for its Ca(2+)-mobilizing function, and phosphatidylinositol(3,4,5)trisphosphate, whose generation by phosphoinositide 3-kinase and turnover by the phosphatases PTEN and SHIP control a key "hub" of TCR signaling. More recent studies unveiled important second messenger functions for diacylglycerol, phosphatidic acid, and soluble inositol(1,3,4,5)tetrakisphosphate (IP(4)) in immune cells. Inositol(1,3,4,5)tetrakisphosphate acts as a soluble phosphatidylinositol(3,4,5)trisphosphate analog to control protein membrane recruitment. We propose that phosphoinositide lipids and soluble inositol phosphates (IPs) can act as complementary partners whose interplay could have broadly important roles in cellular signaling.
Collapse
Affiliation(s)
- Yina H Huang
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
32
|
Schell MJ. Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling. Cell Mol Life Sci 2010; 67:1755-78. [PMID: 20066467 PMCID: PMC11115942 DOI: 10.1007/s00018-009-0238-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 11/28/2022]
Abstract
The localized control of second messenger levels sculpts dynamic and persistent changes in cell physiology and structure. Inositol trisphosphate [Ins(1,4,5)P(3)] 3-kinases (ITPKs) phosphorylate the intracellular second messenger Ins(1,4,5)P(3). These enzymes terminate the signal to release Ca(2+) from the endoplasmic reticulum and produce the messenger inositol tetrakisphosphate [Ins(1,3,4,5)P(4)]. Independent of their enzymatic activity, ITPKs regulate the microstructure of the actin cytoskeleton. The immune phenotypes of ITPK knockout mice raise new questions about how ITPKs control inositol phosphate lifetimes within spatial and temporal domains during lymphocyte maturation. The intense concentration of ITPK on actin inside the dendritic spines of pyramidal neurons suggests a role in signal integration and structural plasticity in the dendrite, and mice lacking neuronal ITPK exhibit memory deficits. Thus, the molecular and anatomical features of ITPKs allow them to regulate the spatiotemporal properties of intracellular signals, leading to the formation of persistent molecular memories.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| |
Collapse
|
33
|
Sauer K, Cooke MP. Regulation of immune cell development through soluble inositol-1,3,4,5-tetrakisphosphate. Nat Rev Immunol 2010; 10:257-71. [PMID: 20336153 PMCID: PMC2922113 DOI: 10.1038/nri2745] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The membrane lipid phosphatidylinositol-3,4,5-trisphosphate (PtdInsP(3)) regulates membrane receptor signalling in many cells, including immunoreceptor signalling. Here, we review recent data that have indicated essential roles for the soluble PtdInsP(3) analogue inositol-1,3,4,5-tetrakisphosphate (InsP(4)) in T cell, B cell and neutrophil development and function. Decreased InsP(4) production in leukocytes causes immunodeficiency in mice and might contribute to inflammatory vasculitis in Kawasaki disease in humans. InsP(4)-producing kinases could therefore provide attractive drug targets for inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Karsten Sauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|