1
|
Martinez MX, Mahler SV. Potential roles for microglia in drug addiction: Adolescent neurodevelopment and beyond. J Neuroimmunol 2025; 404:578600. [PMID: 40199197 DOI: 10.1016/j.jneuroim.2025.578600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Adolescence is a sensitive period for development of addiction-relevant brain circuits, and it is also when people typically start experimenting with drugs. Unfortunately, such substance use may cause lasting impacts on the brain, and might increase vulnerability to later-life addictions. Microglia are the brain's immune cells, but their roles in shaping neural connectivity and synaptic plasticity, especially in developmental sensitive periods like adolescence, may also contribute to addiction-related phenomena. Here, we overview how drugs of abuse impact microglia, and propose that they may play poorly-understood, but important roles in addiction vulnerability and progression.
Collapse
Affiliation(s)
- Maricela X Martinez
- Department of Neurobiology and Behavior, University of California, 2221 McGaugh Hall, Irvine, CA 92697, USA.
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, 2221 McGaugh Hall, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Chen ZP, Zhao X, Wang S, Cai R, Liu Q, Ye H, Wang MJ, Peng SY, Xue WX, Zhang YX, Li W, Tang H, Huang T, Zhang Q, Li L, Gao L, Zhou H, Hang C, Zhu JN, Li X, Liu X, Cong Q, Yan C. GABA-dependent microglial elimination of inhibitory synapses underlies neuronal hyperexcitability in epilepsy. Nat Neurosci 2025:10.1038/s41593-025-01979-2. [PMID: 40425792 DOI: 10.1038/s41593-025-01979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
Neuronal hyperexcitability is a common pathophysiological feature of many neurological diseases. Neuron-glia interactions underlie this process but the detailed mechanisms remain unclear. Here, we reveal a critical role of microglia-mediated selective elimination of inhibitory synapses in driving neuronal hyperexcitability. In epileptic mice of both sexes, hyperactive inhibitory neurons directly activate surveilling microglia via GABAergic signaling. In response, these activated microglia preferentially phagocytose inhibitory synapses, disrupting the balance between excitatory and inhibitory synaptic transmission and amplifying network excitability. This feedback mechanism depends on both GABA-GABAB receptor-mediated microglial activation and complement C3-C3aR-mediated microglial engulfment of inhibitory synapses, as pharmacological or genetic blockage of both pathways effectively prevents inhibitory synapse loss and ameliorates seizure symptoms in mice. Additionally, putative cell-cell interaction analyses of brain tissues from males and females with temporal lobe epilepsy reveal that inhibitory neurons induce microglial phagocytic states and inhibitory synapse loss. Our findings demonstrate that inhibitory neurons can directly instruct microglial states to control inhibitory synaptic transmission through a feedback mechanism, leading to the development of neuronal hyperexcitability in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Xiansen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Suji Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Qiangqiang Liu
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meng-Ju Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shi-Yu Peng
- School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, China
| | - Wei-Xuan Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hua Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tengfei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhou
- Department of Cell Biology, College of Life Sciences, Anhui Medical University, Hefei, China
| | - Chunhua Hang
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Xiangyu Liu
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China.
| |
Collapse
|
3
|
Liu S, Alexander KD, Francis MM. Neural Circuit Remodeling: Mechanistic Insights from Invertebrates. J Dev Biol 2024; 12:27. [PMID: 39449319 PMCID: PMC11503349 DOI: 10.3390/jdb12040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
As nervous systems mature, neural circuit connections are reorganized to optimize the performance of specific functions in adults. This reorganization of connections is achieved through a remarkably conserved phase of developmental circuit remodeling that engages neuron-intrinsic and neuron-extrinsic molecular mechanisms to establish mature circuitry. Abnormalities in circuit remodeling and maturation are broadly linked with a variety of neurodevelopmental disorders, including autism spectrum disorders and schizophrenia. Here, we aim to provide an overview of recent advances in our understanding of the molecular processes that govern neural circuit remodeling and maturation. In particular, we focus on intriguing mechanistic insights gained from invertebrate systems, such as the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. We discuss how transcriptional control mechanisms, synaptic activity, and glial engulfment shape specific aspects of circuit remodeling in worms and flies. Finally, we highlight mechanistic parallels across invertebrate and mammalian systems, and prospects for further advances in each.
Collapse
Affiliation(s)
- Samuel Liu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kellianne D. Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Cangalaya C, Sun W, Stoyanov S, Dunay IR, Dityatev A. Integrity of neural extracellular matrix is required for microglia-mediated synaptic remodeling. Glia 2024; 72:1874-1892. [PMID: 38946065 DOI: 10.1002/glia.24588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Microglia continuously remodel synapses, which are embedded in the extracellular matrix (ECM). However, the mechanisms, which govern this process remain elusive. To investigate the influence of the neural ECM in synaptic remodeling by microglia, we disrupted ECM integrity by injection of chondroitinase ABC (ChABC) into the retrosplenial cortex of healthy adult mice. Using in vivo two-photon microscopy we found that ChABC treatment increased microglial branching complexity and ECM phagocytic capacity and decreased spine elimination rate under basal conditions. Moreover, ECM attenuation largely prevented synaptic remodeling following synaptic stress induced by photodamage of single synaptic elements. These changes were associated with less stable and smaller microglial contacts at the synaptic damage sites, diminished deposition of calreticulin and complement proteins C1q and C3 at synapses and impaired expression of microglial CR3 receptor. Thus, our findings provide novel insights into the function of the neural ECM in deposition of complement proteins and synaptic remodeling by microglia.
Collapse
Affiliation(s)
- Carla Cangalaya
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Weilun Sun
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Stoyan Stoyanov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
5
|
Kaneko M, Hoseini MS, Waschek JA, Stryker MP. Stimulus-specific enhancement in mouse visual cortex requires GABA but not VIP-peptide release from VIP interneurons. J Neurophysiol 2024; 132:34-44. [PMID: 38774975 PMCID: PMC11383382 DOI: 10.1152/jn.00463.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
When adult mice are repeatedly exposed to a particular visual stimulus for as little as 1 h per day for several days while their visual cortex (V1) is in the high-gain state produced by locomotion, that specific stimulus elicits much stronger responses in V1 neurons for the following several weeks, even when measured in anesthetized animals. Such stimulus-specific enhancement (SSE) is not seen if locomotion is prevented. The effect of locomotion on cortical responses is mediated by vasoactive intestinal peptide (VIP) positive interneurons, which can release both the peptide and the inhibitory neurotransmitter GABA. Previous studies have examined the role of VIP-ergic interneurons, but none have distinguished the individual roles of peptide from GABA release. Here, we used genetic ablation to determine which of those molecules secreted by VIP-ergic neurons is responsible for SSE. SSE was not impaired by VIP deletion but was prevented by compromising release of GABA from VIP cells. This finding suggests that SSE may result from Hebbian mechanisms that remain present in adult V1.NEW & NOTEWORTHY Many neurons package and release a peptide along with a conventional neurotransmitter. The conventional view is that such peptides exert late, slow effects on plasticity. We studied a form of cortical plasticity that depends on the activity of neurons that express both vasoactive intestinal peptide (VIP) and the inhibitory neurotransmitter GABA. GABA release accounted for their action on plasticity, with no effect of deleting the peptide on this phenomenon.
Collapse
Affiliation(s)
- Megumi Kaneko
- Department of Physiology and Kavli Institute For Fundamental Neuroscience, University of California San Francisco, San Francisco, California, United States
| | - Mahmood S Hoseini
- Department of Physiology and Kavli Institute For Fundamental Neuroscience, University of California San Francisco, San Francisco, California, United States
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Michael P Stryker
- Department of Physiology and Kavli Institute For Fundamental Neuroscience, University of California San Francisco, San Francisco, California, United States
| |
Collapse
|
6
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
7
|
Rimbert S, Moreira JB, Xapelli S, Lévi S. Role of purines in brain development, from neuronal proliferation to synaptic refinement. Neuropharmacology 2023:109640. [PMID: 37348675 DOI: 10.1016/j.neuropharm.2023.109640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The purinergic system includes P1 and P2 receptors, which are activated by ATP and its metabolites. They are expressed in adult neuronal and glial cells and are crucial in brain function, including neuromodulation and neuronal signaling. As P1 and P2 receptors are expressed throughout embryogenesis and development, purinergic signaling also has an important role in the development of the peripheral and central nervous system. In this review, we present the expression pattern and activity of purinergic receptors and of their signaling pathways during embryonic and postnatal development of the nervous system. In particular, we review the involvement of the purinergic signaling in all the crucial steps of brain development i.e. in neural stem cell proliferation, neuronal differentiation and migration as well as in astrogliogenesis and oligodendrogenesis. Then, we review data showing a crucial role of the ATP and adenosine signaling pathways in the formation of the peripheral neuromuscular junction and of central GABAergic and glutamatergic synapses. Finally, we examine the consequences of deregulation of the purinergic system during development and discuss the therapeutic potential of targeting it at adult stage in diseases with reactivation of the ATP and adenosine pathway.
Collapse
Affiliation(s)
- Solen Rimbert
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, 75005, Paris, France
| | - João B Moreira
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, 75005, Paris, France; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular - João Lobo Antunes (iMM - JLA), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular - João Lobo Antunes (iMM - JLA), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sabine Lévi
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
8
|
Markiewicz-Gospodarek A, Markiewicz R, Borowski B, Dobrowolska B, Łoza B. Self-Regulatory Neuronal Mechanisms and Long-Term Challenges in Schizophrenia Treatment. Brain Sci 2023; 13:brainsci13040651. [PMID: 37190616 DOI: 10.3390/brainsci13040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Schizophrenia is a chronic and relapsing disorder that is characterized not only by delusions and hallucinations but also mainly by the progressive development of cognitive and social deficits. These deficits are related to impaired synaptic plasticity and impaired neurotransmission in the nervous system. Currently, technological innovations and medical advances make it possible to use various self-regulatory methods to improve impaired synaptic plasticity. To evaluate the therapeutic effect of various rehabilitation methods, we reviewed methods that modify synaptic plasticity and improve the cognitive and executive processes of patients with a diagnosis of schizophrenia. PubMed, Scopus, and Google Scholar bibliographic databases were searched with the keywords mentioned below. A total of 555 records were identified. Modern methods of schizophrenia therapy with neuroplastic potential, including neurofeedback, transcranial magnetic stimulation, transcranial direct current stimulation, vagus nerve stimulation, virtual reality therapy, and cognitive remediation therapy, were reviewed and analyzed. Since randomized controlled studies of long-term schizophrenia treatment do not exceed 2-3 years, and the pharmacological treatment itself has an incompletely estimated benefit-risk ratio, treatment methods based on other paradigms, including neuronal self-regulatory and neural plasticity mechanisms, should be considered. Methods available for monitoring neuroplastic effects in vivo (e.g., fMRI, neuropeptides in serum), as well as unfavorable parameters (e.g., features of the metabolic syndrome), enable individualized monitoring of the effectiveness of long-term treatment of schizophrenia.
Collapse
Affiliation(s)
| | - Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, 20-081 Lublin, Poland
| | - Bartosz Łoza
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
9
|
Ryner RF, Derera ID, Armbruster M, Kansara A, Sommer ME, Pirone A, Noubary F, Jacob M, Dulla CG. Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome. J Neurosci 2023; 43:1422-1440. [PMID: 36717229 PMCID: PMC9987578 DOI: 10.1523/jneurosci.0572-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/β-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via β-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the β-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased β-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which β-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.
Collapse
Affiliation(s)
- Rachael F Ryner
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Cell, Molecular, and Developmental Biology Graduate Program, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Isabel D Derera
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Anar Kansara
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mary E Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Antonella Pirone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Michele Jacob
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
10
|
Canetta SE, Holt ES, Benoit LJ, Teboul E, Sahyoun GM, Ogden RT, Harris AZ, Kellendonk C. Mature parvalbumin interneuron function in prefrontal cortex requires activity during a postnatal sensitive period. eLife 2022; 11:80324. [PMID: 36576777 PMCID: PMC9797185 DOI: 10.7554/elife.80324] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
In their seminal findings, Hubel and Wiesel identified sensitive periods in which experience can exert lasting effects on adult visual cortical functioning and behavior via transient changes in neuronal activity during development. Whether comparable sensitive periods exist for non-sensory cortices, such as the prefrontal cortex, in which alterations in activity determine adult circuit function and behavior is still an active area of research. Here, using mice we demonstrate that inhibition of prefrontal parvalbumin (PV)-expressing interneurons during the juvenile and adolescent period, results in persistent impairments in adult prefrontal circuit connectivity, in vivo network function, and behavioral flexibility that can be reversed by targeted activation of PV interneurons in adulthood. In contrast, reversible suppression of PV interneuron activity in adulthood produces no lasting effects. These findings identify an activity-dependent sensitive period for prefrontal circuit maturation and highlight how abnormal PV interneuron activity during development alters adult prefrontal circuit function and cognitive behavior.
Collapse
Affiliation(s)
- Sarah E Canetta
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, United States
| | - Emma S Holt
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, United States
| | - Laura J Benoit
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Molecular Therapeutics, New York Psychiatric Institute, New York, United States
| | - Eric Teboul
- Division of Molecular Therapeutics, New York Psychiatric Institute, New York, United States
| | - Gabriella M Sahyoun
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, United States
| | - R Todd Ogden
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, United States
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, United States
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, United States.,Division of Molecular Therapeutics, New York Psychiatric Institute, New York, United States.,Department of Molecular Pharmacology & Therapeutics, Columbia University Medical Center, New York, United States
| |
Collapse
|
11
|
Hublin JJ, Changeux JP. Paleoanthropology of cognition: an overview on Hominins brain evolution. C R Biol 2022; 345:57-75. [PMID: 36847465 DOI: 10.5802/crbiol.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Recent advances in neurobiology, paleontology, and paleogenetics allow us to associate changes in brain size and organization with three main "moments" of increased behavioral complexity and, more speculatively, language development. First, Australopiths display a significant increase in brain size relative to the great apes and an incipient extension of postnatal brain development. However, their cortical organization remains essentially similar to that of apes. Second, over the last 2 My, with two notable exceptions, brain size increases dramatically, partly in relation to changes in body size. Differential enlargements and reorganizations of cortical areas lay the foundation for the "language-ready" brain and cumulative culture of later Homo species. Third, in Homo sapiens, brain size remains fairly stable over the last 300,000 years but an important cerebral reorganization takes place. It affects the frontal and temporal lobes, the parietal areas and the cerebellum and resulted in a more globular shape of the brain. These changes are associated, among others, with an increased development of long-distance-horizontal-connections. A few regulatory genetic events took place in the course of this hominization process with, in particular, enhanced neuronal proliferation and global brain connectivity.
Collapse
|
12
|
Abstract
Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.
Collapse
|
13
|
Benoit LJ, Canetta S, Kellendonk C. Thalamocortical Development: A Neurodevelopmental Framework for Schizophrenia. Biol Psychiatry 2022; 92:491-500. [PMID: 35550792 PMCID: PMC9999366 DOI: 10.1016/j.biopsych.2022.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Adolescence is a period of increased vulnerability for the development of psychiatric disorders, including schizophrenia. The prefrontal cortex (PFC) undergoes substantial maturation during this period, and PFC dysfunction is central to cognitive impairments in schizophrenia. As a result, impaired adolescent maturation of the PFC has been proposed as a mechanism in the etiology of the disorder and its cognitive symptoms. In adulthood, PFC function is tightly linked to its reciprocal connections with the thalamus, and acutely inhibiting thalamic inputs to the PFC produces impairments in PFC function and cognitive deficits. Here, we propose that thalamic activity is equally important during adolescence because it is required for proper PFC circuit development. Because thalamic abnormalities have been observed early in the progression of schizophrenia, we further postulate that adolescent thalamic dysfunction can have long-lasting consequences for PFC function and cognition in patients with schizophrenia.
Collapse
Affiliation(s)
- Laura J Benoit
- Graduate Program in Neurobiology and Behavior, Columbia University Medical Center, New York, New York
| | - Sarah Canetta
- Department of Psychiatry, Columbia University Medical Center, New York, New York; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, New York; Department of Pharmacology, Columbia University Medical Center, New York, New York; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
14
|
Döhne N, Falck A, Janach GMS, Byvaltcev E, Strauss U. Interferon-γ augments GABA release in the developing neocortex via nitric oxide synthase/soluble guanylate cyclase and constrains network activity. Front Cell Neurosci 2022; 16:913299. [PMID: 36035261 PMCID: PMC9401097 DOI: 10.3389/fncel.2022.913299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Interferon-γ (IFN-γ), a cytokine with neuromodulatory properties, has been shown to enhance inhibitory transmission. Because early inhibitory neurotransmission sculpts functional neuronal circuits, its developmental alteration may have grave consequences. Here, we investigated the acute effects of IFN-γ on γ-amino-butyric acid (GABA)ergic currents in layer 5 pyramidal neurons of the somatosensory cortex of rats at the end of the first postnatal week, a period of GABA-dependent cortical maturation. IFN-γ acutely increased the frequency and amplitude of spontaneous/miniature inhibitory postsynaptic currents (s/mIPSC), and this could not be reversed within 30 min. Neither the increase in amplitude nor frequency of IPSCs was due to upregulated interneuron excitability as revealed by current clamp recordings of layer 5 interneurons labeled with VGAT-Venus in transgenic rats. As we previously reported in more mature animals, IPSC amplitude increase upon IFN-γ activity was dependent on postsynaptic protein kinase C (PKC), indicating a similar activating mechanism. Unlike augmented IPSC amplitude, however, we did not consistently observe an increased IPSC frequency in our previous studies on more mature animals. Focusing on increased IPSC frequency, we have now identified a different activating mechanism-one that is independent of postsynaptic PKC but is dependent on inducible nitric oxide synthase (iNOS) and soluble guanylate cyclase (sGC). In addition, IFN-γ shifted short-term synaptic plasticity toward facilitation as revealed by a paired-pulse paradigm. The latter change in presynaptic function was not reproduced by the application of a nitric oxide donor. Functionally, IFN-γ-mediated alterations in GABAergic transmission overall constrained early neocortical activity in a partly nitric oxide-dependent manner as revealed by microelectrode array field recordings in brain slices analyzed with a spike-sorting algorithm. In summary, with IFN-γ-induced, NO-dependent augmentation of spontaneous GABA release, we have here identified a mechanism by which inflammation in the central nervous system (CNS) plausibly modulates neuronal development.
Collapse
Affiliation(s)
- Noah Döhne
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alice Falck
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriel M. S. Janach
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Egor Byvaltcev
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neuroscience, Lobachevsky State, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ulf Strauss
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Arutiunian V, Arcara G, Buyanova I, Gomozova M, Dragoy O. The age-related changes in 40 Hz Auditory Steady-State Response and sustained Event-Related Fields to the same amplitude-modulated tones in typically developing children: A magnetoencephalography study. Hum Brain Mapp 2022; 43:5370-5383. [PMID: 35833318 PMCID: PMC9812253 DOI: 10.1002/hbm.26013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/15/2023] Open
Abstract
Recent studies have revealed that gamma-band oscillatory and transient evoked potentials may change with age during childhood. It is hypothesized that these changes can be associated with a maturation of GABAergic neurotransmission and, subsequently, the age-related changes of excitation-inhibition balance in the neural circuits. One of the reliable paradigms for investigating these effects in the auditory cortex is 40 Hz Auditory Steady-State Response (ASSR), where participants are presented with the periodic auditory stimuli. It is known that such stimuli evoke two types of responses in magnetoencephalography (MEG)-40 Hz steady-state gamma response (or 40 Hz ASSR) and auditory evoked response called sustained Event-Related Field (ERF). Although several studies have been conducted in children, focusing on the changes of 40 Hz ASSR with age, almost nothing is known about the age-related changes of the sustained ERF to the same periodic stimuli and their relationships with changes in the gamma strength. Using MEG, we investigated the association between 40 Hz steady-state gamma response and sustained ERF response to the same stimuli and also their age-related changes in the group of 30 typically developing 7-to-12-year-old children. The results revealed a tight relationship between 40 Hz ASSR and ERF, indicating that the age-related increase in strength of 40 Hz ASSR was associated with the age-related decrease of the amplitude of ERF. These effects were discussed in the light of the maturation of the GABAergic system and excitation-inhibition balance development, which may contribute to the changes in ASSR and ERF.
Collapse
Affiliation(s)
| | | | | | | | - Olga Dragoy
- Center for Language and BrainHSE UniversityMoscowRussia,Institute of LinguisticsRussian Academy of SciencesMoscowRussia
| |
Collapse
|
16
|
Abstract
Infection with SARS-CoV-2, the causative agent of the COVID-19 pandemic, originated in China and quickly spread across the globe. Despite tremendous economic and healthcare devastation, research on this virus has contributed to a better understanding of numerous molecular pathways, including those involving γ-aminobutyric acid (GABA), that will positively impact medical science, including neuropsychiatry, in the post-pandemic era. SARS-CoV-2 primarily enters the host cells through the renin–angiotensin system’s component named angiotensin-converting enzyme-2 (ACE-2). Among its many functions, this protein upregulates GABA, protecting not only the central nervous system but also the endothelia, the pancreas, and the gut microbiota. SARS-CoV-2 binding to ACE-2 usurps the neuronal and non-neuronal GABAergic systems, contributing to the high comorbidity of neuropsychiatric illness with gut dysbiosis and endothelial and metabolic dysfunctions. In this perspective article, we take a closer look at the pathology emerging from the viral hijacking of non-neuronal GABA and summarize potential interventions for restoring these systems.
Collapse
|
17
|
Bukina ES, Kondratyev NV, Kozin SV, Golimbet VE, Artyuhov AS, Dashinimaev EB. SLC6A1 and Neuropsychiatric Diseases: The Role of Mutations and Prospects for Treatment with Genome Editing Systems. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Micheva KD, Kiraly M, Perez MM, Madison DV. Extensive Structural Remodeling of the Axonal Arbors of Parvalbumin Basket Cells during Development in Mouse Neocortex. J Neurosci 2021; 41:9326-9339. [PMID: 34583957 PMCID: PMC8580153 DOI: 10.1523/jneurosci.0871-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Parvalbumin-containing (PV+) basket cells are specialized cortical interneurons that regulate the activity of local neuronal circuits with high temporal precision and reliability. To understand how the PV+ interneuron connectivity underlying these functional properties is established during development, we used array tomography to map pairs of synaptically connected PV+ interneurons and postsynaptic neurons from the neocortex of mice of both sexes. We focused on the axon-myelin unit of the PV+ interneuron and quantified the number of synapses onto the postsynaptic neuron, length of connecting axonal paths, and their myelination at different time points between 2 weeks and 7 months of age. We find that myelination of the proximal axon occurs very rapidly during the third and, to a lesser extent, fourth postnatal weeks. The number of synaptic contacts made by the PV+ interneuron on its postsynaptic partner meanwhile is significantly reduced to about one-third by the end of the first postnatal month. The number of autapses, the synapses that PV+ interneurons form on themselves, however, remains constant throughout the examined period. Axon reorganizations continue beyond postnatal month 2, with the postsynaptic targets of PV+ interneurons gradually shifting to more proximal locations, and the length of axonal paths and their myelin becoming conspicuously uniform per connection. These continued microcircuit refinements likely provide the structural substrate for the robust inhibitory effects and fine temporal precision of adult PV+ basket cells.SIGNIFICANCE STATEMENT The axon of adult parvalbumin-containing (PV+) interneurons is highly specialized for fast and reliable neurotransmission. It is myelinated and forms synapses mostly onto the cell bodies and proximal dendrites of postsynaptic neurons for maximal impact. In this study, we follow the development of the PV+ interneuron axon, its myelination and synapse formation, revealing a rapid sequence of axonal reorganization, myelination of the PV+ interneuron proximal axon, and pruning of almost two-thirds of the synapses in an individual connection. This is followed by a prolonged period of axon refinement and additional myelination leading to a remarkable precision of connections in the adult mouse cortex, consistent with the temporal precision and fidelity of PV+ interneuron action.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Marc M Perez
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| |
Collapse
|
19
|
Gomez-Castro F, Zappettini S, Pressey JC, Silva CG, Russeau M, Gervasi N, Figueiredo M, Montmasson C, Renner M, Canas PM, Gonçalves FQ, Alçada-Morais S, Szabó E, Rodrigues RJ, Agostinho P, Tomé AR, Caillol G, Thoumine O, Nicol X, Leterrier C, Lujan R, Tyagarajan SK, Cunha RA, Esclapez M, Bernard C, Lévi S. Convergence of adenosine and GABA signaling for synapse stabilization during development. Science 2021; 374:eabk2055. [PMID: 34735259 DOI: 10.1126/science.abk2055] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ferran Gomez-Castro
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, Paris, France
| | - Stefania Zappettini
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Jessica C Pressey
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, Paris, France.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Carla G Silva
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marion Russeau
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, Paris, France
| | - Nicolas Gervasi
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, Paris, France.,Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
| | - Marta Figueiredo
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Claire Montmasson
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, Paris, France
| | - Marianne Renner
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, Paris, France
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sofia Alçada-Morais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eszter Szabó
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ricardo J Rodrigues
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ghislaine Caillol
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Olivier Thoumine
- Université Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Xavier Nicol
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, Paris, France
| | | | - Rafael Lujan
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, 02008 Albacete, Spain
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Monique Esclapez
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Christophe Bernard
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Sabine Lévi
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, Paris, France
| |
Collapse
|
20
|
Postnatal Sox6 Regulates Synaptic Function of Cortical Parvalbumin-Expressing Neurons. J Neurosci 2021; 41:8876-8886. [PMID: 34503995 PMCID: PMC8549537 DOI: 10.1523/jneurosci.0021-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical parvalbumin-expressing (Pvalb+) neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. This class of inhibitory neurons undergoes extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. While several transcription factors, such as Nkx2-1, Lhx6, and Sox6, are known to be necessary for the differentiation of progenitors into Pvalb+ neurons, which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons' innervation and synaptic function remains largely unknown. Because Sox6 is continuously expressed in Pvalb+ neurons until adulthood, we used conditional knock-out strategies to investigate its putative role in the postnatal maturation and synaptic function of cortical Pvalb+ neurons in mice of both sexes. We found that early postnatal loss of Sox6 in Pvalb+ neurons leads to failure of synaptic bouton growth, whereas later removal in mature Pvalb+ neurons in the adult causes shrinkage of already established synaptic boutons. Paired recordings between Pvalb+ neurons and pyramidal neurons revealed reduced release probability and increased failure rate of Pvalb+ neurons' synaptic output. Furthermore, Pvalb+ neurons lacking Sox6 display reduced expression of full-length tropomyosin-receptor kinase B (TrkB), a key modulator of GABAergic transmission. Once re-expressed in neurons lacking Sox6, TrkB was sufficient to rescue the morphologic synaptic phenotype. Finally, we showed that Sox6 mRNA levels were increased by motor training. Our data thus suggest a constitutive role for Sox6 in the maintenance of synaptic output from Pvalb+ neurons into adulthood. SIGNIFICANCE STATEMENT Cortical parvalbumin-expressing (Pvalb+) inhibitory neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. These inhibitory neurons undergo extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. However, it remains largely unknown which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons. Here, we show that the transcription factor Sox6 cell-autonomously regulates the synaptic maintenance and output of Pvalb+ neurons until adulthood, leaving unaffected other maturational features of this neuronal population.
Collapse
|
21
|
Favuzzi E, Huang S, Saldi GA, Binan L, Ibrahim LA, Fernández-Otero M, Cao Y, Zeine A, Sefah A, Zheng K, Xu Q, Khlestova E, Farhi SL, Bonneau R, Datta SR, Stevens B, Fishell G. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 2021; 184:4048-4063.e32. [PMID: 34233165 PMCID: PMC9122259 DOI: 10.1016/j.cell.2021.06.018] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023]
Abstract
Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.
Collapse
Affiliation(s)
- Emilia Favuzzi
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Shuhan Huang
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Giuseppe A Saldi
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Loïc Binan
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Leena A Ibrahim
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marian Fernández-Otero
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuqing Cao
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ayman Zeine
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Adwoa Sefah
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Karen Zheng
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Qing Xu
- New York University Abu Dhabi, Abu Dhabi, UAE
| | - Elizaveta Khlestova
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Samouil L Farhi
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA; Center for Data Science, New York University, New York, NY 10011, USA
| | - Sandeep Robert Datta
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA 02115, USA
| | - Gord Fishell
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
22
|
Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat Commun 2021; 12:3653. [PMID: 34135323 PMCID: PMC8209106 DOI: 10.1038/s41467-021-23939-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/20/2021] [Indexed: 11/08/2022] Open
Abstract
The Mechanistic Target Of Rapamycin Complex 1 (mTORC1) pathway controls several aspects of neuronal development. Mutations in regulators of mTORC1, such as Tsc1 and Tsc2, lead to neurodevelopmental disorders associated with autism, intellectual disabilities and epilepsy. The correct development of inhibitory interneurons is crucial for functional circuits. In particular, the axonal arborisation and synapse density of parvalbumin (PV)-positive GABAergic interneurons change in the postnatal brain. How and whether mTORC1 signaling affects PV cell development is unknown. Here, we show that Tsc1 haploinsufficiency causes a premature increase in terminal axonal branching and bouton density formed by mutant PV cells, followed by a loss of perisomatic innervation in adult mice. PV cell-restricted Tsc1 haploinsufficient and knockout mice show deficits in social behavior. Finally, we identify a sensitive period during the third postnatal week during which treatment with the mTOR inhibitor Rapamycin rescues deficits in both PV cell innervation and social behavior in adult conditional haploinsufficient mice. Our findings reveal a role of mTORC1 signaling in the regulation of the developmental time course and maintenance of cortical PV cell connectivity and support a mechanistic basis for the targeted rescue of autism-related behaviors in disorders associated with deregulated mTORC1 signaling.
Collapse
|
23
|
Porges EC, Jensen G, Foster B, Edden RAE, Puts NAJ. The trajectory of cortical GABA across the lifespan, an individual participant data meta-analysis of edited MRS studies. eLife 2021; 10:e62575. [PMID: 34061022 PMCID: PMC8225386 DOI: 10.7554/elife.62575] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/30/2021] [Indexed: 01/18/2023] Open
Abstract
γ-Aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the human brain and can be measured with magnetic resonance spectroscopy (MRS). Conflicting accounts report decreases and increases in cortical GABA levels across the lifespan. This incompatibility may be an artifact of the size and age range of the samples utilized in these studies. No single study to date has included the entire lifespan. In this study, eight suitable datasets were integrated to generate a model of the trajectory of frontal GABA estimates (as reported through edited MRS; both expressed as ratios and in institutional units) across the lifespan. Data were fit using both a log-normal curve and a nonparametric spline as regression models using a multi-level Bayesian model utilizing the Stan language. Integrated data show that an asymmetric lifespan trajectory of frontal GABA measures involves an early period of increase, followed by a period of stability during early adulthood, with a gradual decrease during adulthood and aging that is described well by both spline and log-normal models. The information gained will provide a general framework to inform expectations of future studies based on the age of the population being studied.
Collapse
Affiliation(s)
- Eric C Porges
- Center for Cognitive Aging and Memory, University of FloridaGainesvilleUnited States
- McKnight Brain Research Foundation, University of FloridaUnited StatesUnited States
- Department of Clinical and Health Psychology, University of FloridaGainesvilleUnited States
| | - Greg Jensen
- Department of Neuroscience, Columbia University Medical CenterNew YorkUnited States
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Brent Foster
- Center for Cognitive Aging and Memory, University of FloridaGainesvilleUnited States
- McKnight Brain Research Foundation, University of FloridaUnited StatesUnited States
- Department of Clinical and Health Psychology, University of FloridaGainesvilleUnited States
| | - Richard AE Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimoreUnited States
| | - Nicolaas AJ Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimoreUnited States
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
24
|
Jovasevic V, Radulovic J. High ethanol preference and dissociated memory are co-occurring phenotypes associated with hippocampal GABA AR-δ receptor levels. Neurobiol Learn Mem 2021; 183:107459. [PMID: 34015441 DOI: 10.1016/j.nlm.2021.107459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 11/20/2022]
Abstract
Alcohol use disorder (AUD) frequently co-occurs with dissociative disorders and disorders with dissociative symptoms, suggesting a common neurobiological basis. It has been proposed that facilitated information processing under the influence of alcohol, resulting in the formation of dissociated memories, might be an important factor controlling alcohol use. Access to such memories is facilitated under the effect of alcohol, thus further reinforcing alcohol use. To interrogate possible mechanisms associated with these phenotypes, we used a mouse model of dissociative amnesia, combined with a high-alcohol preferring (HAP) model of AUD. Dissociated memory was induced by activation of hippocampal extrasynaptic GABA type A receptor delta subunits (GABAAR-δ), which control tonic inhibition and to which ethanol binds with high affinity. Increased ethanol preference was associated with increased propensity to form dissociated memories dependent on GABAAR-δ in the dorsal hippocampus (DH). Furthermore, the DH level of GABAAR-δ protein, but not mRNA, was increased in HAP mice, and was inversely correlated to the level of miR-365-3p, suggesting an miRNA-mediated post-transcriptional mechanism contributing to elevated GABAAR-δ. The observed changes of DH GABAAR-δ were associated with a severe reduction of excitatory projections stemming from GABAAR-δ-containing pyramidal neurons in the subiculum and terminating in the mammillary body. These results suggest that both molecular and circuit dysfunction involving hippocampal GABAAR-δ receptors might contribute to the co-occurrence of ethanol preference and dissociated information processing.
Collapse
Affiliation(s)
| | - Jelena Radulovic
- Department of Pharmacology, Northwestern University, Chicago, IL, USA; Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
25
|
Jahangir M, Zhou JS, Lang B, Wang XP. GABAergic System Dysfunction and Challenges in Schizophrenia Research. Front Cell Dev Biol 2021; 9:663854. [PMID: 34055795 PMCID: PMC8160111 DOI: 10.3389/fcell.2021.663854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Despite strenuous studies since the last century, the precise cause and pathology of schizophrenia are still largely unclear and arguably controversial. Although many hypotheses have been proposed to explain the etiology of schizophrenia, the definitive genes or core pathological mechanism remains absent. Among these hypotheses, however, GABAergic dysfunction stands out as a common feature consistently reported in schizophrenia, albeit a satisfactory mechanism that could be exploited for therapeutic purpose has not been developed yet. This review is focusing on the progress made to date in the field in terms of understanding the mechanisms involving dysfunctional GABAergic system and loops identified in schizophrenia research.
Collapse
Affiliation(s)
- Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian-Song Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Xiao-Ping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
26
|
Pujol J, Blanco-Hinojo L, Macia D, Martínez-Vilavella G, Deus J, Pérez-Sola V, Cardoner N, Soriano-Mas C, Sunyer J. Differences between the child and adult brain in the local functional structure of the cerebral cortex. Neuroimage 2021; 237:118150. [PMID: 33984493 DOI: 10.1016/j.neuroimage.2021.118150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022] Open
Abstract
Imaging studies on neuronal network formation provide relevant information as to how the brain matures during adolescence. We used a novel imaging approach combining well-established MRI measures of local functional connectivity that jointly provide qualitatively different information relating to the functional structure of the cerebral cortex. To investigate the adolescent transition into adulthood, we comparatively assessed 169 preadolescents aged 8-12 years and 121 healthy adults. Whole-brain functional connectivity maps were generated using multi-distance measures of intracortical neural activity coupling defined within iso-distant local areas. Such Iso-Distant Average Correlation (IDAC) measures therefore represent the average temporal correlation of a given brain unit, or voxel, with other units situated at increasingly separated iso-distant intervals. The results indicated that between-group differences in the functional structure of the cerebral cortex are extensive and implicate part of the lateral prefrontal cortex, a medial frontal/anterior cingulate region, the superior parietal lobe extending to the somatosensory strip and posterior cingulate cortex, and local connections within the visual cortex, hippocampus, amygdala and insula. We thus provided detail of the cerebral cortex functional structure maturation during the transition to adulthood, which may serve to establish more accurate links between adolescent performance gains and cerebral cortex maturation. Remarkably, our study provides new information as to the cortical maturation processes in prefrontal areas relevant to executive functioning and rational learning, medial frontal areas playing an active role in the cognitive appraisal of emotion and anxiety, and superior parietal cortices strongly associated with bodily self-consciousness in the context of body image formation.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain.
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Didac Macia
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain
| | - Gerard Martínez-Vilavella
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Spain
| | - Víctor Pérez-Sola
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Hospital del Mar-IMIM, Spain; Department of Psychiatry, Autonomous University of Barcelona, Barcelona, Spain
| | - Narcís Cardoner
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain; Mental Health Department, Parc Taulí Sabadell University Hospital, Spain; Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Spain
| | - Carles Soriano-Mas
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Spain; Department of Psychobiology and Methodology in Health Sciences, Autonomous University of Barcelona, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
27
|
Iannone AF, De Marco García NV. The Emergence of Network Activity Patterns in the Somatosensory Cortex - An Early Window to Autism Spectrum Disorders. Neuroscience 2021; 466:298-309. [PMID: 33887384 DOI: 10.1016/j.neuroscience.2021.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022]
Abstract
Across mammalian species, patterned activity in neural populations is a prominent feature of developing sensory cortices. Numerous studies have long appreciated the diversity of these patterns, characterizing their differences in spatial and temporal dynamics. In the murine somatosensory cortex, neuronal co-activation is thought to guide the formation of sensory maps and prepare the cortex for sensory processing after birth. While pioneering studies deftly utilized slice electrophysiology and unit recordings to characterize correlated activity, a detailed understanding of the underlying circuits remains poorly understood. More recently, advances in in vivo calcium imaging in awake mouse pups and increasing genetic tractability of neuronal types have allowed unprecedented manipulation of circuit components at select developmental timepoints. These novel approaches have proven fundamental in uncovering the identity of neurons engaged in correlated activity during development. In particular, recent studies have highlighted interneurons as key in refining the spatial extent and temporal progression of patterned activity. Here, we discuss how emergent synchronous activity across the first postnatal weeks is shaped by underlying gamma aminobutyric acid (GABA)ergic contributors in the somatosensory cortex. Further, the importance of participation in specific activity patterns per se for neuronal maturation and perdurance will be of particular highlight in this survey of recent literature. Finally, we underscore how aberrant neuronal synchrony and disrupted inhibitory interneuron activity underlie sensory perturbations in neurodevelopmental disorders, particularly Autism Spectrum Disorders (ASDs), emphasizing the importance of future investigative approaches that incorporate the spatiotemporal features of patterned activity alongside the cellular components to probe disordered circuit assembly.
Collapse
Affiliation(s)
- Andrew F Iannone
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
28
|
Changeux JP, Goulas A, Hilgetag CC. A Connectomic Hypothesis for the Hominization of the Brain. Cereb Cortex 2021; 31:2425-2449. [PMID: 33367521 PMCID: PMC8023825 DOI: 10.1093/cercor/bhaa365] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cognitive abilities of the human brain, including language, have expanded dramatically in the course of our recent evolution from nonhuman primates, despite only minor apparent changes at the gene level. The hypothesis we propose for this paradox relies upon fundamental features of human brain connectivity, which contribute to a characteristic anatomical, functional, and computational neural phenotype, offering a parsimonious framework for connectomic changes taking place upon the human-specific evolution of the genome. Many human connectomic features might be accounted for by substantially increased brain size within the global neural architecture of the primate brain, resulting in a larger number of neurons and areas and the sparsification, increased modularity, and laminar differentiation of cortical connections. The combination of these features with the developmental expansion of upper cortical layers, prolonged postnatal brain development, and multiplied nongenetic interactions with the physical, social, and cultural environment gives rise to categorically human-specific cognitive abilities including the recursivity of language. Thus, a small set of genetic regulatory events affecting quantitative gene expression may plausibly account for the origins of human brain connectivity and cognition.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France
- Communications Cellulaires, Collège de France, 75005 Paris, France
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
29
|
Loser D, Hinojosa MG, Blum J, Schaefer J, Brüll M, Johansson Y, Suciu I, Grillberger K, Danker T, Möller C, Gardner I, Ecker GF, Bennekou SH, Forsby A, Kraushaar U, Leist M. Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons. Arch Toxicol 2021; 95:2081-2107. [PMID: 33778899 PMCID: PMC8166715 DOI: 10.1007/s00204-021-03031-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022]
Abstract
Neonicotinoid pesticides, originally developed to target the insect nervous system, have been reported to interact with human receptors and to activate rodent neurons. Therefore, we evaluated in how far these compounds may trigger signaling in human neurons, and thus, affect the human adult or developing nervous system. We used SH-SY5Y neuroblastoma cells as established model of nicotinic acetylcholine receptor (nAChR) signaling. In parallel, we profiled dopaminergic neurons, generated from LUHMES neuronal precursor cells, as novel system to study nAChR activation in human post-mitotic neurons. Changes of the free intracellular Ca2+ concentration ([Ca2+]i) were used as readout, and key findings were confirmed by patch clamp recordings. Nicotine triggered typical neuronal signaling responses that were blocked by antagonists, such as tubocurarine and mecamylamine. Pharmacological approaches suggested a functional expression of α7 and non-α7 nAChRs on LUHMES cells. In this novel test system, the neonicotinoids acetamiprid, imidacloprid, clothianidin and thiacloprid, but not thiamethoxam and dinotefuran, triggered [Ca2+]i signaling at 10-100 µM. Strong synergy of the active neonicotinoids (at low micromolar concentrations) with the α7 nAChR-positive allosteric modulator PNU-120596 was observed in LUHMES and SH-SY5Y cells, and specific antagonists fully inhibited such signaling. To provide a third line of evidence for neonicotinoid signaling via nAChR, we studied cross-desensitization: pretreatment of LUHMES and SH-SY5Y cells with active neonicotinoids (at 1-10 µM) blunted the signaling response of nicotine. The pesticides (at 3-30 µM) also blunted the response to the non-α7 agonist ABT 594 in LUHMES cells. These data show that human neuronal cells are functionally affected by low micromolar concentrations of several neonicotinoids. An effect of such signals on nervous system development is a toxicological concern.
Collapse
Affiliation(s)
- Dominik Loser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- NMI TT GmbH, 72770, Reutlingen, Germany
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Maria G Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Blum
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Jasmin Schaefer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- NMI TT GmbH, 72770, Reutlingen, Germany
| | - Markus Brüll
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Karin Grillberger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Timm Danker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- NMI TT GmbH, 72770, Reutlingen, Germany
| | - Clemens Möller
- Life Sciences Faculty, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Iain Gardner
- CERTARA UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
30
|
Chakraborty R, Vijay Kumar MJ, Clement JP. Critical aspects of neurodevelopment. Neurobiol Learn Mem 2021; 180:107415. [PMID: 33647449 DOI: 10.1016/j.nlm.2021.107415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Organisms have the unique ability to adapt to their environment by making use of external inputs. In the process, the brain is shaped by experiences that go hand-in-hand with optimisation of neural circuits. As such, there exists a time window for the development of different brain regions, each unique for a particular sensory modality, wherein the propensity of forming strong, irreversible connections are high, referred to as a critical period of development. Over the years, this domain of neurodevelopmental research has garnered considerable attention from many scientists, primarily because of the intensive activity-dependent nature of development. This review discusses the cellular, molecular, and neurophysiological bases of critical periods of different sensory modalities, and the disorders associated in cases the regulators of development are dysfunctional. Eventually, the neurobiological bases of the behavioural abnormalities related to developmental pathologies are discussed. A more in-depth insight into the development of the brain during the critical period of plasticity will eventually aid in developing potential therapeutics for several neurodevelopmental disorders that are categorised under critical period disorders.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India.
| |
Collapse
|
31
|
Duncan BW, Murphy KE, Maness PF. Molecular Mechanisms of L1 and NCAM Adhesion Molecules in Synaptic Pruning, Plasticity, and Stabilization. Front Cell Dev Biol 2021; 9:625340. [PMID: 33585481 PMCID: PMC7876315 DOI: 10.3389/fcell.2021.625340] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian brain circuits are wired by dynamic formation and remodeling during development to produce a balance of excitatory and inhibitory synapses. Synaptic regulation is mediated by a complex network of proteins including immunoglobulin (Ig)- class cell adhesion molecules (CAMs), structural and signal-transducing components at the pre- and post-synaptic membranes, and the extracellular protein matrix. This review explores the current understanding of developmental synapse regulation mediated by L1 and NCAM family CAMs. Excitatory and inhibitory synapses undergo formation and remodeling through neuronal CAMs and receptor-ligand interactions. These responses result in pruning inactive dendritic spines and perisomatic contacts, or synaptic strengthening during critical periods of plasticity. Ankyrins engage neural adhesion molecules of the L1 family (L1-CAMs) to promote synaptic stability. Chondroitin sulfates, hyaluronic acid, tenascin-R, and linker proteins comprising the perineuronal net interact with L1-CAMs and NCAM, stabilizing synaptic contacts and limiting plasticity as critical periods close. Understanding neuronal adhesion signaling and synaptic targeting provides insight into normal development as well as synaptic connectivity disorders including autism, schizophrenia, and intellectual disability.
Collapse
Affiliation(s)
- Bryce W Duncan
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Kelsey E Murphy
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
32
|
Bell T, Stokoe M, Harris AD. Macromolecule suppressed GABA levels show no relationship with age in a pediatric sample. Sci Rep 2021; 11:722. [PMID: 33436899 PMCID: PMC7804253 DOI: 10.1038/s41598-020-80530-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
The inhibitory neurotransmitter γ-Aminobutyric acid (GABA) plays a crucial role in cortical development. Therefore, characterizing changes in GABA levels during development has important implications for the study of healthy development and developmental disorders. Brain GABA levels can be measured non-invasively using GABA-edited magnetic resonance spectroscopy (MRS). However, the most commonly used editing technique to measure GABA results in contamination of the GABA signal with macromolecules (MM). Therefore, GABA measured using this technique is often referred to as GABA+ . While few in number, previous studies have shown GABA+ levels increase with age during development. However, these studies are unable to specify whether it is specifically GABA that is increasing or, instead, if levels of MM increase. In this study, we use a GABA-editing technique specifically designed to suppress the MM signal (MM-supp GABA). We find no relationship between MM-supp GABA and age in healthy children aged 7-14 years. These findings suggest that the relationship between GABA+ and age is driven by changes in MM levels, not by changes in GABA levels. Moreover, these findings highlight the importance of accounting for MM levels in MRS quantification.
Collapse
Affiliation(s)
- Tiffany Bell
- Department of Radiology, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Office B4-510, Calgary, AB, T3B 6A9, Canada.
| | - Mehak Stokoe
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Office B4-510, Calgary, AB, T3B 6A9, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Drive, Office B4-510, Calgary, AB, T3B 6A9, Canada
| |
Collapse
|
33
|
Gour A, Boergens KM, Heike N, Hua Y, Laserstein P, Song K, Helmstaedter M. Postnatal connectomic development of inhibition in mouse barrel cortex. Science 2020; 371:science.abb4534. [PMID: 33273061 DOI: 10.1126/science.abb4534] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.
Collapse
Affiliation(s)
- Anjali Gour
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kevin M Boergens
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Natalie Heike
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Yunfeng Hua
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Philip Laserstein
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kun Song
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Moritz Helmstaedter
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
34
|
Miyanishi K, Sato A, Kihara N, Utsunomiya R, Tanaka J. Synaptic elimination by microglia and disturbed higher brain functions. Neurochem Int 2020; 142:104901. [PMID: 33181238 DOI: 10.1016/j.neuint.2020.104901] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022]
Abstract
Microglial cells in normal mature brains have long been considered to be cells that are resting until pathological events take place, activating the microglial cells. However, it is currently well known that the microglia that have resting ramified morphology in normal mature brains move actively in the brain parenchyma and phagocytose synapses, thus forming and maintaining neural circuits. This review summarizes recent findings on the roles of microglia in mature brains, with special reference to phagocytosis of synapses and higher brain functions. Phagocytic elimination of synapses by microglia may affect the balance between excitatory and inhibitory synaptic transmission, termed the E/I balance. When impaired synaptic elimination by microglia leads to disturbed E/I balance, various problems may follow in brain functions: in memory and cognitive functions, sleep, movement, social behaviors, and thinking. In addition to the roles of microglia in normal developing and mature brains, impaired microglial phagocytosis functions also correlate with disturbances to these higher brain functions that are caused by neurological, mental, and developmental disorders; Parkinson's and Alzheimer's diseases, autism spectrum disorder, attention deficit/hyperactivity disorder, and schizophrenia.
Collapse
Affiliation(s)
- Kazuya Miyanishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Arisa Sato
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Nanako Kihara
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Ryo Utsunomiya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.
| |
Collapse
|
35
|
Cuentas-Condori A, Miller Rd DM. Synaptic remodeling, lessons from C. elegans. J Neurogenet 2020; 34:307-322. [PMID: 32808848 PMCID: PMC7855814 DOI: 10.1080/01677063.2020.1802725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
Sydney Brenner's choice of Caenorhabditis elegans as a model organism for understanding the nervous system has accelerated discoveries of gene function in neural circuit development and behavior. In this review, we discuss a striking example of synaptic remodeling in the C. elegans motor circuit in which DD class motor neurons effectively reverse polarity as presynaptic and postsynaptic domains at opposite ends of the DD neurite switch locations. Originally revealed by EM reconstruction conducted over 40 years ago, DD remodeling has since been investigated by live cell imaging methods that exploit the power of C. elegans genetics to reveal key effectors of synaptic plasticity. Although synapses are also extensively rewired in developing mammalian circuits, the underlying remodeling mechanisms are largely unknown. Here, we highlight the possibility that studies in C. elegans can reveal pathways that orchestrate synaptic remodeling in more complex organisms. Specifically, we describe (1) transcription factors that regulate DD remodeling, (2) the cellular and molecular cascades that drive synaptic remodeling and (3) examples of circuit modifications in vertebrate neurons that share some similarities with synaptic remodeling in C. elegans DD neurons.
Collapse
|
36
|
Cangalaya C, Stoyanov S, Fischer KD, Dityatev A. Light-induced engagement of microglia to focally remodel synapses in the adult brain. eLife 2020; 9:e58435. [PMID: 32808923 PMCID: PMC7470825 DOI: 10.7554/elife.58435] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
Microglia continuously monitor synapses, but active synaptic remodeling by microglia in mature healthy brains is rarely directly observed. We performed targeted photoablation of single synapses in mature transgenic mice expressing fluorescent labels in neurons and microglia. The photodamage focally increased the duration of microglia-neuron contacts, and dramatically exacerbated both the turnover of dendritic spines and presynaptic boutons as well as the generation of new filopodia originating from spine heads or boutons. The results of microglia depletion confirmed that elevated spine turnover and the generation of presynaptic filopodia are microglia-dependent processes.
Collapse
Affiliation(s)
- Carla Cangalaya
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory ProcessesMagdeburgGermany
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical FacultyMagdeburgGermany
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Stoyan Stoyanov
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Klaus-Dieter Fischer
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical FacultyMagdeburgGermany
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Medical Faculty, Otto-von-Guericke UniversityMagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
| |
Collapse
|
37
|
Sullivan CS, Mohan V, Manis PB, Moy SS, Truong Y, Duncan BW, Maness PF. Developmental Regulation of Basket Interneuron Synapses and Behavior through NCAM in Mouse Prefrontal Cortex. Cereb Cortex 2020; 30:4689-4707. [PMID: 32249896 PMCID: PMC7325800 DOI: 10.1093/cercor/bhaa074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Parvalbumin (PV)-expressing basket interneurons in the prefrontal cortex (PFC) regulate pyramidal cell firing, synchrony, and network oscillations. Yet, it is unclear how their perisomatic inputs to pyramidal neurons are integrated into neural circuitry and adjusted postnatally. Neural cell adhesion molecule NCAM is expressed in a variety of cells in the PFC and cooperates with EphrinA/EphAs to regulate inhibitory synapse density. Here, analysis of a novel parvalbumin (PV)-Cre: NCAM F/F mouse mutant revealed that NCAM functions presynaptically in PV+ basket interneurons to regulate postnatal elimination of perisomatic synapses. Mutant mice exhibited an increased density of PV+ perisomatic puncta in PFC layer 2/3, while live imaging in mutant brain slices revealed fewer puncta that were dynamically eliminated. Furthermore, EphrinA5-induced growth cone collapse in PV+ interneurons in culture depended on NCAM expression. Electrophysiological recording from layer 2/3 pyramidal cells in mutant PFC slices showed a slower rise time of inhibitory synaptic currents. PV-Cre: NCAM F/F mice exhibited impairments in working memory and social behavior that may be impacted by altered PFC circuitry. These findings suggest that the density of perisomatic synapses of PV+ basket interneurons is regulated postnatally by NCAM, likely through EphrinA-dependent elimination, which is important for appropriate PFC network function and behavior.
Collapse
Affiliation(s)
- Chelsea S Sullivan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vishwa Mohan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul B Manis
- Department of Otolaryngology/Head and Neck Surgery, and Cell Biology and Physiology, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sheryl S Moy
- Department of Psychiatry, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Young Truong
- Department of Biostatistics, School of Global Public Health, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryce W Duncan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
38
|
Saleh MG, Papantoni A, Mikkelsen M, Hui SCN, Oeltzschner G, Puts NA, Edden RAE, Carnell S. Effect of Age on GABA+ and Glutathione in a Pediatric Sample. AJNR Am J Neuroradiol 2020; 41:1099-1104. [PMID: 32381543 DOI: 10.3174/ajnr.a6543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the human brain and is implicated in several neuropathologies. Glutathione is a major antioxidant in the brain and is considered a marker of oxidative stress. Several studies have reported age-related declines in GABA levels in adulthood, but the trajectory of both GABA and glutathione during childhood has not been well explored. The aim of this study is to establish how GABA and glutathione vary with age during early development. MATERIALS AND METHODS Twenty-three healthy children (5.6-13.9 years of age) were recruited for this study. MR imaging/MR spectroscopy experiments were conducted on a 3T MR scanner. A 27-mL MR spectroscopy voxel was positioned in the frontal lobe. J-difference edited MR spectroscopy was used to spectrally edit GABA and glutathione. Data were analyzed using the Gannet software, and GABA+ (GABA + macromolecules/homocarnosine) and glutathione were quantified using water (GABA+H2O and GlutathioneH2O) and Cr (GABA+/Cr and glutathione/Cr) as concentration references. Also, the relative gray matter contribution to the voxel volume (GMratio) was estimated from structural images. Pearson correlation coefficients were used to examine the association between age and GABA+H2O (and glutathioneH2O), between age and GABA+/Cr (and glutathione/Cr), and between age and GMratio. RESULTS Both GABA+H2O (r = 0.63, P = .002) and GABA+/Cr (r = 0.48, P = .026) significantly correlated with age, whereas glutathione measurements and GMratio did not. CONCLUSIONS We demonstrate increases in GABA and no differences in glutathione with age in a healthy pediatric sample. This study provides insight into neuronal maturation in children and may facilitate better understanding of normative behavioral development and the pathophysiology of developmental disorders.
Collapse
Affiliation(s)
- M G Saleh
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.) .,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland
| | - A Papantoni
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry (A.P., S.C.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Mikkelsen
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.).,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland
| | - S C N Hui
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.).,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland
| | - G Oeltzschner
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.).,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland
| | - N A Puts
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.).,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland.,Department of Forensic and Neurodevelopmental Sciences (N.A.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - R A E Edden
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.).,F.M. Kirby Research Center for Functional Brain Imaging (M.G.S., M.M., S.C.N.H., G.O., N.A.P., R.A.E.E.), Kennedy Krieger Institute, Baltimore, Maryland
| | - S Carnell
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry (A.P., S.C.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
39
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Katoh H, Yokota K, Fehlings MG. Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds. Front Cell Neurosci 2019; 13:248. [PMID: 31244609 PMCID: PMC6563678 DOI: 10.3389/fncel.2019.00248] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Significant progress has been made in the treatment of spinal cord injury (SCI). Advances in post-trauma management and intensive rehabilitation have significantly improved the prognosis of SCI and converted what was once an “ailment not to be treated” into a survivable injury, but the cold hard fact is that we still do not have a validated method to improve the paralysis of SCI. The irreversible functional impairment of the injured spinal cord is caused by the disruption of neuronal transduction across the injury lesion, which is brought about by demyelination, axonal degeneration, and loss of synapses. Furthermore, refractory substrates generated in the injured spinal cord inhibit spontaneous recovery. The discovery of the regenerative capability of central nervous system neurons in the proper environment and the verification of neural stem cells in the spinal cord once incited hope that a cure for SCI was on the horizon. That hope was gradually replaced with mounting frustration when neuroprotective drugs, cell transplantation, and strategies to enhance remyelination, axonal regeneration, and neuronal plasticity demonstrated significant improvement in animal models of SCI but did not translate into a cure in human patients. However, recent advances in SCI research have greatly increased our understanding of the fundamental processes underlying SCI and fostered increasing optimism that these multiple treatment strategies are finally coming together to bring about a new era in which we will be able to propose encouraging therapies that will lead to appreciable improvements in SCI patients. In this review, we outline the pathophysiology of SCI that makes the spinal cord refractory to regeneration and discuss the research that has been done with cell replacement and biomaterial implantation strategies, both by itself and as a combined treatment. We will focus on the capacity of these strategies to facilitate the regeneration of neural connectivity necessary to achieve meaningful functional recovery after SCI.
Collapse
Affiliation(s)
- Hiroyuki Katoh
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Department of Orthopaedic Surgery - Surgical Sciences, School of Medicine, Tokai University, Tokyo, Japan
| | - Kazuya Yokota
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, University of Toronto, Toronto, ON, Canada.,Spine Program, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
41
|
Vesicular GABA Transporter Is Necessary for Transplant-Induced Critical Period Plasticity in Mouse Visual Cortex. J Neurosci 2019; 39:2635-2648. [PMID: 30705101 DOI: 10.1523/jneurosci.1253-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
The maturation of GABAergic inhibitory circuits is necessary for the onset of the critical period for ocular dominance plasticity (ODP) in the postnatal visual cortex (Hensch, 2005; Espinosa and Stryker, 2012). When it is deficient, the critical period does not start. When inhibitory maturation or signaling is precocious, it induces a precocious critical period. Heterochronic transplantation of GABAergic interneuron precursors derived from the medial ganglionic eminence (MGE) can induce a second period of functional plasticity in the visual cortex (Southwell et al., 2010). Although the timing of MGE transplantation-induced plasticity is dictated by the maturation of the transplanted cells, its mechanisms remain largely unknown. Here, we sought to test the effect of blocking vesicular GABA loading and subsequent release by transplanted interneurons on the ability to migrate, integrate, and induce plasticity in the host circuitry. We show that MGE cells taken from male and female donors that lack vesicular GABA transporter (Vgat) expression disperse and differentiate into somatostatin- and parvalbumin-expressing interneurons upon heterochronic transplantation in the postnatal mouse cortex. Although transplanted Vgat mutant interneurons come to express mature interneuron markers and display electrophysiological properties similar to those of control cells, their morphology is significantly more complex. Significantly, Vgat mutant MGE transplants fail to induce ODP, demonstrating the pivotal role of vesicular GABAergic transmission for MGE transplantation-induced plasticity in the postnatal mouse visual cortex.SIGNIFICANCE STATEMENT Embryonic inhibitory neurons thrive when transplanted into postnatal brains, migrating and differentiating in the host as they would have done if left in the donor. Once integrated into the host, these new neurons can have profound effects. For example, in the visual cortex, such neurons induce a second critical period of activity-dependent plasticity when they reach the appropriate stage of development. The cellular mechanism by which these transplanted GABAergic interneurons induce plasticity is unknown. Here, we show that transplanted interneurons that are unable to fill synaptic vesicles with GABA migrate and integrate into the host circuit, but they do not induce a second period of plasticity. These data suggest a role for the vesicular GABA transporter in transplantation-mediated plasticity.
Collapse
|
42
|
Xu W, Liyanage VRB, MacAulay A, Levy RD, Curtis K, Olson CO, Zachariah RM, Amiri S, Buist M, Hicks GG, Davie JR, Rastegar M. Genome-Wide Transcriptome Landscape of Embryonic Brain-Derived Neural Stem Cells Exposed to Alcohol with Strain-Specific Cross-Examination in BL6 and CD1 Mice. Sci Rep 2019; 9:206. [PMID: 30659253 PMCID: PMC6338767 DOI: 10.1038/s41598-018-36059-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
We have previously reported the deregulatory impact of ethanol on global DNA methylation of brain-derived neural stem cells (NSC). Here, we conducted a genome-wide RNA-seq analysis in differentiating NSC exposed to different modes of ethanol exposure. RNA-seq results showed distinct gene expression patterns and canonical pathways induced by ethanol exposure and withdrawal. Short-term ethanol exposure caused abnormal up-regulation of synaptic pathways, while continuous ethanol treatment profoundly affected brain cells’ morphology. Ethanol withdrawal restored the gene expression profile of differentiating NSC without rescuing impaired expression of epigenetics factors. Ingenuity Pathway Analysis (IPA) analysis predicated that ethanol may impact synaptic functions via GABA receptor signalling pathway and affects neural system and brain morphology. We identified Sptbn2, Dcc, and Scn3a as candidate genes which may link alcohol-induced neuronal morphology to brain structural abnormalities, predicted by IPA analysis. Cross-examination of Scn3a and As3mt in differentiated NSC from two different mouse strains (BL6 and CD1) showed a consistent pattern of induction and reduction, respectively. Collectively, our study identifies genetic networks, which may contribute to alcohol-mediated cellular and brain structural dysmorphology, contributing to our knowledge of alcohol-mediated damage to central nervous system, paving the path for better understanding of FASD pathobiology.
Collapse
Affiliation(s)
- Wayne Xu
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Canada
| | - Vichithra R B Liyanage
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Aaron MacAulay
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Romina D Levy
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Kyle Curtis
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Carl O Olson
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Robby M Zachariah
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Shayan Amiri
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Marjorie Buist
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Geoffrey G Hicks
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada. .,Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
43
|
GABA release selectively regulates synapse development at distinct inputs on direction-selective retinal ganglion cells. Proc Natl Acad Sci U S A 2018; 115:E12083-E12090. [PMID: 30509993 DOI: 10.1073/pnas.1803490115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic inhibition controls a neuron's output via functionally distinct inputs at two subcellular compartments, the cell body and the dendrites. It is unclear whether the assembly of these distinct inhibitory inputs can be regulated independently by neurotransmission. In the mammalian retina, γ-aminobutyric acid (GABA) release from starburst amacrine cells (SACs) onto the dendrites of on-off direction-selective ganglion cells (ooDSGCs) is essential for directionally selective responses. We found that ooDSGCs also receive GABAergic input on their somata from other amacrine cells (ACs), including ACs containing the vasoactive intestinal peptide (VIP). When net GABAergic transmission is reduced, somatic, but not dendritic, GABAA receptor clusters on the ooDSGC increased in number and size. Correlative fluorescence imaging and serial electron microscopy revealed that these enlarged somatic receptor clusters are localized to synapses. By contrast, selectively blocking vesicular GABA release from either SACs or VIP ACs did not alter dendritic or somatic receptor distributions on the ooDSGCs, showing that neither SAC nor VIP AC GABA release alone is required for the development of inhibitory synapses in ooDSGCs. Furthermore, a reduction in net GABAergic transmission, but not a selective reduction from SACs, increased excitatory drive onto ooDSGCs. This increased excitation may drive a homeostatic increase in ooDSGC somatic GABAA receptors. Differential regulation of GABAA receptors on the ooDSGC's soma and dendrites could facilitate homeostatic control of the ooDSGC's output while enabling the assembly of the GABAergic connectivity underlying direction selectivity to be indifferent to altered transmission.
Collapse
|
44
|
Gamlin CR, Yu WQ, Wong ROL, Hoon M. Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system. Neural Dev 2018; 13:12. [PMID: 29875009 PMCID: PMC5991458 DOI: 10.1186/s13064-018-0109-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/06/2018] [Indexed: 12/19/2022] Open
Abstract
Inhibition in the central nervous systems (CNS) is mediated by two neurotransmitters: gamma-aminobutyric acid (GABA) and glycine. Inhibitory synapses are generally GABAergic or glycinergic, although there are synapses that co-release both neurotransmitter types. Compared to excitatory circuits, much less is known about the cellular and molecular mechanisms that regulate synaptic partner selection and wiring patterns of inhibitory circuits. Recent work, however, has begun to fill this gap in knowledge, providing deeper insight into whether GABAergic and glycinergic circuit assembly and maintenance rely on common or distinct mechanisms. Here we summarize and contrast the developmental mechanisms that regulate the selection of synaptic partners, and that promote the formation, refinement, maturation and maintenance of GABAergic and glycinergic synapses and their respective wiring patterns. We highlight how some parts of the CNS demonstrate developmental changes in the type of inhibitory transmitter or receptor composition at their inhibitory synapses. We also consider how perturbation of the development or maintenance of one type of inhibitory connection affects other inhibitory synapse types in the same circuit. Mechanistic insight into the development and maintenance of GABAergic and glycinergic inputs, and inputs that co-release both these neurotransmitters could help formulate comprehensive therapeutic strategies for treating disorders of synaptic inhibition.
Collapse
Affiliation(s)
- Clare R Gamlin
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, WA, USA. .,Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
45
|
Sullivan CS, Gotthard I, Wyatt EV, Bongu S, Mohan V, Weinberg RJ, Maness PF. Perineuronal Net Protein Neurocan Inhibits NCAM/EphA3 Repellent Signaling in GABAergic Interneurons. Sci Rep 2018; 8:6143. [PMID: 29670169 PMCID: PMC5906663 DOI: 10.1038/s41598-018-24272-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/23/2018] [Indexed: 01/19/2023] Open
Abstract
Perineuronal nets (PNNs) are implicated in closure of critical periods of synaptic plasticity in the brain, but the molecular mechanisms by which PNNs regulate synapse development are obscure. A receptor complex of NCAM and EphA3 mediates postnatal remodeling of inhibitory perisomatic synapses of GABAergic interneurons onto pyramidal cells in the mouse frontal cortex necessary for excitatory/inhibitory balance. Here it is shown that enzymatic removal of PNN glycosaminoglycan chains decreased the density of GABAergic perisomatic synapses in mouse organotypic cortical slice cultures. Neurocan, a key component of PNNs, was expressed in postnatal frontal cortex in apposition to perisomatic synapses of parvalbumin-positive interneurons. Polysialylated NCAM (PSA-NCAM), which is required for ephrin-dependent synapse remodeling, bound less efficiently to neurocan than mature, non-PSA-NCAM. Neurocan bound the non-polysialylated form of NCAM at the EphA3 binding site within the immunoglobulin-2 domain. Neurocan inhibited NCAM/EphA3 association, membrane clustering of NCAM/EphA3 in cortical interneuron axons, EphA3 kinase activation, and ephrin-A5-induced growth cone collapse. These studies delineate a novel mechanism wherein neurocan inhibits NCAM/EphA3 signaling and axonal repulsion, which may terminate postnatal remodeling of interneuron axons to stabilize perisomatic synapses in vivo.
Collapse
Affiliation(s)
- Chelsea S Sullivan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599, United States
| | - Ingo Gotthard
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599, United States
| | - Elliott V Wyatt
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599, United States
| | - Srihita Bongu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599, United States
| | - Vishwa Mohan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599, United States
| | - Richard J Weinberg
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599, United States
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599, United States.
| |
Collapse
|
46
|
Synaptic and circuit development of the primary sensory cortex. Exp Mol Med 2018; 50:1-9. [PMID: 29628505 PMCID: PMC5938038 DOI: 10.1038/s12276-018-0029-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023] Open
Abstract
Animals, including humans, optimize their primary sensory cortex through the use of input signals, which allow them to adapt to the external environment and survive. The time window at the beginning of life in which external input signals are connected sensitively and strongly to neural circuit optimization is called the critical period. The critical period has attracted the attention of many neuroscientists due to the rapid activity-/experience-dependent circuit development that occurs, which is clearly differentiated from other developmental time periods and brain areas. This process involves various types of GABAergic inhibitory neurons, the extracellular matrix, neuromodulators, transcription factors, and neurodevelopmental factors. In this review, I discuss recent progress regarding the biological nature of the critical period that contribute to a better understanding of brain development.
Collapse
|
47
|
Khalil R, Contreras-Ramirez V, Levitt JB. Postnatal refinement of interareal feedforward projections in ferret visual cortex. Brain Struct Funct 2018; 223:2303-2322. [PMID: 29476239 DOI: 10.1007/s00429-018-1632-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/17/2018] [Indexed: 12/27/2022]
Abstract
We studied the postnatal refinement of feedforward (FF) projections from ferret V1 to multiple cortical targets during the period around eye opening. Our goal was to establish (a) whether the developmental refinement of FF projections parallels that of feedback (FB) cortical circuits, and (b) whether FF pathways from V1 to different target areas refine with a similar rate. We injected the tracer CTb into V1 of juvenile ferrets, and visualized the pattern of labeled axon terminals in extrastriate cortex. Bouton density of FF projections to target areas 18, 19, and 21 declined steadily from 4 to 8 weeks postnatal. However, in area Ssy this decline was delayed somewhat, not occurring until after 6 weeks. During this postnatal period, mean interbouton intervals along individual FF axons to all visual areas increased, and we observed a concomitant moderate decrease in axon density in areas 18, 21, and Ssy. These data suggest that FF circuits linking V1 to its main extrastriate targets remodel largely synchronously in the weeks following eye opening, that FF and FB cortical circuits share a broadly similar developmental timecourse, and that postnatal visual experience is critical for the refinement of both FF and FB cortical circuits.
Collapse
Affiliation(s)
- Reem Khalil
- Biology, Chemistry, and Environmental Sciences Department, American University of Sharjah, Sharjah, UAE.,Department of Biology MR526, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA.,Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | | | - Jonathan B Levitt
- Department of Biology MR526, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA. .,Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
48
|
Regulation of Synapse Development by Vgat Deletion from ErbB4-Positive Interneurons. J Neurosci 2018; 38:2533-2550. [PMID: 29431653 DOI: 10.1523/jneurosci.0669-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
GABA signaling has been implicated in neural development; however, in vivo genetic evidence is missing because mutant mice lacking GABA activity die prematurely. Here, we studied synapse development by ablating vesicular GABA transporter (Vgat) in ErbB4+ interneurons. We show that inhibitory axo-somatic synapses onto pyramidal neurons vary from one cortical layer to another; however, inhibitory synapses on axon initial segments (AISs) were similar across layers. Conversely, parvalbumin-positive (PV+)/ErbB4+ interneurons and PV-only interneurons receive a higher number of inhibitory synapses from PV+ErbB4+ interneurons compared with ErbB4-only interneurons. Vgat deletion from ErbB4+ interneurons reduced axo-somatic or axo-axonic synapses from PV+ErbB4+ interneurons onto excitatory neurons. This effect was associated with corresponding changes in neurotransmission. However, the Vgat mutation seemed to have little effect on inhibitory synapses onto PV+ and/or ErbB4+ interneurons. Interestingly, perineuronal nets, extracellular matrix structures implicated in maturation, survival, protection, and plasticity of PV+ interneurons, were increased in the cortex of ErbB4-Vgat-/- mice. No apparent difference was observed between males and females. These results demonstrate that Vgat of ErbB4+ interneurons is essential for the development of inhibitory synapses onto excitatory neurons and suggest a role of GABA in circuit assembly.SIGNIFICANCE STATEMENT GABA has been implicated in neural development, but in vivo genetic evidence is missing because mutant mice lacking GABA die prematurely. Here, we ablated Vgat in ErbB4+ interneurons in an inducible manner. We provide evidence that the formation of inhibitory and excitatory synapses onto excitatory neurons requires Vgat in interneurons. In particular, inhibitory axo-somatic and axo-axonic synapses are more vulnerable. Our results suggest a role of GABA in circuit assembly.
Collapse
|
49
|
Layer-specific Developmental Changes in Excitation and Inhibition in Rat Primary Visual Cortex. eNeuro 2017; 4:eN-CFN-0402-17. [PMID: 29379869 PMCID: PMC5779119 DOI: 10.1523/eneuro.0402-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Cortical circuits are profoundly shaped by experience during postnatal development. The consequences of altered vision during the critical period for ocular dominance plasticity have been extensively studied in rodent primary visual cortex (V1). However, little is known about how eye opening, a naturally occurring event, influences the maturation of cortical microcircuits. Here we used a combination of slice electrophysiology and immunohistochemistry in rat V1 to ask whether manipulating the time of eye opening for 3 or 7 d affects cortical excitatory and inhibitory synaptic transmission onto excitatory neurons uniformly across layers or induces laminar-specific effects. We report that binocular delayed eye opening for 3 d showed similar reductions of excitatory and inhibitory synaptic transmission in layers 2/3, 4, and 5. Synaptic transmission recovered to age-matched control levels if the delay was prolonged to 7 d, suggesting that these changes were dependent on binocular delay duration. Conversely, laminar-specific and long-lasting effects were observed if eye opening was delayed unilaterally. Our data indicate that pyramidal neurons located in different cortical laminae have distinct sensitivity to altered sensory drive; our data also strongly suggest that experience plays a fundamental role in not only the maturation of synaptic transmission, but also its coordination across cortical layers.
Collapse
|
50
|
Dulka EA, Moenter SM. Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure. Endocrinology 2017; 158:3943-3953. [PMID: 28938422 PMCID: PMC5695838 DOI: 10.1210/en.2017-00768] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via luteinizing hormone (LH) pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty and that this activity is sexually differentiated and altered by PNA. Dams were injected with dihydrotestosterone (DHT) on days 16 to 18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1-, 2-, 3-, and 4-week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3 weeks, then decreased to adult levels. In contrast, activity did not change in PNA females and was reduced at 3 weeks. Activity was higher in control females than males from 2 to 3 weeks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype.
Collapse
Affiliation(s)
- Eden A. Dulka
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Suzanne M. Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|