1
|
Li Y, Li H, Wang H, Wang X. Utilizing Caenorhabditis Elegans as a Rapid and Precise Model for Assessing Amphetamine-Type Stimulants: A Novel Approach to Evaluating New Psychoactive Substances Activity and Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500808. [PMID: 40068108 PMCID: PMC12061310 DOI: 10.1002/advs.202500808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/27/2025] [Indexed: 05/10/2025]
Abstract
The surge of new psychoactive substances (NPS) poses significant public health challenges due to their unregulated status and diverse effects. However, existing in vivo models for evaluating their activities are limited. To address this gap, this study utilizes the model organism Caenorhabditis elegans (C. elegans) to evaluate the activity of amphetamine-type stimulants (ATS) and their analogs. The swimming-induced paralysis (SWIP) assay is employed to measure the acute responses of C. elegans to various ATS, including amphetamine (AMPH), methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA) and their enantiomers. The findings reveal distinct responses in wild-type and mutant C. elegans, highlighting the roles of dopaminergic and serotonergic pathways, particularly DOP-3 and SER-4 receptors. The assay also revealed that C. elegans can distinguish between the chiral forms of ATS. Additionally, structural activity relationships (SAR) are observed, with meta-R amphetamines showing more pronounced effects than ortho-R and para-R analogs. This study demonstrates the utility of C. elegans in rapidly assessing ATS activity and toxicity, providing a cost-effective and precise method for high-throughput testing of NPS. These results contribute to a better understanding of ATS pharmacology and offer a valuable framework for future research and potential regulatory applications.
Collapse
Affiliation(s)
- Yuanpeng Li
- Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Hongyuan Li
- Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Hongshuang Wang
- Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Xiaohui Wang
- Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- State Key Laboratory of Brain Machine IntelligenceZhejiang UniversityHangzhou310027China
| |
Collapse
|
2
|
Shi Y, Feng X, Chung CY. Chronic adulthood exposure to bisphenol A causes behavioral changes via suppressing dopamine transporter trafficking. Sci Rep 2025; 15:13520. [PMID: 40253493 PMCID: PMC12009279 DOI: 10.1038/s41598-025-98084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
Evidence suggests that early life exposure to Bisphenol A (BPA) may impact neurobehavioral development in animals. BPA has been linked to changes in the dopamine level in the brain. However, molecular and cellular details of how BPA exposure causes these behavioral and cognitive outcomes are poorly understood. We examined how BPA affects the behaviors of adult mice and found that BPA induced hyperactivity and abnormal reward feedback in mice exposed at the early adult stage. We hypothesized that BPA might cause hyperactivity in mice by suppressing DAT trafficking. Fluorescence microscopy revealed that YFP-DAT remains in the perinuclear area when treated with BPA, compared to broader distribution throughout the cytoplasm in control cells. Results from MPTP toxicity and APP + uptake assays indicate that the surface expression of DAT was reduced by BPA treatment. Immunofluorescence staining of neurons in the Substantia nigra (SN) area of the mouse brain also revealed that DAT remains in the perinuclear region, indicating lower surface expression of DAT in the SN, playing important roles in reward and movement. We used another in vivo model, C. elegans, expressing GFP-tagged DAT-1 fusion protein and found that exposure to 50 µM BPA induced a significant increase in the frequency of body bends. However, the frequency of body bends was significantly reduced at 100 µM BPA, indicating biphasic effects of BPA. In conclusion, our results suggest that BPA contributes to the alterations of mice and worm behavior by reducing DAT expression on the surface of neurons via blocking of DAT trafficking.
Collapse
Affiliation(s)
- Yu Shi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiaoye Feng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Chang Y Chung
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, 31901, USA.
| |
Collapse
|
3
|
Parrales V, Arcile G, Laserre L, Normant S, Le Goff G, Da Costa Noble C, Ouazzani J, Callizot N, Haïk S, Rabhi C, Bizat N. Neuroprotective Effect of Withaferin Derivatives toward MPP + and 6-OHDA Toxicity to Dopaminergic Neurons. ACS Chem Neurosci 2025; 16:802-817. [PMID: 39946298 DOI: 10.1021/acschemneuro.4c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease is a neurodegenerative proteinopathy that primarily affects mesencephalic dopaminergic neurons. This dopaminergic depletion can be phenotypically reproduced in various experimental models through the administration of two neurotoxins: N-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA). The mechanisms underlying the cell death processes induced by these toxins remain a subject of debate. In this context, studies suggest that oxidative-stress-related processes may contribute to the dysfunction and death of dopaminergic neurons. Therefore, investigating pharmacological compounds that can counteract these processes remains crucial for developing therapeutic strategies targeting these neuropathological mechanisms. Withania somnifera (L.) Dunal, commonly known as ashwagandha, is a plant whose roots are used in Ayurvedic medicine to treat various ailments, including those affecting the central nervous system. The active compound Withaferin-A (WFA), a steroid lactone from the withanolide group, is reported to possess antioxidant properties. In this study, we explored the potential neuroprotective effects of WFA and two of its molecular derivatives, cr-591 and cr-777, which contain, respectively, an additional cysteine or glutathione chemical group, known for their antiradical properties. We demonstrated that WFA and its two derivatives, cr-591 and cr-777, protect the integrity and function of dopaminergic neurons exposed to the neurotoxins MPP+ and 6-OHDA both in vitro, using primary mesencephalic neuron cultures from rodents, and in vivo, using the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Valeria Parrales
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Guillaume Arcile
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Louise Laserre
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
| | - Sébastien Normant
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | | | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Noelle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, Gardanne 13120, France
| | - Stéphane Haïk
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris 75013, France
| | - Chérif Rabhi
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Nicolas Bizat
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Faculté de Pharmacie de Paris, Paris University, 4 Avenue de l'Observatoire, Paris 75006, France
| |
Collapse
|
4
|
Muthubharathi BC, Subalakshmi PK, Mounish BSC, Rao TS, Balamurugan K. Impact of low-dose UV-A in Caenorhabditis elegans during candidate bacterial infections. Photochem Photobiol 2025; 101:404-422. [PMID: 39205325 DOI: 10.1111/php.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Ultraviolet radiation is a non-ionizing radiation produced by longer wavelength energy sources with lower frequency and is categorized into UV-A, UV-B, and UV-C. Minimal exposure to this radiation has several health benefits, which include treating microbial contaminations and skin therapies. However, the antimicrobial action of low-dose UV-A during pathogenic bacterial infections is still unrevealed. In this study, the impact of low-dose UV-A as pre- or post-treatment using the model organism, Caenorhabditis elegans with candidate pathogens (Acinetobacter baumannii and Staphylococcus aureus) mediated infections was investigated. The results indicated enrichment of metabolites, reduced level of antioxidants, increased expression of dopamine biosynthesis and transportation, and decrease in serotonin biosynthesis when the organism was exposed to low-dose UV-A for 5 min. This, in turn, elevated the expression of candidate regulatory proteins involved in lifespan determination, innate immunity, and cAMP-response element binding protein (CREB), which appear to increase the lifespan and brood size of C. elegans during A. baumannii and S. aureus infections. The findings suggested that the low-dose UV-A treatment during A. baumannii and S. aureus infections prolonged the lifespan and increased the egg-laying capacity of C. elegans.
Collapse
Affiliation(s)
| | | | | | - Toleti Subba Rao
- School of Arts and Sciences, Sai University, Chennai, Tamil Nadu, India
| | | |
Collapse
|
5
|
Rodriguez P, Kalia V, Fenollar-Ferrer C, Gibson CL, Gichi Z, Rajoo A, Matier CD, Pezacki AT, Xiao T, Carvelli L, Chang CJ, Miller GW, Khamoui AV, Boerner J, Blakely RD. Glial swip-10 controls systemic mitochondrial function, oxidative stress, and neuronal viability via copper ion homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2320611121. [PMID: 39288174 PMCID: PMC11441482 DOI: 10.1073/pnas.2320611121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene MBLAC1 encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth. Whether this process supports neuronal and/or systemic physiology in higher eukaryotes is unknown. Previously, we identified swip-10, the putative Caenorhabditis elegans ortholog of MBLAC1, establishing a role for glial swip-10 in limiting dopamine (DA) neuron excitability and sustaining DA neuron viability. Here, we provide evidence from computational modeling that SWIP-10 protein structure mirrors that of MBLAC1 and locates a loss of function coding mutation at a site expected to disrupt histone RNA hydrolysis. Moreover, we find through genetic, biochemical, and pharmacological studies that deletion of swip-10 in worms negatively impacts systemic Cu(I) levels, leading to deficits in mitochondrial respiration and ATP production, increased oxidative stress, and neurodegeneration. These phenotypes can be offset in swip-10 mutants by the Cu(I) enhancing molecule elesclomol and through glial expression of wildtype swip-10. Together, these studies reveal a glial-expressed pathway that supports systemic mitochondrial function and neuronal health via regulation of Cu(I) homeostasis, a mechanism that may lend itself to therapeutic strategies to treat devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biological Sciences, Charles E. Schmidt College of Science, Boca Raton, FL33412
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY10032
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, MD20892
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
| | - Chelsea L. Gibson
- Department of Biological Sciences, Charles E. Schmidt College of Science, Boca Raton, FL33412
- Oak Ridge Institute for Science and Education, Oak Ridge, TN37830
| | - Zayna Gichi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
| | - Andre Rajoo
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL33458
| | - Carson D. Matier
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Lucia Carvelli
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL33458
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY10032
| | - Andy V. Khamoui
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Exercise Science and Health Promotion, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL33431
| | - Jana Boerner
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
| |
Collapse
|
6
|
Chen M, Chen S, Liu K, Ye Z, Qian Y, He J, Xia J, Xing P, Yang J, Wa Ng Y, Wu T. Putative Adverse Outcome Pathway for Parkinson's Disease-like Symptoms Induced by Silicon Quantum Dots based on In Vivo/ Vitro Approaches. ACS NANO 2024; 18:25271-25289. [PMID: 39186478 DOI: 10.1021/acsnano.4c08516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Given the commercial proliferation of silicon quantum dots (SiQDs) and their inevitable environmental dispersal, this study critically examines their biological and public health implications, specifically regarding Parkinson's disease. The study investigated the toxicological impact of SiQDs on the onset and development of PD-like symptoms through the induction of ferroptosis, utilizing both in vivo [Caenorhabditis elegans (C. elegans)] and in vitro (SH-SY5Y neuroblastoma cell line) models. Our findings demonstrated that SiQDs, characterized by their stable and water-soluble physicochemical properties, tended to accumulate in neuronal tissues. This accumulation precipitated dopaminergic neurodegeneration, manifested as diminished dopamine-dependent behaviors, and escalated the expression of PD-specific genes in C. elegans. Importantly, the results revealed that SiQDs induced ferritinophagy, a selective autophagy pathway that triggered ferroptosis and resulted in PD-like symptoms, even exacerbating disease progression in biological models. These insights were incorporated into a putatively qualitative and quantitative adverse outcome pathway framework, highlighting the serious neurodegenerative risks posed by SiQDs through ferroptosis pathways. This study provides a multidisciplinary analysis critical for informing policy on the regulation of SiQDs exposure to safeguard susceptible populations and guiding the responsible development of nanotechnologies impacting environmental and public health.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
- Yancheng Kindergarten Teachers College, Yancheng 224005, P. R. China
| | - Siyuan Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Kehan Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Zongjian Ye
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yijing Qian
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jing He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jieyi Xia
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Pengcheng Xing
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jiafu Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yán Wa Ng
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, P. R. China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| |
Collapse
|
7
|
Ambigapathy G, McCowan TJ, Carvelli L. Amphetamine exposure during embryogenesis changes expression and function of the dopamine transporter in Caenorhabditis elegans offspring. J Neurochem 2024; 168:2989-2998. [PMID: 38960397 PMCID: PMC11449651 DOI: 10.1111/jnc.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
The dopamine transporter (DAT) is a transmembrane protein that regulates dopamine (DA) neurotransmission by binding to and moving DA from the synaptic cleft back into the neurons. Besides moving DA and other endogenous monoamines, DAT is also a neuronal carrier for exogenous compounds such as the psychostimulant amphetamine (Amph), and several studies have shown that Amph-induced behaviors require a functional DAT. Here, we demonstrate that exposure to Amph during early development causes behavioral, functional, and epigenetic modifications at the Caenorhabditis elegans DAT gene homolog, dat-1, in C. elegans offspring. Specifically, we show that, while embryos exposed to Amph generate adults that produce offspring with no obvious behavioral alterations, both adults and offspring exhibit an increased behavioral response when challenged with Amph. Our functional studies suggest that a decrease in DAT-1 expression underlies the increased behavioral response to Amph seen in offspring. Moreover, our epigenetic data suggest that histone methylation is a mechanism utilized by Amph to maintain changes in DAT-1 expression in offspring. Taken together, our data reveal that Amph, by altering the epigenetic landscape of DAT, propagates long-lasting functional and behavioral changes in offspring.
Collapse
Affiliation(s)
- Ganesh Ambigapathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Talus J McCowan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Lucia Carvelli
- Harriet L. Wilkes Honors College Florida Atlantic University, Jupiter, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
8
|
Bucher ML, Dicent J, Duarte Hospital C, Miller GW. Neurotoxicology of dopamine: Victim or assailant? Neurotoxicology 2024; 103:175-188. [PMID: 38857676 PMCID: PMC11694735 DOI: 10.1016/j.neuro.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Since the identification of dopamine as a neurotransmitter in the mid-20th century, investigators have examined the regulation of dopamine homeostasis at a basic biological level and in human disorders. Genetic animal models that manipulate the expression of proteins involved in dopamine homeostasis have provided key insight into the consequences of dysregulated dopamine. As a result, we have come to understand the potential of dopamine to act as an endogenous neurotoxin through the generation of reactive oxygen species and reactive metabolites that can damage cellular macromolecules. Endogenous factors, such as genetic variation and subcellular processes, and exogenous factors, such as environmental exposures, have been identified as contributors to the dysregulation of dopamine homeostasis. Given the variety of dysregulating factors that impact dopamine homeostasis and the potential for dopamine itself to contribute to further cellular dysfunction, dopamine can be viewed as both the victim and an assailant of neurotoxicity. Parkinson's disease has emerged as the exemplar case study of dopamine dysregulation due to the genetic and environmental factors known to contribute to disease risk, and due to the evidence of dysregulated dopamine as a pathologic and pathogenic feature of the disease. This review, inspired by the talk, "Dopamine in Durham: location, location, location" presented by Dr. Miller for the Jacob Hooisma Memorial Lecture at the International Neurotoxicology Association meeting in 2023, offers a primer on dopamine toxicity covering endogenous and exogenous factors that disrupt dopamine homeostasis and the actions of dopamine as an endogenous neurotoxin.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
Rodriguez P, Blakely RD. Sink or swim: Does a worm paralysis phenotype hold clues to neurodegenerative disease? J Cell Physiol 2024; 239:e31125. [PMID: 37795580 DOI: 10.1002/jcp.31125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Receiving a neurodegenerative disease (NDD) diagnosis, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis, is devastating, particularly given the limited options for treatment. Advances in genetic technologies have allowed for efficient modeling of NDDs in animals and brought hope for new disease-modifying medications. The complexity of the mammalian brain and the costs and time needed to identify and develop therapeutic leads limits progress. Modeling NDDs in invertebrates, such as the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, offers orders of magnitude increases in speed of genetic analysis and manipulation, and can be pursued at substantially reduced cost, providing an important, platform complement and inform research with mammalian NDD models. In this review, we describe how our efforts to exploit C. elegans for the study of neural signaling and health led to the discovery of a paralytic phenotype (swimming-induced paralysis) associated with altered dopamine signaling and, surprisingly, to the discovery of a novel gene and pathway whose dysfunction in glial cells triggers neurodegeneration. Research to date on swip-10 and its putative mammalian ortholog MBLAC1, suggests that a tandem analysis will offer insights into NDD mechanisms and insights into novel, disease-modifying therapeutics.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
10
|
Hu K, Zhang Y, Ding F, Yang D, Yu Y, Yu Y, Wang Q, Baoyin H. Innate Orientating Behavior of a Multi-Legged Robot Driven by the Neural Circuits of C. elegans. Biomimetics (Basel) 2024; 9:314. [PMID: 38921194 PMCID: PMC11201571 DOI: 10.3390/biomimetics9060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
The objective of this research is to achieve biologically autonomous control by utilizing a whole-brain network model, drawing inspiration from biological neural networks to enhance the development of bionic intelligence. Here, we constructed a whole-brain neural network model of Caenorhabditis elegans (C. elegans), which characterizes the electrochemical processes at the level of the cellular synapses. The neural network simulation integrates computational programming and the visualization of the neurons and synapse connections of C. elegans, containing the specific controllable circuits and their dynamic characteristics. To illustrate the biological neural network (BNN)'s particular intelligent control capability, we introduced an innovative methodology for applying the BNN model to a 12-legged robot's movement control. Two methods were designed, one involving orientation control and the other involving locomotion generation, to demonstrate the intelligent control performance of the BNN. Both the simulation and experimental results indicate that the robot exhibits more autonomy and a more intelligent movement performance under BNN control. The systematic approach of employing the whole-brain BNN for robot control provides biomimetic research with a framework that has been substantiated by innovative methodologies and validated through the observed positive outcomes. This method is established as follows: (1) two integrated dynamic models of the C. elegans' whole-brain network and the robot moving dynamics are built, and all of the controllable circuits are discovered and verified; (2) real-time communication is achieved between the BNN model and the robot's dynamical model, both in the simulation and the experiments, including applicable encoding and decoding algorithms, facilitating their collaborative operation; (3) the designed mechanisms using the BNN model to control the robot are shown to be effective through numerical and experimental tests, focusing on 'foraging' behavior control and locomotion control.
Collapse
Affiliation(s)
- Kangxin Hu
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Yu Zhang
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China; (Y.Z.); (H.B.)
| | - Fei Ding
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Dun Yang
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Yang Yu
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Ying Yu
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Qingyun Wang
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (K.H.); (F.D.); (D.Y.); (Y.Y.); (Q.W.)
| | - Hexi Baoyin
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China; (Y.Z.); (H.B.)
| |
Collapse
|
11
|
Ke T, Poquette KE, Amro Gazze SL, Carvelli L. Amphetamine Exposure during Embryogenesis Alters Expression and Function of Tyrosine Hydroxylase and the Vesicular Monoamine Transporter in Adult C. elegans. Int J Mol Sci 2024; 25:4219. [PMID: 38673805 PMCID: PMC11050232 DOI: 10.3390/ijms25084219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Amphetamines (Amph) are psychostimulants broadly used as physical and cognitive enhancers. However, the long-term effects of prenatal exposure to Amph have been poorly investigated. Here, we show that continuous exposure to Amph during early development induces long-lasting changes in histone methylation at the C. elegans tyrosine hydroxylase (TH) homolog cat-2 and the vesicular monoamine transporter (VMAT) homologue cat-1 genes. These Amph-induced histone modifications are correlated with enhanced expression and function of CAT-2/TH and higher levels of dopamine, but decreased expression of CAT-1/VMAT in adult animals. Moreover, while adult animals pre-exposed to Amph do not show obvious behavioral defects, when challenged with Amph they exhibit Amph hypersensitivity, which is associated with a rapid increase in cat-2/TH mRNA. Because C. elegans has helped reveal neuronal and epigenetic mechanisms that are shared among animals as diverse as roundworms and humans, and because of the evolutionary conservation of the dopaminergic response to psychostimulants, data collected in this study could help us to identify the mechanisms through which Amph induces long-lasting physiological and behavioral changes in mammals.
Collapse
Affiliation(s)
- Tao Ke
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA (K.E.P.); (S.L.A.G.)
| | - Katie E. Poquette
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA (K.E.P.); (S.L.A.G.)
| | - Sophia L. Amro Gazze
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA (K.E.P.); (S.L.A.G.)
| | - Lucia Carvelli
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA (K.E.P.); (S.L.A.G.)
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
12
|
Ceyhan B, Nategh P, Neghabi M, LaMar JA, Konjalwar S, Rodriguez P, Hahn MK, Gross M, Grumbar G, Salleng KJ, Blakely RD, Ranji M. Optical Imaging Demonstrates Tissue-Specific Metabolic Perturbations in Mblac1 Knockout Mice. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:298-305. [PMID: 38410184 PMCID: PMC10896421 DOI: 10.1109/jtehm.2024.3355962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVE Metabolic changes have been extensively documented in neurodegenerative brain disorders, including Parkinson's disease and Alzheimer's disease (AD). Mutations in the C. elegans swip-10 gene result in dopamine (DA) dependent motor dysfunction accompanied by DA neuron degeneration. Recently, the putative human ortholog of swip-10 (MBLAC1) was implicated as a risk factor in AD, a disorder that, like PD, has been associated with mitochondrial dysfunction. Interestingly, the AD risk associated with MBLAC1 arises in subjects with cardiovascular morbidity, suggesting a broader functional insult arising from reduced MBLAC1 protein expression and one possibly linked to metabolic alterations. METHODS Our current studies, utilizing Mblac1 knockout (KO) mice, seek to determine whether mitochondrial respiration is affected in the peripheral tissues of these mice. We quantified the levels of mitochondrial coenzymes, NADH, FAD, and their redox ratio (NADH/FAD, RR) in livers and kidneys of wild-type (WT) mice and their homozygous KO littermates of males and females, using 3D optical cryo-imaging. RESULTS Compared to WT, the RR of livers from KO mice was significantly reduced, without an apparent sex effect, driven predominantly by significantly lower NADH levels. In contrast, no genotype and sex differences were observed in kidney samples. Serum analyses of WT and KO mice revealed significantly elevated glucose levels in young and aged KO adults and diminished cholesterol levels in the aged KOs, consistent with liver dysfunction. DISCUSSION/CONCLUSION As seen with C. elegans swip-10 mutants, loss of MBLAC1 protein results in metabolic changes that are not restricted to neural cells and are consistent with the presence of peripheral comorbidities accompanying neurodegenerative disease in cases where MBLAC1 expression changes impact risk.
Collapse
Affiliation(s)
- Busenur Ceyhan
- Biophotonics LaboratoryDepartment of Electrical Engineering and Computer Science, College of Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Parisa Nategh
- Biophotonics LaboratoryDepartment of Electrical Engineering and Computer Science, College of Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Mehrnoosh Neghabi
- Biophotonics LaboratoryDepartment of Electrical Engineering and Computer Science, College of Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Jacob A. LaMar
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Shalaka Konjalwar
- Biophotonics LaboratoryDepartment of Electrical Engineering and Computer Science, College of Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Peter Rodriguez
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Maureen K. Hahn
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
- Stiles-Nicholson Brain Institute, Florida Atlantic UniversityJupiterFL33458USA
| | - Matthew Gross
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Gregory Grumbar
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Kenneth J. Salleng
- Division of Research, Comparative MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Randy D. Blakely
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
- Stiles-Nicholson Brain Institute, Florida Atlantic UniversityJupiterFL33458USA
| | - Mahsa Ranji
- Biophotonics LaboratoryDepartment of Electrical Engineering and Computer Science, College of Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonFL33431USA
- Stiles-Nicholson Brain Institute, Florida Atlantic UniversityJupiterFL33458USA
| |
Collapse
|
13
|
McMillen A, Chew Y. Neural mechanisms of dopamine function in learning and memory in Caenorhabditis elegans. Neuronal Signal 2024; 8:NS20230057. [PMID: 38572143 PMCID: PMC10987485 DOI: 10.1042/ns20230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 04/05/2024] Open
Abstract
Research into learning and memory over the past decades has revealed key neurotransmitters that regulate these processes, many of which are evolutionarily conserved across diverse species. The monoamine neurotransmitter dopamine is one example of this, with countless studies demonstrating its importance in regulating behavioural plasticity. However, dopaminergic neural networks in the mammalian brain consist of hundreds or thousands of neurons, and thus cannot be studied at the level of single neurons acting within defined neural circuits. The nematode Caenorhabditis elegans (C. elegans) has an experimentally tractable nervous system with a completely characterized synaptic connectome. This makes it an advantageous system to undertake mechanistic studies into how dopamine encodes lasting yet flexible behavioural plasticity in the nervous system. In this review, we synthesize the research to date exploring the importance of dopaminergic signalling in learning, memory formation, and forgetting, focusing on research in C. elegans. We also explore the potential for dopamine-specific fluorescent biosensors in C. elegans to visualize dopaminergic neural circuits during learning and memory formation in real-time. We propose that the use of these sensors in C. elegans, in combination with optogenetic and other light-based approaches, will further illuminate the detailed spatiotemporal requirements for encoding behavioural plasticity in an accessible experimental system. Understanding the key molecules and circuit mechanisms that regulate learning and forgetting in more compact invertebrate nervous systems may reveal new druggable targets for enhancing memory storage and delaying memory loss in bigger brains.
Collapse
Affiliation(s)
- Anna McMillen
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Yee Lian Chew
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, South Australia, Australia
| |
Collapse
|
14
|
Clark AS, Huayta J, Morton KS, Meyer JN, San-Miguel A. Morphological hallmarks of dopaminergic neurodegeneration are associated with altered neuron function in Caenorhabditis elegans. Neurotoxicology 2024; 100:100-106. [PMID: 38070655 PMCID: PMC10872346 DOI: 10.1016/j.neuro.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Caenorhabditis elegans (C. elegans) is an excellent model system to study neurodegenerative diseases, such as Parkinson's disease, as it enables analysis of both neuron morphology and function in live animals. Multiple structural changes in neurons, such as cephalic dendrite morphological abnormalities, have been considered hallmarks of neurodegeneration in this model, but their relevance to changes in neuron function are not entirely clear. We sought to test whether hallmark morphological changes associated with chemically induced dopaminergic neuron degeneration, such as dendrite blebbing, breakage, and loss, are indicative of neuronal malfunction and result in changes in behavior. We adapted an established dopaminergic neuronal function assay by measuring paralysis in the presence of exogenous dopamine, which revealed clear differences between cat-2 dopamine deficient mutants, wildtype worms, and dat-1 dopamine abundant mutants. Next, we integrated an automated image processing algorithm and a microfluidic device to segregate worm populations by their cephalic dendrite morphologies. We show that nematodes with dopaminergic dendrite degeneration markers, such as blebbing or breakage, paralyze at higher rates in a dopamine solution, providing evidence that dopaminergic neurodegeneration morphologies are correlated with functional neuronal outputs.
Collapse
Affiliation(s)
- Andrew S Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
15
|
Purice MD, Severs LJ, Singhvi A. Glia in Invertebrate Models: Insights from Caenorhabditis elegans. ADVANCES IN NEUROBIOLOGY 2024; 39:19-49. [PMID: 39190070 DOI: 10.1007/978-3-031-64839-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Glial cells modulate brain development, function, and health across all bilaterian animals, and studies in the past two decades have made rapid strides to uncover the underlying molecular mechanisms of glial functions. The nervous system of the invertebrate genetic model Caenorhabditis elegans (C. elegans) has small cell numbers with invariant lineages, mapped connectome, easy genetic manipulation, and a short lifespan, and the animal is also optically transparent. These characteristics are revealing C. elegans to be a powerful experimental platform for studying glial biology. This chapter discusses studies in C. elegans that add to our understanding of how glia modulate adult neural functions, and thereby animal behaviors, as well as emerging evidence of their roles as autonomous sensory cells. The rapid molecular and cellular advancements in understanding C. elegans glia in recent years underscore the utility of this model in studies of glial biology. We conclude with a perspective on future research avenues for C. elegans glia that may readily contribute molecular mechanistic insights into glial functions in the nervous system.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Liza J Severs
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
16
|
Morton KS, Hartman JH, Heffernan N, Ryde IT, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA-induced dopaminergic neurodegeneration. BMC Biol 2023; 21:252. [PMID: 37950228 PMCID: PMC10636816 DOI: 10.1186/s12915-023-01733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
Affiliation(s)
| | - Jessica H Hartman
- Nicholas School of Environment, Duke University, Durham, USA
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA
| | | | - Ian T Ryde
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Lingfeng Meng
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Joel N Meyer
- Nicholas School of Environment, Duke University, Durham, USA.
| |
Collapse
|
17
|
Morton KS, Hartman JS, Heffernan N, Ryde I, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA induced dopaminergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542737. [PMID: 37398434 PMCID: PMC10312447 DOI: 10.1101/2023.05.29.542737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed western diets, have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson s Disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high sugar diets and dopaminergic neurodegeneration. RESULTS Non-developmental high glucose and fructose diets led to increased lipid content and shorter lifespan and decreased reproduction. However, in contrast to previous reports, we found that non-developmental chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function, and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting alterations to dopamine transmission that could result in decreased 6-OHDA uptake. CONCLUSION Our work uncovers a neuroprotective role for high sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
|
18
|
Salgueiro WG, Soares MV, Martins CF, Paula FR, Rios-Anjos RM, Carrazoni T, Mori MA, Müller RU, Aschner M, Dal Belo CA, Ávila DS. Dopaminergic modulation by quercetin: In silico and in vivo evidence using Caenorhabditis elegans as a model. Chem Biol Interact 2023; 382:110610. [PMID: 37348670 PMCID: PMC10527449 DOI: 10.1016/j.cbi.2023.110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Quercetin is a flavonol widely distributed in plants and has various described biological functions. Several studies have reported on its ability to restore neuronal function in a wide variety of disease models, including animal models of neurodegenerative disorders such as Parkinson's disease. Quercetin per se can act as a neuroprotector/neuromodulator, especially in diseases related to impaired dopaminergic neurotransmission. However, little is known about how quercetin interacts with the dopaminergic machinery. Here we employed the nematode Caenorhabditis elegans to study this putative interaction. After observing behavioral modulation, mutant analysis and gene expression in C. elegans upon exposure to quercetin at a concentration that does not protect against MPTP, we constructed a homology-based dopamine transporter protein model to conduct a docking study. This led to suggestive evidence on how quercetin may act as a dopaminergic modulator by interacting with C. elegans' dopamine transporter and alter the nematode's exploratory behavior. Consistent with this model, quercetin controls C. elegans behavior in a way dependent on the presence of both the dopamine transporter (dat-1), which is up-regulated upon quercetin exposure, and the dopamine receptor 2 (dop-2), which appears to be mandatory for dat-1 up-regulation. Our data propose an interaction with the dopaminergic machinery that may help to establish the effects of quercetin as a neuromodulator.
Collapse
Affiliation(s)
- Willian Goulart Salgueiro
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato Avenue, 255, Campinas, São Paulo, 13083-862, Brazil; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany; Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marcell Valandro Soares
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Cassiano Fiad Martins
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Fávero Reisdorfer Paula
- Laboratory for Development and Quality Control in Medicines (LDCQ), Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Thiago Carrazoni
- Neurobiology and Toxinology Laboratory, (LANETOX), Federal University of Pampa - UNIPAMPA, CEP 97300-000, São Gabriel, RS, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato Avenue, 255, Campinas, São Paulo, 13083-862, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster, University of Campinas, Campinas, SP, Brazil
| | - Roman-Ulrich Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany; Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Cháriston André Dal Belo
- Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil; Neurobiology and Toxinology Laboratory, (LANETOX), Federal University of Pampa - UNIPAMPA, CEP 97300-000, São Gabriel, RS, Brazil; Multidisciplinar Department, Federal University of São Paulo (UNIFESP), Angelica Street, 100- CEP 06110295, Osasco, SP, Brazil
| | - Daiana Silva Ávila
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
19
|
Clark AS, Huayta J, Morton KS, Meyer JN, San-Miguel A. Morphological hallmarks of dopaminergic neurodegeneration are associated with altered neuron function in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554364. [PMID: 37662210 PMCID: PMC10473754 DOI: 10.1101/2023.08.22.554364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Caenorhabditis elegans (C. elegans) is an excellent model system to study neurodegenerative diseases, such as Parkinson's disease, as it enables analysis of both neuron morphology and function in live animals. Multiple structural changes in neurons, such as cephalic dendrite morphological abnormalities, have been considered hallmarks of neurodegeneration in this model, but their relevance to changes in neuron function are not entirely clear. We sought to test whether hallmark morphological changes associated with chemically induced dopaminergic neuron degeneration, such as dendrite blebbing, breakage, and loss, are indicative of neuronal malfunction and result in changes in behavior. We adapted an established dopaminergic neuronal function assay by measuring paralysis in the presence of exogenous dopamine, which revealed clear differences between cat-2 dopamine deficient mutants, wildtype worms, and dat-1 dopamine abundant mutants. Next, we integrated an automated image processing algorithm and a microfluidic device to segregate worm populations by their cephalic dendrite morphologies. We show that nematodes with dopaminergic dendrite degeneration markers, such as blebbing or breakage, paralyze at higher rates in a dopamine solution, providing evidence that dopaminergic neurodegeneration morphologies are correlated with functional neuronal outputs.
Collapse
Affiliation(s)
- Andrew S Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
20
|
Ke T, Ambigapathy G, Ton T, Dhasarathy A, Carvelli L. Long-Lasting Epigenetic Changes in the Dopamine Transporter in Adult Animals Exposed to Amphetamine during Embryogenesis: Investigating Behavioral Effects. Int J Mol Sci 2023; 24:13092. [PMID: 37685899 PMCID: PMC10487411 DOI: 10.3390/ijms241713092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The dopamine transporter (DAT) is an integral member of the dopaminergic system and is responsible for the release and reuptake of dopamine from the synaptic space into the dopaminergic neurons. DAT is also the major target of amphetamine (Amph). The effects of Amph on DAT have been intensively studied; however, the mechanisms underlying the long-term effects caused by embryonal exposure to addictive doses of Amph remain largely unexplored. As in mammals, in the nematode C. elegans Amph causes changes in locomotion which are largely mediated by the C. elegans DAT homologue, DAT-1. Here, we show that chronic embryonic exposures to Amph alter the expression of DAT-1 in adult C. elegans via long-lasting epigenetic modifications. These changes are correlated with an enhanced behavioral response to Amph in adult animals. Importantly, pharmacological and genetic intervention directed at preventing the Amph-induced epigenetic modifications occurring during embryogenesis inhibited the long-lasting behavioral effects observed in adult animals. Because many components of the dopaminergic system, as well as epigenetic mechanisms, are highly conserved between C. elegans and mammals, these results could be critical for our understanding of how drugs of abuse initiate predisposition to addiction.
Collapse
Affiliation(s)
- Tao Ke
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA; (T.K.); (T.T.)
| | - Ganesh Ambigapathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA (A.D.)
| | - Thanh Ton
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA; (T.K.); (T.T.)
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA (A.D.)
| | - Lucia Carvelli
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA; (T.K.); (T.T.)
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
21
|
Shukla S, Saxena A, Shukla SK, Nazir A. Modulation of Neurotransmitter Pathways and Associated Metabolites by Systemic Silencing of Gut Genes in C. elegans. Diagnostics (Basel) 2023; 13:2322. [PMID: 37510066 PMCID: PMC10378590 DOI: 10.3390/diagnostics13142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The gut is now recognized as the "second brain" of the human body due to its integral role in neuronal health and functioning. Although we know that the gut communicates with the brain via immunological factors, microbial metabolites, and neurotransmitters, the interplay of these systems remains poorly understood. To investigate this interplay, we silenced 48 genes that are exclusively or primarily expressed in the C. elegans intestine. We studied the associated effects on various aspects of neurodegeneration, including proteotoxicity induced by α-Syn expression. We also assayed behaviours, such as mobility and cognition, that are governed by various neurotransmitters. We identified nine gut genes that significantly modulated these events. We further performed HR-MAS NMR-based metabolomics to recognize the metabolic variability induced by the respective RNAi conditions of R07E3.1, C14A6.1, K09D9.2, ZK593.2, F41H10.8, M02D8.4, M88.1, C03G6.15 and T01D3.6. We found that key metabolites such as phenylalanine, tyrosine, inosine, and glutamine showed significant variation among the groups. Gut genes that demonstrated neuroprotective effects (R07E3.1, C14A6.1, K09D9.2, and ZK593.2) showed elevated levels of inosine, phenylalanine, and tyrosine; whereas, genes that aggravated neurotransmitter levels demonstrated decreased levels of the same metabolites. Our results shed light on the intricate roles of gut genes in the context of neurodegeneration and suggest a new perspective on the reciprocal interrelation of gut genes, neurotransmitters, and associated metabolites. Further studies are needed to decipher the intricate roles of these genes in context of neurodegeneration in greater detail.
Collapse
Affiliation(s)
- Shikha Shukla
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ankit Saxena
- Sophisticated Analytical Instrumentation Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjeev K Shukla
- Sophisticated Analytical Instrumentation Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
22
|
Ceyhan B, LaMar J, Nategh P, Neghabi M, Konjalwar S, Rodriguez P, Hahn MK, Blakely RD, Ranji M. Optical Imaging Reveals Liver Metabolic Perturbations in Mblac1 Knockout Mice. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083729 DOI: 10.1109/embc40787.2023.10341032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Metabolic changes have been extensively documented in brain tissue undergoing neurodegeneration, including Parkinson's disease and Alzheimer's disease (AD). Mutations in the C. elegans swip-10 gene result in dopamine (DA) dependent motor dysfunction accompanied by DA neuron degeneration. Recently, the putative human ortholog of swip-10 (MBLAC1) was implicated as a risk factor in AD, that like PD, has been associated with mitochondrial dysfunction. Interestingly, the AD risk associated with MBLAC1 arises in subjects with cardiovascular morbidity, suggesting the possibility of a broader functional insult arising from reduced MBLAC1 protein expression, and one possibly linked to metabolic alterations. Our current studies, utilizing Mblac1 knockout (KO) mice, seeks to determine whether mitochondrial respiration is affected in peripheral tissues of these animals in this model. To initiate these studies, we quantified the levels of mitochondrial coenzymes, NADH, FAD, and their redox ratio (NADH/FAD, RR) in the livers of wild type (WT) mice and their homozygous KO littermates, using 3D optical cryo-imaging. We found that Mblac1 KO mice exhibited a greater oxidized redox state compared to WT mice. When compared to the WT group, the redox ratio of KO mice was decreased by 46.32%, driven predominantly by significantly lower NADH levels (more oxidized state). We speculate that, as seen with C. elegans swip-10 mutants, that loss of MBLAC1 protein results in deficits in tricarboxylic acid cycle (TCA) production of NADH and FAD TCA that leads to diminished cellular ATP production and oxidative stress. Such observations are consistent with changes that in the central nervous system (CNS) could support neurodegeneration and in the periphery account for comorbidities.
Collapse
|
23
|
Pannone L, Muto V, Nardecchia F, Di Rocco M, Marchei E, Tosato F, Petrini S, Onorato G, Lanza E, Bertuccini L, Manti F, Folli V, Galosi S, Di Schiavi E, Leuzzi V, Tartaglia M, Martinelli S. The recurrent pathogenic Pro890Leu substitution in CLTC causes a generalized defect in synaptic transmission in Caenorhabditis elegans. Front Mol Neurosci 2023; 16:1170061. [PMID: 37324589 PMCID: PMC10264582 DOI: 10.3389/fnmol.2023.1170061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
De novo CLTC mutations underlie a spectrum of early-onset neurodevelopmental phenotypes having developmental delay/intellectual disability (ID), epilepsy, and movement disorders (MD) as major clinical features. CLTC encodes the widely expressed heavy polypeptide of clathrin, a major component of the coated vesicles mediating endocytosis, intracellular trafficking, and synaptic vesicle recycling. The underlying pathogenic mechanism is largely unknown. Here, we assessed the functional impact of the recurrent c.2669C > T (p.P890L) substitution, which is associated with a relatively mild ID/MD phenotype. Primary fibroblasts endogenously expressing the mutated protein show reduced transferrin uptake compared to fibroblast lines obtained from three unrelated healthy donors, suggesting defective clathrin-mediated endocytosis. In vitro studies also reveal a block in cell cycle transition from G0/G1 to the S phase in patient's cells compared to control cells. To demonstrate the causative role of the p.P890L substitution, the pathogenic missense change was introduced at the orthologous position of the Caenorhabditis elegans gene, chc-1 (p.P892L), via CRISPR/Cas9. The resulting homozygous gene-edited strain displays resistance to aldicarb and hypersensitivity to PTZ, indicating defective release of acetylcholine and GABA by ventral cord motor neurons. Consistently, mutant animals show synaptic vesicle depletion at the sublateral nerve cords, and slightly defective dopamine signaling, highlighting a generalized deficit in synaptic transmission. This defective release of neurotransmitters is associated with their secondary accumulation at the presynaptic membrane. Automated analysis of C. elegans locomotion indicates that chc-1 mutants move slower than their isogenic controls and display defective synaptic plasticity. Phenotypic profiling of chc-1 (+/P892L) heterozygous animals and transgenic overexpression experiments document a mild dominant-negative behavior for the mutant allele. Finally, a more severe phenotype resembling that of chc-1 null mutants is observed in animals harboring the c.3146 T > C substitution (p.L1049P), homologs of the pathogenic c.3140 T > C (p.L1047P) change associated with a severe epileptic phenotype. Overall, our findings provide novel insights into disease mechanisms and genotype-phenotype correlations of CLTC-related disorders.
Collapse
Affiliation(s)
- Luca Pannone
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Valentina Muto
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Martina Di Rocco
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Marchei
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Tosato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Giada Onorato
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Enrico Lanza
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | | | - Filippo Manti
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Viola Folli
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, “Sapienza” University of Rome, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
24
|
da Cruz Guedes E, Erustes AG, Leão AHFF, Carneiro CA, Abílio VC, Zuardi AW, Hallak JEC, Crippa JA, Bincoletto C, Smaili SS, Reckziegel P, Pereira GJS. Cannabidiol Recovers Dopaminergic Neuronal Damage Induced by Reserpine or α-synuclein in Caenorhabditis elegans. Neurochem Res 2023:10.1007/s11064-023-03905-z. [PMID: 36964823 DOI: 10.1007/s11064-023-03905-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson Disease (PD) lack curative or long-term treatments. At the same time, the increase of the worldwide elderly population and, consequently, the extension in the prevalence of age-related diseases have promoted research interest in neurodegenerative disorders. Caenorhabditis elegans is a free-living nematode widely used as an animal model in studies of human diseases. Here we evaluated cannabidiol (CBD) as a possible neuroprotective compound in PD using the C. elegans models exposed to reserpine. Our results demonstrated that CBD reversed the reserpine-induced locomotor alterations and this response was independent of the NPR-19 receptors, an orthologous receptor for central cannabinoid receptor type 1. Morphological alterations of cephalic sensilla (CEP) dopaminergic neurons indicated that CBD also protects neurons from reserpine-induced degeneration. That is, CBD attenuates the reserpine-induced increase of worms with shrunken soma and dendrites loss, increasing the number of worms with intact CEP neurons. Finally, we found that CBD also reduced ROS formation and α-syn protein accumulation in mutant worms. Our findings collectively provide new evidence that CBD acts as neuroprotector in dopaminergic neurons, reducing neurotoxicity and α-syn accumulation highlighting its potential in the treatment of PD.
Collapse
Affiliation(s)
- Erika da Cruz Guedes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Adolfo Garcia Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Anderson H F F Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - César Alves Carneiro
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Antonio W Zuardi
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Jaime Eduardo C Hallak
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Soraya S Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Patrícia Reckziegel
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil.
| |
Collapse
|
25
|
Nourse JB, Russell SN, Moniz NA, Peter K, Seyfarth LM, Scott M, Park HA, Caldwell KA, Caldwell GA. Integrated regulation of dopaminergic and epigenetic effectors of neuroprotection in Parkinson's disease models. Proc Natl Acad Sci U S A 2023; 120:e2210712120. [PMID: 36745808 PMCID: PMC9963946 DOI: 10.1073/pnas.2210712120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023] Open
Abstract
Whole-exome sequencing of Parkinson's disease (PD) patient DNA identified single-nucleotide polymorphisms (SNPs) in the tyrosine nonreceptor kinase-2 (TNK2) gene. Although this kinase had a previously demonstrated activity in preventing the endocytosis of the dopamine reuptake transporter (DAT), a causal role for TNK2-associated dysfunction in PD remains unresolved. We postulated the dopaminergic neurodegeneration resulting from patient-associated variants in TNK2 were a consequence of aberrant or prolonged TNK2 overactivity, the latter being a failure in TNK2 degradation by an E3 ubiquitin ligase, neuronal precursor cell-expressed developmentally down-regulated-4 (NEDD4). Interestingly, systemic RNA interference protein-3 (SID-3) is the sole TNK2 ortholog in the nematode Caenorhabditis elegans, where it is an established effector of epigenetic gene silencing mediated through the dsRNA-transporter, SID-1. We hypothesized that TNK2/SID-3 represents a node of integrated dopaminergic and epigenetic signaling essential to neuronal homeostasis. Use of a TNK2 inhibitor (AIM-100) or a NEDD4 activator [N-aryl benzimidazole 2 (NAB2)] in bioassays for either dopamine- or dsRNA-uptake into worm dopaminergic neurons revealed that sid-3 mutants displayed robust neuroprotection from 6-hydroxydopamine (6-OHDA) exposures, as did AIM-100 or NAB2-treated wild-type animals. Furthermore, NEDD4 activation by NAB2 in rat primary neurons correlated to a reduction in TNK2 levels and the attenuation of 6-OHDA neurotoxicity. CRISPR-edited nematodes engineered to endogenously express SID-3 variants analogous to TNK2 PD-associated SNPs exhibited enhanced susceptibility to dopaminergic neurodegeneration and circumvented the RNAi resistance characteristic of SID-3 dysfunction. This research exemplifies a molecular etiology for PD whereby dopaminergic and epigenetic signaling are coordinately regulated to confer susceptibility or resilience to neurodegeneration.
Collapse
Affiliation(s)
- J. Brucker Nourse
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
| | - Shannon N. Russell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
| | - Nathan A. Moniz
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
| | - Kylie Peter
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
| | - Lena M. Seyfarth
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
| | - Madison Scott
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL35487
| | - Han-A Park
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL35487
- Alabama Research Institute on Aging, The University of Alabama, Tuscaloosa, AL35487
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL35487
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
- Alabama Research Institute on Aging, The University of Alabama, Tuscaloosa, AL35487
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL35487
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Research in the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL35487
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL35487
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Research in the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| |
Collapse
|
26
|
Romano M, González Gómez MA, Santonicola P, Aloi N, Offer S, Pantzke J, Raccosta S, Longo V, Surpi A, Alacqua S, Zampi G, Dediu VA, Michalke B, Zimmerman R, Manno M, Piñeiro Y, Colombo P, Di Schiavi E, Rivas J, Bergese P, Di Bucchianico S. Synthesis and Characterization of a Biocompatible Nanoplatform Based on Silica-Embedded SPIONs Functionalized with Polydopamine. ACS Biomater Sci Eng 2023; 9:303-317. [PMID: 36490313 DOI: 10.1021/acsbiomaterials.2c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have gained increasing interest in nanomedicine, but most of those that have entered the clinical trials have been withdrawn due to toxicity concerns. Therefore, there is an urgent need to design low-risk and biocompatible SPION formulations. In this work, we present an original safe-by-design nanoplatform made of silica nanoparticles loaded with SPIONs and decorated with polydopamine (SPIONs@SiO2-PDA) and the study of its biocompatibility performance by an ad hoc thorough in vitro to in vivo nanotoxicological methodology. The results indicate that the SPIONs@SiO2-PDA have excellent colloidal stability in serum-supplemented culture media, even after long-term (24 h) exposure, showing no cytotoxic or genotoxic effects in vitro and ex vivo. Physiological responses, evaluated in vivo using Caenorhabditis elegans as the animal model, showed no impact on fertility and embryonic viability, induction of an oxidative stress response, and a mild impact on animal locomotion. These tests indicate that the synergistic combination of the silica matrix and PDA coating we developed effectively protects the SPIONs, providing enhanced colloidal stability and excellent biocompatibility.
Collapse
Affiliation(s)
- Miriam Romano
- Department of Molecular and Translational Medicine, University of Brescia, Brescia25123, Italy.,Center for Colloid and Surface Science (CSGI), Florence50019, Italy.,Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg85764, Germany
| | - Manuel Antonio González Gómez
- NANOMAG Laboratory, Applied Physics Department, iMATUS Materials Institute, Universidade de Santiago de Compostela, Santiago de Compostela15782, Spain
| | - Pamela Santonicola
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Naples80131, Italy
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo90146, Italy
| | - Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg85764, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg85764, Germany
| | - Samuele Raccosta
- Institute of Biophysics (IBF), National Research Council of Italy (CNR), Palermo90146, Italy
| | - Valeria Longo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo90146, Italy
| | - Alessandro Surpi
- Institute of Nanostructured Materials (ISMN), National Research Council of Italy (CNR), Bologna40129, Italy
| | - Silvia Alacqua
- Department of Molecular and Translational Medicine, University of Brescia, Brescia25123, Italy.,Center for Colloid and Surface Science (CSGI), Florence50019, Italy.,Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg85764, Germany
| | - Giuseppina Zampi
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Naples80131, Italy
| | - Valentin Alek Dediu
- Institute of Nanostructured Materials (ISMN), National Research Council of Italy (CNR), Bologna40129, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg85764, Germany
| | - Ralf Zimmerman
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg85764, Germany
| | - Mauro Manno
- Institute of Biophysics (IBF), National Research Council of Italy (CNR), Palermo90146, Italy
| | - Yolanda Piñeiro
- NANOMAG Laboratory, Applied Physics Department, iMATUS Materials Institute, Universidade de Santiago de Compostela, Santiago de Compostela15782, Spain
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo90146, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Naples80131, Italy
| | - José Rivas
- NANOMAG Laboratory, Applied Physics Department, iMATUS Materials Institute, Universidade de Santiago de Compostela, Santiago de Compostela15782, Spain
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Brescia25123, Italy.,Center for Colloid and Surface Science (CSGI), Florence50019, Italy
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg85764, Germany
| |
Collapse
|
27
|
Rosikon KD, Bone MC, Lawal HO. Regulation and modulation of biogenic amine neurotransmission in Drosophila and Caenorhabditis elegans. Front Physiol 2023; 14:970405. [PMID: 36875033 PMCID: PMC9978017 DOI: 10.3389/fphys.2023.970405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Neurotransmitters are crucial for the relay of signals between neurons and their target. Monoamine neurotransmitters dopamine (DA), serotonin (5-HT), and histamine are found in both invertebrates and mammals and are known to control key physiological aspects in health and disease. Others, such as octopamine (OA) and tyramine (TA), are abundant in invertebrates. TA is expressed in both Caenorhabditis elegans and Drosophila melanogaster and plays important roles in the regulation of essential life functions in each organism. OA and TA are thought to act as the mammalian homologs of epinephrine and norepinephrine respectively, and when triggered, they act in response to the various stressors in the fight-or-flight response. 5-HT regulates a wide range of behaviors in C. elegans including egg-laying, male mating, locomotion, and pharyngeal pumping. 5-HT acts predominantly through its receptors, of which various classes have been described in both flies and worms. The adult brain of Drosophila is composed of approximately 80 serotonergic neurons, which are involved in modulation of circadian rhythm, feeding, aggression, and long-term memory formation. DA is a major monoamine neurotransmitter that mediates a variety of critical organismal functions and is essential for synaptic transmission in invertebrates as it is in mammals, in which it is also a precursor for the synthesis of adrenaline and noradrenaline. In C. elegans and Drosophila as in mammals, DA receptors play critical roles and are generally grouped into two classes, D1-like and D2-like based on their predicted coupling to downstream G proteins. Drosophila uses histamine as a neurotransmitter in photoreceptors as well as a small number of neurons in the CNS. C. elegans does not use histamine as a neurotransmitter. Here, we review the comprehensive set of known amine neurotransmitters found in invertebrates, and discuss their biological and modulatory functions using the vast literature on both Drosophila and C. elegans. We also suggest the potential interactions between aminergic neurotransmitters systems in the modulation of neurophysiological activity and behavior.
Collapse
Affiliation(s)
- Katarzyna D Rosikon
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Megan C Bone
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Hakeem O Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
28
|
Ke T, Santamaria A, Junior FB, Rocha JBT, Bowman AB, Aschner M. Methylmercury exposure-induced reproductive effects are mediated by dopamine in Caenorhabditis elegans. Neurotoxicol Teratol 2022; 93:107120. [PMID: 35987454 DOI: 10.1016/j.ntt.2022.107120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Methylmercury (MeHg) is a neurotoxicant that exists in the natural environment, which level can be greatly increased because of human activity. MeHg exposures have the risk of being detrimental to the development of the nervous system. Studies on MeHg toxicity have largely focused on the mechanisms of its neurotoxicity following developmental exposures. Additionally, reproductive toxicity of developmental MeHg exposures has been noted in rodent models. The model organism Caenorhabditis elegans (C. elegans) is a self-fertilizing animal which has a short lifespan around 20 days. Most C. elegans are hermaphrodites that can generate both sperm and oocytes. To investigate the effects of developmental MeHg exposures on the reproduction in C. elegans, larvae stage 1 worms were exposed to MeHg (0, 0.01 or 0.05 μM) for 24 h. The laid eggs and oocytes were compared during each day at adult stages for 6 days. We showed that MeHg exposure significantly induced an increased number of eggs in day 1 adults without an effect on the timing of egg laying or the total number of eggs or oocytes over the 6-day period. The expression of dat-1 and cat-2 and dopamine levels were increased in worms exposed to MeHg. Supplementation with 100 μM dopamine recapitulated the effect of MeHg on the number of eggs present in day 1 adults. Furthermore, the effect of MeHg on the number of eggs was abrogated in the cat-2 mutant worms CB1112. The number of oocytes in the 6-day adult stages was decreased by MeHg in the dat-1 mutant RM2702. MeHg exposures did not change the mating rate or the number of offspring from mating. Combined, these novel findings show that developmental exposure to low levels of MeHg has limited effects on the reproduction in C. elegans. Furthermore, our data support a modulatory role of dopamine in MeHg-induced effects on reproduction in this model system.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269 Mexico City, Mexico
| | - Fernando Barbosa Junior
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105900 Santa Maria, RS, Brazil
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
29
|
Formisano R, Rosikon KD, Singh A, Dhillon HS. The dopamine membrane transporter plays an active modulatory role in synaptic dopamine homeostasis. J Neurosci Res 2022; 100:1551-1559. [PMID: 34747520 PMCID: PMC9079189 DOI: 10.1002/jnr.24965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 11/11/2022]
Abstract
Modulatory mechanisms of neurotransmitter release and clearance are highly controlled processes whose finely tuned regulation is critical for functioning of the nervous system. Dysregulation of the monoamine neurotransmitter dopamine can lead to several neuropathies. Synaptic modulation of dopamine is known to involve pre-synaptic D2 auto-receptors and acid sensing ion channels. In addition, the dopamine membrane transporter (DAT), which is responsible for clearance of dopamine from the synaptic cleft, is suspected to play an active role in modulating release of dopamine. Using functional imaging on the Caenorhabditis elegans model system, we show that DAT-1 acts as a negative feedback modulator to neurotransmitter vesicle fusion. Results from our fluorescence recovery after photo-bleaching (FRAP) based experiments were followed up with and reaffirmed using swimming-induced paralysis behavioral assays. Utilizing our numerical FRAP data we have developed a mechanistic model to dissect the dynamics of synaptic vesicle fusion, and compare the feedback effects of DAT-1 with the dopamine auto-receptor. Our experimental results and the mechanistic model are of potential broader significance, as similar dynamics are likely to be used by other synaptic modulators including membrane transporters for other neurotransmitters across species.
Collapse
Affiliation(s)
- Rosaria Formisano
- Department of Biological Sciences, Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
| | - Katarzyna D. Rosikon
- Department of Biological Sciences, Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering, Data Sciences Institute, University of Delaware, Newark, DE, USA
| | - Harbinder S. Dhillon
- Department of Biological Sciences, Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
| |
Collapse
|
30
|
The Human LRRK2 Modulates the Age-Dependent Effects of Developmental Methylmercury Exposure in Caenorhabditis elegans. Neurotox Res 2022; 40:1235-1247. [PMID: 35838907 DOI: 10.1007/s12640-022-00547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Methylmercury (MeHg) neurotoxicity exhibits age-dependent effects with a latent and/or persistent neurotoxic effect on aged animals. Individual susceptibility to MeHg neurotoxicity is governed by both exposure duration and genetic factors that can magnify or mitigate the pathologic processes associated with this exposure. We previously showed the G2019S mutation of leucine-rich repeat kinase 2 (LRRK2) modulates the response of worms to high levels of MeHg, mitigating its effect on neuronal morphology in pre-vesicles in cephalic (CEP) dopaminergic neurons. Here we sought to better understand the long-term effects of MeHg exposure at low levels (100-fold lower than that in our previous report) and the modulatory role of the LRRK2 mutation. Worms exposed to MeHg (10 or 50 nM) at the larval stage (L1 stage) were compared at adult stages (young age: day 1 adult; middle age: day 5 adult; old age: day 10 adult) for the swimming speeds in M9 buffer, moving speeds during locomotion on an OP50-seeded plate, and the numbers of CEP dopaminergic pre-vesicles, vesicular structures originating from the dendrites of CEP for exportation of cellular content. In addition, the expression levels of Caenorhabditis elegans homologs of dopamine transporter (dat-1) and tyrosine hydroxylase (cat-2) were also analyzed at these adult stages. Our data showed that swimming speeds were reduced in wild-type worms at the day 10 adult stage at 50 nM MeHg level; yet, reduced swimming speeds were noted in the G2019S LRRK2 transgenic line upon MeHg exposures as low as 10 nM. Compared to locomotor speeds, swimming speeds appear to be more sensitive to the behavioral effects of developmental MeHg exposures, as the locomotor speeds were largely intact and indistinguishable from controls following MeHg exposures. Furthermore, we showed an age-dependent modulation of dat-1 and cat-2 expressions, which could also be modified by the LRRK2 mutation. Although MeHg exposures did not change the number of pre-vesicles, the LRRK2 mutation was associated with increased numbers of pre-vesicles in aged worms. Our data suggest that the latent behavioral effects of MeHg are sensitized by the G2019S LRRK2 mutation, and the underlying mechanism likely involves age-dependent changes in dopaminergic signaling.
Collapse
|
31
|
Albrecht PA, Fernandez-Hubeid LE, Deza-Ponzio R, Martins AC, Aschner M, Virgolini MB. Developmental lead exposure affects dopaminergic neuron morphology and modifies basal slowing response in Caenorhabditis elegans: effects of ethanol. Neurotoxicology 2022; 91:349-359. [PMID: 35724878 DOI: 10.1016/j.neuro.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Lead (Pb) and ethanol (EtOH) are neurotoxicants that affect the dopaminergic (DAergic) system. We first sought to assess the morphology of the DAergic neurons in the Caenorhabditis elegans BY200 strain. The results demonstrated dose-dependent damage in these neurons induced by developmental Pb exposure. Secondly, transgenic worms exposed to 24μM Pb and administered with 200mM EtOH were evaluated in the basal slowing response (BSR). Pb induced impairment in the BSR in the wild-type strain that did not improve in response to EtOH, an effect also observed in strains that lack the DOP-1, DOP-2, and DOP-3 receptors. The animals that overexpress tyrosine hydroxylase (TH), or lack the vesicular transport (VMAT) showed a Pb-induced impairment in the BSR that seemed to improve after EtOH. Interestingly, a dramatic impairment in the BSR was observed in the Pb group in strains lacking the DOP-4 receptor, resembling the response of the TH-deficient strain, an effect that in both cases showed a non-significant reversal by EtOH. These results suggest that the facilitatory effect of EtOH on the impaired BSR observed in Pb-exposed null mutant strains may be the result of a compensatory effect in the altered DAergic synapse present in these animals.
Collapse
Affiliation(s)
- Paula A Albrecht
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET) and Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Lucia E Fernandez-Hubeid
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET) and Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Romina Deza-Ponzio
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET) and Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Miriam B Virgolini
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET) and Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
32
|
Sammi SR, Jameson LE, Conrow KD, Leung MCK, Cannon JR. Caenorhabditis elegans Neurotoxicity Testing: Novel Applications in the Adverse Outcome Pathway Framework. FRONTIERS IN TOXICOLOGY 2022; 4:826488. [PMID: 35373186 PMCID: PMC8966687 DOI: 10.3389/ftox.2022.826488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurological hazard assessment of industrial and pesticidal chemicals demands a substantial amount of time and resources. Caenorhabditis elegans is an established model organism in developmental biology and neuroscience. It presents an ideal test system with relatively fewer neurons (302 in hermaphrodites) versus higher-order species, a transparent body, short lifespan, making it easier to perform neurotoxic assessment in a time and cost-effective manner. Yet, no regulatory testing guidelines have been developed for C. elegans in the field of developmental and adult neurotoxicity. Here, we describe a set of morphological and behavioral assessment protocols to examine neurotoxicity in C. elegans with relevance to cholinergic and dopaminergic systems. We discuss the homology of human genes and associated proteins in these two signaling pathways and evaluate the morphological and behavioral endpoints of C. elegans in the context of published adverse outcome pathways of neurodegenerative diseases. We conclude that C. elegans neurotoxicity testing will not only be instrumental to eliminating mammalian testing in neurological hazard assessment but also lead to new knowledge and mechanistic validation in the adverse outcome pathway framework.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Laura E. Jameson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Kendra D. Conrow
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Maxwell C. K. Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
- *Correspondence: Maxwell C. K. Leung, ; Jason R. Cannon,
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
- *Correspondence: Maxwell C. K. Leung, ; Jason R. Cannon,
| |
Collapse
|
33
|
Refai O, Aggarwal S, Cheng MH, Gichi Z, Salvino JM, Bahar I, Blakely RD, Mortensen OV. Allosteric Modulator KM822 Attenuates Behavioral Actions of Amphetamine in Caenorhabditis elegans through Interactions with the Dopamine Transporter DAT-1. Mol Pharmacol 2022; 101:123-131. [PMID: 34906999 PMCID: PMC8969146 DOI: 10.1124/molpharm.121.000400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Aberrant dopamine (DA) signaling is associated with several psychiatric disorders, such as autism, bipolar disorder, addiction, and Parkinson's disease, and several medications that target the DA transporter (DAT) can induce or treat these disorders. In addition, psychostimulants, such as cocaine and D-amphetamine (AMPH), rely on the competitive interactions with the transporter's substrate binding site to produce their rewarding effects. Agents that exhibit noncompetitive, allosteric modulation of DAT remain an important topic of investigation due to their potential therapeutic applications. We previously identified a novel allosteric modulator of human DAT, KM822, that can decrease the affinity of cocaine for DAT and attenuate cocaine-elicited behaviors; however, whether DAT is the sole mediator of KM822 actions in vivo is unproven given the large number of potential off-target sites. Here, we provide in silico and in vitro evidence that the allosteric site engaged by KM822 is conserved between human DAT and Caenorhabditis elegans DAT-1. KM822 binds to a similar pocket in DAT-1 as previously identified in human DAT. In functional dopamine uptake assays, KM822 affects the interaction between AMPH and DAT-1 by reducing the affinity of AMPH for DAT-1. Finally, through a combination of genetic and pharmacological in vivo approaches we provide evidence that KM822 diminishes the behavioral actions of AMPH on swimming-induced paralysis through a direct allosteric modulation of DAT-1. More broadly, our findings demonstrate allosteric modulation of DAT as a behavior modifying strategy and suggests that Caenorhabditis elegans can be operationalized to identify and investigate the interactions of DAT allosteric modulators. SIGNIFICANCE STATEMENT: We previously demonstrated that the dopamine transporter (DAT) allosteric modulator KM822 decreases cocaine affinity for human DAT. Here, using in silico and in vivo genetic approaches, we extend this finding to interactions with amphetamine, demonstrating evolutionary conservation of the DAT allosteric site. In Caenorhabditis elegans, we report that KM822 suppresses amphetamine behavioral effects via specific interactions with DAT-1. Our findings reveal Caenorhabditis elegans as a new tool to study allosteric modulation of DAT and its behavioral consequences.
Collapse
Affiliation(s)
- Osama Refai
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Shaili Aggarwal
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Mary Hongying Cheng
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Zayna Gichi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Joseph M Salvino
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Ivet Bahar
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Ole V Mortensen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| |
Collapse
|
34
|
Zhang Y, Zhao C, Zhang H, Lu Q, Zhou J, Liu R, Wang S, Pu Y, Yin L. Trans-generational effects of copper on nerve damage in Caenorhabditis elegans. CHEMOSPHERE 2021; 284:131324. [PMID: 34225113 DOI: 10.1016/j.chemosphere.2021.131324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 05/15/2023]
Abstract
The potential toxicity of copper has received great attention for a long time, however, trans-generational effects of copper have not been extensively investigated. Caenorhabditis elegans (C. elegans) was used to evaluate the trans-generational toxicities of copper several physiological endpoints: growth, head thrashes and body bends and degree of neuronal damage. Copper significantly inhibited growth, body bends, head thrashes and caused degeneration of dopaminergic neurons in a concentration-dependent manner in parental worms. Further we found oxidative damage was to underlying the onset of neuron degeneration. In our study copper promoted ROS accumulation, and led to an increased expression of the oxidative stress response-related genes sod-3 and a decreased expression of metal detoxification genes mtl-1 and mtl-2. Moreover, copper increased the fluorescence intensity of the transgenic strain that encodes the antioxidant enzyme SOD-3. Gradually decline in copper-induced impairments were observed in the filial generations without exposure. No growth impairment was shown in F3, the trend of head thrashes recovery gradually appeared in F2 and no growth impairment was shown in F3, the body bends impairment caused by the parental copper exposure was recovery until F4 and no growth impairment was shown in F5. Besides, dopamine neurons revealed damage related to neurobehavioral endpoints, with hereditary effects in the progeny together. In addition, sequencing results suggested that copper exposure could cause epigenetic changes. QRT-PCR results showed that differentially expressed genes can also be passed on to offspring.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Jingjing Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
35
|
Wei CC, Yang NC, Huang CW. Zearalenone Induces Dopaminergic Neurodegeneration via DRP-1-Involved Mitochondrial Fragmentation and Apoptosis in a Caenorhabditis elegans Parkinson's Disease Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12030-12038. [PMID: 34586801 DOI: 10.1021/acs.jafc.1c05836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The contamination of mycotoxin zearalenone (ZEN) in foods has been reported worldwide, resulting in potential risks to food safety. However, the toxic mechanism of ZEN on neurodegenerative diseases has not been fully elucidated. Therefore, this study conducted in vivo ZEN neurotoxicity assessment on Parkinson's disease (PD)-related dopaminergic neurodegeneration and mitochondrial dysfunction using Caenorhabditis elegans. The results demonstrated that dopaminergic neuron damage was induced by ZEN exposure (1.25, 10, and 50 μM), and dopaminergic neuron-related behaviors were adversely affected subsequently. Additionally, the mitochondrial fragmentation was significantly increased by ZEN exposure. Moreover, upregulated expression of mitochondrial fission and cell apoptosis-related genes (drp-1, egl-1, ced-4, and ced-3) revealed the crucial role of DRP-1 on ZEN-induced neurotoxicity, which was further confirmed by drp-1 mutant and RNAi assays. In conclusion, our study indicates ZEN-induced dopaminergic neurodegeneration via DRP-1-involved mitochondrial fragmentation and apoptosis, which might cause harmful effects on PD-related symptoms.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Nien-Chieh Yang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Chi-Wei Huang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| |
Collapse
|
36
|
Emerson S, Hay M, Smith M, Granger R, Blauch D, Snyder N, El Bejjani R. Acetylcholine signaling genes are required for cocaine-stimulated egg laying in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2021; 11:jkab143. [PMID: 33914087 PMCID: PMC8763240 DOI: 10.1093/g3journal/jkab143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
The toxicity and addictive liability associated with cocaine abuse are well-known. However, its mode of action is not completely understood, and effective pharmacotherapeutic interventions remain elusive. The cholinergic effects of cocaine on acetylcholine receptors, synthetic enzymes, and degradative enzymes have been the focus of relatively little empirical investigation. Due to its genetic tractability and anatomical simplicity, the egg laying circuit of the hermaphroditic nematode, Caenorhabditis elegans, is a powerful model system to precisely examine the genetic and molecular targets of cocaine in vivo. Here, we report a novel cocaine-induced behavioral phenotype in C. elegans, cocaine-stimulated egg laying. In addition, we present the results of an in vivo candidate suppression screen of synthetic enzymes, receptors, degradative enzymes, and downstream components of the intracellular signaling cascades of the main neurotransmitter systems that control C. elegans egg laying. Our results show that cocaine-stimulated egg laying is dependent on acetylcholine synthesis and synaptic release, functional nicotinic acetylcholine receptors, and the C. elegans acetylcholinesterases.
Collapse
Affiliation(s)
- Soren Emerson
- Neuroscience Interdisciplinary Program, Davidson College, Davidson, NC 28035, USA
| | - Megan Hay
- Biology Department, Davidson College, Davidson, NC 28035, USA
| | - Mark Smith
- Neuroscience Interdisciplinary Program, Davidson College, Davidson, NC 28035, USA
- Psychology Department, Davidson College, Davidson, NC 28035, USA
| | - Ricky Granger
- Biology Department, Davidson College, Davidson, NC 28035, USA
| | - David Blauch
- Chemistry Department, Davidson College, Davidson, NC 28035 USA
| | - Nicole Snyder
- Chemistry Department, Davidson College, Davidson, NC 28035 USA
| | - Rachid El Bejjani
- Neuroscience Interdisciplinary Program, Davidson College, Davidson, NC 28035, USA
- Biology Department, Davidson College, Davidson, NC 28035, USA
| |
Collapse
|
37
|
Gourgou E, Adiga K, Goettemoeller A, Chen C, Hsu AL. Caenorhabditis elegans learning in a structured maze is a multisensory behavior. iScience 2021; 24:102284. [PMID: 33889812 PMCID: PMC8050377 DOI: 10.1016/j.isci.2021.102284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 03/04/2021] [Indexed: 11/05/2022] Open
Abstract
We show that C. elegans nematodes learn to associate food with a combination of proprioceptive cues and information on the structure of their surroundings (maze), perceived through mechanosensation. By using the custom-made Worm-Maze platform, we demonstrate that C. elegans young adults can locate food in T-shaped mazes and, following that experience, learn to reach a specific maze arm. C. elegans learning inside the maze is possible after a single training session, it resembles working memory, and it prevails over conflicting environmental cues. We provide evidence that the observed learning is a food-triggered multisensory behavior, which requires mechanosensory and proprioceptive input, and utilizes cues about the structural features of nematodes' environment and their body actions. The CREB-like transcription factor and dopamine signaling are also involved in maze performance. Lastly, we show that the observed aging-driven decline of C. elegans learning ability in the maze can be reversed by starvation.
Collapse
Affiliation(s)
- Eleni Gourgou
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI 41809, USA
| | - Kavya Adiga
- Department of Internal Medicine, Division of Geriatrics & Palliative Medicine, University of Michigan Medical School, Ann Arbor, MI 41809, USA
| | - Anne Goettemoeller
- Neuroscience Program, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI 41809, USA
| | - Chieh Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, 112 Taiwan
| | - Ao-Lin Hsu
- Department of Internal Medicine, Division of Geriatrics & Palliative Medicine, University of Michigan Medical School, Ann Arbor, MI 41809, USA
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, 112 Taiwan
- Research Center for Healthy Aging and Institute of New Drug Development, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
38
|
Xu Y, Zhang L, Liu Y, Topalidou I, Hassinan C, Ailion M, Zhao Z, Wang T, Chen Z, Bai J. Dopamine receptor DOP-1 engages a sleep pathway to modulate swimming in C. elegans. iScience 2021; 24:102247. [PMID: 33796839 PMCID: PMC7995527 DOI: 10.1016/j.isci.2021.102247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
Animals require robust yet flexible programs to support locomotion. Here we report a pathway that connects the D1-like dopamine receptor DOP-1 with a sleep mechanism to modulate swimming in C. elegans. We show that DOP-1 plays a negative role in sustaining swimming behavior. By contrast, a pathway through the D2-like dopamine receptor DOP-3 negatively regulates the initiation of swimming, but its impact fades quickly over a few minutes. We find that DOP-1 and the GPCR kinase (G-protein-coupled receptor kinase-2) function in the sleep interneuron RIS, where DOP-1 modulates the secretion of a sleep neuropeptide FLP-11. We further show that DOP-1 and FLP-11 act in the same pathway to modulate swimming. Together, these results delineate a functional connection between a dopamine receptor and a sleep program to regulate swimming in C. elegans. The temporal transition between DOP-3 and DOP-1 pathways highlights the dynamic nature of neuromodulation for rhythmic movements that persist over time.
Collapse
Affiliation(s)
- Ye Xu
- Department of Clinical Medicine, Nanjing Medical University, Nanjing 211166, P. R. China.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.,Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Lin Zhang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Yan Liu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, WA 98195
| | - Cera Hassinan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98019
| | - Michael Ailion
- Department of Biochemistry, University of Washington, WA 98195
| | - Zhenqiang Zhao
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Tan Wang
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Zhibin Chen
- Department of Clinical Medicine, Nanjing Medical University, Nanjing 211166, P. R. China.,Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98019.,Department of Biochemistry, University of Washington, WA 98195
| |
Collapse
|
39
|
Torres Valladares D, Kudumala S, Hossain M, Carvelli L. Caenorhabditis elegans as an in vivo Model to Assess Amphetamine Tolerance. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:247-255. [PMID: 33831863 DOI: 10.1159/000514858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/27/2021] [Indexed: 11/19/2022]
Abstract
Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in Caenorhabditis elegans to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that C. elegans is a suitable system to study tolerance to drugs of abuse such as amphetamines.
Collapse
Affiliation(s)
- Dayana Torres Valladares
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Sirisha Kudumala
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Murad Hossain
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Lucia Carvelli
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA.,Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
40
|
Kirshenboim I, Aviner B, Itskovits E, Zaslaver A, Broday L. Dopamine-dependent biphasic behaviour under 'deep diving' conditions in Caenorhabditis elegans. Proc Biol Sci 2021; 288:20210128. [PMID: 33715430 PMCID: PMC7944115 DOI: 10.1098/rspb.2021.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Underwater divers are susceptible to neurological risks due to their exposure to increased pressure. Absorption of elevated partial pressure of inert gases such as helium and nitrogen may lead to nitrogen narcosis. Although the symptoms of nitrogen narcosis are known, the molecular mechanisms underlying these symptoms have not been elucidated. Here, we examined the behaviour of the soil nematode Caenorhabditis elegans under scuba diving conditions. We analysed wild-type animals and mutants in the dopamine pathway under hyperbaric conditions, using several gas compositions and under varying pressure levels. We found that the animals changed their speed on a flat bacterial surface in response to pressure in a biphasic mode that depended on dopamine. Dopamine-deficient cat-2 mutant animals did not exhibit a biphasic response in high pressure, while the extracellular accumulation of dopamine in dat-1 mutant animals mildly influenced this response. Our data demonstrate that in C. elegans, similarly to mammalian systems, dopamine signalling is involved in the response to high pressure. This study establishes C. elegans as a powerful system to elucidate the molecular mechanisms that underly nitrogen toxicity in response to high pressure.
Collapse
Affiliation(s)
- Inbar Kirshenboim
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Ben Aviner
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel
| | - Eyal Itskovits
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Ke T, Prince LM, Bowman AB, Aschner M. Latent alterations in swimming behavior by developmental methylmercury exposure are modulated by the homolog of tyrosine hydroxylase in Caenorhabditis elegans. Neurotoxicol Teratol 2021; 85:106963. [PMID: 33626374 DOI: 10.1016/j.ntt.2021.106963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
Methylmercury (MeHg) is a persistent environmental neurotoxicant that may cause adverse neurodevelopmental effects. Previous studies showed that developmental MeHg exposure caused damage to brain functions that were unmasked after a silent period of years or decades. However, the underlying mechanisms of the latent neurotoxicity associated with MeHg exposure from earlier developmental stages have yet to be fully understood. Herein, we established a Caenorhabditis elegans (C. elegans) model of developmental MeHg latent toxicity. Synchronized L1 stage worms were exposed to MeHg (0, 0.05, 0.5 and 5 μM) for 48 h. Swimming moving speeds at adulthood were analyzed in worms exposed to MeHg exposure at early larvae stages. Worms developmentally exposed to MeHg had a significant decline in swimming moving speed on day 10 adult stage, but not on day 1 or 5 adult stage, even though the mercury level in the worms exposed to 0.05 or 0.5 μM MeHg were below the quantification limit on day 10 adult. Day 10 adult worms treated with MeHg showed a significant decrease in bending angle and bending frequency during swimming. Furthermore, their reduced moving speeds tended to increase during the 300-s swimming experiment. Dopamine signaling is known to be involved in the regulation of worms' moving speed. Accordingly, the moving speed of worms with cat-2 (mammalian tyrosine hydroxylase homolog) mutation or dat-1 deletion were assayed on day 10 adult. The cat-2 mutant worms did not show a decline in moving speeds, body bends or bending angles during swimming on day 10 adult stage. Analyses of moving speeds of worms with dat-1 deletion showed that the moving speeds were further reduced after MeHg exposure. However, the effects of MeHg and dat-1 deletion were not synergistic, as the interaction between these parameters did not attain statistical significance. Altogether, our results suggest that developmental MeHg exposure reduced moving speed, and this latent toxicity was less pronounced in the context of deficient production of dopamine synthesis. Tyrosine hydroxylase plays an important role in regulating dopamine-mediated modulation of neurobehavioral functions. These findings uncovered a pivotal role of dopamine and its metabolism in the latent neurotoxic effects of MeHg.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States; IM Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia.
| |
Collapse
|
42
|
Involvement of dopamine receptor in the actions of non-psychoactive phytocannabinoids. Biochem Biophys Res Commun 2020; 533:1366-1370. [PMID: 33097185 DOI: 10.1016/j.bbrc.2020.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 01/06/2023]
Abstract
Nematode Caenorhabditis elegans (C. elegans) exhibited a vigorous swimming behavior in liquid medium. Addition of dopamine inhibited the swimming behavior, causing paralysis in 65% of wild-type nematodes. Interestingly, phytocannabinoids cannabidiol (CBD) or cannabidivarin (CBDV), caused paralysis in 40% of the animals. Knockout of DOP-3, the dopamine D2-like receptor critical for locomotor behavior, eliminated the paralysis induced by dopamine, CBD, and CBDV. In contrast, both CBD and CBDV caused paralysis in animals lacking CAT-2, an enzyme necessary for dopamine synthesis. Co-administration of dopamine with either CBD or CBDV caused paralysis similar to that of either phytocannabinoid treatment alone. These data support the notion that CBD and CBDV act as functional partial agonists on dopamine D2-like receptors in vivo. The discovery that dopamine receptor is involved in the actions of phytocannabinoids moves a significant step toward our understanding of the mechanisms for medical uses of cannabis in the treatment of neurological and psychiatric disorders.
Collapse
|
43
|
Tikiyani V, Babu K. Claudins in the brain: Unconventional functions in neurons. Traffic 2020; 20:807-814. [PMID: 31418988 DOI: 10.1111/tra.12685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
Bonafide claudin proteins are functional and structural components of tight junctions and are largely responsible for barrier formation across epithelial and endothelial membranes. However, current advances in the understanding of claudin biology have revealed their unexpected functions in the brain. Apart from maintaining blood-brain barriers in the brain, other functions of claudins in neurons and at synapses have been largely elusive and are just coming to light. In this review, we summarize the functions of claudins in the brain and their association in neuronal diseases. Further, we go on to cover some recent studies that show that claudins play signaling functions in neurons by regulating trafficking of postsynaptic receptors and controlling dendritic morphogenesis in the model organism Caenorhabditis elegans.
Collapse
Affiliation(s)
- Vina Tikiyani
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.,Centre for Neuroscience (CNS), Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
44
|
Smith LL, Ryde IT, Hartman JH, Romersi RF, Markovich Z, Meyer JN. Strengths and limitations of morphological and behavioral analyses in detecting dopaminergic deficiency in Caenorhabditis elegans. Neurotoxicology 2019; 74:209-220. [PMID: 31323240 DOI: 10.1016/j.neuro.2019.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/27/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
In order to develop a better understanding of the role environmental toxicants may play in the onset and progression of neurodegenerative diseases, it has become increasingly important to optimize sensitive methods for quickly screening toxicants to determine their ability to disrupt neuronal function. The nematode Caenorhabditis elegans can help with this effort. This species has an integrated nervous system producing behavioral function, provides easy access for molecular studies, has a rapid lifespan, and is an inexpensive model. This study focuses on methods of measuring neurodegeneration involving the dopaminergic system and the identification of compounds with actions that disrupt dopamine function in the model organism C. elegans. Several dopamine-mediated locomotory behaviors, Area Exploration, Body Bends, and Reversals, as well as Swimming-Induced Paralysis and Learned 2-Nonanone Avoidance, were compared to determine the best behavioral method for screening purposes. These behavioral endpoints were also compared to morphological scoring of neurodegeneration in the dopamine neurons. We found that in adult worms, Area Exploration is more advantageous than the other behavioral methods for identifying DA-deficient locomotion and is comparable to neuromorphological scoring outputs. For larval stage worms, locomotion was an unreliable endpoint, and neuronal scoring appeared to be the best method. We compared the wild-type N2 strain to the commonly used dat-1p::GFP reporter strains BY200 and BZ555, and we further characterized the dopamine-deficient strains, cat-2 e1112 and cat-2 n4547. In contrast to published results, we found that the cat-2 strains slowed on food almost as much as N2s. Both showed decreased levels of cat-2 mRNA and DA content, rather than none, with cat-2 e1112 having the greatest reduction in DA content in comparison to N2. Finally, we compared and contrasted strengths, limitations, cost, and equipment needs for all primary methods for analysis of the dopamine system in C. elegans.
Collapse
Affiliation(s)
- Latasha L Smith
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States; Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, United States.
| | - Ian T Ryde
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, United States; Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Zachary Markovich
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Joel N Meyer
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, United States; Nicholas School of the Environment, Duke University, Durham, NC, United States.
| |
Collapse
|
45
|
Hartman JH, Richie CT, Gordon KL, Mello DF, Castillo P, Zhu A, Wang Y, Hoffer BJ, Sherwood DR, Meyer JN, Harvey BK. MANF deletion abrogates early larval Caenorhabditis elegans stress response to tunicamycin and Pseudomonas aeruginosa. Eur J Cell Biol 2019; 98:151043. [PMID: 31138438 DOI: 10.1016/j.ejcb.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/16/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is the only human neurotrophic factor with an evolutionarily-conserved C. elegans homolog, Y54G2A.23 or manf-1. MANF is a small, soluble, endoplasmic-reticulum (ER)-resident protein that is secreted upon ER stress and promotes survival of target cells such as neurons. However, the role of MANF in ER stress and its mechanism of cellular protection are not clear and the function of MANF in C. elegans is only beginning to emerge. In this study, we show that depletion of C. elegans manf-1 causes a slight decrease in lifespan and brood size; furthermore, combined depletion of manf-1 and the IRE-1/XBP-1 ER stress/UPR pathway resulted in sterile animals that did not produce viable progeny. We demonstrate upregulation of markers of ER stress in L1 larval nematodes, as measured by hsp-3 and hsp-4 transcription, upon depletion of manf-1 by RNAi or mutation; however, there was no difference in tunicamycin-induced expression of hsp-3 and hsp-4 between wild-type and MANF-deficient worms. Surprisingly, larval growth arrest observed in wild-type nematodes reared on tunicamycin is completely prevented in the manf-1 (tm3603) mutant. Transcriptional microarray analysis revealed that manf-1 mutant L1 larvae exhibit a novel modulation of innate immunity genes in response to tunicamycin. The hypothesis that manf-1 negatively regulates the innate immunity pathway is supported by our finding that the development of manf-1 mutant larvae compared to wild-type larvae is not inhibited by growth on P. aeruginosa. Together, our data represent the first characterization of C. elegans MANF as a key modulator of organismal ER stress and immunity.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States of America
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - Kacy L Gordon
- Department of Biology, Regeneration Next, Duke University, Durham, NC, 27708, United States of America
| | - Danielle F Mello
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States of America
| | - Priscila Castillo
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - April Zhu
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - Yun Wang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - Barry J Hoffer
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, NC, 27708, United States of America
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States of America
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, United States of America.
| |
Collapse
|
46
|
Robinson SB, Refai O, Hardaway JA, Sturgeon S, Popay T, Bermingham DP, Freeman P, Wright J, Blakely RD. Dopamine-dependent, swimming-induced paralysis arises as a consequence of loss of function mutations in the RUNX transcription factor RNT-1. PLoS One 2019; 14:e0216417. [PMID: 31083672 PMCID: PMC6513266 DOI: 10.1371/journal.pone.0216417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/21/2019] [Indexed: 11/18/2022] Open
Abstract
Dopamine (DA) is a neurotransmitter with actions across phylogeny that modulate core behaviors such as motor activity, reward, attention, and cognition. Perturbed DA signaling in humans is associated with multiple disorders, including addiction, ADHD, schizophrenia, and Parkinson's disease. The presynaptic DA transporter exerts powerful control on DA signaling by efficient clearance of the neurotransmitter following release. As in vertebrates, Caenorhabditis elegans DAT (DAT-1) constrains DA signaling and loss of function mutations in the dat-1 gene result in slowed crawling on solid media and swimming-induced paralysis (Swip) in water. Previously, we identified a mutant line, vt34, that exhibits robust DA-dependent Swip. vt34 exhibits biochemical and behavioral phenotypes consistent with reduced DAT-1 function though vt34; dat-1 double mutants exhibit an enhanced Swip phenotype, suggesting contributions of the vt34-associated mutation to additional mechanisms that lead to excess DA signaling. SNP mapping and whole genome sequencing of vt34 identified the site of the molecular lesion in the gene B0412.2 that encodes the Runx transcription factor ortholog RNT-1. Unlike dat-1 animals, but similar to other loss of function rnt-1 mutants, vt34 exhibits altered male tail morphology and reduced body size. Deletion mutations in both rnt-1 and the bro-1 gene, which encodes a RNT-1 binding partner also exhibit Swip. Both vt34 and rnt-1 mutations exhibit reduced levels of dat-1 mRNA as well as the tyrosine hydroxylase ortholog cat-2. Although reporter studies indicate that rnt-1 is expressed in DA neurons, its re-expression in DA neurons of vt34 animals fails to fully rescue Swip. Moreover, as shown for vt34, rnt-1 mutation exhibits additivity with dat-1 in generating Swip, as do rnt-1 and bro-1 mutations, and vt34 exhibits altered capacity for acetylcholine signaling at the neuromuscular junction. Together, these findings identify a novel role for rnt-1 in limiting DA neurotransmission and suggest that loss of RNT-1 may disrupt function of both DA neurons and body wall muscle to drive Swip.
Collapse
Affiliation(s)
- Sarah B Robinson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Osama Refai
- Department of Biomedical Science, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL United States of America
| | - J Andrew Hardaway
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Sarah Sturgeon
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Tessa Popay
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Daniel P Bermingham
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Phyllis Freeman
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States of America
| | - Jane Wright
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL United States of America
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States of America
| |
Collapse
|
47
|
Kudumala S, Sossi S, Carvelli L. Swimming Induced Paralysis to Assess Dopamine Signaling in Caenorhabditis elegans. J Vis Exp 2019. [PMID: 31009010 DOI: 10.3791/59243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The swimming assay described in this protocol is a valid tool to identify proteins regulating the dopaminergic synapses. Similar to mammals, dopamine (DA) controls several functions in C. elegans including learning and motor activity. Conditions that stimulate DA release (e.g., amphetamine (AMPH) treatments) or that prevent DA clearance (e.g., animals lacking the DA transporter (dat-1) which are incapable of reaccumulating DA into the neurons) generate an excess of extracellular DA ultimately resulting in inhibited locomotion. This behavior is particularly evident when animals swim in water. In fact, while wild-type animals continue to swim for an extended period, dat-1 null mutants and wild-type treated with AMPH or inhibitors of the DA transporter sink to the bottom of the well and do not move. This behavior is termed "Swimming Induced Paralysis" (SWIP). Although the SWIP assay is well established, a detailed description of the method is lacking. Here, we describe a step-by-step guide to perform SWIP. To perform the assay, late larval stage-4 animals are placed in a glass spot plate containing control sucrose solution with or without AMPH. Animals are scored for their swimming behavior either manually by visualization under a stereoscope or automatically by recording with a camera mounted on the stereoscope. Videos are then analyzed using a tracking software, which yields a visual representation of thrashing frequency and paralysis in the form of heat maps. Both the manual and automated systems guarantee an easily quantifiable readout of the animals' swimming ability and thus facilitate screening for animals bearing mutations within the dopaminergic system or for auxiliary genes. In addition, SWIP can be used to elucidate the mechanism of action of drugs of abuse such as AMPH.
Collapse
Affiliation(s)
- Sirisha Kudumala
- Harriet Wilkes Honors College, Florida Atlantic University, John D MacArthur Campus
| | - Serena Sossi
- Integrative Biology and Neuroscience program, College of Science, Florida Atlantic University
| | - Lucia Carvelli
- Harriet Wilkes Honors College, Florida Atlantic University, John D MacArthur Campus; Brain Institute, Florida Atlantic University; Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University;
| |
Collapse
|
48
|
Loucks CM, Park K, Walker DS, McEwan AH, Timbers TA, Ardiel EL, Grundy LJ, Li C, Johnson JL, Kennedy J, Blacque OE, Schafer W, Rankin CH, Leroux MR. EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling. eLife 2019; 8:37271. [PMID: 30810526 PMCID: PMC6392500 DOI: 10.7554/elife.37271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 02/06/2019] [Indexed: 01/03/2023] Open
Abstract
Neurons throughout the mammalian brain possess non-motile cilia, organelles with varied functions in sensory physiology and cellular signaling. Yet, the roles of cilia in these neurons are poorly understood. To shed light into their functions, we studied EFHC1, an evolutionarily conserved protein required for motile cilia function and linked to a common form of inherited epilepsy in humans, juvenile myoclonic epilepsy (JME). We demonstrate that C. elegans EFHC-1 functions within specialized non-motile mechanosensory cilia, where it regulates neuronal activation and dopamine signaling. EFHC-1 also localizes at the synapse, where it further modulates dopamine signaling in cooperation with the orthologue of an R-type voltage-gated calcium channel. Our findings unveil a previously undescribed dual-regulation of neuronal excitability at sites of neuronal sensory input (cilium) and neuronal output (synapse). Such a distributed regulatory mechanism may be essential for establishing neuronal activation thresholds under physiological conditions, and when impaired, may represent a novel pathomechanism for epilepsy.
Collapse
Affiliation(s)
- Catrina M Loucks
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Kwangjin Park
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andrea H McEwan
- Djavad Mowfaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Tiffany A Timbers
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Evan L Ardiel
- Djavad Mowfaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Jacque-Lynne Johnson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Julie Kennedy
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - William Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Catharine H Rankin
- Djavad Mowfaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
49
|
Koelle MR. Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2018; 2018:1-52. [PMID: 26937633 PMCID: PMC5010795 DOI: 10.1895/wormbook.1.75.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitters signal via G protein coupled receptors (GPCRs) to modulate activity of neurons and muscles. C. elegans has ∼150 G protein coupled neuropeptide receptor homologs and 28 additional GPCRs for small-molecule neurotransmitters. Genetic studies in C. elegans demonstrate that neurotransmitters diffuse far from their release sites to activate GPCRs on distant cells. Individual receptor types are expressed on limited numbers of cells and thus can provide very specific regulation of an individual neural circuit and behavior. G protein coupled neurotransmitter receptors signal principally via the three types of heterotrimeric G proteins defined by the G alpha subunits Gαo, Gαq, and Gαs. Each of these G alpha proteins is found in all neurons plus some muscles. Gαo and Gαq signaling inhibit and activate neurotransmitter release, respectively. Gαs signaling, like Gαq signaling, promotes neurotransmitter release. Many details of the signaling mechanisms downstream of Gαq and Gαs have been delineated and are consistent with those of their mammalian orthologs. The details of the signaling mechanism downstream of Gαo remain a mystery. Forward genetic screens in C. elegans have identified new molecular components of neural G protein signaling mechanisms, including Regulators of G protein Signaling (RGS proteins) that inhibit signaling, a new Gαq effector (the Trio RhoGEF domain), and the RIC-8 protein that is required for neuronal Gα signaling. A model is presented in which G proteins sum up the variety of neuromodulator signals that impinge on a neuron to calculate its appropriate output level.
Collapse
Affiliation(s)
- Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT 06520 USA
| |
Collapse
|
50
|
Essmann CL, Ryan KR, Elmi M, Bryon-Dodd K, Porter A, Vaughan A, McMullan R, Nurrish S. Activation of RHO-1 in cholinergic motor neurons competes with dopamine signalling to control locomotion. PLoS One 2018; 13:e0204057. [PMID: 30240421 PMCID: PMC6150489 DOI: 10.1371/journal.pone.0204057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
The small GTPase RhoA plays a crucial role in the regulation of neuronal signalling to generate behaviour. In the developing nervous system RhoA is known to regulate the actin cytoskeleton, however the effectors of RhoA-signalling in adult neurons remain largely unidentified. We have previously shown that activation of the RhoA ortholog (RHO-1) in C. elegans cholinergic motor neurons triggers hyperactivity of these neurons and loopy locomotion with exaggerated body bends. This is achieved in part through increased diacylglycerol (DAG) levels and the recruitment of the synaptic vesicle protein UNC-13 to synaptic release sites, however other pathways remain to be identified. Dopamine, which is negatively regulated by the dopamine re-uptake transporter (DAT), has a central role in modulating locomotion in both humans and C. elegans. In this study we identify a new pathway in which RHO-1 regulates locomotory behaviour by repressing dopamine signalling, via DAT-1, linking these two pathways together. We observed an upregulation of dat-1 expression when RHO-1 is activated and show that loss of DAT-1 inhibits the loopy locomotion phenotype caused by RHO-1 activation. Reducing dopamine signalling in dat-1 mutants through mutations in genes involved in dopamine synthesis or in the dopamine receptor DOP-1 restores the ability of RHO-1 to trigger loopy locomotion in dat-1 mutants. Taken together, we show that negative regulation of dopamine signalling via DAT-1 is necessary for the neuronal RHO-1 pathway to regulate locomotion.
Collapse
Affiliation(s)
- Clara L. Essmann
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Katie R. Ryan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Muna Elmi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Kimberley Bryon-Dodd
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Andrew Porter
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Andrew Vaughan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Rachel McMullan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Stephen Nurrish
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|