1
|
Seong KJ, Mun BR, Kim S, Choi WS, Lee SJ, Jung JY, Kim WJ. IKKβ inhibits cognitive memory and adult hippocampal neurogenesis by modulating the β-catenin pathway. Life Sci 2025; 366-367:123490. [PMID: 39983813 DOI: 10.1016/j.lfs.2025.123490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
AIM The IKKβ signaling pathway regulates NF-κB, influencing inflammation and cell survival in the brain. Radial glia cells are crucial for hippocampal neurogenesis and cognition. However, the role and mechanisms of IKKβ in modulating radial glia behavior and its impact on memory and neurogenesis remain unclear. Further studies are needed to understand how alterations in this pathway affect hippocampal function. MAIN METHODS The role of IKKβ in memory and hippocampal neurogenesis was examined using GFAP-CreERT2/IKKβflox/flox mice with IKKβ knockdown in radial glia cells. IKKβ expression, NSC proliferation, and differentiation were assessed by immunohistochemistry. NF-κB and β-catenin interactions were evaluated by immunoprecipitation. Cultured adult hippocampal NSCs, with IKKβ or β-catenin shRNA transfection, were analyzed by flow cytometry and western blot to examine stem cell characteristics, NF-κB signaling, cell cycle, and β-catenin pathways. KEY FINDINGS Our results showed IKKβ cKD increased exploratory activity in the open-field and hyperactivity in the Y-maze, as well as enhanced spatial memory in the object location and Morris water maze tests. It also promoted adult hippocampal NSC proliferation by upregulating positive and inhibiting negative cell cycle regulators. Neuronal differentiation was enhanced, affecting β-catenin signaling and NeuroD1 expression. Additionally, IKKβ cKD promoted NSC survival, as shown by decreased cleaved caspase-3 and reduced Bax and cytochrome c in the hippocampus. SIGNIFICANCE These findings suggest that in hippocampal NSCs, IKKβ inhibits locomotion, cognitive function, and adult hippocampal neurogenesis by suppressing the β-catenin signaling, highlighting its key role in decreasing hippocampal neurogenesis and cognitive function through NF-κB signaling in adult NSCs.
Collapse
Affiliation(s)
- Kyung-Joo Seong
- Dental Science Research Institute, Stem cell Secretome Research Center, Hard-tissue Biointerface Research Center, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bo-Ram Mun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shintae Kim
- Dental Science Research Institute, Stem cell Secretome Research Center, Hard-tissue Biointerface Research Center, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung Joong Lee
- Dental Research Institute, Department of Physiology and Neuroscience, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Yeon Jung
- Dental Science Research Institute, Stem cell Secretome Research Center, Hard-tissue Biointerface Research Center, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Won-Jae Kim
- Dental Science Research Institute, Stem cell Secretome Research Center, Hard-tissue Biointerface Research Center, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Billmann C, Schäffner I, Heppt J, Lie D. Analysis of β-Catenin Signalling Activity Suggests Differential Regulation of Ontogenetically Distinct Dentate Granule Neuron Populations. Int J Dev Neurosci 2025; 85:e70009. [PMID: 39964247 PMCID: PMC11834944 DOI: 10.1002/jdn.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
In mammals, the dentate gyrus of the hippocampus is one of the few regions where neurogenesis continues throughout life. As a result, the dentate gyrus harbours neurons of ontogenetically different origin. Notably, ontogenetically different dentate granule neurons (DGNs) are morphologically distinct and fulfil specialized functions in hippocampal information processing and plasticity. Development of adult-born DGNs is tightly controlled by signals released by the complex cellular environment of the adult dentate gyrus. In mice, an adult-like cytoarchitecture of the dentate gyrus is observed only after postnatal Week 2. The question therefore arises when the signalling environment controlling adult neurogenesis is established and whether development of ontogenetically distinct DGNs is subject to the same regulatory pathways. Here, we analyse BATGAL reporter mice to determine the temporal development of β-catenin-signalling activity in the murine DGN lineage. We show that the β-catenin-signalling pattern, which is essential for precise dendritogenesis and neuronal maturation in adulthood, emerges only around 2 weeks after birth and continues to be refined over the next weeks. These results indicate that the signalling environment controlling adult neurogenesis is only gradually established and suggest that the development of ontogenetically distinct DGNs is controlled by different mechanisms.
Collapse
Affiliation(s)
- Charlotte Billmann
- Institute for AnatomyFriedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
- Institute for BiochemistryFriedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
| | - Iris Schäffner
- Institute for AnatomyFriedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
- Institute for BiochemistryFriedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
| | - Jana Heppt
- Institute for BiochemistryFriedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
| | - D. Chichung Lie
- Institute for AnatomyFriedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
- Institute for BiochemistryFriedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
3
|
Tan JW, An JJ, Deane H, Xu H, Liao GY, Xu B. Neurotrophin-3 from the dentate gyrus supports postsynaptic sites of mossy fiber-CA3 synapses and hippocampus-dependent cognitive functions. Mol Psychiatry 2024; 29:1192-1204. [PMID: 38212372 PMCID: PMC11176039 DOI: 10.1038/s41380-023-02404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
At the center of the hippocampal tri-synaptic loop are synapses formed between mossy fiber (MF) terminals from granule cells in the dentate gyrus (DG) and proximal dendrites of CA3 pyramidal neurons. However, the molecular mechanism regulating the development and function of these synapses is poorly understood. In this study, we showed that neurotrophin-3 (NT3) was expressed in nearly all mature granule cells but not CA3 cells. We selectively deleted the NT3-encoding Ntf3 gene in the DG during the first two postnatal weeks to generate a Ntf3 conditional knockout (Ntf3-cKO). Ntf3-cKO mice of both sexes had normal hippocampal cytoarchitecture but displayed impairments in contextual memory, spatial reference memory, and nest building. Furthermore, male Ntf3-cKO mice exhibited anxiety-like behaviors, whereas female Ntf3-cKO showed some mild depressive symptoms. As MF-CA3 synapses are essential for encoding of contextual memory, we examined synaptic transmission at these synapses using ex vivo electrophysiological recordings. We found that Ntf3-cKO mice had impaired basal synaptic transmission due to deficits in excitatory postsynaptic currents mediated by AMPA receptors but normal presynaptic function and intrinsic excitability of CA3 pyramidal neurons. Consistent with this selective postsynaptic deficit, Ntf3-cKO mice had fewer and smaller thorny excrescences on proximal apical dendrites of CA3 neurons and lower GluR1 levels in the stratum lucidum area where MF-CA3 synapses reside but normal MF terminals, compared with control mice. Thus, our study indicates that NT3 expressed in the dentate gyrus is crucial for the postsynaptic structure and function of MF-CA3 synapses and hippocampal-dependent memory.
Collapse
Affiliation(s)
- Ji-Wei Tan
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Juan Ji An
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Hannah Deane
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Haifei Xu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Guey-Ying Liao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Baoji Xu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA.
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
4
|
Mahoney HL, Bloom CA, Justin HS, Capraro BM, Morris C, Gonzalez D, Sandefur E, Faulkner J, Reiss S, Valladares A, Ocampo A, Carter B, Lussier AL, Dinh LP, Weeber E, Gamsby J, Gulick D. DISC1 and reelin interact to alter cognition, inhibition, and neurogenesis in a novel mouse model of schizophrenia. Front Cell Neurosci 2024; 17:1321632. [PMID: 38283751 PMCID: PMC10813205 DOI: 10.3389/fncel.2023.1321632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
The etiology of schizophrenia (SCZ) is multifactorial, and depending on a host of genetic and environmental factors. Two putative SCZ susceptibility genes, Disrupted-in-Schizophrenia-1 (DISC1) and reelin (RELN), interact at a molecular level, suggesting that combined disruption of both may lead to an intensified SCZ phenotype. To examine this gene-gene interaction, we produced a double mutant mouse line. Mice with heterozygous RELN haploinsufficiency were crossed with mice expressing dominant-negative c-terminal truncated human DISC1 to produce offspring with both mutations (HRM/DISC1 mice). We used an array of behavioral tests to generate a behavioral phenotype for these mice, then examined the prefrontal cortex and hippocampus using western blotting and immunohistochemistry to probe for SCZ-relevant molecular and cellular alterations. Compared to wild-type controls, HRM/DISC1 mice demonstrated impaired pre-pulse inhibition, altered cognition, and decreased activity. Diazepam failed to rescue anxiety-like behaviors, paradoxically increasing activity in HRM/DISC1 mice. At a cellular level, we found increased α1-subunit containing GABA receptors in the prefrontal cortex, and a reduction in fast-spiking parvalbumin positive neurons. Maturation of adult-born neurons in the hippocampus was also altered in HRM/DISC1 mice. While there was no difference in the total number proliferating cells, more of these cells were in immature stages of development. Homozygous DISC1 mutation combined with RELN haploinsufficiency produces a complex phenotype with neuropsychiatric characteristics relevant to SCZ and related disorders, expanding our understanding of how multiple genetic susceptibility factors might interact to influence the variable presentation of these disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Danielle Gulick
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
5
|
Shakya R, Amonruttanapun P, Limboonreung T, Chongthammakun S. 17β-estradiol mitigates the inhibition of SH-SY5Y cell differentiation through WNT1 expression. Cells Dev 2023; 176:203881. [PMID: 37914154 DOI: 10.1016/j.cdev.2023.203881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/01/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
17β-estradiol (E2) and canonical WNT-signaling represent crucial regulatory pathways for microtubule dynamics and synaptic formation. However, it is unclear yet whether E2-induced canonical WNT ligands have significant impact on neurogenic repair under inflammatory condition. In this study, first, we prepared the chronic activated-microglial-conditioned media, known to be comprised of neuro-inflammatory components. Long term exposure of microglial conditioned media to SH-SY5Y cells showed a negative impact on differentiation markers, microtubule associated protein-2 (MAP2) and synaptophysin (SYP), which was successfully rescued by pre and co-treatment of 10 nM 17β-estradiol. The inhibition of estrogen receptors, ERα and ERβ significantly blocked the E2-mediated recovery in the expression of differentiation marker, SYP. Furthermore, the inflammatory inhibition of canonical signaling ligand, WNT1 was also found to be rescued by E2. To our surprise, E2 was unable to replicate this success with β-catenin, which is considered to be the intracellular transducer of canonical WNT signaling. However, WNT antagonist - Dkk1 blocked the E2-mediated recovery in the expression of the differentiation marker, MAP2. Therefore, our data suggests that E2-mediated recovery in SH-SY5Y differentiation follows a divergent pathway from the conventional canonical WNT signaling pathway, which seems to regulate microtubule stability without the involvement of β-catenin. This mechanism provides fresh insight into how estradiol contributes to the restoration of differentiation marker proteins in the context of chronic neuroinflammation.
Collapse
Affiliation(s)
- Rubina Shakya
- Department of Anatomy and Center for Neuroscience Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Anatomy, Kathmandu University, School of Medical Sciences, Dhulikhel, Kavre 11008, Nepal.
| | - Prateep Amonruttanapun
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12121, Thailand.
| | - Tanapol Limboonreung
- Department of Oral Biology, Faculty of Dentistry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand.
| | - Sukumal Chongthammakun
- Department of Anatomy and Center for Neuroscience Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Yang X, Wan R, Liu Z, Feng S, Yang J, Jing N, Tang K. The differentiation and integration of the hippocampal dorsoventral axis are controlled by two nuclear receptor genes. eLife 2023; 12:RP86940. [PMID: 37751231 PMCID: PMC10522401 DOI: 10.7554/elife.86940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The hippocampus executes crucial functions from declarative memory to adaptive behaviors associated with cognition and emotion. However, the mechanisms of how morphogenesis and functions along the hippocampal dorsoventral axis are differentiated and integrated are still largely unclear. Here, we show that Nr2f1 and Nr2f2 genes are distinctively expressed in the dorsal and ventral hippocampus, respectively. The loss of Nr2f2 results in ectopic CA1/CA3 domains in the ventral hippocampus. The deficiency of Nr2f1 leads to the failed specification of dorsal CA1, among which there are place cells. The deletion of both Nr2f genes causes almost agenesis of the hippocampus with abnormalities of trisynaptic circuit and adult neurogenesis. Moreover, Nr2f1/2 may cooperate to guarantee appropriate morphogenesis and function of the hippocampus by regulating the Lhx5-Lhx2 axis. Our findings revealed a novel mechanism that Nr2f1 and Nr2f2 converge to govern the differentiation and integration of distinct characteristics of the hippocampus in mice.
Collapse
Affiliation(s)
- Xiong Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Zhiwen Liu
- Guangzhou Laboratory/Bioland LaboratoryGuangzhouChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Su Feng
- Guangzhou Laboratory/Bioland LaboratoryGuangzhouChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Jiaxin Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Naihe Jing
- Guangzhou Laboratory/Bioland LaboratoryGuangzhouChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| |
Collapse
|
7
|
Ji Y, Xia Q, Zhang H, Huo H, Cao X, Wang W, Gu Q. Whole Exome Sequencing Identified two Novel Truncation Mutations in the CTNNB1 Gene Associated with Neurodevelopmental Disorder, Language Dysfunction, and Microcephaly in Chinese Children. Child Neurol Open 2023; 10:2329048X231184184. [PMID: 37560515 PMCID: PMC10408312 DOI: 10.1177/2329048x231184184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 08/11/2023] Open
Abstract
Recently, the loss-of-function, heterozygous, and de novo mutations of the CTNNB1 gene have been proven to be partially responsible for intellectual disability in some patients. Herein, we report two unrelated children with neurodevelopmental disorder, abnormal facial features, speech impairments, microcephaly, and dystonia. Based on whole exome sequencing (WES), two new heterozygous and pathogenic mutations in exon 10 (c.1586dupA:p.Q530Afs*42) and exon 4 (c.257dup:p.Y86*) were identified in the CTNNB1 gene for the first time. These findings not only enrich the genetic spectrum of the CTNNB1 gene but also provide evidence for its role in neuronal development.
Collapse
Affiliation(s)
- Yongchun Ji
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Qin Xia
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Hewei Zhang
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Hongliang Huo
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Xujun Cao
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Weiwei Wang
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Qin Gu
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Mardones MD, Gupta K. Transcriptome Profiling of the Hippocampal Seizure Network Implicates a Role for Wnt Signaling during Epileptogenesis in a Mouse Model of Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:12030. [PMID: 36233336 PMCID: PMC9569502 DOI: 10.3390/ijms231912030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a life-threatening condition characterized by recurrent hippocampal seizures. mTLE can develop after exposure to risk factors such as febrile seizure, trauma, and infection. Within the latent period between exposure and onset of epilepsy, pathological remodeling events occur that contribute to epileptogenesis. The molecular mechanisms responsible are currently unclear. We used the mouse intrahippocampal kainite model of mTLE to investigate transcriptional dysregulation in the ipsilateral and contralateral dentate gyrus (DG), representing the epileptogenic zone (EZ) and peri-ictal zone (PIZ). DG were analyzed after 3, 7, and 14 days by RNA sequencing. In both the EZ and PIZ, transcriptional dysregulation was dynamic over the epileptogenic period with early expression of genes representing cell signaling, migration, and proliferation. Canonical Wnt signaling was upregulated in the EZ and PIZ at 3 days. Expression of inflammatory genes differed between the EZ and PIZ, with early expression after 3 days in the PIZ and delayed expression after 7-14 days in the EZ. This suggests that critical gene changes occur early in the hippocampal seizure network and that Wnt signaling may play a role within the latent epileptogenic period. These findings may help to identify novel therapeutic targets that could prevent epileptogenesis.
Collapse
Affiliation(s)
- Muriel D Mardones
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kunal Gupta
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Chen HH, Lu HY, Chang CH, Lin SH, Huang CW, Wei PH, Chen YW, Lin YR, Huang HS, Wang PY, Tsao YP, Chen SL. Breast carcinoma-amplified sequence 2 regulates adult neurogenesis via β-catenin. Stem Cell Res Ther 2022; 13:160. [PMID: 35410459 PMCID: PMC8996563 DOI: 10.1186/s13287-022-02837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Breast carcinoma-amplified sequence 2 (BCAS2) regulates β-catenin gene splicing. The conditional knockout of BCAS2 expression in the forebrain (BCAS2 cKO) of mice confers impaired learning and memory along with decreased β-catenin expression. Because β-catenin reportedly regulates adult neurogenesis, we wondered whether BCAS2 could regulate adult neurogenesis via β-catenin. Methods BCAS2-regulating neurogenesis was investigated by characterizing BCAS2 cKO mice. Also, lentivirus-shBCAS2 was intracranially injected into the hippocampus of wild-type mice to knock down BCAS2 expression. We evaluated the rescue effects of BCAS2 cKO by intracranial injection of adeno-associated virus encoding BCAS2 (AAV-DJ8-BCAS2) and AAV-β-catenin gene therapy. Results To show that BCAS2-regulating adult neurogenesis via β-catenin, first, BCAS2 cKO mice showed low SRY-box 2-positive (Sox2+) neural stem cell proliferation and doublecortin-positive (DCX+) immature neurons. Second, stereotaxic intracranial injection of lentivirus-shBCAS2 knocked down BCAS2 in the hippocampus of wild-type mice, and we confirmed the BCAS2 regulation of adult neurogenesis via β-catenin. Third, AAV-DJ8-BCAS2 gene therapy in BCAS2 cKO mice reversed the low proliferation of Sox2+ neural stem cells and the decreased number of DCX+ immature neurons with increased β-catenin expression. Moreover, AAV-β-catenin gene therapy restored neuron stem cell proliferation and immature neuron differentiation, which further supports BCAS2-regulating adult neurogenesis via β-catenin. In addition, cells targeted by AAV-DJ8 injection into the hippocampus included Sox2 and DCX immature neurons, interneurons, and astrocytes. BCAS2 may regulate adult neurogenesis by targeting Sox2+ and DCX+ immature neurons for autocrine effects and interneurons or astrocytes for paracrine effects. Conclusions BCAS2 can regulate adult neurogenesis in mice via β-catenin. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02837-9.
Collapse
Affiliation(s)
- Hsin-Hsiung Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Hao-Yu Lu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Chao-Hsin Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Shih-Hao Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Chu-Wei Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Po-Han Wei
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Yi-Rou Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, No. 1, Section 1, Jen Ai Road, Taipei 100, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, No. 1, Section 1, Jen Ai Road, Taipei 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei 104, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan.
| |
Collapse
|
10
|
Identification of a novel de novo mutation in the CTNNB1 gene in an Iranian patient with intellectual disability. Neurol Sci 2022; 43:2859-2863. [PMID: 35099645 DOI: 10.1007/s10072-022-05904-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
CTNNB1 encodes for the β-catenin protein, a component of the cadherin adhesion complex, which regulates cell-cell adhesion and gene expression in the canonical Wnt signaling pathway. Mutations in CTNNB1 have been reported to be associated with cancer and mental disorders. Recently, loss-of-function mutations in CTNNB1 have been observed in patients with intellectual disability and some other clinical manifestations including motor and language delays, microcephaly, and mild visual defects. We report an 8-year-old Iranian girl with intellectual disability, hypotonia, impaired vision such as vitreomacular adhesion, motor delay, and speech delay. A novel, de novo nonsense mutation (c.1014G > A; p.Trp338Ter) in exon 7 of the CTNNB1 (NM_001904) gene was detected and confirmed by whole-exome sequencing and Sanger sequencing, respectively. This study helps to expand the growing list of loss-of-function mutations known in the CTNNB1 gene.
Collapse
|
11
|
Austin SHL, Gabarró-Solanas R, Rigo P, Paun O, Harris L, Guillemot F, Urbán N. Wnt/β-catenin signalling is dispensable for adult neural stem cell homeostasis and activation. Development 2021; 148:272521. [PMID: 34557919 PMCID: PMC8572000 DOI: 10.1242/dev.199629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022]
Abstract
Adult mouse hippocampal neural stem cells (NSCs) generate new neurons that integrate into existing hippocampal networks and modulate mood and memory. These NSCs are largely quiescent and are stimulated by niche signals to activate and produce neurons. Wnt/β-catenin signalling acts at different steps along the hippocampal neurogenic lineage, but whether it has a direct role in the regulation of NSCs remains unclear. Here, we used Wnt/β-catenin reporters and transcriptomic data from in vivo and in vitro models to show that adult NSCs respond to Wnt/β-catenin signalling. Wnt/β-catenin stimulation instructed the neuronal differentiation of proliferating NSCs and promoted the activation or differentiation of quiescent NSCs in a dose-dependent manner. However, deletion of β-catenin in NSCs did not affect either their activation or maintenance of their stem cell characteristics. Together, these results indicate that, although NSCs do respond to Wnt/β-catenin stimulation in a dose-dependent and state-specific manner, Wnt/β-catenin signalling is not cell-autonomously required to maintain NSC homeostasis, which reconciles some of the contradictions in the literature as to the role of Wnt/β-catenin signalling in adult hippocampal NSCs. Summary: Wnt/β-catenin signalling stimulation promotes the exit from quiescence and differentiation of adult hippocampal neural stem cells but is dispensable for homeostatic neurogenesis in the dentate gyrus of young mice.
Collapse
Affiliation(s)
| | - Rut Gabarró-Solanas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna A-1030, Austria
| | - Piero Rigo
- The Francis Crick Institute, London NW1 1AT, UK
| | - Oana Paun
- The Francis Crick Institute, London NW1 1AT, UK
| | | | | | - Noelia Urbán
- The Francis Crick Institute, London NW1 1AT, UK.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
12
|
Mehri F, Salimi A, Jamali Z, Kahrizi F, Faizi M. Exposure to 4-methylimidazole as a food pollutant induces neurobehavioral toxicity in mother and developmental impairments in the offspring. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1728338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fereshteh Mehri
- Food and Drug Control Laboratory, Nutrition Heath Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Farzad Kahrizi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Damghan Islamic Azad University, Damghan, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Chen L, Wang Y, Chen Z. Adult Neurogenesis in Epileptogenesis: An Update for Preclinical Finding and Potential Clinical Translation. Curr Neuropharmacol 2021; 18:464-484. [PMID: 31744451 PMCID: PMC7457402 DOI: 10.2174/1570159x17666191118142314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Epileptogenesis refers to the process in which a normal brain becomes epileptic, and is characterized by hypersynchronous spontaneous recurrent seizures involving a complex epileptogenic network. Current available pharmacological treatment of epilepsy is generally symptomatic in controlling seizures but is not disease-modifying in epileptogenesis. Cumulative evidence suggests that adult neurogenesis, specifically in the subgranular zone of the hippocampal dentate gyrus, is crucial in epileptogenesis. In this review, we describe the pathological changes that occur in adult neurogenesis in the epileptic brain and how adult neurogenesis is involved in epileptogenesis through different interventions. This is followed by a discussion of some of the molecular signaling pathways involved in regulating adult neurogenesis, which could be potential druggable targets for epileptogenesis. Finally, we provide perspectives on some possible research directions for future studies.
Collapse
Affiliation(s)
- Liying Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Sun D, Milibari L, Pan JX, Ren X, Yao LL, Zhao Y, Shen C, Chen WB, Tang FL, Lee D, Zhang JS, Mei L, Xiong WC. Critical Roles of Embryonic Born Dorsal Dentate Granule Neurons for Activity-Dependent Increases in BDNF, Adult Hippocampal Neurogenesis, and Antianxiety-like Behaviors. Biol Psychiatry 2021; 89:600-614. [PMID: 33183762 PMCID: PMC7889658 DOI: 10.1016/j.biopsych.2020.08.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Dentate gyrus (DG), a "gate" that controls information flow into the hippocampus, plays important roles in regulating both cognitive (e.g., spatial learning and memory) and mood behaviors. Deficits in DG neurons contribute to the pathogenesis of not only neurological, but also psychiatric, disorders, such as anxiety disorder. Whereas DG's function in spatial learning and memory has been extensively investigated, its role in regulating anxiety remains elusive. METHODS Using c-Fos to mark DG neuron activation, we identified a group of embryonic born dorsal DG (dDG) neurons, which were activated by anxiogenic stimuli and specifically express osteocalcin (Ocn)-Cre. We further investigated their functions in regulating anxiety and the underlying mechanisms by using a combination of chemogenetic, electrophysiological, and RNA-sequencing methods. RESULTS The Ocn-Cre+ dDG neurons were highly active in response to anxiogenic environment but had lower excitability and fewer presynaptic inputs than those of Ocn-Cre- or adult born dDG neurons. Activating Ocn-Cre+ dDG neurons suppressed anxiety-like behaviors and increased adult DG neurogenesis, whereas ablating or chronically inhibiting Ocn-Cre+ dDG neurons exacerbated anxiety-like behaviors, impaired adult DG neurogenesis, and abolished activity (e.g., voluntary wheel running)-induced anxiolytic effect and adult DG neurogenesis. RNA-sequencing screening for factors induced by activation of Ocn-Cre+ dDG neurons identified BDNF, which was required for Ocn-Cre+ dDG neurons mediated antianxiety-like behaviors and adult DG neurogenesis. CONCLUSIONS These results demonstrate critical functions of Ocn-Cre+ dDG neurons in suppressing anxiety-like behaviors but promoting adult DG neurogenesis, and both functions are likely through activation of BDNF.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Leena Milibari
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ling-Ling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yang Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Chen Shen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Wen-Bing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jun-Shi Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
15
|
Heppt J, Wittmann MT, Schäffner I, Billmann C, Zhang J, Vogt-Weisenhorn D, Prakash N, Wurst W, Taketo MM, Lie DC. β-catenin signaling modulates the tempo of dendritic growth of adult-born hippocampal neurons. EMBO J 2020; 39:e104472. [PMID: 32929771 PMCID: PMC7604596 DOI: 10.15252/embj.2020104472] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
In adult hippocampal neurogenesis, stem/progenitor cells generate dentate granule neurons that contribute to hippocampal plasticity. The establishment of a morphologically defined dendritic arbor is central to the functional integration of adult‐born neurons. We investigated the role of canonical Wnt/β‐catenin signaling in dendritogenesis of adult‐born neurons. We show that canonical Wnt signaling follows a biphasic pattern, with high activity in stem/progenitor cells, attenuation in immature neurons, and reactivation during maturation, and demonstrate that this activity pattern is required for proper dendrite development. Increasing β‐catenin signaling in maturing neurons of young adult mice transiently accelerated dendritic growth, but eventually produced dendritic defects and excessive spine numbers. In middle‐aged mice, in which protracted dendrite and spine development were paralleled by lower canonical Wnt signaling activity, enhancement of β‐catenin signaling restored dendritic growth and spine formation to levels observed in young adult animals. Our data indicate that precise timing and strength of β‐catenin signaling are essential for the correct functional integration of adult‐born neurons and suggest Wnt/β‐catenin signaling as a pathway to ameliorate deficits in adult neurogenesis during aging.
Collapse
Affiliation(s)
- Jana Heppt
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Charlotte Billmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jingzhong Zhang
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, China
| | - Daniela Vogt-Weisenhorn
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Chronic hyperglycemia impairs hippocampal neurogenesis and memory in an Alzheimer's disease mouse model. Neurobiol Aging 2020; 92:98-113. [PMID: 32417750 DOI: 10.1016/j.neurobiolaging.2020.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
During aging, lifestyle-related factors shape the brain's response to insults and modulate the progression of neurodegenerative pathologies such as Alzheimer's disease (AD). This is the case for chronic hyperglycemia associated with type 2 diabetes, which reduces the brain's ability to handle the neurodegenerative burden associated with AD. However, the mechanisms behind the effects of chronic hyperglycemia in the context of AD are not fully understood. Here, we show that newly generated neurons in the hippocampal dentate gyrus of triple transgenic AD (3xTg-AD) mice present increased dendritic arborization and a number of synaptic puncta, which may constitute a compensatory mechanism allowing the animals to cope with a lower neurogenesis rate. Contrariwise, chronic hyperglycemia decreases the complexity and differentiation of 3xTg-AD newborn neurons and reduces the levels of β-catenin, a key intrinsic modulator of neuronal maturation. Moreover, synaptic facilitation is depressed in hyperglycemic 3xTg-AD mice, accompanying the defective hippocampal-dependent memory. Our data suggest that hyperglycemia evokes cellular and functional alterations that accelerate the onset of AD-related symptoms, namely memory impairment.
Collapse
|
17
|
Alexander JM, Pirone A, Jacob MH. Excessive β-Catenin in Excitatory Neurons Results in Reduced Social and Increased Repetitive Behaviors and Altered Expression of Multiple Genes Linked to Human Autism. Front Synaptic Neurosci 2020; 12:14. [PMID: 32296324 PMCID: PMC7136516 DOI: 10.3389/fnsyn.2020.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple human autism risk genes are predicted to converge on the β-catenin (β-cat)/Wnt pathway. However, direct tests to link β-cat up- or down-regulation with autism are largely lacking, and the associated pathophysiological changes are poorly defined. Here we identify excessive β-cat as a risk factor that causes expression changes in several genes relevant to human autism. Our studies utilize mouse lines with β-cat dysregulation in forebrain excitatory neurons, identified as cell types with a convergent expression of autism-linked genes in both human and mouse brains. We show that mice expressing excessive β-cat display behavioral and molecular changes, including decreased social interest, increased repetitive behaviors, reduced parvalbumin and altered expression levels of additional genes identified as potential risk factors for human autism. These behavioral and molecular phenotypes are averted by reducing β-cat in neurons predisposed by gene mutations to express elevated β-cat. Using next-generation sequencing of the prefrontal cortex (PFC), we identify 87 dysregulated genes that are shared between mouse lines with excessive β-cat and autism-like behaviors, but not mouse lines with reduced β-cat and normal social behavior. Our findings provide critical new insights into β-cat, Wnt pathway dysregulation in the brain causing behavioral phenotypes relevant to the disease and the molecular etiology which includes several human autism risk genes.
Collapse
Affiliation(s)
- Jonathan Michael Alexander
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Antonella Pirone
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Michele H Jacob
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
18
|
Liu Y, Liu S, Pan S, Gong Q, Yao J, Lu Z. The dynamic expression of canonical Wnt/β-catenin signalling pathway in the pathologic process of experimental autoimmune neuritis. Int J Neurosci 2020; 130:1109-1117. [PMID: 32009498 DOI: 10.1080/00207454.2020.1725511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Guillain-Barré syndrome (GBS), an autoimmune disease and an acute inflammation disorder, is currently the most frequent cause of acute flaccid paralysis worldwide. EAN, an animal model of GBS, is a CD4+ T cell-mediated autoimmune disease of the PNS. Wnt/β-catenin signals are critically important to several fundamental aspects of peripheral nerve development and play a crucial role in Schwann cell proliferation. Here, we investigate the role of Wnt/β-catenin signalling cascades in EAN rats.Methods: 28 male Lewis rats weighing 170 ± 10 g were randomly divided into control group (n = 7) and EAN groups (Early group; Peak group and Recovery group. n = 7 per group). EAN rats were immunized with P257-81 peptide; weighed daily, and the neurologic signs of EAN were evaluated every day. The sciatic nerve was taken on the days 10, 17, and 30 p.i. for H&E staining, transmission electron microscopy and immunohistochemical staining; blood samples were collected weekly from caudal vein to detect IFN-γ, IL-4, TGF-β1; and the sciatic nerve was taken to examinate the dynamics expression of Wnt/β-catenin pathway molecules.Results: In our study, we chose tail-root injection to better model GBS. Moreover, we observed that IFN-γ levels paralleled clinical EAN, and the levels of TGF-β1 and IL-4 gradually increased and peaked in the recovery phase. In addition, we have shown that canonical Wnt signalling is upregulated and reached a peak in the late recovery phase.Conclusion: Our findings suggest that Wnt/β-catenin signalling is associated with the promotion of remyelination in EAN rats.
Collapse
Affiliation(s)
- Yin Liu
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, Hubei Province, P.R. China
| | - Shuping Liu
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, Hubei Province, P.R. China
| | - Sijia Pan
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, Hubei Province, P.R. China
| | - Qiaoyu Gong
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, Hubei Province, P.R. China
| | - Jiajia Yao
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, Hubei Province, P.R. China
| | - Zuneng Lu
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
19
|
Neuronal network remodeling and Wnt pathway dysregulation in the intra-hippocampal kainate mouse model of temporal lobe epilepsy. PLoS One 2019; 14:e0215789. [PMID: 31596871 PMCID: PMC6785072 DOI: 10.1371/journal.pone.0215789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
Mouse models of mesial temporal lobe epilepsy recapitulate aspects of human epilepsy, which is characterized by neuronal network remodeling in the hippocampal dentate gyrus. Observational studies suggest that this remodeling is associated with altered Wnt pathway signaling, although this has not been experimentally examined. We used the well-characterized mouse intrahippocampal kainate model of temporal lobe epilepsy to examine associations between hippocampal neurogenesis and altered Wnt signaling after seizure induction. Tissue was analyzed using immunohistochemistry and confocal microscopy, and gene expression analysis was performed by RT-qPCR on RNA extracted from anatomically micro-dissected dentate gyri. Seizures increased neurogenesis and dendritic arborization of newborn hippocampal dentate granule cells in peri-ictal regions, and decreased neurogenesis in the ictal zone, 2-weeks after kainate injection. Interestingly, administration of the novel canonical Wnt pathway inhibitor XAV939 daily for 2-weeks after kainate injection further increased dendritic arborization in peri-ictal regions after seizure, without an effect on baseline neurogenesis in control animals. Transcriptome analysis of dentate gyri demonstrated significant canonical Wnt gene dysregulation in kainate-injected mice across all regions for Wnt3, 5a and 9a. Intriguingly, certain Wnt genes demonstrated differential patterns of dysregulation between the ictal and peri-ictal zones, most notably Wnt5B, 7B and DKK-1. Together, these results demonstrate regional variation in Wnt pathway dysregulation early after seizure induction, and surprisingly, suggest that some Wnt-mediated effects might actually temper aberrant neurogenesis after seizures. The Wnt pathway may therefore provide suitable targets for novel therapies that prevent network remodeling and the development of epileptic foci in high-risk patients.
Collapse
|
20
|
Huang WC, Chen Y, Page DT. Genetic Suppression of mTOR Rescues Synaptic and Social Behavioral Abnormalities in a Mouse Model of Pten Haploinsufficiency. Autism Res 2019; 12:1463-1471. [PMID: 31441226 PMCID: PMC7141489 DOI: 10.1002/aur.2186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023]
Abstract
Heterozygous mutations in PTEN, which encodes a negative regulator of the mTOR and β-catenin signaling pathways, cause macrocephaly/autism syndrome. However, the neurobiological substrates of the core symptoms of this syndrome are poorly understood. Here, we investigate the relationship between cerebral cortical overgrowth and social behavior deficits in conditional Pten heterozygous female mice (Pten cHet) using Emx1-Cre, which is expressed in cortical pyramidal neurons and a subset of glia. We found that conditional heterozygous mutation of Ctnnb1 (encoding β-catenin) suppresses Pten cHet cortical overgrowth, but not social behavioral deficits, whereas conditional heterozygous mutation of Mtor suppresses social behavioral deficits, but not cortical overgrowth. Neuronal activity in response to social cues and excitatory synapse markers are elevated in the medial prefrontal cortex (mPFC) of Pten cHet mice, and heterozygous mutation in Mtor, but not Ctnnb1, rescues these phenotypes. These findings indicate that macroscale cerebral cortical overgrowth and social behavioral phenotypes caused by Pten haploinsufficiency can be dissociated based on responsiveness to genetic suppression of Ctnnb1 or Mtor. Furthermore, neuronal connectivity appears to be one potential substrate for mTOR-mediated suppression of social behavioral deficits in Pten haploinsufficient mice. Autism Res 2019, 12: 1463-1471. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: A subgroup of individuals with autism display overgrowth of the head and the brain during development. Using a mouse model of an autism risk gene, Pten, that displays both brain overgrowth and social behavioral deficits, we show here that that these two symptoms can be dissociated. Reversal of social behavioral deficits in this model is associated with rescue of abnormal synaptic markers and neuronal activity.
Collapse
Affiliation(s)
- Wen-Chin Huang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
- The Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, San Diego, California
| | - Youjun Chen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
- The Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, San Diego, California
| |
Collapse
|
21
|
Expression and Manipulation of the APC-β-Catenin Pathway During Peripheral Neuron Regeneration. Sci Rep 2018; 8:13197. [PMID: 30181617 PMCID: PMC6123411 DOI: 10.1038/s41598-018-31167-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Molecules and pathways that suppress growth are expressed in postmitotic neurons, a potential advantage in mature neural networks, but a liability during regeneration. In this work, we probed the APC (adenomatous polyposis coli)-β-catenin partner pathway in adult peripheral sensory neurons during regeneration. APC had robust expression in the cytoplasm and perinuclear region of adult DRG sensory neurons both before and after axotomy injury. β-catenin was expressed in neuronal nuclei, neuronal cytoplasm and also in perineuronal satellite cells. In injured dorsal root ganglia (DRG) sensory neurons and their axons, we observed paradoxical APC upregulation, despite its role as an inhibitor of growth whereas β-catenin was downregulated. Inhibition of APC in adult sensory neurons and activation of β-catenin, LEF/TCF transcriptional factors were associated with increased neuronal plasticity in vitro. Local knockdown of APC, at the site of sciatic nerve crush injury enhanced evidence for electrophysiological, behavioural and structural regeneration in vivo. This was accompanied by upregulation of β-catenin. Collectively, the APC-β-catenin-LEF/TCF transcriptional pathway impacts intrinsic mechanisms of axonal regeneration and neuronal plasticity after injury, offering new options for addressing axon regeneration.
Collapse
|
22
|
Vidal R, Garro-Martínez E, Díaz Á, Castro E, Florensa-Zanuy E, Taketo MM, Pazos Á, Pilar-Cuéllar F. Targeting β-Catenin in GLAST-Expressing Cells: Impact on Anxiety and Depression-Related Behavior and Hippocampal Proliferation. Mol Neurobiol 2018; 56:553-566. [PMID: 29737454 DOI: 10.1007/s12035-018-1100-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
β-catenin (key mediator in the Wnt signaling pathway) contributes to the pathophysiology of mood disorders, associated to neurogenesis and neuroplasticity. Decreased β-catenin protein levels have been observed in the hippocampus and prefrontal cortex of depressed subjects. Additionally, the antidepressants exert, at least in part, their neurogenic effects by increasing β-catenin levels in the subgranular zone of the hippocampus. To further understand the role of β-catenin in depression and anxiety, we generated two conditional transgenic mice in which β-catenin was either inactivated or stabilized in cells expressing CreERT under the control of the astrocyte-specific glutamate transporter (GLAST) promoter inducible by tamoxifen, which presents high expression levels on the subgranular zone of the hippocampus. Here, we show that β-catenin inactivation in GLAST-expressing cells enhanced anxious/depressive-like responses. These behavioral changes were associated with impaired hippocampal proliferation and markers of immature neurons as doublecortin. On the other hand, β-catenin stabilization induced an anxiolytic-like effect in the novelty suppressed feeding test and tended to ameliorate depressive-related behaviors. In these mice, the control over the Wnt/β-catenin pathway seems to be tighter as evidenced by the lack of changes in some proliferation markers. Moreover, animals with stabilized β-catenin showed resilience to some anxious/depressive manifestations when subjected to the corticosterone model of depression. Our findings demonstrate that β-catenin present in GLAST-expressing cells plays a critical role in the development of anxious/depressive-like behaviors and resilience, which parallels its regulatory function on hippocampal proliferation. Further studies need to be done to clarify the importance of these changes in other brain areas also implicated in the neurobiology of anxiety and depressive disorders.
Collapse
Affiliation(s)
- Rebeca Vidal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain.,Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Emilio Garro-Martínez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Álvaro Díaz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Elena Castro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Eva Florensa-Zanuy
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Ángel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain.,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Fuencisla Pilar-Cuéllar
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain. .,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Avda. Albert Einstein, 22, 39011, Santander, Spain. .,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
23
|
Wnt/β-catenin signaling stimulates the expression and synaptic clustering of the autism-associated Neuroligin 3 gene. Transl Psychiatry 2018; 8:45. [PMID: 29503438 PMCID: PMC5835496 DOI: 10.1038/s41398-018-0093-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/30/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023] Open
Abstract
Synaptic abnormalities have been described in individuals with autism spectrum disorders (ASD). The cell-adhesion molecule Neuroligin-3 (Nlgn3) has an essential role in the function and maturation of synapses and NLGN3 ASD-associated mutations disrupt hippocampal and cortical function. Here we show that Wnt/β-catenin signaling increases Nlgn3 mRNA and protein levels in HT22 mouse hippocampal cells and primary cultures of rat hippocampal neurons. We characterized the activity of mouse and rat Nlgn3 promoter constructs containing conserved putative T-cell factor/lymphoid enhancing factor (TCF/LEF)-binding elements (TBE) and found that their activity is significantly augmented in Wnt/β-catenin cell reporter assays. Chromatin immunoprecipitation (ChIP) assays and site-directed mutagenesis experiments revealed that endogenous β-catenin binds to novel TBE consensus sequences in the Nlgn3 promoter. Moreover, activation of the signaling cascade increased Nlgn3 clustering and co- localization with the scaffold PSD-95 protein in dendritic processes of primary neurons. Our results directly link Wnt/β-catenin signaling to the transcription of the Nlgn3 gene and support a functional role for the signaling pathway in the dysregulation of excitatory/inhibitory neuronal activity, as is observed in animal models of ASD.
Collapse
|
24
|
Matsuda T, Hisatsune T. Cholinergic Modification of Neurogenesis and Gliosis Improves the Memory of AβPPswe/PSEN1dE9 Alzheimer's Disease Model Mice Fed a High-Fat Diet. J Alzheimers Dis 2018; 56:1-23. [PMID: 27911310 DOI: 10.3233/jad-160761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously reported that neuroinflammation contributes to the amnesia of AβPPswe/PSEN1dE9 Alzheimer's disease model mice fed a high-fat diet to induce type-2 diabetes (T2DM-AD mice), but the underlying mechanism for the memory decline remained unclear. Recent studies have suggested that cholinergic modulation is involved in neuroinflammatory cellular reactions including neurogenesis and gliosis, and in memory improvement. In this study, we administered a broad-spectrum cholinesterase inhibitor, rivastigmine (2 mg/kg/day, s.c.), into T2DM-AD mice for 6 weeks, and evaluated their memory performance, neurogenesis, and neuroinflammatory reactions. By two hippocampal-dependent memory tests, the Morris water maze and contextual fear conditioning, rivastigmine improved the memory deterioration of the T2DM-AD mice (n = 8, p < 0.01). The number of newborn neurons in the hippocampal dentate gyrus was 1138±324 (Ave±SEM) in wild-type littermates, 2573±442 in T2DM-AD-Vehicle, and 2165±300 in T2DM-AD-Rivastigmine mice, indicating that neurogenesis was accelerated in the two T2DM-AD groups (n = 5, p < 0.05). The dendritic maturation of new neurons in T2DM-AD-Vehicle mice was severely abrogated, and rivastigmine treatment reversed this retarded maturation. In addition, the hippocampus of T2DM-AD-Vehicle mice showed increased proinflammatory cytokines IL-1β and TNF-α and gliosis, and rivastigmine treatment blocked these inflammatory reactions. Rivastigmine did not change the insulin abnormality or amyloid pathology in these mice. Thus, cholinergic modulation by rivastigmine treatment led to enhanced neurogenesis and the suppression of gliosis, which together ameliorated the memory decline in T2DM-AD model mice.
Collapse
|
25
|
Ziebell F, Dehler S, Martin-Villalba A, Marciniak-Czochra A. Revealing age-related changes of adult hippocampal neurogenesis using mathematical models. Development 2018; 145:dev.153544. [PMID: 29229768 PMCID: PMC5825879 DOI: 10.1242/dev.153544] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022]
Abstract
New neurons are continuously generated in the dentate gyrus of the adult hippocampus. This continuous supply of newborn neurons is important to modulate cognitive functions. Yet the number of newborn neurons declines with age. Increasing Wnt activity upon loss of dickkopf 1 can counteract both the decline of newborn neurons and the age-related cognitive decline. However, the precise cellular changes underlying the age-related decline or its rescue are fundamentally not understood. The present study combines a mathematical model and experimental data to address features controlling neural stem cell (NSC) dynamics. We show that available experimental data fit a model in which quiescent NSCs may either become activated to divide or may undergo depletion events, such as astrocytic transformation and apoptosis. Additionally, we demonstrate that old NSCs remain quiescent longer and have a higher probability of becoming re-activated than depleted. Finally, our model explains that high NSC-Wnt activity leads to longer time in quiescence while enhancing the probability of activation. Altogether, our study shows that modulation of the quiescent state is crucial to regulate the pool of stem cells throughout the life of an animal. Summary: New deterministic and stochastic mathematical models are proposed to investigate adult neurogenesis in young, old and perturbed hippocampus, and quantified using population-level and clonal experimental data.
Collapse
Affiliation(s)
- Frederik Ziebell
- Institute of Applied Mathematics, Heidelberg University, Heidelberg 69120, Germany.,German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sascha Dehler
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Heidelberg University, Heidelberg 69120, Germany .,Interdisciplinary Center of Scientific Computing (IWR) and BIOQUANT, Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
26
|
Control of Spike Transfer at Hippocampal Mossy Fiber Synapses In Vivo by GABAA and GABAB Receptor-Mediated Inhibition. J Neurosci 2017; 37:587-598. [PMID: 28100741 DOI: 10.1523/jneurosci.2057-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/02/2016] [Accepted: 11/20/2016] [Indexed: 11/21/2022] Open
Abstract
Despite extensive studies in hippocampal slices and incentive from computational theories, the synaptic mechanisms underlying information transfer at mossy fiber (mf) connections between the dentate gyrus (DG) and CA3 neurons in vivo are still elusive. Here we used an optogenetic approach in mice to selectively target and control the activity of DG granule cells (GCs) while performing whole-cell and juxtacellular recordings of CA3 neurons in vivo In CA3 pyramidal cells (PCs), mf-CA3 synaptic responses consisted predominantly of an IPSP at low stimulation frequency (0.05 Hz). Upon increasing the frequency of stimulation, a biphasic response was observed consisting of a brief mf EPSP followed by an inhibitory response lasting on the order of 100 ms. Spike transfer at DG-CA3 interneurons recorded in the juxtacellular mode was efficient at low presynaptic stimulation frequency and appeared insensitive to an increased frequency of GC activity. Overall, this resulted in a robust and slow feedforward inhibition of spike transfer at mf-CA3 pyramidal cell synapses. Short-term plasticity of EPSPs with increasing frequency of presynaptic activity allowed inhibition to be overcome to reach spike discharge in CA3 PCs. Whereas the activation of GABAA receptors was responsible for the direct inhibition of light-evoked spike responses, the slow inhibition of spiking activity required the activation of GABAB receptors in CA3 PCs. The slow inhibitory response defined an optimum frequency of presynaptic activity for spike transfer at ∼10 Hz. Altogether these properties define the temporal rules for efficient information transfer at DG-CA3 synaptic connections in the intact circuit. SIGNIFICANCE STATEMENT Activity-dependent changes in synaptic strength constitute a basic mechanism for memory. Synapses from the dentate gyrus (DG) to the CA3 area of the hippocampus are distinctive for their prominent short-term plasticity, as studied in slices. Plasticity of DG-CA3 connections may assist in the encoding of precise memory in the CA3 network. Here we characterize DG-CA3 synaptic transmission in vivo using targeted optogenetic activation of DG granule cells while recording in whole-cell patch-clamp and juxtacellular configuration from CA3 pyramidal cells and interneurons. We show that, in vivo, short-term plasticity of excitatory inputs to CA3 pyramidal cells combines with robust feedforward inhibition mediated by both GABAA and GABAB receptors to control the efficacy and temporal rules for information transfer at DG-CA3 connections.
Collapse
|
27
|
Zhou QG, Liu MY, Lee HW, Ishikawa F, Devkota S, Shen XR, Jin X, Wu HY, Liu Z, Liu X, Jin X, Zhou HH, Ro EJ, Zhang J, Zhang Y, Lin YH, Suh H, Zhu DY. Hippocampal TERT Regulates Spatial Memory Formation through Modulation of Neural Development. Stem Cell Reports 2017; 9:543-556. [PMID: 28757168 PMCID: PMC5550029 DOI: 10.1016/j.stemcr.2017.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 01/29/2023] Open
Abstract
The molecular mechanism of memory formation remains a mystery. Here, we show that TERT, the catalytic subunit of telomerase, gene knockout (Tert−/−) causes extremely poor ability in spatial memory formation. Knockdown of TERT in the dentate gyrus of adult hippocampus impairs spatial memory processes, while overexpression facilitates it. We find that TERT plays a critical role in neural development including dendritic development and neuritogenesis of hippocampal newborn neurons. A monosynaptic pseudotyped rabies virus retrograde tracing method shows that TERT is required for neural circuit integration of hippocampal newborn neurons. Interestingly, TERT regulated neural development and spatial memory formation in a reverse transcription activity-independent manner. Using X-ray irradiation, we find that hippocampal newborn neurons mediate the modulation of spatial memory processes by TERT. These observations reveal an important function of TERT through a non-canonical pathway and encourage the development of a TERT-based strategy to treat neurological disease-associated memory impairment. Tert gene knockout causes extremely poor ability in spatial memory formation Dendritic development and neuritogenesis are impaired in Tert−/− mice TERT is required for neural circuit integration of hippocampal newborn neurons TERT regulates spatial memory formation in an activity-independent manner
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China; Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Meng-Ying Liu
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 120-749, Korea
| | - Fuyuki Ishikawa
- Departments of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto 606-850, Japan
| | - Sushil Devkota
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 120-749, Korea
| | - Xin-Ru Shen
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Xin Jin
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Hai-Yin Wu
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Zhigang Liu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiao Liu
- Department of Chinese Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xun Jin
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015 Zhejiang, P.R. China
| | - Hai-Hui Zhou
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Eun Jeoung Ro
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jing Zhang
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Yu Zhang
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Yu-Hui Lin
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Hoonkyo Suh
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Institution of Stem Cells and Neuroregeneration, Pharmacy College, Nanjing Medical University, Nanjing 211166, P.R. China.
| |
Collapse
|
28
|
Feng S, Shi T, Qiu J, Yang H, Wu Y, Zhou W, Wang W, Wu H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment. FASEB J 2017; 31:4347-4358. [PMID: 28611114 DOI: 10.1096/fj.201700216rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/30/2017] [Indexed: 01/19/2023]
Abstract
It is well known that Notch1 signaling plays a crucial role in embryonic neural development and adult neurogenesis. The latest evidence shows that Notch1 also plays a critical role in synaptic plasticity in mature hippocampal neurons. So far, deeper insights into the function of Notch1 signaling during the different steps of adult neurogenesis are still lacking, and the mechanisms by which Notch1 dysfunction is associated with brain disorders are also poorly understood. In the current study, we found that Notch1 was highly expressed in the adult-born immature neurons in the hippocampal dentate gyrus. Using a genetic approach to selectively ablate Notch1 signaling in late immature precursors in the postnatal hippocampus by cross-breeding doublecortin (DCX)+ neuron-specific proopiomelanocortin (POMC)-α Cre mice with floxed Notch1 mice, we demonstrated a previously unreported pivotal role of Notch1 signaling in survival and function of adult newborn neurons in the dentate gyrus. Moreover, behavioral and functional studies demonstrated that POMC-Notch1-/- mutant mice showed anxiety and depressive-like behavior with impaired synaptic transmission properties in the dentate gyrus. Finally, our mechanistic study showed significantly compromised phosphorylation of cAMP response element-binding protein (CREB) in Notch1 mutants, suggesting that the dysfunction of Notch1 mutants is associated with the disrupted pCREB signaling in postnatally generated immature neurons in the dentate gyrus.-Feng, S., Shi, T., Qiu, J., Yang, H., Wu, Y., Zhou, W., Wang, W., Wu, H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment.
Collapse
Affiliation(s)
- Shufang Feng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tianyao Shi
- Department of Traditional Chinese Medicine (TCM) and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiangxia Qiu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haihong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenxia Zhou
- Department of Traditional Chinese Medicine (TCM) and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Wang
- Department of Orthopedics Research Institute, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China; .,Key Laboratory of Neuroregeneration, Coinnovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
29
|
Adlaf EW, Vaden RJ, Niver AJ, Manuel AF, Onyilo VC, Araujo MT, Dieni CV, Vo HT, King GD, Wadiche JI, Overstreet-Wadiche L. Adult-born neurons modify excitatory synaptic transmission to existing neurons. eLife 2017; 6:19886. [PMID: 28135190 PMCID: PMC5279947 DOI: 10.7554/elife.19886] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Adult-born neurons are continually produced in the dentate gyrus but it is unclear whether synaptic integration of new neurons affects the pre-existing circuit. Here we investigated how manipulating neurogenesis in adult mice alters excitatory synaptic transmission to mature dentate neurons. Enhancing neurogenesis by conditional deletion of the pro-apoptotic gene Bax in stem cells reduced excitatory postsynaptic currents (EPSCs) and spine density in mature neurons, whereas genetic ablation of neurogenesis increased EPSCs in mature neurons. Unexpectedly, we found that Bax deletion in developing and mature dentate neurons increased EPSCs and prevented neurogenesis-induced synaptic suppression. Together these results show that neurogenesis modifies synaptic transmission to mature neurons in a manner consistent with a redistribution of pre-existing synapses to newly integrating neurons and that a non-apoptotic function of the Bax signaling pathway contributes to ongoing synaptic refinement within the dentate circuit. DOI:http://dx.doi.org/10.7554/eLife.19886.001 Neurogenesis, the creation of new brain cells called neurons, occurs primarily before birth. However, a region of the brain called the dentate gyrus, which is involved in memory, continues to produce new neurons throughout life. Recent studies suggest that adding neurons to the dentate gyrus helps the brain to distinguish between similar sights, sounds and smells. This in turn makes it easier to encode similar experiences as distinct memories. The brain’s outer layer, called the cortex, processes information from our senses and sends it, along with information about our location in space, to the dentate gyrus. By combining this sensory and spatial information, the dentate gyrus is able to generate a unique memory of an experience. But how does neurogenesis affect this process? As the dentate gyrus accumulates more neurons, the number of neurons in the cortex remains unchanged. Do some cortical neurons transfer their connections – called synapses – to the new neurons? Or does the brain generate additional synapses to accommodate the newborn cells? Adlaf et al. set out to answer this question by genetically modifying mice to alter the number of new neurons that could form in the dentate gyrus. Increasing the number of newborn neurons reduced the number of synapses between the cortex and the mature neurons in the dentate gyrus. Conversely, killing off newborn neurons had the opposite effect, increasing the strength of the synaptic connections to older cells. This suggests that new synapses are not formed to accommodate new neurons, but rather that there is a redistribution of synapses between old and new neurons in the dentate gyrus. Further work is required to determine how this redistribution of synapses contributes to how the dentate gyrus works. Does redistributing synapses disrupt existing memories? And how do these findings relate to the effects of exercise – does this natural way of increasing neurogenesis increase the overall number of synapses in the system, potentially creating enough connections for both new and old neurons? DOI:http://dx.doi.org/10.7554/eLife.19886.002
Collapse
Affiliation(s)
- Elena W Adlaf
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Ryan J Vaden
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Anastasia J Niver
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Allison F Manuel
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Vincent C Onyilo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Matheus T Araujo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Cristina V Dieni
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Hai T Vo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Gwendalyn D King
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | - Jacques I Wadiche
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | | |
Collapse
|
30
|
Huang CW, Chen YW, Lin YR, Chen PH, Chou MH, Lee LJ, Wang PY, Wu JT, Tsao YP, Chen SL. Conditional Knockout of Breast Carcinoma Amplified Sequence 2 (BCAS2) in Mouse Forebrain Causes Dendritic Malformation via β-catenin. Sci Rep 2016; 6:34927. [PMID: 27713508 PMCID: PMC5054673 DOI: 10.1038/srep34927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/20/2016] [Indexed: 01/11/2023] Open
Abstract
Breast carcinoma amplified sequence 2 (BCAS2) is a core component of the hPrP19 complex that controls RNA splicing. Here, we performed an exon array assay and showed that β-catenin is a target of BCAS2 splicing regulation. The regulation of dendrite growth and morphology by β-catenin is well documented. Therefore, we generated conditional knockout (cKO) mice to eliminate the BCAS2 expression in the forebrain to investigate the role of BCAS2 in dendrite growth. BCAS2 cKO mice showed a microcephaly-like phenotype with a reduced volume in the dentate gyrus (DG) and low levels of learning and memory, as evaluated using Morris water maze analysis and passive avoidance, respectively. Golgi staining revealed shorter dendrites, less dendritic complexity and decreased spine density in the DG of BCAS2 cKO mice. Moreover, the cKO mice displayed a short dendrite length in newborn neurons labeled by DCX, a marker of immature neurons, and BrdU incorporation. To further examine the mechanism underlying BCAS2-mediated dendritic malformation, we overexpressed β-catenin in BCAS2-depleted primary neurons and found that the dendritic growth was restored. In summary, BCAS2 is an upstream regulator of β-catenin gene expression and plays a role in dendrite growth at least partly through β-catenin.
Collapse
Affiliation(s)
- Chu-Wei Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Rou Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Han Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Meng-Hsuan Chou
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
31
|
Hepatocyte Growth Factor Modulates MET Receptor Tyrosine Kinase and β-Catenin Functional Interactions to Enhance Synapse Formation. eNeuro 2016; 3:eN-NWR-0074-16. [PMID: 27595133 PMCID: PMC5002983 DOI: 10.1523/eneuro.0074-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023] Open
Abstract
MET, a pleiotropic receptor tyrosine kinase implicated in autism risk, influences multiple neurodevelopmental processes. There is a knowledge gap, however, in the molecular mechanism through which MET mediates developmental events related to disorder risk. In the neocortex, MET is expressed transiently during periods of peak dendritic outgrowth and synaptogenesis, with expression enriched at developing synapses, consistent with demonstrated roles in dendritic morphogenesis, modulation of spine volume, and excitatory synapse development. In a recent coimmunoprecipitation/mass spectrometry screen, β-catenin was identified as part of the MET interactome in developing neocortical synaptosomes. Here, we investigated the influence of the MET/β-catenin complex in mouse neocortical synaptogenesis. Western blot analysis confirms that MET and β-catenin coimmunoprecipitate, but N-cadherin is not associated with the MET complex. Following stimulation with hepatocyte growth factor (HGF), β-catenin is phosphorylated at tyrosine142 (Y142) and dissociates from MET, accompanied by an increase in β-catenin/N-cadherin and MET/synapsin 1 protein complexes. In neocortical neurons in vitro, proximity ligation assays confirmed the close proximity of these proteins. Moreover, in neurons transfected with synaptophysin-GFP, HGF stimulation increases the density of synaptophysin/bassoon (a presynaptic marker) and synaptophysin/PSD-95 (a postsynaptic marker) clusters. Mutation of β-catenin at Y142 disrupts the dissociation of the MET/β-catenin complex and prevents the increase in clusters in response to HGF. The data demonstrate a new mechanism for the modulation of synapse formation, whereby MET activation induces an alignment of presynaptic and postsynaptic elements that are necessary for assembly and formation of functional synapses by subsets of neocortical neurons that express MET/β-catenin complex.
Collapse
|
32
|
Ding XF, Gao X, Ding XC, Fan M, Chen J. Postnatal dysregulation of Notch signal disrupts dendrite development of adult-born neurons in the hippocampus and contributes to memory impairment. Sci Rep 2016; 6:25780. [PMID: 27173138 PMCID: PMC4865733 DOI: 10.1038/srep25780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/22/2016] [Indexed: 01/08/2023] Open
Abstract
Deficits in the Notch pathway are involved in a number of neurologic diseases associated with mental retardation or/and dementia. The mechanisms by which Notch dysregulation are associated with mental retardation and dementia are poorly understood. We found that Notch1 is highly expressed in the adult-born immature neurons in the hippocampus of mice. Retrovirus mediated knockout of notch1 in single adult-born immature neurons decreases mTOR signaling and compromises their dendrite morphogenesis. In contrast, overexpression of Notch1 intracellular domain (NICD), to constitutively activate Notch signaling in single adult-born immature neurons, promotes mTOR signaling and increases their dendrite arborization. Using a unique genetic approach to conditionally and selectively knockout notch 1 in the postnatally born immature neurons in the hippocampus decreases mTOR signaling, compromises their dendrite morphogenesis, and impairs spatial learning and memory. Conditional overexpression of NICD in the postnatally born immature neurons in the hippocampus increases mTOR signaling and promotes dendrite arborization. These data indicate that Notch signaling plays a critical role in dendrite development of immature neurons in the postnatal brain, and dysregulation of Notch signaling in the postnatally born neurons disrupts their development and thus contributes to the cognitive deficits associated with neurological diseases.
Collapse
Affiliation(s)
- Xue-Feng Ding
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Cognitive sciences, Beijing Institute of Basic Medical Sciences, Beijing 100850, P. R. China
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xin-Chun Ding
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ming Fan
- Department of Cognitive sciences, Beijing Institute of Basic Medical Sciences, Beijing 100850, P. R. China
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
Zhao S, Gao X, Dong W, Chen J. The Role of 7,8-Dihydroxyflavone in Preventing Dendrite Degeneration in Cortex After Moderate Traumatic Brain Injury. Mol Neurobiol 2016; 53:1884-1895. [PMID: 25801526 PMCID: PMC5441052 DOI: 10.1007/s12035-015-9128-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/22/2015] [Indexed: 01/24/2023]
Abstract
Our previous research showed that traumatic brain injury (TBI) induced by controlled cortical impact (CCI) not only causes massive cell death, but also results in extensive dendrite degeneration in those spared neurons in the cortex. Cell death and dendrite degeneration in the cortex may contribute to persistent cognitive, sensory, and motor dysfunction. There is still no approach available to prevent cells from death and dendrites from degeneration following TBI. When we treated the animals with a small molecule, 7,8-dihydroxyflavone (DHF) that mimics the function of brain-derived neurotrophic factor (BDNF) through provoking TrkB activation reduced dendrite swellings in the cortex. DHF treatment also prevented dendritic spine loss after TBI. Functional analysis showed that DHF improved rotarod performance on the third day after surgery. These results suggest that although DHF treatment did not significantly reduced neuron death, it prevented dendrites from degenerating and protected dendritic spines against TBI insult. Consequently, DHF can partially improve the behavior outcomes after TBI.
Collapse
Affiliation(s)
- Shu Zhao
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA
- Stark Neuroscience Research Institute, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA
- Department of Neurosurgery, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Weiren Dong
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China.
- , 1838 North Guangzhou Blvd, Guangzhou, 510515, China.
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Stark Neuroscience Research Institute, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Department of Neurosurgery, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Indiana University, School of Medicine, 980 W. Walnut Street, R3, Indianapolis, IN, 46202, USA.
| |
Collapse
|
34
|
Madhavadas S, Kapgal VK, Kutty BM, Subramanian S. The Neuroprotective Effect of Dark Chocolate in Monosodium Glutamate-Induced Nontransgenic Alzheimer Disease Model Rats: Biochemical, Behavioral, and Histological Studies. J Diet Suppl 2015; 13:449-60. [PMID: 26673833 DOI: 10.3109/19390211.2015.1108946] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The vulnerability to oxidative stress and cognitive decline continue to increase during both normal and pathological aging. Dietary changes and sedentary life style resulting in mid-life obesity and type 2 diabetes, if left uncorrected, further add to the risk of cognitive decline and Alzheimer disease (AD) in the later stages of life. Certain antioxidant agents such as dietary polyphenols, taken in adequate quantities, have been suggested to improve the cognitive processes. In this study, we examined the effect of oral administration of dark chocolate (DC) containing 70% cocoa solids and 4% total polyphenol content for three months at a dose of 500 mg/Kg body weight per day to 17-month-old monosodium glutamate treated obese Sprague-Dawley rats, earlier characterized as a nontransgenic AD (NTAD) rat model after reversal of obesity, diabetes, and consequent cognitive impairments. The results demonstrated that DC reduced the hyperglycemia, inhibited the cholinesterase activity in the hippocampal tissue homogenates, and improved the cognitive performance in spatial memory related Barnes maze task. Histological studies revealed an increase in cell volume in the DC treated rats in the CA3 region of the hippocampus. These findings demonstrated the benefits of DC in enhancing cognitive function and cholinergic activity in the hippocampus of the aged NTAD rats while correcting their metabolic disturbances.
Collapse
Affiliation(s)
- Sowmya Madhavadas
- a Department of Neurochemistry, National Institute of Mental Health & Neurosciences , Bangalore , India
| | - Vijaya Kumar Kapgal
- b Department of Neurophysiology, National Institute of Mental Health & Neurosciences , Bangalore , India
| | - Bindu M Kutty
- b Department of Neurophysiology, National Institute of Mental Health & Neurosciences , Bangalore , India
| | - Sarada Subramanian
- a Department of Neurochemistry, National Institute of Mental Health & Neurosciences , Bangalore , India
| |
Collapse
|
35
|
Li D, Takeda N, Jain R, Manderfield LJ, Liu F, Li L, Anderson SA, Epstein JA. Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Res 2015; 15:522-529. [PMID: 26451648 DOI: 10.1016/j.scr.2015.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/17/2015] [Accepted: 09/29/2015] [Indexed: 01/09/2023] Open
Abstract
In the adult dentate gyrus (DG) and in the proliferative zone lining the lateral ventricle (LV-PZ), radial glia-like (RGL) cells are neural stem cells (NSCs) that generate granule neurons. A number of molecular markers including glial fibrillary acidic protein (GFAP), Sox2 and nestin, can identify quiescent NSCs in these two niches. However, to date, there is no marker that distinguishes NSC origin of DG versus LV-PZ. Hopx, an atypical homeodomain only protein, is expressed by adult stem cell populations including those in the intestine and hair follicle. Here, we show that Hopx is specifically expressed in RGL cells in the adult DG, and these cells give rise to granule neurons. Assessed by non-stereological quantitation, Hopx-null NSCs exhibit enhanced neurogenesis evident by an increased number of BrdU-positive cells and doublecortin (DCX)-positive neuroblasts. In contrast, Sox2-positive, quiescent NSCs are reduced in the DG of Hopx-null animals and Notch signaling is reduced, as evidenced by reduced expression of Notch targets Hes1 and Hey2, and a reduction of the number of cells expressing the cleaved, activated form of the Notch1 receptor, the Notch intracellular domain (NICD) in Hopx-null DG. Surprisingly, Hopx is not expressed in RGL cells of the adult LV-PZ, and Hopx-expressing cells do not give rise to interneurons of the olfactory bulb (OB). These findings establish that Hopx expression distinguishes NSCs of the DG from those of the LV-PZ, and suggest that Hopx potentially regulates hippocampal neurogenesis by modulating Notch signaling.
Collapse
Affiliation(s)
- Deqiang Li
- Department of Cell and Developmental Biology, Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norifumi Takeda
- Department of Cell and Developmental Biology, Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren J Manderfield
- Department of Cell and Developmental Biology, Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feiyan Liu
- Department of Cell and Developmental Biology, Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Department of Cell and Developmental Biology, Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Abrous DN, Wojtowicz JM. Interaction between Neurogenesis and Hippocampal Memory System: New Vistas. Cold Spring Harb Perspect Biol 2015; 7:7/6/a018952. [PMID: 26032718 DOI: 10.1101/cshperspect.a018952] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
During the last decade, the questions on the functionality of adult neurogenesis have changed their emphasis from if to how the adult-born neurons participate in a variety of memory processes. The emerging answers are complex because we are overwhelmed by a variety of behavioral tasks that apparently require new neurons to be performed optimally. With few exceptions, the hippocampal memory system seems to use the newly generated neurons for multiple roles. Adult neurogenesis has given the dentate gyrus new capabilities not previously thought possible within the scope of traditional synaptic plasticity. Looking at these new developments from the perspective of past discoveries, the science of adult neurogenesis has emerged from its initial phase of being, first, a surprising oddity and, later, exciting possibility, to the present state of being an integral part of mainstream neuroscience. The answers to many remaining questions regarding adult neurogenesis will come along only with our growing understanding of the functionality of the brain as a whole. This, in turn, will require integration of multiple levels of organization from molecules and cells to circuits and systems, ultimately resulting in comprehension of behavioral outcomes.
Collapse
Affiliation(s)
- Djoher Nora Abrous
- Inserm U862, Bordeaux-F33077, France Université de Bordeaux, Bordeaux-F33077, France
| | - Jan Martin Wojtowicz
- Department of Physiology, University of Toronto, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
37
|
The Role of Wnt/β-Catenin Signaling Pathway in Disrupted Hippocampal Neurogenesis of Temporal Lobe Epilepsy: A Potential Therapeutic Target? Neurochem Res 2015; 40:1319-32. [PMID: 26012365 DOI: 10.1007/s11064-015-1614-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 02/05/2023]
Abstract
Temporal lobe epilepsy is one of the most common clinical neurological disorders. One of the major pathological findings in temporal lobe epilepsy is hippocampal sclerosis, characterized by massive neuronal loss and severe gliosis. The epileptogenesis process of temporal lobe epilepsy usually starts with initial precipitating insults, followed by neurodegeneration, abnormal hippocampus circuitry reorganization, and the formation of hypersynchronicity. Experimental and clinical evidence strongly suggests that dysfunctional neurogenesis is involved in the epileptogenesis. Recent data demonstrate that neurogenesis is induced by acute seizures or precipitating insults, whereas the capacity of neuronal recruitment and proliferation substantially decreases in the chronic phase of epilepsy. Participation of the Wnt/β-catenin signaling pathway in neurogenesis reveals its importance in epileptogenesis; its dysfunction contributes to the structural and functional abnormality of temporal lobe epilepsy, while rescuing this pathway exerts neuroprotective effects. Here, we summarize data supporting the involvement of Wnt/β-catenin signaling in the epileptogenesis of temporal lobe epilepsy. We also propose that the Wnt/β-catenin signaling pathway may serve as a promising therapeutic target for temporal lobe epilepsy treatment.
Collapse
|
38
|
Hussaini SMQ, Choi CI, Cho CH, Kim HJ, Jun H, Jang MH. Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 2014; 47:369-83. [PMID: 25263701 DOI: 10.1016/j.neubiorev.2014.09.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 07/20/2014] [Accepted: 09/05/2014] [Indexed: 12/27/2022]
Abstract
In an effort to better understand and treat mental disorders, the Wnt pathway and adult hippocampal neurogenesis have received increased attention in recent years. One is a signaling pathway regulating key aspects of embryonic patterning, cell specification and adult tissue homeostasis. The other is the generation of newborn neurons in adulthood that integrate into the neural circuit and function in learning and memory, and mood behavior. In this review, we discuss the growing relationship between Wnt signaling-mediated regulation of adult hippocampal neurogenesis as it applies to neuropsychiatric disorders. Evidence suggests dysfunctional Wnt signaling may aberrantly regulate new neuron development and cognitive function. Indeed, altered expression of key Wnt pathway components are observed in the hippocampus of patients suffering from neuropsychiatric disorders. Clinically-utilized mood stabilizers also proceed through modulation of Wnt signaling in the hippocampus, while Wnt pathway antagonists can regulate the antidepressant response. Here, we review the role of Wnt signaling in disease etiology and pathogenesis, regulation of adult neurogenesis and behavior, and the therapeutic targeting of disease symptoms.
Collapse
Affiliation(s)
| | - Chan-Il Choi
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Chang Hoon Cho
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Hyo Jin Kim
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Heechul Jun
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
39
|
Song H, Man L, Wang Y, Bai X, Wei S, Liu Y, Liu M, Gu X, Wang Y. The Regenerating Spinal Cord of Gecko Maintains Unaltered Expression of β-Catenin Following Tail Amputation. J Mol Neurosci 2014; 55:653-62. [DOI: 10.1007/s12031-014-0405-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
40
|
Yu F, Wang Y, Xu H, Dong J, Wei W, Wang Y, Shan Z, Teng W, Xi Q, Chen J. Developmental iodine deficiency delays the maturation of newborn granule neurons associated with downregulation of p35 in postnatal rat hippocampus. ENVIRONMENTAL TOXICOLOGY 2014; 29:847-855. [PMID: 22987596 DOI: 10.1002/tox.21811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/29/2012] [Accepted: 08/04/2012] [Indexed: 06/01/2023]
Abstract
We evaluated the role of p35 in the maturation of hippocampal granule neurons in offspring caused by developmental iodine deficiency. Two developmental rat models were established with either an iodine-deficient diet, or propylthiouracil-adulterated water (5 ppm) to impair thyroid function, in pregnant rats from gestational day 6 until postnatal day 28. The protein levels of p35, cyclin-dependent kinase 5, β-catenin, and N-cadherin were assessed on postnatal day 14, 21, and 28. Dendritic morphogenesis of newborn granule neurons in dentate gyrus was examined. Developmental hypothyroidism induced by iodine deficiency and PTU treatment delayed the maturation of hippocampal granule neurons in the offspring and decreased the percentage of Dcx-positive neurons that expressed β-catenin on postnatal day 21 and 28. In addition, downregulation of p35 was observed in dentate gyrus of hypothyroid groups. Developmental hypothyroidism induced by iodine deficiency and PTU treatment could delay the maturation of newborn granule neurons in dentate gyrus, and this deficit may be attributed to the downregulation of p35.
Collapse
Affiliation(s)
- Fei Yu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110001, People's Republic of China; Liaoning Provincial Key Laboratory of Endocrine Diseases, China Medical University, Shenyang, People's Republic of China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dubruc E, Putoux A, Labalme A, Rougeot C, Sanlaville D, Edery P. A new intellectual disability syndrome caused by CTNNB1 haploinsufficiency. Am J Med Genet A 2014; 164A:1571-5. [PMID: 24668549 DOI: 10.1002/ajmg.a.36484] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 01/12/2014] [Indexed: 11/07/2022]
Abstract
A girl patient born to healthy nonconsanguineous parents was referred at age 3 years and 2 months to our genetics department for testing due to developmental delay and postnatal microcephaly. Initial clinical evaluation revealed an overall developmental delay, mildly dysmorphic features, thin, sparse fair hair, and fair skin. Postnatal microcephaly and progressive ataxia and spasticity appeared later. Array CGH karyotyping showed a 333 kb de novo microdeletion on 3p22 covering the entire genomic sequence of a single gene, CTNNB1, which codes for β-catenin. β-catenin is a sub-unit of a multiprotein complex, which is part of the Wnt signaling pathway. In mice, a conditional homozygous β-catenin knockout displays loss of neurons, impaired craniofacial development, and hair follicle defects, which is similar to the phenotype presented by the patient described in this clinical report. Thus, CTNNB1 haploinsufficiency causes neuronal loss, craniofacial anomalies and hair follicle defects in both humans and mice. Point mutations in CTNNB1 in human have recently been reported but this is the first observation of a new recognizable multiple congenital anomaly/mental retardation syndrome caused by CTNNB1 haploinsufficiency. This clinical report should prompt a search for point mutations in CTNNB1 in patients presenting developmental delay, mild hair, skin and facial anomalies, and neurodegeneration characterized by postnatal microcephaly, and progressive ataxia and spasticity. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Estelle Dubruc
- Genetics Service, Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, and Eastern Biology and Pathology Centre, Bron Cedex, France
| | | | | | | | | | | |
Collapse
|
42
|
Seib DRM, Corsini NS, Ellwanger K, Plaas C, Mateos A, Pitzer C, Niehrs C, Celikel T, Martin-Villalba A. Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell 2013; 12:204-14. [PMID: 23395445 DOI: 10.1016/j.stem.2012.11.010] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 09/11/2012] [Accepted: 11/15/2012] [Indexed: 12/19/2022]
Abstract
Memory impairment has been associated with age-related decline in adult hippocampal neurogenesis. Although Notch, bone morphogenetic protein, and Wnt signaling pathways are known to regulate multiple aspects of adult neural stem cell function, the molecular basis of declining neurogenesis in the aging hippocampus remains unknown. Here, we show that expression of the Wnt antagonist Dickkopf-1 (Dkk1) increases with age and that its loss enhances neurogenesis in the hippocampus. Neural progenitors with inducible loss of Dkk1 increase their Wnt activity, which leads to enhanced self-renewal and increased generation of immature neurons. This Wnt-expanded progeny subsequently matures into glutamatergic granule neurons with increased dendritic complexity. As a result, mice deficient in Dkk1 exhibit enhanced spatial working memory and memory consolidation and also show improvements in affective behavior. Taken together, our findings show that upregulating Wnt signaling by reducing Dkk1 expression can counteract age-related decrease in neurogenesis and its associated cognitive decline.
Collapse
Affiliation(s)
- Désirée R M Seib
- Division of Molecular Neurobiology, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tingling JD, Bake S, Holgate R, Rawlings J, Nagsuk PP, Chandrasekharan J, Schneider SL, Miranda RC. CD24 expression identifies teratogen-sensitive fetal neural stem cell subpopulations: evidence from developmental ethanol exposure and orthotopic cell transfer models. PLoS One 2013; 8:e69560. [PMID: 23894503 PMCID: PMC3718834 DOI: 10.1371/journal.pone.0069560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/10/2013] [Indexed: 11/18/2022] Open
Abstract
Background Ethanol is a potent teratogen. Its adverse neural effects are partly mediated by disrupting fetal neurogenesis. The teratogenic process is poorly understood, and vulnerable neurogenic stages have not been identified. Identifying these is a prerequisite for therapeutic interventions to mitigate effects of teratogen exposures. Methods We used flow cytometry and qRT-PCR to screen fetal mouse-derived neurosphere cultures for ethanol-sensitive neural stem cell (NSC) subpopulations, to study NSC renewal and differentiation. The identity of vulnerable NSC populations was validated in vivo, using a maternal ethanol exposure model. Finally, the effect of ethanol exposure on the ability of vulnerable NSC subpopulations to integrate into the fetal neurogenic environment was assessed following ultrasound guided, adoptive transfer. Results Ethanol decreased NSC mRNAs for c-kit, Musashi-1and GFAP. The CD24+ NSC population, specifically the CD24+CD15+ double-positive subpopulation, was selectively decreased by ethanol. Maternal ethanol exposure also resulted in decreased fetal forebrain CD24 expression. Ethanol pre-exposed CD24+ cells exhibited increased proliferation, and deficits in cell-autonomous and cue-directed neuronal differentiation, and following orthotopic transplantation into naïve fetuses, were unable to integrate into neurogenic niches. CD24depleted cells retained neurosphere regeneration capacity, but following ethanol exposure, generated increased numbers of CD24+ cells relative to controls. Conclusions Neuronal lineage committed CD24+ cells exhibit specific vulnerability, and ethanol exposure persistently impairs this population’s cell-autonomous differentiation capacity. CD24+ cells may additionally serve as quorum sensors within neurogenic niches; their loss, leading to compensatory NSC activation, perhaps depleting renewal capacity. These data collectively advance a mechanistic hypothesis for teratogenesis leading to microencephaly.
Collapse
Affiliation(s)
- Joseph D. Tingling
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Shameena Bake
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Rhonda Holgate
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Jeremy Rawlings
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Phillips P. Nagsuk
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Jayashree Chandrasekharan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Sarah L. Schneider
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Rajesh C. Miranda
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Shackleford G, Makoukji J, Grenier J, Liere P, Meffre D, Massaad C. Differential regulation of Wnt/beta-catenin signaling by Liver X Receptors in Schwann cells and oligodendrocytes. Biochem Pharmacol 2013; 86:106-14. [DOI: 10.1016/j.bcp.2013.02.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 11/16/2022]
|
45
|
Neural plasticity and proliferation in the generation of antidepressant effects: hippocampal implication. Neural Plast 2013; 2013:537265. [PMID: 23862076 PMCID: PMC3703717 DOI: 10.1155/2013/537265] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/15/2022] Open
Abstract
It is widely accepted that changes underlying depression and antidepressant-like effects involve not only alterations in the levels of neurotransmitters as monoamines and their receptors in the brain, but also structural and functional changes far beyond. During the last two decades, emerging theories are providing new explanations about the neurobiology of depression and the mechanism of action of antidepressant strategies based on cellular changes at the CNS level. The neurotrophic/plasticity hypothesis of depression, proposed more than a decade ago, is now supported by multiple basic and clinical studies focused on the role of intracellular-signalling cascades that govern neural proliferation and plasticity. Herein, we review the state-of-the-art of the changes in these signalling pathways which appear to underlie both depressive disorders and antidepressant actions. We will especially focus on the hippocampal cellularity and plasticity modulation by serotonin, trophic factors as brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) through intracellular signalling pathways—cAMP, Wnt/β-catenin, and mTOR. Connecting the classic monoaminergic hypothesis with proliferation/neuroplasticity-related evidence is an appealing and comprehensive attempt for improving our knowledge about the neurobiological events leading to depression and associated to antidepressant therapies.
Collapse
|
46
|
Wisniewska MB. Physiological role of β-catenin/TCF signaling in neurons of the adult brain. Neurochem Res 2013; 38:1144-55. [PMID: 23377854 PMCID: PMC3653035 DOI: 10.1007/s11064-013-0980-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/21/2012] [Accepted: 01/19/2013] [Indexed: 12/21/2022]
Abstract
Wnt/β-catenin pathway, the effectors of which are transcription factors of the LEF1/TCF family, is primarily associated with development. Strikingly, however, some of the genes of the pathway are schizophrenia susceptibility genes, and the proteins that are often mutated in neurodegenerative diseases have the ability to regulate β-catenin levels. If impairment of this pathway indeed leads to these pathologies, then it likely plays a physiological role in the adult brain. This review provides an overview of the current knowledge on this subject. The involvement of β-catenin and LEF1/TCF factors in adult neurogenesis, synaptic plasticity, and the function of thalamic neurons are discussed. The data are still very preliminary and often based on circumstantial or indirect evidence. Further research might help to understand the etiology of the aforementioned pathologies.
Collapse
Affiliation(s)
- Marta B Wisniewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
47
|
Tao HY, He B, Liu SQ, Wei AL, Tao FH, Tao HL, Deng WX, Li HH, Chen Q. Effect of carboxymethylated chitosan on the biosynthesis of NGF and activation of the Wnt/β-catenin signaling pathway in the proliferation of Schwann cells. Eur J Pharmacol 2013; 702:85-92. [DOI: 10.1016/j.ejphar.2013.01.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
|
48
|
DISC1-related signaling pathways in adult neurogenesis of the hippocampus. Gene 2013; 518:223-30. [PMID: 23353011 DOI: 10.1016/j.gene.2013.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/10/2013] [Accepted: 01/12/2013] [Indexed: 01/08/2023]
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a multifunctional scaffold protein which plays an important role in neurogenesis and neural development in the adult brain, especially in the dentate gyrus (DG) of the hippocampus. Accumulated research has unveiled the role of DISC1 in several aspects of neural development and neurogenesis, such as neuronal maturation, proliferation, migration, positioning, differentiation, dendritic growth, axonal outgrowth, and synaptic plasticity. Studies on the function of this protein have explored multiple facets, including variants and missense mutants in genetics, proteins interactivity and signaling pathways in molecular biology, and pathogenesis and treatment targets of major mental illness, and more. In this review, we present several signaling pathways discussed in recent research, such as the AKT signaling pathway, GABA signaling pathway, GSK3β signaling pathway, Wnt signaling pathway, and NMDA-R signaling pathway. DISC1 interacts, directly or indirectly, with these signaling pathways and they co-regulate the process of adult neurogenesis in the hippocampus.
Collapse
|
49
|
TNiK is required for postsynaptic and nuclear signaling pathways and cognitive function. J Neurosci 2013; 32:13987-99. [PMID: 23035106 DOI: 10.1523/jneurosci.2433-12.2012] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Traf2 and NcK interacting kinase (TNiK) contains serine-threonine kinase and scaffold domains and has been implicated in cell proliferation and glutamate receptor regulation in vitro. Here we report its role in vivo using mice carrying a knock-out mutation. TNiK binds protein complexes in the synapse linking it to the NMDA receptor (NMDAR) via AKAP9. NMDAR and metabotropic receptors bidirectionally regulate TNiK phosphorylation and TNiK is required for AMPA expression and synaptic function. TNiK also organizes nuclear complexes and in the absence of TNiK, there was a marked elevation in GSK3β and phosphorylation levels of its cognate phosphorylation sites on NeuroD1 with alterations in Wnt pathway signaling. We observed impairments in dentate gyrus neurogenesis in TNiK knock-out mice and cognitive testing using the touchscreen apparatus revealed impairments in pattern separation on a test of spatial discrimination. Object-location paired associate learning, which is dependent on glutamatergic signaling, was also impaired. Additionally, TNiK knock-out mice displayed hyperlocomotor behavior that could be rapidly reversed by GSK3β inhibitors, indicating the potential for pharmacological rescue of a behavioral phenotype. These data establish TNiK as a critical regulator of cognitive functions and suggest it may play a regulatory role in diseases impacting on its interacting proteins and complexes.
Collapse
|
50
|
Maguschak KA, Ressler KJ. A role for WNT/β-catenin signaling in the neural mechanisms of behavior. J Neuroimmune Pharmacol 2012; 7:763-73. [PMID: 22415718 PMCID: PMC3749067 DOI: 10.1007/s11481-012-9350-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 02/19/2012] [Indexed: 02/03/2023]
Abstract
Wnt signaling pathways play a role in a variety of cellular processes including development, cell proliferation, cell fate, and motility. The Wnt/β-catenin pathway is among the most studied of the Wnt pathways and is highly conserved throughout evolution. Recent in vitro and slice physiology experiments have shown that this pathway also functions in synaptic transmission and activity-dependent synaptic plasticity. Since it has now been shown that many components of this signaling pathway are found in the adult brain, Wnt/β-catenin signaling may be important for maintaining and protecting neural connections throughout the lifespan. Here we summarize the role of Wnt/β-catenin signaling in the postnatal brain and discuss recent studies suggesting that deregulated Wnt signaling can result in altered behavior and cognitive disorders.
Collapse
Affiliation(s)
| | - Kerry J. Ressler
- Howard Hughes Medical Institute, Chevy Chase, MA, USA. Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University School of Medicine, 954 Gatewood Dr, Atlanta, GA 30329, USA
| |
Collapse
|