1
|
Ebihara T, Omura K, Nishijima H, Yamamoto T, Otori N, Kikuta S. A new surgical technique to increase airflow in the olfactory cleft: superior turbinate lateralization procedure. Eur Arch Otorhinolaryngol 2024; 281:5863-5871. [PMID: 39017995 DOI: 10.1007/s00405-024-08848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The olfactory cleft (OC) is the most important anatomical site for the maintenance of olfactory function. Obstruction of airflow in the OC by various conditions, such as inflammation, leads to poor olfactory function. Therefore, it is important to increase OC airflow while performing endoscopic sinus surgery (ESS). However, no technique to increase airflow has yet been established. METHODS We designed a superior turbinate lateralization (STL) procedure that displaces the entire ST bone laterally by eliminating the connection between the posterior ST and the anterior wall of the sphenoid sinus. The effect of the STL procedure was investigated in terms of anatomy and olfactory function. RESULTS ESS with the STL procedure was performed on seven patients with chronic rhinosinusitis and nasal polyps. The cross-sectional area of the OC at 3 months postoperatively was significantly larger than that before ESS. In addition, the Open Essence test and questionnaires revealed significantly improvements in sense of smell. Airflow in the OC was significantly higher in STL procedure group than in the non-STL procedure group. CONCLUSION The STL procedure enlarges the bony framework of the OC, and by increasing OC airflow, facilitates the transport of odorants to the olfactory epithelium, thereby improving olfactory perception.
Collapse
Affiliation(s)
- Teru Ebihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kazuhiro Omura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hironobu Nishijima
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahisa Yamamoto
- Department of Mechanical Engineering, National Institute of Technology, Gifu College, Gifu, Japan
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Nihon University, 30-1, Oyaguchi Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
2
|
Kunkhyen T, Brechbill TR, Berg SPR, Pothuri P, Rangel AN, Gupta A, Cheetham CEJ. Cell type- and layer-specific plasticity of olfactory bulb interneurons following olfactory sensory neuron ablation. Sci Rep 2024; 14:17771. [PMID: 39090136 PMCID: PMC11294461 DOI: 10.1038/s41598-024-68649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Lifelong neurogenesis endows the mouse olfactory system with a capacity for regeneration that is unique in the mammalian nervous system. Throughout life, olfactory sensory neurons (OSNs) are generated from olfactory epithelium (OE) stem cells in the nose, while the subventricular zone generates neuroblasts that migrate to the olfactory bulb (OB) and differentiate into multiple populations of inhibitory interneurons. Methimazole (MMZ) selectively ablates OSNs, but OE neurogenesis enables OSN repopulation and gradual recovery of OSN input to the OB within 6 weeks. However, it is not known how OB interneurons are affected by this loss and subsequent regeneration of OSN input following MMZ treatment. We found that dopaminergic neuron density was significantly reduced 7-14 days post-MMZ but recovered substantially at 35 days. The density of parvalbumin-expressing interneurons was unaffected by MMZ; however, their soma size was significantly reduced at 7-14 days post-MMZ, recovering by 35 days. Surprisingly, we found a transient increase in the density of calretinin-expressing neurons in the glomerular and external plexiform layers, but not the granule cell layer, 7 days post-MMZ. This could not be accounted for by increased neurogenesis but may result from increased calretinin expression. Together, our data demonstrate cell type- and layer-specific changes in OB interneuron density and morphology after MMZ treatment, providing new insight into the range of plasticity mechanisms employed by OB circuits during loss and regeneration of sensory input.
Collapse
Affiliation(s)
- Tenzin Kunkhyen
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Taryn R Brechbill
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah P R Berg
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pranitha Pothuri
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Alexander N Rangel
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ashna Gupta
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
Akiyama K, Arakawa Y, Samukawa Y, Hoshikawa H. Age-related differences in olfactory profiles and surgical outcomes in eosinophilic chronic rhinosinusitis. Allergol Int 2024:S1323-8930(24)00054-6. [PMID: 39004587 DOI: 10.1016/j.alit.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 07/16/2024] Open
Affiliation(s)
- Kosuke Akiyama
- Department of Otolaryngology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Yukako Arakawa
- Department of Respiratory Medicine, KKR Takamatsu Hospital, Kagawa, Japan
| | - Yasushi Samukawa
- Department of Otolaryngology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroshi Hoshikawa
- Department of Otolaryngology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
4
|
Kikuta S, Nagayama S, Hasegawa-Ishii S. Structures and functions of the normal and injured human olfactory epithelium. Front Neural Circuits 2024; 18:1406218. [PMID: 38903957 PMCID: PMC11188711 DOI: 10.3389/fncir.2024.1406218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The olfactory epithelium (OE) is directly exposed to environmental agents entering the nasal cavity, leaving OSNs prone to injury and degeneration. The causes of olfactory dysfunction are diverse and include head trauma, neurodegenerative diseases, and aging, but the main causes are chronic rhinosinusitis (CRS) and viral infections. In CRS and viral infections, reduced airflow due to local inflammation, inflammatory cytokine production, release of degranulated proteins from eosinophils, and cell injury lead to decreased olfactory function. It is well known that injury-induced loss of mature OSNs in the adult OE causes massive regeneration of new OSNs within a few months through the proliferation and differentiation of progenitor basal cells that are subsequently incorporated into olfactory neural circuits. Although normal olfactory function returns after injury in most cases, prolonged olfactory impairment and lack of improvement in olfactory function in some cases poses a major clinical problem. Persistent inflammation or severe injury in the OE results in morphological changes in the OE and respiratory epithelium and decreases the number of mature OSNs, resulting in irreversible loss of olfactory function. In this review, we discuss the histological structure and distribution of the human OE, and the pathogenesis of olfactory dysfunction associated with CRS and viral infection.
Collapse
Affiliation(s)
- Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Nihon University, Tokyo, Japan
| | - Shin Nagayama
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | |
Collapse
|
5
|
Chen YT, Young TH, Wang YH, Huang CH, Gao YY, Huang TW. Orexin-A increases the differentiation of human olfactory sensory neurons through orexin receptor type 1. Regen Ther 2024; 26:1058-1068. [PMID: 39582799 PMCID: PMC11585478 DOI: 10.1016/j.reth.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Sensorineural olfactory dysfunction significantly impairs the life quality of patients but without effective treatments to date. Orexin is a neurotrophic factor activates neuronal network activity. However, it is still unknown whether orexin can promote differentiation in human olfactory sensory neurons (OSNs). This study seeks to explore the impact of orexin on the differentiation of human olfactory neuroepithelial cells (HONCs). Methods The primary olfactory epithelium cells were cultured with or without orexin-A. The neural maturation-related and functional proteins were analyzed through immunofluorescence staining and Western blot. The function of HONCs were evaluated through the synaptic vesicle recycling assay. Results The results showed that HONCs in the orexin-A group expressed higher levels of stage-specific markers, including achaete-scute homolog 1, βIII-tubulin, and olfactory marker protein. Additionally, more components of signaling transduction pathways compared to the control group. The orexin-A-mediated differentiation of OSN effect can be nullified with dual orexin receptor antagonist suvorexant and the selective orexin receptor type 1 antagonist SB674042, instead of selective orexin receptor type 2 antagonist TCS-OX2-29. Conclusions Orexin-A elevates the expression of protein markers in human olfactory neuronal progenitor cells to stimulate the differentiation of OSN and enhances the formation of components of the olfactory-specific signaling transduction pathway via orexin receptor type 1.
Collapse
Affiliation(s)
- Yin-Tzu Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsuan Huang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Yun Gao
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tsung-Wei Huang
- Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan
- Department of Electrical Engineering, College of Electrical and Communication Engineering, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Nakamura Y, Miwa T, Shiga H, Sakata H, Shigeta D, Hatta T. Histological changes in the olfactory bulb and rostral migratory stream due to interruption of olfactory input. Auris Nasus Larynx 2024; 51:517-524. [PMID: 38522356 DOI: 10.1016/j.anl.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE Periglomerular and granule cells in the adult mammalian olfactory bulb modulate olfactory signal transmission. These cells originate from the subventricular zone, migrate to the olfactory bulb via the Rostral Migratory Stream (RMS), and differentiate into mature cells within the olfactory bulb throughout postnatal life. While the regulation of neuroblast development is known to be affected by external stimuli, there is a lack of information concerning changes that occur during the recovery process after injury caused by external stimuli. To address this gap in research, the present study conducted histological observations to investigate changes in the olfactory bulb and RMS occurring after the degeneration and regeneration of olfactory neurons. METHODS To create a model of olfactory neurodegeneration, adult mice were administered methimazole intraperitoneally. Nasal tissue and whole brains were removed 3, 7, 14 and 28 days after methimazole administration, and EdU was administered 2 and 4 h before removal of these tissues to monitor dividing cells in the RMS. Methimazole-untreated mice were used as controls. Olfactory nerve fibers entering the olfactory glomerulus were observed immunohistochemically using anti-olfactory marker protein. In the brain tissue, the entire RMS was observed and the volume and total number of cells in the RMS were measured. In addition, the number of neuroblasts and dividing neuroblasts passing through the RMS were measured using anti-doublecortin and anti-EdU antibodies, respectively. Statistical analysis was performed using the Tukey test. RESULTS Olfactory epithelium degenerated was observed after methimazole administration, and recovered after 28 days. In the olfactory glomeruli, degeneration of OMP fibers began after methimazole administration, and after day 14, OMP fibers were reduced or absent by day 28, and overall OMP positive fibers were less than 20%. Glomerular volume tended to decrease after methimazole administration and did not appear to recover, even 28 days after recovery of the olfactory epithelium. In the RMS, EdU-positive cells decreased on day 3 and began to increase on day 7. However, they did not recover to the same levels as the control methimazole-untreated mice even after 28 days. CONCLUSION These results suggest that the division and maturation of neuroblasts migrating from the RMS was suppressed by olfactory nerve degeneration or the disruption of olfactory input.
Collapse
Affiliation(s)
- Yukari Nakamura
- Department of Otorhinolaryngology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Takaki Miwa
- Department of Otorhinolaryngology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan.
| | - Hideaki Shiga
- Department of Otorhinolaryngology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Hiromi Sakata
- Department of Anatomy I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Daichi Shigeta
- Department of Anatomy I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Toshihisa Hatta
- Department of Anatomy I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| |
Collapse
|
7
|
Shiotani K, Tanisumi Y, Osako Y, Murata K, Hirokawa J, Sakurai Y, Manabe H. An intra-oral flavor detection task in freely moving mice. iScience 2024; 27:108924. [PMID: 38327778 PMCID: PMC10847684 DOI: 10.1016/j.isci.2024.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Flavor plays a critical role in the pleasure of food. Flavor research has mainly focused on human subjects and revealed that many brain regions are involved in flavor perception. However, animal models for elucidating the mechanisms of neural circuits are lacking. Herein, we demonstrate the use of a novel behavioral task in which mice are capable of flavor detection. When the olfactory pathways of the mice were blocked, they could not perform the task. However, behavioral accuracy was not affected when the gustatory pathway was blocked by benzocaine. These results indicate that the mice performed this detection task mainly based on the olfaction. We conclude that this novel task can contribute to research on the neural mechanisms of flavor perception.
Collapse
Affiliation(s)
- Kazuki Shiotani
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- Laboratory of Brain Network Information, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Yuta Tanisumi
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, National Institute of Natural Sciences, Nagoya, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yuma Osako
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Junya Hirokawa
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshio Sakurai
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Hiroyuki Manabe
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- Department of Neurophysiology, Nara Medical University, Nara, Japan
| |
Collapse
|
8
|
Huang L, Hardyman F, Edwards M, Galliano E. Deprivation-Induced Plasticity in the Early Central Circuits of the Rodent Visual, Auditory, and Olfactory Systems. eNeuro 2024; 11:ENEURO.0435-23.2023. [PMID: 38195533 PMCID: PMC11059429 DOI: 10.1523/eneuro.0435-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Activity-dependent neuronal plasticity is crucial for animals to adapt to dynamic sensory environments. Traditionally, it has been investigated using deprivation approaches in animal models primarily in sensory cortices. Nevertheless, emerging evidence emphasizes its significance in sensory organs and in subcortical regions where cranial nerves relay information to the brain. Additionally, critical questions started to arise. Do different sensory modalities share common cellular mechanisms for deprivation-induced plasticity at these central entry points? Does the deprivation duration correlate with specific plasticity mechanisms? This study systematically reviews and meta-analyzes research papers that investigated visual, auditory, or olfactory deprivation in rodents of both sexes. It examines the consequences of sensory deprivation in homologous regions at the first central synapse following cranial nerve transmission (vision - lateral geniculate nucleus and superior colliculus; audition - ventral and dorsal cochlear nucleus; olfaction - olfactory bulb). The systematic search yielded 91 papers (39 vision, 22 audition, 30 olfaction), revealing substantial heterogeneity in publication trends, experimental methods, measures of plasticity, and reporting across the sensory modalities. Despite these differences, commonalities emerged when correlating plasticity mechanisms with the duration of sensory deprivation. Short-term deprivation (up to 1 d) reduced activity and increased disinhibition, medium-term deprivation (1 d to a week) involved glial changes and synaptic remodeling, and long-term deprivation (over a week) primarily led to structural alterations. These findings underscore the importance of standardizing methodologies and reporting practices. Additionally, they highlight the value of cross-modal synthesis for understanding how the nervous system, including peripheral, precortical, and cortical areas, respond to and compensate for sensory inputs loss.
Collapse
Affiliation(s)
- Li Huang
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Francesca Hardyman
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Megan Edwards
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Elisa Galliano
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| |
Collapse
|
9
|
Li P, Wang N, Kai L, Si J, Wang Z. Chronic intranasal corticosteroid treatment induces degeneration of olfactory sensory neurons in normal and allergic rhinitis mice. Int Forum Allergy Rhinol 2023; 13:1889-1905. [PMID: 36800514 DOI: 10.1002/alr.23142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Nasal eosinophilic inflammation is the therapeutic target for olfactory dysfunction in allergic rhinitis (AR). Intranasal corticosteroids are commonly considered to offer targetable benefit given their immunosuppressive property. However, experimental evidence suggests that continuous corticosteroid exposure may directly cause olfactory damage by disrupting the turnover of olfactory sensory neurons (OSNs). This potentially deleterious effect of corticosteroids calls into question their long-term topical use for treating olfactory loss related to AR. The aim of this study was to assess the impacts of chronic intranasal corticosteroid treatment on olfactory function and OSN population in mice under normal and pathological conditions. METHODS BALB/c mice were intranasally treated with fluticasone propionate (FP, 0.3 mg/kg) for up to 8 weeks. Additional mice were used to establish an ovalbumin-induced mouse model of AR, followed by nasal challenge with ovalbumin for 8 weeks in the presence or absence of intranasal FP treatment. The authors examined olfactory function, OSN existence, neuronal turnover, and nasal inflammation using behavioral test, histological analyses, Western blotting, and enzyme-linked immunosorbent assay. RESULTS Intranasal treatment with FP for 8 weeks (FP-wk8) reduced odor sensitivity in normal mice. This reduction was concomitant with loss of OSNs and the axons projecting to the olfactory bulb, primarily resulting from increased neuronal apoptosis. In FP-wk8 AR mice, intranasal FP treatment attenuated olfactory impairment and eosinophilic inflammation but failed to reconstitute OSN population and axonal projections. CONCLUSION These results suggest that chronic intranasal corticosteroid treatment contributes to OSN degeneration that may reduce the therapeutic effectiveness for AR-related olfactory loss.
Collapse
Affiliation(s)
- Pu Li
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Na Wang
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Luo Kai
- Department of Otolaryngology-Head and Neck Surgery, Peking University Shougang Hospital, Beijing, China
| | - Jinyuan Si
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Kikuta S, Han B, Yamasoba T. Heterogeneous Damage to the Olfactory Epithelium in Patients with Post-Viral Olfactory Dysfunction. J Clin Med 2023; 12:5007. [PMID: 37568409 PMCID: PMC10419384 DOI: 10.3390/jcm12155007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVES Post-viral olfactory dysfunction (PVOD) is a neurogenic disorder caused by a common cold virus. Based on the homology of deduced amino acid sequences, olfactory sensory neurons (OSNs) in both mice and humans express either class I or class II odorant receptor genes encoding class I and class II OSNs. The purpose of this study was to determine whether OSN damage in PVOD occurs uniformly in both neuron types. MATERIALS AND METHODS The characteristics of PVOD patients were compared with those of patients with chronic rhinosinusitis (CRS) or post-traumatic olfactory dysfunction (PTOD). Briefly, subjects underwent orthonasal olfaction tests using five different odors (T&T odors) and a retronasal olfaction test using a single odor (IVO odor). The regions in the mouse olfactory bulb (OB) activated by the T&T and the IVO odors were also examined. RESULTS Multivariate analysis of 307 cases of olfactory dysfunction (PVOD, 118 cases; CRS, 161 cases; and PTOD, 28 cases) revealed that a combination of responses to the IVO odor, but not to the T&T odors, is characteristic of PVOD, with high specificity (p < 0.001). Imaging analysis of GCaMP3 mice showed that the IVO odor selectively activated the OB region in which the axons of class I OSNs converged, whereas the T&T odors broadly activated the OB region in which axons of class I and class II OSNs converged. CONCLUSIONS A response to T&T odors, but not IVO odor, in PVOD suggests that class I OSNs are injured preferentially, and that OSN damage in PVOD may occur heterogeneously in a neuron-type-dependent manner.
Collapse
Affiliation(s)
- Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Nihon University, 30-1, Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610, Japan
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (B.H.); (T.Y.)
| | - Bing Han
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (B.H.); (T.Y.)
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (B.H.); (T.Y.)
| |
Collapse
|
11
|
Sakatani H, Kono M, Shiga T, Kuwazoe H, Nanushaj D, Matsuzaki I, Murata SI, Miyajima M, Okada Y, Saika S, Hotomi M. The Roles of Transient Receptor Potential Vanilloid 1 and 4 in Olfactory Regeneration. J Transl Med 2023; 103:100051. [PMID: 36870285 DOI: 10.1016/j.labinv.2022.100051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/06/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023] Open
Abstract
Olfactory disorders, which are closely related to cognitive deterioration, can be caused by several factors, including infections, such as COVID-19; aging; and environmental chemicals. Injured olfactory receptor neurons (ORNs) regenerate after birth, but it is unclear which receptors and sensors are involved in ORN regeneration. Recently, there has been great focus on the involvement of transient receptor potential vanilloid (TRPV) channels, which are nociceptors expressed on sensory nerves during the healing of damaged tissues. The localization of TRPV in the olfactory nervous system has been reported in the past, but its function there are unclear. Here, we investigated how TRPV1 and TRPV4 channels are involved in ORN regeneration. TRPV1 knockout (KO), TRPV4 KO, and wild-type (WT) mice were used to model methimazole-induced olfactory dysfunction. The regeneration of ORNs was evaluated using olfactory behavior, histologic examination, and measurement of growth factors. Both TRPV1 and TRPV4 were found to be expressed in the olfactory epithelium (OE). TRPV1, in particular, existed near ORN axons. TRPV4 was marginally expressed in the basal layer of the OE. The proliferation of ORN progenitor cells was reduced in TRPV1 KO mice, which delayed ORN regeneration and the improvement of olfactory behavior. Postinjury OE thickness improved faster in TRPV4 KO mice than WT mice but without acceleration of ORN maturation. The nerve growth factor and transforming growth factor ß levels in TRPV1 KO mice were similar to those in WT mice, and the transforming growth factor ß level was higher than TRPV4 KO mice. TRPV1 was involved in stimulating the proliferation of progenitor cells. TRPV4 modulated their proliferation and maturation. ORN regeneration was regulated by the interaction between TRPV1 and TRPV4. However, in this study, TRPV4 involvement was limited compared with TRPV1. To our knowledge, this is the first study to demonstrate the involvement of TRPV1 and TRPV4 in OE regeneration.
Collapse
Affiliation(s)
- Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Tatsuya Shiga
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Kuwazoe
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Ibu Matsuzaki
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Shin-Ichi Murata
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
12
|
Browne LP, Crespo A, Grubb MS. Rapid presynaptic maturation in naturally regenerating axons of the adult mouse olfactory nerve. Cell Rep 2022; 41:111750. [PMID: 36476871 DOI: 10.1016/j.celrep.2022.111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Successful neuronal regeneration requires the reestablishment of synaptic connectivity. This process requires the reconstitution of presynaptic neurotransmitter release, which we investigate here in a model of entirely natural regeneration. After toxin-induced injury, olfactory sensory neurons in the adult mouse olfactory epithelium can regenerate fully, sending axons via the olfactory nerve to reestablish synaptic contact with postsynaptic partners in the olfactory bulb. Using electrophysiological recordings in acute slices, we find that, after initial recontact, functional connectivity in this system is rapidly established. Reconnecting presynaptic terminals have almost mature functional properties, including high release probability and strong capacity for presynaptic inhibition. Release probability then matures quickly, rendering reestablished terminals functionally indistinguishable from controls just 1 week after initial contact. These data show that successful synaptic regeneration in the adult mammalian brain is almost a "plug-and-play" process, with presynaptic terminals undergoing a rapid phase of functional maturation as they reintegrate into target networks.
Collapse
Affiliation(s)
- Lorcan P Browne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
13
|
Han B, Kikuta S, Kamogashira T, Kondo K, Yamasoba T. Sleep deprivation induces delayed regeneration of olfactory sensory neurons following injury. Front Neurosci 2022; 16:1029279. [DOI: 10.3389/fnins.2022.1029279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
The circadian system, which is essential for the alignment of sleep/wake cycles, modulates adult neurogenesis. The olfactory epithelium (OE) has the ability to generate new neurons throughout life. Loss of olfactory sensory neurons (OSNs) as a result of injury to the OE triggers the generation of new OSNs, which are incorporated into olfactory circuits to restore olfactory sensory perception. This regenerative potential means that it is likely that the OE is substantially affected by sleep deprivation (SD), although how this may occur remains unclear. The aim of this study is to address how SD affects the process of OSN regeneration following OE injury. Mice were subjected to SD for 2 weeks, which induced changes in circadian activity. This condition resulted in decreased activity during the night-time and increased activity during the daytime, and induced no histological changes in the OE. However, when subjected to SD during the regeneration process after OE injury, a significant decrease in the number of mature OSNs in the dorsomedial area of the OE, which is the only area containing neurons expressing NQO1 (quinone dehydrogenase 1), was observed compared to the NQO1-negative OE. Furthermore, a significant decrease in proliferating basal cells was observed in the NQO1-positive OE compared to the NQO1-negative OE, but no increase in apoptotic OSNs was observed. These results indicate that SD accompanied by disturbed circadian activity could induce structurally negative effects on OSN regeneration, preferentially in the dorsomedial area of the OE, and that this area-specific regeneration delay might involve the biological activity of NQO1.
Collapse
|
14
|
Huang JS, Kunkhyen T, Rangel AN, Brechbill TR, Gregory JD, Winson-Bushby ED, Liu B, Avon JT, Muggleton RJ, Cheetham CEJ. Immature olfactory sensory neurons provide behaviourally relevant sensory input to the olfactory bulb. Nat Commun 2022; 13:6194. [PMID: 36261441 PMCID: PMC9582225 DOI: 10.1038/s41467-022-33967-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/07/2022] [Indexed: 01/12/2023] Open
Abstract
Postnatal neurogenesis provides an opportunity to understand how newborn neurons integrate into circuits to restore function. Newborn olfactory sensory neurons (OSNs) wire into highly organized olfactory bulb (OB) circuits throughout life, enabling lifelong plasticity and regeneration. Immature OSNs form functional synapses capable of evoking firing in OB projection neurons but what contribution, if any, they make to odor processing is unknown. Here, we show that immature OSNs provide odor input to the mouse OB, where they form monosynaptic connections with excitatory neurons. Importantly, immature OSNs respond as selectively to odorants as mature OSNs and exhibit graded responses across a wider range of odorant concentrations than mature OSNs, suggesting that immature and mature OSNs provide distinct odor input streams. Furthermore, mice can successfully perform odor detection and discrimination tasks using sensory input from immature OSNs alone. Together, our findings suggest that immature OSNs play a previously unappreciated role in olfactory-guided behavior.
Collapse
Affiliation(s)
- Jane S Huang
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Tenzin Kunkhyen
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Alexander N Rangel
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Taryn R Brechbill
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Jordan D Gregory
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Emily D Winson-Bushby
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Beichen Liu
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Jonathan T Avon
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
| | - Ryan J Muggleton
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15232, USA.
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Improving taste sensitivity in healthy adults using taste recall training: a randomized controlled trial. Sci Rep 2022; 12:13849. [PMID: 35974039 PMCID: PMC9379898 DOI: 10.1038/s41598-022-18255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Although many patients suffer from taste disorder, methods to improve taste sensitivity are limited. To develop a taste recall training method to improve the perception of taste, 42 healthy individuals were randomly assigned to either the training or the control group. Using the filter paper disc method, participants in the training group were asked to match the four tastes (sweetness, saltiness, sourness, and bitterness) between those of taste recognition thresholds and those of a one-step higher concentration until they get them right. Then, they were asked to match the four tastes between those of one-step lower and one-step higher in concentration from their taste recognition thresholds until they get them right. Finally, they were asked to match the four tastes between those of one-step lower concentration and those of their taste recognition thresholds until they get them right. This training was repeated until perfectly matched. The taste recall training program led to a lowered taste recognition threshold in healthy adults for each taste quality, suggesting the improvement of taste sensitivity. This lowered threshold for each taste was observed with each additional training session. We conclude that this taste recall training method might be a therapeutic approach for treating taste disorder.
Collapse
|
16
|
Byrne DJ, Lipovsek M, Crespo A, Grubb MS. Brief sensory deprivation triggers plasticity of dopamine-synthesising enzyme expression in genetically labelled olfactory bulb dopaminergic neurons. Eur J Neurosci 2022; 56:3591-3612. [PMID: 35510299 PMCID: PMC9540594 DOI: 10.1111/ejn.15684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
In the glomerular layer of the olfactory bulb, local dopaminergic interneurons play a key role in regulating the flow of sensory information from nose to cortex. These dual dopamine- and GABA-releasing cells are capable of marked experience-dependent changes in the expression of neurotransmitter-synthesising enzymes, including tyrosine hydroxylase (TH). However, such plasticity has most commonly been studied in cell populations identified by their expression of the enzyme being studied and after long periods of sensory deprivation. Here, instead, we used brief 1- or 3-day manipulations of olfactory experience in juvenile mice, coupled with a conditional genetic approach that labelled neurons contingent upon their expression of the dopamine transporter (DAT-tdTomato). This enabled us to evaluate the potential for rapid changes in neurotransmitter-synthesising enzyme expression in an independently identified neuronal population. Our labelling strategy showed good specificity for olfactory bulb dopaminergic neurons, while revealing a minority sub-population of non-dopaminergic DAT-tdTomato cells that expressed the calcium-binding protein calretinin. Crucially, the proportions of these neuronal subtypes were not affected by brief alterations in sensory experience. Short-term olfactory manipulations also produced no significant changes in immunofluorescence or whole-bulb mRNA for the GABA-synthesising enzyme GAD67/Gad1. However, in bulbar DAT-tdTomato neurons, brief sensory deprivation was accompanied by a transient, small drop in immunofluorescence for the dopamine-synthesising enzyme dopa decarboxylase (DDC) and a sustained decrease for TH. Deprivation also produced a sustained decrease in whole-bulb Th mRNA. Careful characterisation of an independently identified, genetically labelled neuronal population therefore enabled us to uncover rapid experience-dependent changes in dopamine-synthesising enzyme expression.
Collapse
Affiliation(s)
- Darren J. Byrne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| | - Marcela Lipovsek
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
- Ear InstituteUniversity College LondonLondonUK
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| |
Collapse
|
17
|
Chen P, Wang W, Liu R, Lyu J, Zhang L, Li B, Qiu B, Tian A, Jiang W, Ying H, Jing R, Wang Q, Zhu K, Bai R, Zeng L, Duan S, Liu C. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature 2022; 606:550-556. [PMID: 35545672 DOI: 10.1038/s41586-022-04719-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/01/2022] [Indexed: 01/03/2023]
Abstract
Animals constantly receive various sensory stimuli, such as odours, sounds, light and touch, from the surrounding environment. These sensory inputs are essential for animals to search for food and avoid predators, but they also affect their physiological status, and may cause diseases such as cancer. Malignant gliomas-the most lethal form of brain tumour1-are known to intimately communicate with neurons at the cellular level2,3. However, it remains unclear whether external sensory stimuli can directly affect the development of malignant glioma under normal living conditions. Here we show that olfaction can directly regulate gliomagenesis. In an autochthonous mouse model that recapitulates adult gliomagenesis4-6 originating in oligodendrocyte precursor cells (OPCs), gliomas preferentially emerge in the olfactory bulb-the first relay of brain olfactory circuitry. Manipulating the activity of olfactory receptor neurons (ORNs) affects the development of glioma. Mechanistically, olfaction excites mitral and tufted (M/T) cells, which receive sensory information from ORNs and release insulin-like growth factor 1 (IGF1) in an activity-dependent manner. Specific knockout of Igf1 in M/T cells suppresses gliomagenesis. In addition, knocking out the IGF1 receptor in pre-cancerous mutant OPCs abolishes the ORN-activity-dependent mitogenic effects. Our findings establish a link between sensory experience and gliomagenesis through their corresponding sensory neuronal circuits.
Collapse
Affiliation(s)
- Pengxiang Chen
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, P.R. China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Wei Wang
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Rui Liu
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Jiahui Lyu
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, P.R. China
| | - Lei Zhang
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, P.R. China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Baizhou Li
- Department of Pathology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Biying Qiu
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, P.R. China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Anhao Tian
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Wenhong Jiang
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, P.R. China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Honggang Ying
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Rui Jing
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, P.R. China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qianqian Wang
- Laboratory Animal Center of Zhejiang University, Hangzhou, P.R. China
| | - Keqing Zhu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of The Affiliated Sir Run Shumen Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Linghui Zeng
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, P.R. China
| | - Shumin Duan
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, P.R. China.,Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, P.R. China.,The Institute of Brain and Cognitive Sciences, Zhejiang University City College, Hangzhou, P.R. China.,Chuanqi Research and Development Center of Zhejiang University, Hangzhou, P.R. China
| | - Chong Liu
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P.R. China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, P.R. China. .,The Institute of Brain and Cognitive Sciences, Zhejiang University City College, Hangzhou, P.R. China. .,Chuanqi Research and Development Center of Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
18
|
Kishimoto-Urata M, Urata S, Kagoya R, Imamura F, Nagayama S, Reyna RA, Maruyama J, Yamasoba T, Kondo K, Hasegawa-Ishii S, Paessler S. Prolonged and extended impacts of SARS-CoV-2 on the olfactory neurocircuit. Sci Rep 2022; 12:5728. [PMID: 35388072 PMCID: PMC8987081 DOI: 10.1038/s41598-022-09731-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
The impact of SARS-CoV-2 on the olfactory pathway was studied over several time points using Syrian golden hamsters. We found an incomplete recovery of the olfactory sensory neurons, prolonged activation of glial cells in the olfactory bulb, and a decrease in the density of dendritic spines within the hippocampus. These data may be useful for elucidating the mechanism underlying long-lasting olfactory dysfunction and cognitive impairment as a post-acute COVID-19 syndrome.
Collapse
Affiliation(s)
- Megumi Kishimoto-Urata
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinji Urata
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoji Kagoya
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Shin Nagayama
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rachel A Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | - Slobodan Paessler
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
19
|
Herz RS, Larsson M, Trujillo R, Casola MC, Ahmed FK, Lipe S, Brashear ME. A three-factor benefits framework for understanding consumer preference for scented household products: psychological interactions and implications for future development. Cogn Res Princ Implic 2022; 7:28. [PMID: 35362845 PMCID: PMC8972642 DOI: 10.1186/s41235-022-00378-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Humans have deliberately scented their environment for purpose or pleasure for millennia. In the contemporary marketplace most consumers prefer and purchase scented versions of common household products. However, the drivers of this consumer preference have not been elucidated. To explain the attraction to scent in household products we propose a novel three-factor framework, comprising functional benefits (malodor mitigation, base odor coverage, freshening), in-use experience benefits (cleanliness, efficacy, pleasure), and emotional benefits (increasing in confidence, mood and nostalgia). To support this framework, we present new data from a market research survey on US consumer purchasing habits and attitudes towards home cleaning, laundry, and air freshening products. Further substantiating our framework, a focused review of olfactory psychological science illustrating the central role of scent in cognition, wellbeing, motivated behavior, and social behavior, as well as sensory marketing research highlights the benefits and implications of scent in consumer household products. Based on our three-factor framework we go on to discuss the potential for scent to influence health and raise issues to consider (such as potential negative responding to fragranced products). We conclude by showcasing new opportunities for future research in olfactory science and on scented household products that can advance the positive impacts of scent.
Collapse
Affiliation(s)
- Rachel S Herz
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University Medical School, 146 Thayer St., Providence, RI, 02912, USA. .,Department of Psychology and Neuroscience, Boston College, Chestnut Hill, USA.
| | - Maria Larsson
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | | | | | | | - Stacy Lipe
- The Procter & Gamble Company, Cincinnati, OH, USA
| | | |
Collapse
|
20
|
Wu Q, Xu X, Miao X, Bao X, Li X, Xiang L, Wang W, Du S, Lu Y, Wang X, Yang D, Zhang J, Shen X, Li F, Lu S, Fan Y, Xu S, Chen Z, Wang Y, Teng H, Huang Z. YAP signaling in horizontal basal cells promotes the regeneration of olfactory epithelium after injury. Stem Cell Reports 2022; 17:664-677. [PMID: 35148842 PMCID: PMC9039758 DOI: 10.1016/j.stemcr.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 10/29/2022] Open
Abstract
The horizontal basal cells (HBCs) of olfactory epithelium (OE) serve as reservoirs for stem cells during OE regeneration, through proliferation and differentiation, which is important in recovery of olfactory function. However, the molecular mechanism of regulation of HBC proliferation and differentiation after injury remains unclear. Here, we found that yes-associated protein (YAP) was upregulated and activated in HBCs after OE injury. Deletion of YAP in HBCs led to impairment in OE regeneration and functional recovery of olfaction after injury. Mechanically, YAP was activated by S1P/S1PR2 signaling, thereby promoting the proliferation of HBCs and OE regeneration after injury. Finally, activation of YAP signaling enhanced the proliferation of HBCs and improved functional recovery of olfaction after OE injury or in Alzheimer's disease model mice. Taken together, these results reveal an S1P/S1PR2/YAP pathway in OE regeneration in response to injury, providing a promising therapeutic strategy for OE injury.
Collapse
Affiliation(s)
- Qian Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuemeng Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaomei Bao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiuchun Li
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ludan Xiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Siyu Du
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiwu Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Danlu Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fayi Li
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sheng Lu
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiren Fan
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shujie Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zihao Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ying Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Department of Transfusion Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310053, China.
| | - Honglin Teng
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
21
|
Kikuta S, Kuboki A, Yamasoba T. Protective Effect of Insulin in Mouse Nasal Mucus Against Olfactory Epithelium Injury. Front Neural Circuits 2022; 15:803769. [PMID: 35002636 PMCID: PMC8733614 DOI: 10.3389/fncir.2021.803769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022] Open
Abstract
Insulin is present in nasal mucus and plays an important role in the survival and activity of individual olfactory sensory neurons (OSNs) via insulin receptor-mediated signaling. However, it is unclear whether insulin acts prophylactically against olfactotoxic drug-induced olfactory epithelium (OE) injury, and whether the degree of damage is affected by the concentration of insulin in the nasal mucus. The apoptosis-inducing drug methimazole was administered to the nasal mucus of diabetic and normal mice along with different concentrations of insulin. Immunohistochemical analysis was used to assess the relationship between damage to the OE and the mucus insulin concentration and the protective effect of insulin administration against eosinophilic cationic protein (ECP)-induced OE injury. Diabetic mice had lower concentrations of insulin in their nasal mucus than normal mice (diabetic vs. normal mice, p < 0.001). Methimazole administration reduced the number of OSNs in normal mice and had a more marked effect in diabetic mice. However, unilateral insulin administration prevented the methimazole-induced reduction in the number of OSNs on the ipsilateral side but not on the contralateral side (OSNs; Insulin vs. contralateral side, p < 0.001). Furthermore, intranasal ECP administration damaged the OE by inducing apoptosis (OSNs; ECP vs. contralateral side, p < 0.001), but this damage was largely prevented by insulin administration (OSNs; Insulin + ECP vs. contralateral side, p = 0.36), which maintained the number of mature OSNs. The severity of methimazole-induced damage to the OE is related to the insulin concentration in the nasal mucus (Correlation between the insulin concentration in nasal mucus and the numbers of OSNs, R2 = 0.91, p < 0.001), which may imply that nasal insulin protects OSNs and that insulin administration might lead to the development of new therapeutic agents for ECP-induced OE injury.
Collapse
Affiliation(s)
- Shu Kikuta
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Akihito Kuboki
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Minato, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
22
|
Omura K, Han B, Nishijima H, Aoki S, Ebihara T, Kondo K, Otori N, Kojima H, Yamasoba T, Kikuta S. Heterogeneous distribution of mature olfactory sensory neurons in human olfactory epithelium. Int Forum Allergy Rhinol 2021; 12:266-277. [PMID: 34538025 DOI: 10.1002/alr.22885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The olfactory cleft (OC) comprising the olfactory epithelium (OE) is the most important anatomical location for olfactory function. Endoscopic sinus surgery (ESS) is used to treat diseases related to the OC and improve olfactory dysfunction. However, iatrogenic OE injury occasionally occurs. Comprehensive knowledge of the olfactory region is required to avoid damage to the OE during endoscopic procedures. METHODS Immunohistochemistry was performed on olfactory mucosa obtained from the unaffected side of olfactory neuroblastoma surgical specimens. The OE was defined as the epithelium containing mature olfactory sensory neurons (OSNs). The distribution and cell kinetics of the OE were examined. RESULTS The OE was selectively localized to the anterior two-thirds of the superior turbinate (ST) and in the nasal septum (NS) just opposite to the ST; the OE was not detected within the mucosa of the superior meatus. The density of mature OSNs was high at the ethmoid tegmen but gradually decreased with distance from the ethmoid tegmen. The extent of cell death and proliferation was relatively even across the OE. Analysis of airflow profiles revealed that resection of inferior ST does not decrease airflow to the OC. CONCLUSION The results indicate that the distribution and degree of differentiation of mature OSNs are heterogenous throughout the OE. Epithelial resection of the anterior or superior ST has the potential to damage olfactory function. Resection of the inferior or posterior ST or widening of the superior meatus is a safer alternative that does not damage mature OSNs or alter airflow to the OC.
Collapse
Affiliation(s)
- Kazuhiro Omura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Bing Han
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hironobu Nishijima
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Aoki
- Department of Otorhinolaryngology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Teru Ebihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kenji Kondo
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shu Kikuta
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
23
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
24
|
Mori E, Ueha R, Kondo K, Funada S, Shimmura H, Kanemoto K, Tanaka H, Nishijima H, Otori N, Yamasoba T, Kojima H. Squamous and Respiratory Metaplasia After Olfactory Mucosal Resection. Front Neurosci 2021; 15:695653. [PMID: 34354563 PMCID: PMC8329582 DOI: 10.3389/fnins.2021.695653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Resection of the olfactory mucosa (OM) is sometimes unavoidable during surgery; however, it is not known whether the OM can completely recover thereafter. The aim of this study was to uncover whether the OM fully recovers after mucosal resection and describe the process of OM regeneration. 8-week-old male Sprague–Dawley rats (n = 18) were subjected to OM resection at the nasal septum; six rats were euthanized for histological examination 0, 30, and 90 days after surgery. Immunohistochemistry was performed to identify olfactory receptor neuron (ORN) lineage cells [mature and immature ORNs and ORN progenitors, and olfactory ensheathing cells (OECs)], as well as dividing and apoptotic cells. Squamous and respiratory metaplasia and inflammatory cell infiltration were also assessed. On day 30 after resection, the mucosa had regenerated, and mainly contained thin nerve bundles, basal cells, and immature ORNs, with a few mature ORNs and OECs. On day 90, the repaired nasal mucosa had degenerated into stratified squamous or ciliated pseudostratified columnar epithelia, with reducing ORNs. The lamina propria contained numerous macrophages. Partial regeneration was observed within 1 month after OM resection, whereas subsequent degeneration into squamous and respiratory epithelia occurred within 3 months. Given the poor persistence of ORNs and OECs, OM resection is likely to result in olfactory impairment. Overall, surgeons should be cautious not to injure the OM during surgery.
Collapse
Affiliation(s)
- Eri Mori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Rumi Ueha
- Swallowing Center, The University of Tokyo Hospital, Tokyo, Japan.,Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Shotaro Funada
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hajime Shimmura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kai Kanemoto
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hirotaka Tanaka
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hironobu Nishijima
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Kuboki A, Kikuta S, Otori N, Kojima H, Matsumoto I, Reisert J, Yamasoba T. Insulin-Dependent Maturation of Newly Generated Olfactory Sensory Neurons after Injury. eNeuro 2021; 8:ENEURO.0168-21.2021. [PMID: 33906971 PMCID: PMC8143024 DOI: 10.1523/eneuro.0168-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Loss of olfactory sensory neurons (OSNs) after injury to the olfactory epithelium (OE) triggers the generation of OSNs that are incorporated into olfactory circuits to restore olfactory sensory perception. This study addresses how insulin receptor-mediated signaling affects the functional recovery of OSNs after OE injury. Insulin levels were reduced in mice by ablating the pancreatic β cells via streptozotocin (STZ) injections. These STZ-induced diabetic and control mice were then intraperitoneally injected with the olfactotoxic drug methimazole to selectively ablate OSNs. The OE of diabetic and control mice regenerated similarly until day 14 after injury. Thereafter, the OE of diabetic mice contained fewer mature and more apoptotic OSNs than control mice. Functionally, diabetic mice showed reduced electro-olfactogram (EOG) responses and their olfactory bulbs (OBs) had fewer c-Fos-active cells following odor stimulation, as well as performed worse in an odor-guided task compared with control mice. Insulin administered intranasally during days 8-13 after injury was sufficient to rescue recovery of OSNs in diabetic mice compared with control levels, while insulin administration between days 1 and 6 did not. During this critical time window on days 8-13 after injury, insulin receptors are highly expressed and intranasal application of an insulin receptor antagonist inhibits regeneration. Furthermore, an insulin-enriched environment could facilitate regeneration even in non-diabetic mice. These results indicate that insulin facilitates the regeneration of OSNs after injury and suggest a critical stage during recovery (8-13 d after injury) during which the maturation of newly generated OSNs is highly dependent on and promoted by insulin.
Collapse
Affiliation(s)
- Akihito Kuboki
- Department of Otolaryngology, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Monell Chemical Senses Center, Philadelphia, PA 19104
| | - Shu Kikuta
- Department of Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Nobuyoshi Otori
- Department of Otolaryngology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hiromi Kojima
- Department of Otolaryngology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
26
|
Galliano E, Hahn C, Browne LP, R Villamayor P, Tufo C, Crespo A, Grubb MS. Brief Sensory Deprivation Triggers Cell Type-Specific Structural and Functional Plasticity in Olfactory Bulb Neurons. J Neurosci 2021; 41:2135-2151. [PMID: 33483429 PMCID: PMC8018761 DOI: 10.1523/jneurosci.1606-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 02/03/2023] Open
Abstract
Can alterations in experience trigger different plastic modifications in neuronal structure and function, and if so, how do they integrate at the cellular level? To address this question, we interrogated circuitry in the mouse olfactory bulb responsible for the earliest steps in odor processing. We induced experience-dependent plasticity in mice of either sex by blocking one nostril for one day, a minimally invasive manipulation that leaves the sensory organ undamaged and is akin to the natural transient blockage suffered during common mild rhinal infections. We found that such brief sensory deprivation produced structural and functional plasticity in one highly specialized bulbar cell type: axon-bearing dopaminergic neurons in the glomerular layer. After 24 h naris occlusion, the axon initial segment (AIS) in bulbar dopaminergic neurons became significantly shorter, a structural modification that was also associated with a decrease in intrinsic excitability. These effects were specific to the AIS-positive dopaminergic subpopulation because no experience-dependent alterations in intrinsic excitability were observed in AIS-negative dopaminergic cells. Moreover, 24 h naris occlusion produced no structural changes at the AIS of bulbar excitatory neurons, mitral/tufted and external tufted cells, nor did it alter their intrinsic excitability. By targeting excitability in one specialized dopaminergic subpopulation, experience-dependent plasticity in early olfactory networks might act to fine-tune sensory processing in the face of continually fluctuating inputs.SIGNIFICANCE STATEMENT Sensory networks need to be plastic so they can adapt to changes in incoming stimuli. To see how cells in mouse olfactory circuits can change in response to sensory challenges, we blocked a nostril for just one day, a naturally relevant manipulation akin to the deprivation that occurs with a mild cold. We found that this brief deprivation induces forms of axonal and intrinsic functional plasticity in one specific olfactory bulb cell subtype: axon-bearing dopaminergic interneurons. In contrast, intrinsic properties of axon-lacking bulbar dopaminergic neurons and neighboring excitatory neurons remained unchanged. Within the same sensory circuits, specific cell types can therefore make distinct plastic changes in response to an ever-changing external landscape.
Collapse
Affiliation(s)
- Elisa Galliano
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Christiane Hahn
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Lorcan P Browne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Paula R Villamayor
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| |
Collapse
|
27
|
Li ST, Young TH, Huang TW. Regeneration of olfactory neuroepithelium in 3-methylindole-induced anosmic rats treated with intranasal chitosan. Biomaterials 2021; 271:120738. [PMID: 33711565 DOI: 10.1016/j.biomaterials.2021.120738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/14/2020] [Accepted: 02/25/2021] [Indexed: 11/25/2022]
Abstract
Olfactory dysfunction significantly impairs the life quality of patients but without effective treatments to date. The previous report has demonstrated that chitosan mediates the differentiation of olfactory receptor neurons (ORNs) through insulin-like growth factors and insulin-like growth factor binding protein-2 axis in an in vitro model. However, whether chitosan can further treat olfactory dysfunction in vivo remains unexplored. This study aims to evaluate the therapeutic effect of chitosan on a 3-methylindole-induced anosmic rat model. Intraperitoneal injection of 3-methylindole is performed to induce anosmia in rats. Experimental results demonstrate that the food-finding duration after chitosan treatment gradually decrease to around 80 s, and both the olfactory neuroepithelium (ON) thickness and mature ORNs (expressing olfactory marker protein) are significantly restored. Furthermore, proliferating cells (expressing bromodeoxyuridine) are mainly co-expressed with immature ORNs (expressing βIII tubulin) below the intermediate layer of the ON in the chitosan-treated group on day 28 following 3-methylindole treatment. Conversely, proliferating cells are scattered over the ON, and co-localized with immature ORNs and sustentacular cells (expressing keratin 18) in the sham group, and even immature ORNs go into apoptosis (expressing DNA fragmentation and cleaved caspase-3), possibly causing incomplete regeneration. Consequently, chitosan regenerates the ON by regulating olfactory neural homeostasis and reducing ORN apoptosis, and serves as a potential therapeutic intervention for olfactory dysfunction in the future.
Collapse
Affiliation(s)
- Sheng-Tien Li
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tsung-Wei Huang
- Department of Electrical Engineering, College of Electrical and Communication Engineering, Yuan Ze University, Taoyuan, Taiwan; Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
28
|
Ogawa K, Asano K, Yotsumoto S, Yamane T, Arita M, Hayashi Y, Harada H, Makino-Okamura C, Fukuyama H, Kondo K, Yamasoba T, Tanaka M. Frontline Science: Conversion of neutrophils into atypical Ly6G + SiglecF + immune cells with neurosupportive potential in olfactory neuroepithelium. J Leukoc Biol 2021; 109:481-496. [PMID: 32725843 DOI: 10.1002/jlb.1hi0620-190rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are generally considered as short-lived, homogenous, and terminally differentiated phagocytes that play crucial roles in conquering infection, although they occasionally cause severe collateral tissue damage or chronic inflammation. Recent reports have indicated that neutrophils also play a protective role in inflammation resolution and tissue repair. However, how terminally differentiated neutrophils have diverse functions remains unclear. Here, we show that neutrophils undergo conversion into Ly6G+ SiglecF+ double-positive cells expressing neurosupportive genes in the olfactory neuroepithelium (OE) under an inflammatory state. Through comprehensive flow cytometric analysis of murine nose, we identified Ly6G+ SiglecF+ double-positive cells that reside only in the OE under steady-state conditions. Double-positive cells were neutrophil-derived cells and increased by more than 10-fold during inflammation or tissue injury. We found that neutrophils infiltrate into the nose to express proinflammatory genes in the acute phase of inflammatory state, and they gradually change their surface markers and gene expression, expressing some neurogenesis-related genes in addition to inflammation related genes in the later phase. As the OE is known to have exceptionally high regeneration capacity as a nervous system, these findings suggest that neutrophils have the potential to contribute neurogenesis after conversion in peripheral nervous tissues, providing a challenge on a classic view of neutrophils as terminally differentiated leukocytes.
Collapse
Affiliation(s)
- Kei Ogawa
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kenichi Asano
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Satoshi Yotsumoto
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tsuyoshi Yamane
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Chieko Makino-Okamura
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kenji Kondo
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
29
|
Urata S, Maruyama J, Kishimoto-Urata M, Sattler RA, Cook R, Lin N, Yamasoba T, Makishima T, Paessler S. Regeneration Profiles of Olfactory Epithelium after SARS-CoV-2 Infection in Golden Syrian Hamsters. ACS Chem Neurosci 2021; 12:589-595. [PMID: 33522795 PMCID: PMC7874468 DOI: 10.1021/acschemneuro.0c00649] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Olfactory dysfunction is one of the most frequent and specific symptoms of coronavirus disease 2019 (COVID-19). Information on the damage and repair of the neuroepithelium and its impact on olfactory function after COVID-19 is still incomplete. While severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the ongoing worldwide outbreak of COVID-19, little is known about the changes triggered by SARS-CoV-2 in the olfactory epithelium (OE) at the cellular level. Here, we report profiles of the OE after SARS-CoV-2 infection in golden Syrian hamsters, which is a reliable animal model of COVID-19. We observed severe damage in the OE as early as 3 days postinoculation and regionally specific damage and regeneration of the OE within the nasal cavity; the nasal septal region demonstrated the fastest recovery compared to other regions in the nasal turbinates. These findings suggest that anosmia related to SARS-CoV-2 infection may be fully reversible.
Collapse
Affiliation(s)
- Shinji Urata
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Otolaryngology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Megumi Kishimoto-Urata
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Otolaryngology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Rachel A. Sattler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rebecca Cook
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nantian Lin
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tomoko Makishima
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
30
|
Tuerdi A, Kikuta S, Kinoshita M, Kamogashira T, Kondo K, Yamasoba T. Zone-specific damage of the olfactory epithelium under protein restriction. Sci Rep 2020; 10:22175. [PMID: 33335225 PMCID: PMC7746724 DOI: 10.1038/s41598-020-79249-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress causes tissue damage, affecting age-related pathologies. Protein restriction (PR) provides a powerful intervention strategy for reducing oxidative stress, which may have a positive effect on individual organs. However, it is unknown whether PR intervention influences the olfactory system. Here, we investigated how 10 months of PR could affect the cell dynamics of the olfactory epithelium (OE) in mice. We found that PR reduced age-related loss of outer hair cells in the cochlea, providing preventive effects against age-related hearing loss. In contrast, PR resulted in reduced mature olfactory sensory neurons (OSNs), increased proliferative basal cells, and increased apoptotic OSNs in zone 1 (the only area containing neurons expressing NQO1 [quinone dehydrogenase 1]) of the OE in comparison with animals given a control diet. Substantial oxidative stress occurred in NQO1-positive cells and induced apoptotic OSNs in zone 1. These results indicate that in contrast to the positive effect on the auditory system, PR induces oxidative stress and structurally and functionally negative effects on OSNs in zone 1, which is probably involved in the bioactivation of NQO1.
Collapse
Affiliation(s)
- Ayinuer Tuerdi
- Department of Otolaryngology and Head and Neck Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Shu Kikuta
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Makoto Kinoshita
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenji Kondo
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
31
|
Abstract
Olfactory sensory neurons (OSNs) are bipolar neurons, unusual because they turn over continuously and have a multiciliated dendrite. The extensive changes in gene expression accompanying OSN differentiation in mice are largely known, especially the transcriptional regulators responsible for altering gene expression, revealing much about how differentiation proceeds. Basal progenitor cells of the olfactory epithelium transition into nascent OSNs marked by Cxcr4 expression and the initial extension of basal and apical neurites. Nascent OSNs become immature OSNs within 24-48 h. Immature OSN differentiation requires about a week and at least 2 stages. Early-stage immature OSNs initiate expression of genes encoding key transcriptional regulators and structural proteins necessary for further neuritogenesis. Late-stage immature OSNs begin expressing genes encoding proteins important for energy production and neuronal homeostasis that carry over into mature OSNs. The transition to maturity depends on massive expression of one allele of one odorant receptor gene, and this results in expression of the last 8% of genes expressed by mature OSNs. Many of these genes encode proteins necessary for mature function of axons and synapses or for completing the elaboration of non-motile cilia, which began extending from the newly formed dendritic knobs of immature OSNs. The cilia from adjoining OSNs form a meshwork in the olfactory mucus and are the site of olfactory transduction. Immature OSNs also have a primary cilium, but its role is unknown, unlike the critical role in proliferation and differentiation played by the primary cilium of the olfactory epithelium's horizontal basal cell.
Collapse
Affiliation(s)
- Timothy S McClintock
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Correspondence to be sent to: Timothy S. McClintock, Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA. e-mail:
| | - Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
32
|
Kondo K, Kikuta S, Ueha R, Suzukawa K, Yamasoba T. Age-Related Olfactory Dysfunction: Epidemiology, Pathophysiology, and Clinical Management. Front Aging Neurosci 2020; 12:208. [PMID: 32733233 PMCID: PMC7358644 DOI: 10.3389/fnagi.2020.00208] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Like other sensory systems, olfactory function deteriorates with age. Epidemiological studies have revealed that the incidence of olfactory dysfunction increases at the age of 60 and older and males are more affected than females. Moreover, smoking, heavy alcohol use, sinonasal diseases, and Down’s syndrome are associated with an increased incidence of olfactory dysfunction. Although the pathophysiology of olfactory dysfunction in humans remains largely unknown, studies in laboratory animals have demonstrated that both the peripheral and central olfactory nervous systems are affected by aging. Aged olfactory neuroepithelium in the nasal cavity shows the loss of mature olfactory neurons, replacement of olfactory neuroepithelium by respiratory epithelium, and a decrease in basal cell proliferation both in the normal state and after injury. In the central olfactory pathway, a decrease in the turnover of interneurons in the olfactory bulb (OB) and reduced activity in the olfactory cortex under olfactory stimulation is observed. Recently, the association between olfactory impairment and neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), has gained attention. Evidence-based pharmacotherapy to suppress or improve age-related olfactory dysfunction has not yet been established, but preliminary results suggest that olfactory training using odorants may be useful to improve some aspects of age-related olfactory impairment.
Collapse
Affiliation(s)
- Kenji Kondo
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rumi Ueha
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keigo Suzukawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Liberia T, Martin-Lopez E, Meller SJ, Greer CA. Sequential Maturation of Olfactory Sensory Neurons in the Mature Olfactory Epithelium. eNeuro 2019; 6:ENEURO.0266-19.2019. [PMID: 31554664 PMCID: PMC6795559 DOI: 10.1523/eneuro.0266-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The formation of the olfactory nerve and olfactory bulb (OB) glomeruli begins embryonically in mice. However, the development of the olfactory system continues throughout life with the addition of new olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). Much attention has been given to the perinatal innervation of the OB by OSN axons, but in the young adult the process of OSN maturation and axon targeting to the OB remains controversial. To address this gap in understanding, we used BrdU to label late-born OSNs in young adult mice at postnatal day 25 (P25-born OSNs) and timed their molecular maturation following basal cell division. We show that OSNs in young adults undergo a sequential molecular development with the expression of GAP 43 (growth-associated protein 43) > AC3 (adenylyl cyclase 3) > OMP (olfactory marker protein), consecutively, in a time frame of ∼8 d. To assess OSN axon development, we implemented an in vivo fate-mapping strategy to label P25-born OSNs with ZsGreen. Using sampling intervals of 24 h, we demonstrate the progressive extension of OSN axons in the OE, through the foramen of the cribriform plate, and onto the surface of the OB. OSN axons reached the OB and began to target and robustly innervate specific glomeruli ∼10 d following basal cell division, a time point at which OMP expression becomes evident. Our data demonstrate a sequential process of correlated axon extension and molecular maturation that is similar to that seen in the neonate, but on a slightly longer timescale and with regional differences in the OE.
Collapse
Affiliation(s)
- Teresa Liberia
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
34
|
Abstract
The formation of the olfactory nerve and olfactory bulb (OB) glomeruli begins embryonically in mice. However, the development of the olfactory system continues throughout life with the addition of new olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). Much attention has been given to the perinatal innervation of the OB by OSN axons, but in the young adult the process of OSN maturation and axon targeting to the OB remains controversial. To address this gap in understanding, we used BrdU to label late-born OSNs in young adult mice at postnatal day 25 (P25-born OSNs) and timed their molecular maturation following basal cell division. We show that OSNs in young adults undergo a sequential molecular development with the expression of GAP 43 (growth-associated protein 43) > AC3 (adenylyl cyclase 3) > OMP (olfactory marker protein), consecutively, in a time frame of ∼8 d. To assess OSN axon development, we implemented an in vivo fate-mapping strategy to label P25-born OSNs with ZsGreen. Using sampling intervals of 24 h, we demonstrate the progressive extension of OSN axons in the OE, through the foramen of the cribriform plate, and onto the surface of the OB. OSN axons reached the OB and began to target and robustly innervate specific glomeruli ∼10 d following basal cell division, a time point at which OMP expression becomes evident. Our data demonstrate a sequential process of correlated axon extension and molecular maturation that is similar to that seen in the neonate, but on a slightly longer timescale and with regional differences in the OE.
Collapse
|
35
|
Huang TW, Li ST, Young TH. Chitosan-hyaluronan: promotion of mucociliary differentiation of respiratory epithelial cells and development of olfactory receptor neurons. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:564-570. [PMID: 30857434 DOI: 10.1080/21691401.2019.1579732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developing a biomaterial that promotes regeneration of both respiratory epithelium (RE) and olfactory neuroepithelium (ON) improves the surgical outcome of endoscopic sinus surgery. Although chitosan (CS) inhibits mucociliary differentiation of RE, it has been reported to regenerate ON. In addition, hyaluronic acid (HA) has been demonstrated to promote regeneration of RE. Whether the composite CS + HA would simultaneously benefit RE and ON remains unexplored. Human nasal respiratory epithelial cells (RECs) and olfactory neuroepithelial cells (ONCs) are respectively obtained from the RE and the ON. They are cultured in vitro and divided into groups undergoing four treatments, control, CS, HA, and CS + HA and assessed by scanning electron microscope, immunocytochemistry, and Western blots following indicated growth conditions. RECs keep polygonal morphology with mucociliary differentiation in the CS + HA group. The levels of E-cadherin, zonula occludens-1, mucin 5AC, and forkhead box protein J1 are significantly higher in the CS + HA group than in the CS alone group. In addition, ONCs express lower cytokeratin 18 (CK18) and higher olfactory marker protein (OMP) in the CS + HA group than in HA alone group. ONCs express more signal transduction apparatuses, adenylate cyclase 3, in CS and CS + HA groups than in HA and controls. Chitosan-hyaluronan plays a part in promoting differentiation of ORNs and facilitating mucociliary differentiation of RECs. This composite is a promising biomaterial for the sinonasal application.
Collapse
Affiliation(s)
- Tsung-Wei Huang
- a Department of Electrical Engineering, College of Electrical and Communication Engineering , Yuan Ze University , Taoyuan , Taiwan.,b Department of Otolaryngology , Far Eastern Memorial Hospital , Taipei , Taiwan.,c Department of Health Care Administration , Oriental Institute of Technology , Taipei , Taiwan
| | - Sheng-Tien Li
- d Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , Taipei , Taiwan
| | - Tai-Horng Young
- d Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
36
|
Spencer D, Yu D, Morshed RA, Li G, Pituch KC, Gao DX, Bertolino N, Procissi D, Lesniak MS, Balyasnikova IV. Pharmacologic modulation of nasal epithelium augments neural stem cell targeting of glioblastoma. Am J Cancer Res 2019; 9:2071-2083. [PMID: 31037157 PMCID: PMC6485287 DOI: 10.7150/thno.29581] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/11/2019] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) remains the most lethal and untreatable central nervous system malignancy. The challenges to devise novel and effective anti-tumor therapies include difficulty in locating the precise tumor border for complete surgical resection, and rapid regrowth of residual tumor tissue after standard treatment. Repeatable and non-invasive intranasal application of neural stem cells (NSCs) was recently shown to enable clinically relevant delivery of therapy to tumors. Treatment with chemotactic NSCs demonstrated significant survival benefits when coupled with radiation and oncolytic virotherapy in preclinical models of GBM. In order to further augment the clinical applicability of this novel therapeutic platform, we postulate that the FDA-approved compound, methimazole (MT), can be safely utilized to delay the nasal clearance and improve the ability of NSCs to penetrate the olfactory epithelium for robust in vivo brain tumor targeting and therapeutic actions. METHODS: To examine the role of reversible reduction of the olfactory epithelial barrier in non-invasive intranasal delivery, we explored the unique pharmacologic effect of MT at a single dosage regimen. In our proof-of-concept studies, quantitative magnetic resonance imaging (MRI), immunocytochemistry, and survival analysis were performed on glioma-bearing mice treated with a single dose of MT prior to intranasal anti-GBM therapy using an oncolytic virus (OV)-loaded NSCs. RESULTS: Based on histology and in vivo imaging, we found that disrupting the olfactory epithelium with MT effectively delays clearance and allows NSCs to persist in the nasal cavity for at least 24 h. MT pretreatment amplified the migration of NSCs to the tumor. The therapeutic advantage of this enhancement was quantitatively validated by tissue analysis and MRI tracking of NSCs loaded with superparamagnetic iron oxide nanoparticles (SPIOs) in live animals. Moreover, we observed significant survival benefits in GBM-bearing mice treated with intranasal delivery of oncolytic virus-loaded NSCs following MT injection. Conclusion: Our work identified a novel pharmacologic strategy to accelerate the clinical application of the non-invasive NSCs-based therapeutic platform to tackle aggressive brain tumors.
Collapse
|
37
|
Dorsal-zone-specific reduction of sensory neuron density in the olfactory epithelium following long-term exercise or caloric restriction. Sci Rep 2018; 8:17300. [PMID: 30470811 PMCID: PMC6251928 DOI: 10.1038/s41598-018-35607-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/08/2018] [Indexed: 01/09/2023] Open
Abstract
Exercise (Ex) and caloric restriction (CR) reduce oxidative stress and improve organ function. For instance, voluntary Ex or CR is known to reduce age-related cochlear damage in male C57BL/6J mice. However, the effect of Ex and CR on the olfactory system is unknown. In this study, we confirmed the positive effect of Ex and CR on age-related cochlear damage, but found that Ex and CR affected negatively cell dynamics in the olfactory epithelium (OE) by reducing the number of mature olfactory sensory neurons (OSNs) and increasing the number of proliferative basal cells and apoptotic OSNs in the dorsal zone of the olfactory epithelium (OE), which contains neurons expressing NADPH quinone oxido-reductase 1 (NQO1). In addition, these interventions resulted in lower odor-induced c-fos expression in areas of the olfactory bulb receiving projections from dorsal-zone OSNs than in areas receiving ventral-zone projections. Further, we observed substantial oxidative stress in NQO1-positive cells and apoptotic OSNs in the dorsal zone in Ex and CR animals. These results suggest that, in contrast to their positive effects in other organs, Ex and CR facilitate oxidative stress and negatively impact structure and function in dorsal-zone OSNs, probably in association with NQO1 bioactivation.
Collapse
|
38
|
Coppola DM, White LE. Forever young: Neoteny, neurogenesis and a critique of critical periods in olfaction. J Bioenerg Biomembr 2018; 51:53-63. [PMID: 30421031 DOI: 10.1007/s10863-018-9778-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
The critical period concept has been one of the most transcendent in science, education, and society forming the basis of our fixation on 'quality' of childhood experiences. The neural basis of this process has been revealed in developmental studies of visual, auditory and somatosensory maps and their enduring modification through manipulations of experience early in life. Olfaction, too, possesses a number of phenomena that share key characteristics with classical critical periods like sensitive temporal windows and experience dependence. In this review, we analyze the candidate critical period-like phenomena in olfaction and find them disanalogous to classical critical periods in other sensory systems in several important ways. This leads us to speculate as to why olfaction may be alone among exteroceptive systems in lacking classical critical periods and how life-long neurogenesis of olfactory sensory neurons and bulbar interneurons-a neotenic vestige-- relates to the structure and function of the mammalian olfactory system.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph Macon College, Ashland, VA, 23005, USA.
| | - Leonard E White
- Department of Neurology, Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC, 27708, USA
| |
Collapse
|
39
|
Savya SP, Kunkhyen T, Cheetham CEJ. Low survival rate of young adult-born olfactory sensory neurons in the undamaged mouse olfactory epithelium. J Bioenerg Biomembr 2018; 51:41-51. [PMID: 30302619 DOI: 10.1007/s10863-018-9774-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023]
Abstract
Olfactory sensory neurons (OSNs) are generated throughout life from progenitor cells in the olfactory epithelium. OSN axons project in an odorant receptor-specific manner to the olfactory bulb (OB), forming an ordered array of glomeruli where they provide sensory input to OB neurons. The tetracycline transactivator (tTA) system permits developmental stage-specific expression of reporter genes in OSNs and has been widely used for structural and functional studies of the development and plasticity of the mouse olfactory system. However, the cellular ages at which OSNs stop expressing reporters driven by the immature OSN-specific Gγ8-tTA driver line and begin to express reporters driven by the mature OSN-specific OMP-tTA driver line have not been directly determined. We pulse-labeled terminally dividing cells in the olfactory epithelium of 28-day-old (P28) mice with EdU and analyzed EdU labeling in OSNs expressing fluorescent reporter proteins under control of either the Gγ8-tTA or OMP-tTA driver line 5-14 days later. Expression of OMP-tTA-driven reporters began in 6-day-old OSNs, while the vast majority of newborn OSNs did not express Gγ8-tTA-driven fluorescent proteins beyond 8 days of cellular age. Surprisingly, we also found a low survival rate for P28-born OSNs, very few of which survived for more than 14 days. We propose that OSN survival requires the formation of stable synaptic connections and hence may be dependent on organismal age.
Collapse
Affiliation(s)
- Sajishnu P Savya
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St., BST E1456, Pittsburgh, PA, 15213, USA.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tenzin Kunkhyen
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St., BST E1456, Pittsburgh, PA, 15213, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St., BST E1456, Pittsburgh, PA, 15213, USA. .,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Dai Q, Duan C, Ren W, Li F, Zheng Q, Wang L, Li W, Lu X, Ni W, Zhang Y, Chen Y, Wen T, Yu Y, Yu H. Notch Signaling Regulates Lgr5 + Olfactory Epithelium Progenitor/Stem Cell Turnover and Mediates Recovery of Lesioned Olfactory Epithelium in Mouse Model. Stem Cells 2018; 36:1259-1272. [PMID: 29664186 DOI: 10.1002/stem.2837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
Abstract
The Notch signaling pathway regulates stem cell proliferation and differentiation in multiple tissues and organs, and is required for tissue maintenance. However, the role of Notch in regulation of olfactory epithelium (OE) progenitor/stem cells to maintain tissue function is still not clear. A recent study reported that leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is expressed in globose basal cells (GBCs) localized in OE. Through lineage tracing in vivo, we found that Lgr5+ cells act as progenitor/stem cells in OE. The generation of daughter cells from Lgr5+ progenitor/stem cells is delicately regulated by the Notch signaling pathway, which not only controls the proliferation of Lgr5+ cells and their immediate progenies but also affects their subsequent terminal differentiation. In conditionally cultured OE organoids in vitro, inhibition of Notch signaling promotes neuronal differentiation. Besides, OE lesion through methimazole administration in mice induces generation of more Notch1+ cells in the horizontal basal cell (HBC) layer, and organoids derived from lesioned OE possesses more proliferative Notch1+ HBCs. In summary, we concluded that Notch signaling regulates Lgr5+ GBCs by controlling cellular proliferation and differentiation as well as maintaining epithelial cell homeostasis in normal OE. Meanwhile, Notch1 also marks HBCs in lesioned OE and Notch1+ HBCs are transiently present in OE after injury. This implies that Notch1+ cells in OE may have dual roles, functioning as GBCs in early development of OE and HBCs in restoring the lesioned OE. Stem Cells 2018;36:1259-1272.
Collapse
Affiliation(s)
- Qi Dai
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Chen Duan
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Wenwen Ren
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Fangqi Li
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Qian Zheng
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Li Wang
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Wenyan Li
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Xiaoling Lu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Wenli Ni
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Yanping Zhang
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Yan Chen
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| | - Tieqiao Wen
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Yiqun Yu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China.,School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Hongmeng Yu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Zheng X, Liang L, Hei C, Yang W, Zhang T, Wu K, Qin Y, Chang Q. Bilateral Olfactory Mucosa Damage Induces the Disappearance of Olfactory Glomerulus and Reduces the Expression of Extrasynaptic α5GABA ARs in the Hippocampus in Early Postnatal Sprague Dawley Rats. Neurotox Res 2018; 34:353-362. [PMID: 29667127 DOI: 10.1007/s12640-018-9893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
Chloroform-induced olfactory mucosal degeneration has been reported in adult rats following gavage. We used fixed-point chloroform infusions on different postnatal days (PNDs) to investigate the effects of early olfactory bilateral deprivation on the main olfactory bulbs in Sprague Dawley rats. The experimental groups included rats infused with chloroform (5 μl) or saline (sham, 5 μl) on PNDs 3 and 8, and rats not receiving infusions (control) (n = 6 in all groups). Rats receiving chloroform on PND 3 showed significant hypoevolutism when compared to those in other groups (P < 0.05). There was a complete disappearance and a significant reduction in the size of olfactory glomeruli in the PND 3 and 8 groups, respectively, when compared to the respective sham groups. Rats receiving chloroform on PND 3 had significant memory impairment (P < 0.01) and increased levels of learned helplessness (P < 0.05), as measured using the Morris water maze and tail suspension tests, respectively. GABAA receptor alpha5 subunit (α5GABAAR) expression in hippocampal neurons was significantly lower in rats receiving chloroform on PND 3 than in rats in other groups (P < 0.01), as measured using immunohistochemistry and polymerase chain reaction. There was thus a critical period for the preservation of regenerative ability in olfactory receptor neurons, during which damage and olfactory deprivation led to altered rhinencephalon structure and disappearance of olfactory glomeruli, which induced hypoevolutism. Olfactory deprivation after the critical period had no significant effect on olfactory receptor neuron regeneration, leading to reduced developmental and behavioral effects in Sprague Dawley rats.
Collapse
Affiliation(s)
- Xiaomin Zheng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic Heredity of Ningxia Hui Autonomous Region, The School of Basic Medicine, Department of Anatomy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Liang Liang
- Hubei General Hospital, Wuhan, 430060, China
| | - Changchun Hei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic Heredity of Ningxia Hui Autonomous Region, The School of Basic Medicine, Department of Anatomy, Ningxia Medical University, Yinchuan, 750004, China
| | - Wenjuan Yang
- Tongxin County Hospital, Tongxin County, Ningxia Hui Autonomous Region, Yinchuan, 751300, China
| | - Tingyuan Zhang
- People' s Hospital of Heze City, Shandong, 274015, China
| | - Kai Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic Heredity of Ningxia Hui Autonomous Region, The School of Basic Medicine, Department of Anatomy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yi Qin
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic Heredity of Ningxia Hui Autonomous Region, The School of Basic Medicine, Department of Anatomy, Ningxia Medical University, Yinchuan, 750004, China
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic Heredity of Ningxia Hui Autonomous Region, The School of Basic Medicine, Department of Anatomy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
42
|
Wang Q, Titlow WB, McClintock DA, Stromberg AJ, McClintock TS. Activity-Dependent Gene Expression in the Mammalian Olfactory Epithelium. Chem Senses 2018; 42:611-624. [PMID: 28525560 DOI: 10.1093/chemse/bjx028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activity-dependent processes are important to olfactory sensory neurons (OSNs) in several ways, such as cell survival and the specificity of axonal convergence. The identification of activity-dependent mRNAs has contributed to our understanding of OSN axon convergence, but has revealed surprisingly little about other processes. Published studies of activity-dependent mRNAs in olfactory mucosae overlap poorly, but by combining these agreements with meta-analysis of existing data we identify 443 mRNAs that respond to methods that alter OSN activity. Three hundred and fifty of them are expressed in mature OSNs, consistent with the expectation that activity-dependent responses are cell autonomous and driven by odor stimulation. Many of these mRNAs encode proteins that function at presynaptic terminals or support electrical activity, consistent with hypotheses linking activity dependence to synaptic plasticity and energy conservation. The lack of agreement between studies is due largely to underpowered experiments. In addition, methods used to alter OSN activity are susceptible to indirect or off-target effects. These effects deserve greater attention, not only to rigorously identify OSN mRNAs that respond to altered OSN activity, but also because these effects are of significant interest in their own right. For example, the mRNAs of some sustentacular cell enzymes believed to function in odorant clearance (Cyp2a4 and Cyp2g1) are sensitive to unilateral naris occlusion used to reduce odorant stimulation of the ipsilateral olfactory epithelium. Also problematic are odorant receptor mRNAs, which show little agreement across studies and are susceptible to differences in frequency of expression that masquerade as activity-dependent changes in mRNA abundance.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - William B Titlow
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - Declan A McClintock
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - Arnold J Stromberg
- Department of Statistics, University of Kentucky, 725 Rose St., Lexington, KY 40536-0082, USA
| | - Timothy S McClintock
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| |
Collapse
|
43
|
Zhang Z, Yang D, Zhang M, Zhu N, Zhou Y, Storm DR, Wang Z. Deletion of Type 3 Adenylyl Cyclase Perturbs the Postnatal Maturation of Olfactory Sensory Neurons and Olfactory Cilium Ultrastructure in Mice. Front Cell Neurosci 2017; 11:1. [PMID: 28154525 PMCID: PMC5243839 DOI: 10.3389/fncel.2017.00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023] Open
Abstract
Type 3 adenylyl cyclase (Adcy3) is localized to the cilia of olfactory sensory neurons (OSNs) and is an essential component of the olfactory cyclic adenosine monophosphate (cAMP) signaling pathway. Although the role of this enzyme in odor detection and axonal projection in OSNs was previously characterized, researchers will still have to determine its function in the maturation of postnatal OSNs and olfactory cilium ultrastructure. Previous studies on newborns showed that the anatomic structure of the main olfactory epithelium (MOE) of Adcy3 knockout mice (Adcy3-/-) is indistinguishable from that of their wild-type littermates (Adcy3+/+), whereas the architecture and associated composition of MOE are relatively underdeveloped at this early age. The full effects of sensory deprivation on OSNs may not also be exhibited in such age. In the present study, following a comparison of postnatal OSNs in seven-, 30-, and 90-day-old Adcy3-/- mice and wild-type controls (Adcy3+/+), we observed that the absence of Adcy3 leads to cumulative defects in the maturation of OSNs. Upon aging, Adcy3-/- OSNs exhibited increase in immature cells and reduction in mature cells along with elevated apoptosis levels. The density and ultrastructure of Adcy3-/- cilia were also disrupted in mice upon aging. Collectively, our results reveal an indispensable role of Adcy3 in postnatal maturation of OSNs and maintenance of olfactory cilium ultrastructure in mice through adulthood.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Life Science, Hebei UniversityBaoding, China; Medical College, Hebei UniversityBaoding, China
| | - Dong Yang
- College of Life Science, Hebei University Baoding, China
| | - Mengdi Zhang
- College of Life Science, Hebei University Baoding, China
| | - Ning Zhu
- Department of Cardiology, Baoding First Center Hospital Baoding, China
| | - Yanfen Zhou
- College of Life Science, Hebei University Baoding, China
| | - Daniel R Storm
- Department of Pharmacology, University of Washington, Seattle WA, USA
| | - Zhenshan Wang
- College of Life Science, Hebei University Baoding, China
| |
Collapse
|
44
|
Longer latency of sensory response to intravenous odor injection predicts olfactory neural disorder. Sci Rep 2016; 6:35361. [PMID: 27734933 PMCID: PMC5062120 DOI: 10.1038/srep35361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/28/2016] [Indexed: 11/08/2022] Open
Abstract
A near loss of smell may result from conductive and/or neural olfactory disorders. However, an olfactory test to selectively detect neural disorders has not been established. We investigated whether onset latency of sensory response to intravenous odor injection can detect neural disorders in humans and mice. We showed that longer preoperative onset latency of odor recognition to intravenous odor in patients with chronic rhinosinusitis predicted worse recovery of olfactory symptoms following sinus surgery. The onset latency of the olfactory sensory neuron (OSN) response to intravenous odor using synaptopHluorin signals from OSN axon terminals was delayed in mice with reduced numbers of OSNs (neural disorder) but not with increased mucus or blocked orthonasal pathways (conductive disorders). Moreover, the increase in onset latency correlated with the decrease in mature OSN numbers. Longer onset latency to intravenous odor injection is a useful biomarker for presence and severity of olfactory disorders with neural etiology.
Collapse
|
45
|
Cheetham CEJ, Park U, Belluscio L. Rapid and continuous activity-dependent plasticity of olfactory sensory input. Nat Commun 2016; 7:10729. [PMID: 26898529 PMCID: PMC4764868 DOI: 10.1038/ncomms10729] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/15/2016] [Indexed: 02/01/2023] Open
Abstract
Incorporation of new neurons enables plasticity and repair of circuits in the adult brain. Adult neurogenesis is a key feature of the mammalian olfactory system, with new olfactory sensory neurons (OSNs) wiring into highly organized olfactory bulb (OB) circuits throughout life. However, neither when new postnatally generated OSNs first form synapses nor whether OSNs retain the capacity for synaptogenesis once mature, is known. Therefore, how integration of adult-born OSNs may contribute to lifelong OB plasticity is unclear. Here, we use a combination of electron microscopy, optogenetic activation and in vivo time-lapse imaging to show that newly generated OSNs form highly dynamic synapses and are capable of eliciting robust stimulus-locked firing of neurons in the mouse OB. Furthermore, we demonstrate that mature OSN axons undergo continuous activity-dependent synaptic remodelling that persists into adulthood. OSN synaptogenesis, therefore, provides a sustained potential for OB plasticity and repair that is much faster than OSN replacement alone.
Collapse
Affiliation(s)
- Claire E. J. Cheetham
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| | - Una Park
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| | - Leonardo Belluscio
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
46
|
The Stimulus-Dependent Gradient of Cyp26B1+ Olfactory Sensory Neurons Is Necessary for the Functional Integrity of the Olfactory Sensory Map. J Neurosci 2016; 35:13807-18. [PMID: 26446231 DOI: 10.1523/jneurosci.2247-15.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Stimulus-dependent expression of the retinoic acid-inactivating enzyme Cyp26B1 in olfactory sensory neurons (OSNs) forms a dorsomedial (DM)-ventrolateral (VL) gradient in the mouse olfactory epithelium. The gradient correlates spatially with different rates of OSN turnover, as well as the functional organization of the olfactory sensory map, into overlapping zones of OSNs that express different odorant receptors (ORs). Here, we analyze transgenic mice that, instead of a stimulus-dependent Cyp26B1 gradient, have constitutive Cyp26B1 levels in all OSNs. Starting postnatally, OSN differentiation is decreased and progenitor proliferation is increased. Initially, these effects are selective to the VL-most zone and correlate with reduced ATF5 expression and accumulation of OSNs that do not express ORs. Transcription factor ATF5 is known to stabilize OR gene choice via onset of the stimulus-transducing enzyme adenylyl cyclase type 3. During further postnatal development of Cyp26B1 mice, an anomalous DM(high)-VL(low) expression gradient of adenylyl cyclase type 3 appears, which coincides with altered OR frequencies and OR zones. All OR zones expand ventrolaterally except for the VL-most zone, which contracts. The expansion results in an increased zonal overlap that is also evident in the innervation pattern of OSN axon terminals in olfactory bulbs. These findings together identify a mechanism by which postnatal sensory-stimulated vitamin A metabolism modifies the generation of spatially specified neurons and their precise topographic connectivity. The distributed patterns of vitamin A-metabolizing enzymes in the nervous system suggest the possibility that the mechanism may also regulate neuroplasticity in circuits other than the olfactory sensory map. SIGNIFICANCE STATEMENT The mouse olfactory sensory map is functionally wired according to precise axonal projections of spatially organized classes of olfactory sensory neurons in the nose. The genetically controlled mechanisms that regulate the development of the olfactory sensory map are beginning to be elucidated. Little is known about mechanisms by which sensory stimuli shape the organization of the map after birth. We show that a stimulus-dependent gradient of a retinoic acid-inactivating enzyme Cyp26B1 modifies the composition, localization, and axonal projections of olfactory sensory neuron classes. The mechanism is novel and suggests the interesting possibility that local vitamin A metabolism could also be a mediator of stimulus-dependent modifications of precise spatial connectivity in other parts of the nervous system.
Collapse
|