1
|
Sutley-Koury SN, Taitano-Johnson C, Kulinich AO, Farooq N, Wagner VA, Robles M, Hickmott PW, Santhakumar V, Mimche PN, Ethell IM. EphB2 Signaling Is Implicated in Astrocyte-Mediated Parvalbumin Inhibitory Synapse Development. J Neurosci 2024; 44:e0154242024. [PMID: 39327008 PMCID: PMC11551896 DOI: 10.1523/jneurosci.0154-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired inhibitory synapse development is suggested to drive neuronal hyperactivity in autism spectrum disorders (ASD) and epilepsy. We propose a novel mechanism by which astrocytes control the development of parvalbumin (PV)-specific inhibitory synapses in the hippocampus, implicating ephrin-B/EphB signaling. Here, we utilize genetic approaches to assess functional and structural connectivity between PV and pyramidal cells (PCs) through whole-cell patch-clamp electrophysiology, optogenetics, immunohistochemical analysis, and behaviors in male and female mice. While inhibitory synapse development is adversely affected by PV-specific expression of EphB2, a strong candidate ASD risk gene, astrocytic ephrin-B1 facilitates PV→PC connectivity through a mechanism involving EphB signaling in PV boutons. In contrast, the loss of astrocytic ephrin-B1 reduces PV→PC connectivity and inhibition, resulting in increased seizure susceptibility and an ASD-like phenotype. Our findings underscore the crucial role of astrocytes in regulating inhibitory circuit development and discover a new role of EphB2 receptors in PV-specific inhibitory synapse development.
Collapse
Affiliation(s)
- Samantha N Sutley-Koury
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Christopher Taitano-Johnson
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| | - Anna O Kulinich
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Nadia Farooq
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Victoria A Wagner
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| | - Marissa Robles
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Peter W Hickmott
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| | | | - Patrice N Mimche
- Department of Dermatology, and Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis Indiana 46202
| | - Iryna M Ethell
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| |
Collapse
|
2
|
Guo S, Wang Y, Duan Q, Gu W, Fu Q, Ma Z, Ruan J. Activation of EphrinB2/EphB2 signaling in the spine cord alters glia-neuron interactions in mice with visceral hyperalgesia following maternal separation. Front Pharmacol 2024; 15:1463339. [PMID: 39290870 PMCID: PMC11405339 DOI: 10.3389/fphar.2024.1463339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Background Sress early in life has been linked to visceral hyperalgesia and associated functional gastrointestinal disorders. In a mouse model of visceral hyperalgesia, we investigated whether the EphB2 receptor and its EphrinB2 ligand in spinal cord contribute to dysregulation of glia-neuron interactions. Methods An established mouse model of stress due to maternal separation (MS). Pups were separated from their mothers for 14 days during early development, then analyzed several weeks later in terms of visceral sensitivity based on the abdominal withdrawal reflex score and in terms of expression of c-fos, EphrinB2, EphB2, and phosphorylated MAP kinases (ERK, p38, JNK). Results Visceral hyperalgesia due to MS upregulated EphB2, EphrinB2 and c-fos in the spinal cord, and c-fos levels positively correlated with those of EphB2 and EphrinB2. Spinal astrocytes, microglia, and neurons showed upregulation of EphB2, EphrinB2 and phosphorylated MAP kinases. Blocking EphrinB2/EphB2 signaling in MS mice reduced visceral sensitivity, activation of neurons and glia, and phosphorylation of NMDA receptor. Activating EphrinB2/EphB2 signaling in unstressed mice induced visceral hyperalgesia, upregulation of c-fos, and activation of NMDA receptor similar to maternal separation. Conclusion The stress of MS during early development may lead to visceral hyperalgesia by upregulating EphrinB2/EphB2 in the spinal cord and thereby altering neuron-glia interactions.
Collapse
Affiliation(s)
- Shufen Guo
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu Wang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qingling Duan
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qun Fu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaping Ruan
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Asadi F, Gunawardana SC, Dolle RE, Piston DW. An orally available compound suppresses glucagon hypersecretion and normalizes hyperglycemia in type 1 diabetes. JCI Insight 2024; 9:e172626. [PMID: 38258903 PMCID: PMC10906223 DOI: 10.1172/jci.insight.172626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Suppression of glucagon hypersecretion can normalize hyperglycemia during type 1 diabetes (T1D). Activating erythropoietin-producing human hepatocellular receptor type-A4 (EphA4) on α cells reduced glucagon hypersecretion from dispersed α cells and T1D islets from both human donor and mouse models. We synthesized a high-affinity small molecule agonist for the EphA4 receptor, WCDD301, which showed robust plasma and liver microsome metabolic stability in both mouse and human preparations. In islets and dispersed islet cells from nondiabetic and T1D human donors, WCDD301 reduced glucagon secretion comparable to the natural EphA4 ligand, Ephrin-A5. In diabetic NOD and streptozotocin-treated mice, once-daily oral administration of WCDD301 formulated with a time-release excipient reduced plasma glucagon and normalized blood glucose for more than 3 months. These results suggest that targeting the α cell EphA4 receptor by sustained release of WCDD301 is a promising pharmacologic pathway for normalizing hyperglycemia in patients with T1D.
Collapse
Affiliation(s)
| | | | - Roland E. Dolle
- Center for Drug Discovery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
4
|
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity. Cells 2021; 10:cells10010166. [PMID: 33467671 PMCID: PMC7830260 DOI: 10.3390/cells10010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) has been identified as a critical factor affecting synaptic function. It forms a functional scaffold that provides both the structural support and the reservoir of signaling molecules necessary for communication between cellular constituents of the central nervous system (CNS). Among numerous ECM components and modifiers that play a role in the physiological and pathological synaptic plasticity, matrix metalloproteinase 9 (MMP-9) has recently emerged as a key molecule. MMP-9 may contribute to the dynamic remodeling of structural and functional plasticity by cleaving ECM components and cell adhesion molecules. Notably, MMP-9 signaling was shown to be indispensable for long-term memory formation that requires synaptic remodeling. The core regulators of the dynamic reorganization of the actin cytoskeleton and cell adhesion are the Rho family of GTPases. These proteins have been implicated in the control of a wide range of cellular processes occurring in brain physiology and pathology. Here, we discuss the contribution of Rho GTPases to MMP-9-dependent signaling pathways in the brain. We also describe how the regulation of Rho GTPases by post-translational modifications (PTMs) can influence these processes.
Collapse
|
5
|
Pasterkamp RJ, Burk K. Axon guidance receptors: Endocytosis, trafficking and downstream signaling from endosomes. Prog Neurobiol 2020; 198:101916. [PMID: 32991957 DOI: 10.1016/j.pneurobio.2020.101916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
During the development of the nervous system, axons extend through complex environments. Growth cones at the axon tip allow axons to find and innervate their appropriate targets and form functional synapses. Axon pathfinding requires axons to respond to guidance signals and these cues need to be detected by specialized receptors followed by intracellular signal integration and translation. Several downstream signaling pathways have been identified for axon guidance receptors and it has become evident that these pathways are often initiated from intracellular vesicles called endosomes. Endosomes allow receptors to traffic intracellularly, re-locating receptors from one cellular region to another. The localization of axon guidance receptors to endosomal compartments is crucial for their function, signaling output and expression levels. For example, active receptors within endosomes can recruit downstream proteins to the endosomal membrane and facilitate signaling. Also, endosomal trafficking can re-locate receptors back to the plasma membrane to allow re-activation or mediate downregulation of receptor signaling via degradation. Accumulating evidence suggests that axon guidance receptors do not follow a pre-set default trafficking route but may change their localization within endosomes. This re-routing appears to be spatially and temporally regulated, either by expression of adaptor proteins or co-receptors. These findings shed light on how signaling in axon guidance is regulated and diversified - a mechanism which explains how a limited set of guidance cues can help to establish billions of neuronal connections. In this review, we summarize and discuss our current knowledge of axon guidance receptor trafficking and provide directions for future research.
Collapse
Affiliation(s)
- R J Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, the Netherlands.
| | - K Burk
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, 37075 Göttingen, Germany.
| |
Collapse
|
6
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
7
|
Gong J, Gaitanos TN, Luu O, Huang Y, Gaitanos L, Lindner J, Winklbauer R, Klein R. Gulp1 controls Eph/ephrin trogocytosis and is important for cell rearrangements during development. J Cell Biol 2019; 218:3455-3471. [PMID: 31409653 PMCID: PMC6781437 DOI: 10.1083/jcb.201901032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/24/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022] Open
Abstract
Trogocytosis, intercellular cannibalism distinct from phagocytosis, occurs when cells rearrange during development. Here, Gong et al. reveal that trogocytosis induced by ephrins and Eph receptors involves phagocytic adaptor protein Gulp1, Rac-specific guanine nucleotide exchange factor Tiam2, and endocytic GTPase dynamin. These results suggest that ephrin/Eph-induced trogocytosis uses phagocytosis-like mechanisms. Trogocytosis, in which cells nibble away parts of neighboring cells, is an intercellular cannibalism process conserved from protozoa to mammals. Its underlying molecular mechanisms are not well understood and are likely distinct from phagocytosis, a process that clears entire cells. Bi-directional contact repulsion induced by Eph/ephrin signaling involves transfer of membrane patches and full-length Eph/ephrin protein complexes between opposing cells, resembling trogocytosis. Here, we show that the phagocytic adaptor protein Gulp1 regulates EphB/ephrinB trogocytosis to achieve efficient cell rearrangements of cultured cells and during embryonic development. Gulp1 mediates trogocytosis bi-directionally by dynamic engagement with EphB/ephrinB protein clusters in cooperation with the Rac-specific guanine nucleotide exchange factor Tiam2. Ultimately, Gulp1’s presence at the Eph/ephrin cluster is a prerequisite for recruiting the endocytic GTPase dynamin. These results suggest that EphB/ephrinB trogocytosis, unlike other trogocytosis events, uses a phagocytosis-like mechanism to achieve efficient membrane scission and engulfment.
Collapse
Affiliation(s)
- Jingyi Gong
- Max Planck Institute of Neurobiology, Department of Molecules-Signaling-Development, Munich-Martinsried, Germany
| | - Thomas N Gaitanos
- Max Planck Institute of Neurobiology, Department of Molecules-Signaling-Development, Munich-Martinsried, Germany
| | - Olivia Luu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Louise Gaitanos
- Max Planck Institute of Neurobiology, Department of Molecules-Signaling-Development, Munich-Martinsried, Germany
| | - Jana Lindner
- Max Planck Institute of Neurobiology, Department of Molecules-Signaling-Development, Munich-Martinsried, Germany
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, Department of Molecules-Signaling-Development, Munich-Martinsried, Germany
| |
Collapse
|
8
|
Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus. J Neurosci 2018; 38:5710-5726. [PMID: 29793972 DOI: 10.1523/jneurosci.3618-17.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 01/22/2023] Open
Abstract
Astrocyte-derived factors can control synapse formation and functions, making astrocytes an attractive target for regulating neuronal circuits and associated behaviors. Abnormal astrocyte-neuronal interactions are also implicated in neurodevelopmental disorders and neurodegenerative diseases associated with impaired learning and memory. However, little is known about astrocyte-mediated mechanisms that regulate learning and memory. Here, we propose astrocytic ephrin-B1 as a regulator of synaptogenesis in adult hippocampus and mouse learning behaviors. We found that astrocyte-specific ablation of ephrin-B1 in male mice triggers an increase in the density of immature dendritic spines and excitatory synaptic sites in the adult CA1 hippocampus. However, the prevalence of immature dendritic spines is associated with decreased evoked postsynaptic firing responses in CA1 pyramidal neurons, suggesting impaired maturation of these newly formed and potentially silent synapses or increased excitatory drive on the inhibitory neurons resulting in the overall decreased postsynaptic firing. Nevertheless, astrocyte-specific ephrin-B1 knock-out male mice exhibit normal acquisition of fear memory but enhanced contextual fear memory recall. In contrast, overexpression of astrocytic ephrin-B1 in the adult CA1 hippocampus leads to the loss of dendritic spines, reduced excitatory input, and impaired contextual memory retention. Our results suggest that astrocytic ephrin-B1 may compete with neuronal ephrin-B1 and mediate excitatory synapse elimination through its interactions with neuronal EphB receptors. Indeed, a deletion of neuronal EphB receptors impairs the ability of astrocytes expressing functional ephrin-B1 to engulf synaptosomes in vitro Our findings demonstrate that astrocytic ephrin-B1 regulates long-term contextual memory by restricting new synapse formation in the adult hippocampus.SIGNIFICANCE STATEMENT These studies address a gap in our knowledge of astrocyte-mediated regulation of learning and memory by unveiling a new role for ephrin-B1 in astrocytes and elucidating new mechanisms by which astrocytes regulate learning. Our studies explore the mechanisms underlying astrocyte regulation of hippocampal circuit remodeling during learning using new genetic tools that target ephrin-B signaling in astrocytes in vivo On a subcellular level, astrocytic ephrin-B1 may compete with neuronal ephrin-B1 and trigger astrocyte-mediated elimination of EphB receptor-containing synapses. Given the role EphB receptors play in neurodevelopmental disorders and neurodegenerative diseases, these findings establish a foundation for future studies of astrocyte-mediated synaptogenesis in clinically relevant conditions that can help to guide the development of clinical applications for a variety of neurological disorders.
Collapse
|
9
|
Tyzack GE, Hall CE, Sibley CR, Cymes T, Forostyak S, Carlino G, Meyer IF, Schiavo G, Zhang SC, Gibbons GM, Newcombe J, Patani R, Lakatos A. A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models. Nat Commun 2017; 8:1164. [PMID: 29079839 PMCID: PMC5660125 DOI: 10.1038/s41467-017-01283-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/06/2017] [Indexed: 12/25/2022] Open
Abstract
Astrocyte responses to neuronal injury may be beneficial or detrimental to neuronal recovery, but the mechanisms that determine these different responses are poorly understood. Here we show that ephrin type-B receptor 1 (EphB1) is upregulated in injured motor neurons, which in turn can activate astrocytes through ephrin-B1-mediated stimulation of signal transducer and activator of transcription-3 (STAT3). Transcriptional analysis shows that EphB1 induces a protective and anti-inflammatory signature in astrocytes, partially linked to the STAT3 network. This is distinct from the response evoked by interleukin (IL)-6 that is known to induce both pro inflammatory and anti-inflammatory processes. Finally, we demonstrate that the EphB1-ephrin-B1 pathway is disrupted in human stem cell derived astrocyte and mouse models of amyotrophic lateral sclerosis (ALS). Our work identifies an early neuronal help-me signal that activates a neuroprotective astrocytic response, which fails in ALS, and therefore represents an attractive therapeutic target.
Collapse
Affiliation(s)
- Giulia E Tyzack
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Claire E Hall
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Christopher R Sibley
- Division of Brain Sciences, Imperial College London, Burlington Danes Building Du Cane Road, London, W12 0NN, UK
| | - Tomasz Cymes
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Serhiy Forostyak
- Institute of Experimental Medicine ASCR and Charles University in Prague, Department of Neuroscience, Videnská 1083, Prague 4, 142 20, Czech Republic
| | - Giulia Carlino
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Ione F Meyer
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - George M Gibbons
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Jia Newcombe
- Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, WC1N 1PJ, UK
| | - Rickie Patani
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - András Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
- Addenbrooke's Hospital, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
10
|
Gehne N, Lamik A, Lehmann M, Haseloff RF, Andjelkovic AV, Blasig IE. Cross-over endocytosis of claudins is mediated by interactions via their extracellular loops. PLoS One 2017; 12:e0182106. [PMID: 28813441 PMCID: PMC5557494 DOI: 10.1371/journal.pone.0182106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Claudins (Cldns) are transmembrane tight junction (TJ) proteins that paracellularly seal endo- and epithelial barriers by their interactions within the TJs. However, the mechanisms allowing TJ remodeling while maintaining barrier integrity are largely unknown. Cldns and occludin are heterophilically and homophilically cross-over endocytosed into neighboring cells in large, double membrane vesicles. Super-resolution microscopy confirmed the presence of Cldns in these vesicles and revealed a distinct separation of Cldns derived from opposing cells within cross-over endocytosed vesicles. Colocalization of cross-over endocytosed Cldn with the autophagosome markers as well as inhibition of autophagosome biogenesis verified involvement of the autophagosomal pathway. Accordingly, cross-over endocytosed Cldns underwent lysosomal degradation as indicated by lysosome markers. Cross-over endocytosis of Cldn5 depended on clathrin and caveolin pathways but not on dynamin. Cross-over endocytosis also depended on Cldn-Cldn-interactions. Amino acid substitutions in the second extracellular loop of Cldn5 (F147A, Q156E) caused impaired cis- and trans-interaction, as well as diminished cross-over endocytosis. Moreover, F147A exhibited an increased mobility in the membrane, while Q156E was not as mobile but enhanced the paracellular permeability. In conclusion, the endocytosis of TJ proteins depends on their ability to interact strongly with each other in cis and trans, and the mobility of Cldns in the membrane is not necessarily an indicator of barrier permeability. TJ-remodeling via cross-over endocytosis represents a general mechanism for the degradation of transmembrane proteins in cell-cell contacts and directly links junctional membrane turnover to autophagy.
Collapse
Affiliation(s)
- Nora Gehne
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Agathe Lamik
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- * E-mail:
| |
Collapse
|
11
|
Abstract
Abstract
Axonal loss is an important process both during development and diseases of the nervous system. While the molecular mechanisms that mediate axonal loss are largely elusive, modern imaging technology affords an increasingly clear view of the cellular processes that allow nerve cells to shed individiual axon branches or even dismantle entire parts of their axonal projections. The present review discusses the characteristics of post-traumatic Wallerian degeneration, the process of axonal loss currently best understood. Subsequently, the properties of a number of recently discovered axonal loss phenomena are described. These phenomena explain some of the axonal loss that occurs locally after axon transection, during neuro-inflammatory insults, and as part of normal neurodevelopment.
Collapse
|
12
|
Gaitanos TN, Koerner J, Klein R. Tiam-Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion. J Cell Biol 2016; 214:735-52. [PMID: 27597758 PMCID: PMC5021091 DOI: 10.1083/jcb.201512010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/09/2016] [Indexed: 11/26/2022] Open
Abstract
Cell repulsion requires trans-endocytosis of ephrin receptors at cell–cell contact sites, but the mechanisms underlying this process are unclear. Here, Gaitanos et al. show that Tiam–Rac signaling mediates trans-endocytosis of EphB2 and is necessary for cell repulsion. Ephrin receptors interact with membrane-bound ephrin ligands to regulate contact-mediated attraction or repulsion between opposing cells, thereby influencing tissue morphogenesis. Cell repulsion requires bidirectional trans-endocytosis of clustered Eph–ephrin complexes at cell interfaces, but the mechanisms underlying this process are poorly understood. Here, we identified an actin-regulating pathway allowing ephrinB+ cells to trans-endocytose EphB receptors from opposing cells. Live imaging revealed Rac-dependent F-actin enrichment at sites of EphB2 internalization, but not during vesicle trafficking. Systematic depletion of Rho family GTPases and their regulatory proteins identified the Rac subfamily and the Rac-specific guanine nucleotide exchange factor Tiam2 as key components of EphB2 trans-endocytosis, a pathway previously implicated in Eph forward signaling, in which ephrins act as in trans ligands of Eph receptors. However, unlike in Eph signaling, this pathway is not required for uptake of soluble ligands in ephrinB+ cells. We also show that this pathway is required for EphB2-stimulated contact repulsion. These results support the existence of a conserved pathway for EphB trans-endocytosis that removes the physical tether between cells, thereby enabling cell repulsion.
Collapse
Affiliation(s)
- Thomas N Gaitanos
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, 82152 Munich-Martinsried, Germany
| | - Jorg Koerner
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, 82152 Munich-Martinsried, Germany
| | - Ruediger Klein
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, 82152 Munich-Martinsried, Germany
| |
Collapse
|
13
|
Gong J, Körner R, Gaitanos L, Klein R. Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. J Cell Biol 2016; 214:35-44. [PMID: 27354374 PMCID: PMC4932373 DOI: 10.1083/jcb.201601085] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022] Open
Abstract
Ephs interact with ESCRT complex components and are released via extracellular vesicles or exosomes. EphB2 released via exosomes mediates a novel cell contact–independent mode of ephrin-Eph signaling that contributes to axon guidance in cell–cell repulsion processes. The cellular release of membranous vesicles known as extracellular vesicles (EVs) or exosomes represents a novel mode of intercellular communication. Eph receptor tyrosine kinases and their membrane-tethered ephrin ligands have very important roles in such biologically diverse processes as neuronal development, plasticity, and pathological diseases. Until now, it was thought that ephrin-Eph signaling requires direct cell contact. Although the biological functions of ephrin-Eph signaling are well understood, our mechanistic understanding remains modest. Here we report the release of EVs containing Ephs and ephrins by different cell types, a process requiring endosomal sorting complex required for transport (ESCRT) activity and regulated by neuronal activity. Treatment of cells with purified EphB2+ EVs induces ephrinB1 reverse signaling and causes neuronal axon repulsion. These results indicate a novel mechanism of ephrin-Eph signaling independent of direct cell contact and proteolytic cleavage and suggest the participation of EphB2+ EVs in neural development and synapse physiology.
Collapse
Affiliation(s)
- Jingyi Gong
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Roman Körner
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Louise Gaitanos
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| |
Collapse
|
14
|
Nikolakopoulou AM, Koeppen J, Garcia M, Leish J, Obenaus A, Ethell IM. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury. ASN Neuro 2016; 8:1-18. [PMID: 26928051 PMCID: PMC4774052 DOI: 10.1177/1759091416630220] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/31/2015] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in injury-induced synapse remodeling. Our studies suggest a new role of ephrin-B1, which is known to regulate synapse development in neurons, in astrocyte-mediated synapse remodeling following TBI. Indeed, we observed a transient upregulation of ephrin-B1 immunoreactivity in hippocampal astrocytes following moderate controlled cortical impact model of TBI. The upregulation of ephrin-B1 levels in hippocampal astrocytes coincided with a decline in the number of vGlut1-positive glutamatergic input to CA1 neurons at 3 days post injury even in the absence of hippocampal neuron loss. In contrast, tamoxifen-induced ablation of ephrin-B1 from adult astrocytes in ephrin-B1loxP/yERT2-CreGFAP mice accelerated the recovery of vGlut1-positive glutamatergic input to CA1 neurons after TBI. Finally, our studies suggest that astrocytic ephrin-B1 may play an active role in injury-induced synapse remodeling through the activation of STAT3-mediated signaling in astrocytes. TBI-induced upregulation of STAT3 phosphorylation within the hippocampus was suppressed by astrocyte-specific ablation of ephrin-B1 in vivo, whereas the activation of ephrin-B1 in astrocytes triggered an increase in STAT3 phosphorylation in vitro. Thus, regulation of ephrin-B1 signaling in astrocytes may provide new therapeutic opportunities to aid functional recovery after TBI.
Collapse
Affiliation(s)
| | - Jordan Koeppen
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| | - Michael Garcia
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Joshua Leish
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, Loma Linda University, CA, USA
| | - Iryna M Ethell
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| |
Collapse
|
15
|
Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 2016; 17:240-56. [PMID: 26790531 DOI: 10.1038/nrm.2015.16] [Citation(s) in RCA: 466] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eph receptor Tyr kinases and their membrane-tethered ligands, the ephrins, elicit short-distance cell-cell signalling and thus regulate many developmental processes at the interface between pattern formation and morphogenesis, including cell sorting and positioning, and the formation of segmented structures and ordered neural maps. Their roles extend into adulthood, when ephrin-Eph signalling regulates neuronal plasticity, homeostatic events and disease processes. Recently, new insights have been gained into the mechanisms of ephrin-Eph signalling in different cell types, and into the physiological importance of ephrin-Eph in different organs and in disease, raising questions for future research directions.
Collapse
|
16
|
EphA4 receptor shedding regulates spinal motor axon guidance. Curr Biol 2014; 24:2355-65. [PMID: 25264256 DOI: 10.1016/j.cub.2014.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/22/2014] [Accepted: 08/13/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Proteolytic processing of axon guidance receptors modulates their expression and functions. Contact repulsion by membrane-associated ephrins and Eph receptors was proposed to be facilitated by ectodomain cleavage, but whether this phenomenon is required for axon guidance in vivo is unknown. RESULTS In support of established models, we find that cleavage of EphA4 promotes cell-cell and growth cone-cell detachment in vitro. Unexpectedly, however, a cleavage resistant isoform of EphA4 is as effective as a wild-type EphA4 in redirecting motor axons in limbs. Mice in which EphA4 cleavage is genetically abolished have motor axon guidance defects, suggesting an important role of EphA4 cleavage in nonneuronal tissues such as the limb mesenchyme target of spinal motor neurons. Indeed, we find that blocking EphA4 cleavage increases expression of full-length EphA4 in limb mesenchyme, which-via cis-attenuation-apparently reduces the effective concentration of ephrinAs capable of triggering EphA4 forward signaling in the motor axons. CONCLUSIONS We propose that EphA4 cleavage is required to establish the concentration differential of active ephrins in the target tissue that is required for proper axon guidance. Our study reveals a novel mechanism to regulate guidance decision at an intermediate target based on the modulation of ligand availability by the proteolytic processing of the receptor.
Collapse
|
17
|
Barton WA, Dalton AC, Seegar TCM, Himanen JP, Nikolov DB. Tie2 and Eph receptor tyrosine kinase activation and signaling. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a009142. [PMID: 24478383 DOI: 10.1101/cshperspect.a009142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition.
Collapse
Affiliation(s)
- William A Barton
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | | | | | | |
Collapse
|
18
|
Schaupp A, Sabet O, Dudanova I, Ponserre M, Bastiaens P, Klein R. The composition of EphB2 clusters determines the strength in the cellular repulsion response. ACTA ACUST UNITED AC 2014; 204:409-22. [PMID: 24469634 PMCID: PMC3912530 DOI: 10.1083/jcb.201305037] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Graded responses to cell–cell repulsion signals mediated by Ephrin–Eph receptor interactions are specified by EphB2 cluster composition, such that the relative abundance of inactive dimers and active higher-order clusters determines the strength of the repulsive response. Trans interactions of erythropoietin-producing human hepatocellular (Eph) receptors with their membrane-bound ephrin ligands generate higher-order clusters that can form extended signaling arrays. The functional relevance of the cluster size for repulsive signaling is not understood. We used chemical dimerizers and fluorescence anisotropy to generate and visualize specific EphB2 cluster species in living cells. We find that cell collapse responses are induced by small-sized EphB2 clusters, suggesting that extended EphB2 arrays are dispensable and that EphB2 activation follows an ON–OFF switch with EphB2 dimers being inactive and trimers and tetramers being fully functional. Moreover, the strength of the collapse response is determined by the abundance of multimers over dimers within a cluster population: the more dimers are present, the weaker the response. Finally, we show that the C-terminal modules of EphB2 have negative regulatory effects on ephrin-induced clustering. These results shed new light on the mechanism and regulation of EphB2 activation and provide a model on how Eph signaling translates into graded cellular responses.
Collapse
Affiliation(s)
- Andreas Schaupp
- Department of Molecules - Signaling - Development, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Salvucci O, Tosato G. Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Adv Cancer Res 2012; 114:21-57. [PMID: 22588055 DOI: 10.1016/b978-0-12-386503-8.00002-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eph receptor tyrosine kinases and their Ephrin ligands represent an important signaling system with widespread roles in cell physiology and disease. Receptors and ligands in this family are anchored to the cell surface; thus Eph/Ephrin interactions mainly occur at sites of cell-to-cell contact. EphB4 and EphrinB2 are the Eph/Ephrin molecules that play essential roles in vascular development and postnatal angiogenesis. Analysis of expression patterns and function has linked EphB4/EphrinB2 to endothelial cell growth, survival, migration, assembly, and angiogenesis. Signaling from these molecules is complex, with the potential for being bidirectional, emanating both from the Eph receptors (forward signaling) and from the Ephrin ligands (reverse signaling). In this review, we describe recent advances on the roles of EphB/EphrinB protein family in endothelial cell function and outline potential approaches to inhibit pathological angiogenesis based on this understanding.
Collapse
Affiliation(s)
- Ombretta Salvucci
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
20
|
Sloniowski S, Ethell IM. Looking forward to EphB signaling in synapses. Semin Cell Dev Biol 2011; 23:75-82. [PMID: 22040917 DOI: 10.1016/j.semcdb.2011.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/17/2011] [Indexed: 11/24/2022]
Abstract
Eph receptors and their ligands ephrins comprise a complex signaling system with diverse functions that span a wide range of tissues and developmental stages. The variety of Eph receptor functions stems from their ability to mediate bidirectional signaling through trans-cellular Eph/ephrin interactions. Initially thought to act by directing repulsion between cells, Ephs have also been demonstrated to induce and maintain cell adhesive responses at excitatory synapses in the central nervous system. EphB receptors are essential to the development and maintenance of dendritic spines, which accommodate the postsynaptic sites of most glutamatergic excitatory synapses in the brain. Functions of EphB receptors are not limited to control of the actin cytoskeleton in dendritic spines, as EphB receptors are also involved in the formation of functional synaptic specializations through the regulation of glutamate receptor trafficking and functions. In addition, EphB receptors have recently been linked to the pathophysiology of Alzheimer's disease and neuropathic pain, thus becoming promising targets for therapeutic interventions. In this review, we discuss recent findings on EphB receptor functions in synapses, as well as the mechanisms of bidirectional trans-synaptic ephrin-B/EphB receptor signaling that shape dendritic spines and influence post-synaptic differentiation.
Collapse
Affiliation(s)
- Slawomir Sloniowski
- Division of Biomedical Sciences and Graduate Program in Neuroscience, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | | |
Collapse
|
21
|
Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 2011; 59:1567-78. [DOI: 10.1002/glia.21226] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/05/2011] [Indexed: 12/24/2022]
|
22
|
Nakamura PA, Cramer KS. Formation and maturation of the calyx of Held. Hear Res 2011; 276:70-8. [PMID: 21093567 PMCID: PMC3109188 DOI: 10.1016/j.heares.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 11/24/2022]
Abstract
Sound localization requires precise and specialized neural circuitry. A prominent and well-studied specialization is found in the mammalian auditory brainstem. Globular bushy cells of the ventral cochlear nucleus (VCN) project contralaterally to neurons of the medial nucleus of the trapezoid body (MNTB), where their large axons terminate on cell bodies of MNTB principal neurons, forming the calyces of Held. The VCN-MNTB pathway is necessary for the accurate computation of interaural intensity and time differences; MNTB neurons provide inhibitory input to the lateral superior olive, which compares levels of excitation from the ipsilateral ear to levels of tonotopically matched inhibition from the contralateral ear, and to the medial superior olive, where precise inhibition from MNTB neurons tunes the delays of binaural excitation. Here we review the morphological and physiological aspects of the development of the VCN-MNTB pathway and its calyceal termination, along with potential mechanisms that give rise to its precision. During embryonic development, VCN axons grow towards the midline, cross the midline into the region of the presumptive MNTB and then form collateral branches that will terminate in calyces of Held. In rodents, immature calyces of Held appear in MNTB during the first few days of postnatal life. These calyces mature morphologically and physiologically over the next three postnatal weeks, enabling fast, high fidelity transmission in the VCN-MNTB pathway.
Collapse
Affiliation(s)
- Paul A. Nakamura
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
23
|
Abstract
The development, homeostasis, and regeneration of complex organ systems require extensive cell-cell communication to ensure that different cells proliferate, migrate, differentiate, assemble, and function in a coordinated and timely fashion. Eph receptor tyrosine kinases and their ephrin ligands are critical regulators of cell contact-dependent signaling and patterning. Eph/ephrin binding can lead to very diverse biological readouts such as adhesion versus repulsion, or increased versus decreased motility. Accordingly, depending on cell type and context, a limited and conserved set of receptor-ligand interactions is translated into a large variety of downstream signaling processes. Recent evidence indicates that the endocytosis of Eph/ephrin molecules, together with the internalization of various associated tissue-specific effectors, might be one of the key principles responsible for such highly diverse and adaptable biological roles. Here, we summarize recent insights into Eph/ephrin signaling and endocytosis in three biological systems; i.e., the brain, intestine, and vasculature.
Collapse
Affiliation(s)
- Mara E Pitulescu
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Münster, Germany
| | | |
Collapse
|
24
|
Abstract
Axon pruning and neuronal cell death constitute two major regressive events that enable the establishment of fully mature brain architecture and connectivity. Although the cellular mechanisms for these two events are thought to be distinct, recent evidence has indicated the direct involvement of axon guidance molecules, including semaphorins, netrins, and ephrins, in controlling both processes. Here, we review how axon guidance cues regulate regressive events in paradigmatic models of neural development, from early control of apoptosis of neural progenitors, to later maintenance of neuronal survival and stereotyped pruning of axonal branches. These new findings are also discussed in the context of neural diseases and the potential links between axon pruning and degeneration.
Collapse
|
25
|
Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, Acker-Palmer A. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 2010; 465:487-91. [DOI: 10.1038/nature08995] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 03/02/2010] [Indexed: 12/31/2022]
|
26
|
Abstract
Synapse development and remodeling are regulated by a plethora of molecules such as receptor tyrosine kinases (RTKs), a family of cell surface receptors that play critical roles in neural development. Two families of RTKs implicated in synaptic functions, ErbBs and Ephs, share similar characteristics in terms of exhibiting forward and reverse signaling. In this review, we will discuss the latest advances in the functions of ErbBs and Ephs at the synapse, including dendritic spine morphogenesis, synapse formation and maturation, and synaptic transmission and plasticity. In addition to signaling at interneuronal synapses, communication between neuron and glia is increasingly implicated in the control of synaptic functions. Studies on RTKs and their cognate ligands in glial cells enhance our understanding on the nature of 'tripartite synapse'. Implications of these signaling events in human diseases will be discussed.
Collapse
|
27
|
Klein R. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 2008; 12:15-20. [DOI: 10.1038/nn.2231] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Han Y, Song XS, Liu WT, Henkemeyer M, Song XJ. Targeted mutation of EphB1 receptor prevents development of neuropathic hyperalgesia and physical dependence on morphine in mice. Mol Pain 2008; 4:60. [PMID: 19025592 PMCID: PMC2605438 DOI: 10.1186/1744-8069-4-60] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 11/21/2008] [Indexed: 01/03/2023] Open
Abstract
EphB receptor tyrosine kinases, which play important roles in synaptic connection and plasticity during development and in matured nervous system, have recently been implicated in processing of pain after nerve injury and morphine dependence. Subtypes of the EphB receptors that may contribute to the neuropathic pain and morphine dependence have not been identified. Here we demonstrate that the subtype EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine. The results showed that peripheral nerve injury produced thermal hyperalgesia in wild-type (EphB1+/+) control littermate mice, but not in EphB1 receptor homozygous knockout (EphB1-/-) and heterozygous knockdown (EphB1+/-) mice. Hyperalgesia in the wild-type mice was inhibited by intrathecal administration of an EphB receptor blocking reagent EphB2-Fc (2 microg). Intrathecal administration of an EphB receptor activator ephrinB1-Fc (1 microg) evoked thermal hyperalgesia in EphB1+/+, but not EphB1-/- and EphB1+/- mice. Cellularly, nerve injury-induced hyperexcitability of the medium-sized dorsal root ganglion neurons was prevented in EphB1-/- and EphB1+/- mice. In chronically morphine-treated mice, most of the behavioral signs and the overall score of naloxone-precipitated withdrawal were largely diminished in EphB1-/- mice compared to those in the wild-type. These findings indicate that the EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine and suggest that the EphB1 receptor is a potential target for preventing, minimizing, or reversing the development of neuropathic pain and opiate dependence.
Collapse
Affiliation(s)
- Yuan Han
- Jiangsu Province Key Laboratory of Anesthesiology and Center for Pain Research and Treatment, Xuzhou Medical College, Xuzhou, Jiangsu, PR China.
| | | | | | | | | |
Collapse
|
29
|
Campanelli JT, Sandrock RW, Wheatley W, Xue H, Zheng J, Liang F, Chesnut JD, Zhan M, Rao MS, Liu Y. Expression profiling of human glial precursors. BMC DEVELOPMENTAL BIOLOGY 2008; 8:102. [PMID: 18947415 PMCID: PMC2579429 DOI: 10.1186/1471-213x-8-102] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 10/23/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND We have generated gene expression databases for human glial precursors, neuronal precursors, astrocyte precursors and neural stem cells and focused on comparing the profile of glial precursors with that of other populations. RESULTS A total of 14 samples were analyzed. Each population, previously distinguished from each other by immunocytochemical analysis of cell surface markers, expressed genes related to their key differentiation pathways. For the glial precursor cell population, we identified 458 genes that were uniquely expressed. Expression of a subset of these individual genes was validated by RT-PCR. We also report genes encoding cell surface markers that may be useful for identification and purification of human glial precursor populations. CONCLUSION We provide gene expression profile for human glial precursors. Our data suggest several signaling pathways that are important for proliferation and differentiation of human glial precursors. Such information may be utilized to further purify glial precursor populations, optimize media formulation, or study the effects of glial differentiation.
Collapse
Affiliation(s)
- James T Campanelli
- Q Therapeutics, Inc. 615 Arapeen Dr., Ste. 102, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Theodosis DT, Poulain DA, Oliet SHR. Activity-Dependent Structural and Functional Plasticity of Astrocyte-Neuron Interactions. Physiol Rev 2008; 88:983-1008. [DOI: 10.1152/physrev.00036.2007] [Citation(s) in RCA: 385] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Observations from different brain areas have established that the adult nervous system can undergo significant experience-related structural changes throughout life. Less familiar is the notion that morphological plasticity affects not only neurons but glial cells as well. Yet there is abundant evidence showing that astrocytes, the most numerous cells in the mammalian brain, are highly mobile. Under physiological conditions as different as reproduction, sensory stimulation, and learning, they display a remarkable structural plasticity, particularly conspicuous at the level of their lamellate distal processes that normally ensheath all portions of neurons. Distal astrocytic processes can undergo morphological changes in a matter of minutes, a remodeling that modifies the geometry and diffusion properties of the extracellular space and relationships with adjacent neuronal elements, especially synapses. Astrocytes respond to neuronal activity via ion channels, neurotransmitter receptors, and transporters on their processes; they transmit information via release of neuroactive substances. Where astrocytic processes are mobile then, astrocytic-neuronal interactions become highly dynamic, a plasticity that has important functional consequences since it modifies extracellular ionic homeostasis, neurotransmission, gliotransmission, and ultimately neuronal function at the cellular and system levels. Although a complete picture of intervening cellular mechanisms is lacking, some have been identified, notably certain permissive molecular factors common to systems capable of remodeling (cell surface and extracellular matrix adhesion molecules, cytoskeletal proteins) and molecules that appear specific to each system (neuropeptides, neurotransmitters, steroids, growth factors) that trigger or reverse the morphological changes.
Collapse
|
31
|
Kusakari S, Ohnishi H, Jin FJ, Kaneko Y, Murata T, Murata Y, Okazawa H, Matozaki T. Trans-endocytosis of CD47 and SHPS-1 and its role in regulation of the CD47-SHPS-1 system. J Cell Sci 2008; 121:1213-23. [PMID: 18349073 DOI: 10.1242/jcs.025015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
CD47 and SHPS-1 are transmembrane proteins that interact with each other through their extracellular regions and constitute a bidirectional cell-cell communication system (the CD47-SHPS-1 system). We have now shown that the trans-interaction of CD47 and SHPS-1 that occurred on contact of CD47-expressing CHO cells and SHPS-1-expressing CHO cells resulted in endocytosis of the ligand-receptor complex into either cell type. Such trans-endocytosis of CD47 by SHPS-1-expressing cells was found to be mediated by clathrin and dynamin. A juxtamembrane region of SHPS-1 was indispensable for efficient trans-endocytosis of CD47, which was also regulated by Rac and Cdc42, probably through reorganization of the actin cytoskeleton. Inhibition of trans-endocytosis of CD47 promoted the aggregation of CD47-expressing cells with the cells expressing SHPS-1. Moreover, CD47 expressed on the surface of cultured mouse hippocampal neurons was shown to undergo trans-endocytosis by neighboring astrocytes expressing endogenous SHPS-1. These results suggest that trans-endocytosis of CD47 is responsible for removal of the CD47-SHPS-1 complex from the cell surface and hence regulates the function of the CD47-SHPS-1 system, at least in neurons and glial cells.
Collapse
Affiliation(s)
- Shinya Kusakari
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Himanen JP, Saha N, Nikolov DB. Cell-cell signaling via Eph receptors and ephrins. Curr Opin Cell Biol 2007; 19:534-42. [PMID: 17928214 PMCID: PMC3327877 DOI: 10.1016/j.ceb.2007.08.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/14/2007] [Indexed: 11/18/2022]
Abstract
Eph receptors are the largest subfamily of receptor tyrosine kinases regulating cell shape, movements, and attachment. The interactions of the Ephs with their ephrin ligands are restricted to the sites of cell-cell contact since both molecules are membrane attached. This review summarizes recent advances in our understanding of the molecular mechanisms underlining the diverse functions of the molecules during development and in the adult organism. The unique properties of this signaling system that are of highest interest and have been the focus of intense investigations are as follows: (i) the signal is simultaneously transduced in both ligand-expressing cells and receptor-expressing cells, (ii) signaling via the same molecules can generate opposing cellular reactions depending on the context, and (iii) the Ephs and the ephrins are divided into two subclasses with promiscuous intrasubclass interactions, but rarely observed intersubclass interactions.
Collapse
Affiliation(s)
- Juha-Pekka Himanen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
33
|
Egea J, Klein R. Bidirectional Eph–ephrin signaling during axon guidance. Trends Cell Biol 2007; 17:230-8. [DOI: 10.1016/j.tcb.2007.03.004] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 01/19/2007] [Accepted: 03/23/2007] [Indexed: 12/01/2022]
|
34
|
Hendricks M, Jesuthasan S. Electroporation-based methods for in vivo, whole mount and primary culture analysis of zebrafish brain development. Neural Dev 2007; 2:6. [PMID: 17359546 PMCID: PMC1838412 DOI: 10.1186/1749-8104-2-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 03/15/2007] [Indexed: 11/10/2022] Open
Abstract
Background Electroporation is a technique for the introduction of nucleic acids and other macromolecules into cells. In chick embryos it has been a particularly powerful technique for the spatial and temporal control of gene expression in developmental studies. Electroporation methods have also been reported for Xenopus, zebrafish, and mouse. Results We present a new protocol for zebrafish brain electroporation. Using a simple set-up with fixed spaced electrodes and microinjection equipment, it is possible to electroporate 50 to 100 embryos in 1 hour with no lethality and consistently high levels of transgene expression in numerous cells. Transfected cells in the zebrafish brain are amenable to in vivo time lapse imaging. Explants containing transfected neurons can be cultured for in vitro analysis. We also present a simple enzymatic method to isolate whole brains from fixed zebrafish for immunocytochemistry. Conclusion Building on previously described methods, we have optimized several parameters to allow for highly efficient unilateral or bilateral transgenesis of a large number of cells in the zebrafish brain. This method is simple and provides consistently high levels of transgenesis for large numbers of embryos.
Collapse
Affiliation(s)
- Michael Hendricks
- Developmental Neurobiology Group, Temasek Life Sciences Laboratory, Research Link, National University of Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Suresh Jesuthasan
- Developmental Neurobiology Group, Temasek Life Sciences Laboratory, Research Link, National University of Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|