1
|
Bastille I, Lee L, Moncada-Reid C, Yu WM, Sitko A, Yung A, Zamani M, Christophersen N, Maroofian R, Galehdari H, Babai N, Vona B, Moser T, Goodrich L. Combinatorial transcriptional regulation establishes subtype-appropriate synaptic properties in auditory neurons. Cell Rep 2025; 44:115796. [PMID: 40482032 DOI: 10.1016/j.celrep.2025.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 04/08/2025] [Accepted: 05/15/2025] [Indexed: 06/29/2025] Open
Abstract
Neurons develop diverse synapses that vary in content, morphology, and size. Although transcriptional regulators of neurotransmitter identity are known, it remains unclear how synaptic features are patterned among neuronal subtypes. In the auditory system, glutamatergic synaptic properties vary across three spiral ganglion neuron (SGN) subtypes that collectively encode sound. Here, we demonstrate that Maf transcription factors combinatorially shape synaptic properties in SGNs. SGN subtypes express different ratios of c-Maf and Mafb, which act redundantly to impart subtype identities and individually to shape subtype-appropriate gene expression programs. On their own, c-Maf and Mafb have independent and opposing effects on synaptic features and hearing. A mutation in the MAFB leucine zipper domain causes deafness in humans, underscoring the importance of regulated Maf activity for hearing. Thus, functional diversity and coordinated action of Maf family members enable flexible and robust control of gene expression needed to generate synaptic heterogeneity across neuronal subtypes.
Collapse
Affiliation(s)
- Isle Bastille
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Lucy Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Wei-Ming Yu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Austen Sitko
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Andrea Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; Genentech, South San Francisco, CA, USA
| | - Mina Zamani
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran; Department of Neuromuscular Diseases, Queen Square, Institute of Neurology, University College London, London, UK
| | - Nele Christophersen
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Reza Maroofian
- Department of Neuromuscular Diseases, Queen Square, Institute of Neurology, University College London, London, UK
| | - Hamid Galehdari
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Norbert Babai
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Lisa Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Huang Z, Ross JM, Lin SCY, Kumar PN, Roy K, Vlajkovic SM, Thorne PR, Suzuki-Kerr H. Subcellular localization of the P2X4 receptor in sensory hair cells of Wistar rat cochlea. Histochem Cell Biol 2025; 163:54. [PMID: 40392390 DOI: 10.1007/s00418-025-02386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2025] [Indexed: 05/22/2025]
Abstract
Our sense of hearing starts in the inner ear organ, the cochlea, which contains two types of auditory hair cells for signal transduction. Earlier research showed that the complex cochlear physiology is regulated in part by purinergic signalling through activation of purine-mediated P2X, P2Y and adenosine receptors expressed in the cochlea. This study aims to extend our knowledge of purinergic signalling in the cochlea by comprehensively characterising the expression of the P2X4 receptor subtype. Wistar rat cochlea (embryonic day 20.5-6 weeks, both sexes) were collected, and the P2X4 expression was examined by immunohistochemistry. Robust P2X4 expression was found in the organ of Corti (OoC) in the inner hair cells (IHCs) and outer hair cells (OHCs), confirmed by double-labelling with hair cells (HCs) marker myosin VIIa. In IHCs, a robust cytoplasmic P2X4 expression occurred throughout the cell body, with the most intense signal at the medial side. In OHCs, P2X4 formed puncta near the apical and basal ends of the cell body. Using markers for subcellular organelles, P2X4 immunoreactivity was predominately associated with the trans-Golgi network apparatus and early endosomes in IHC and with early endosomes and lysosomes in OHC in the mature cochlea. In both cell types, some co-localisation of P2X4 with presynaptic marker was also observed. Taken together, these observations suggest unique roles for P2X4 in mature IHCs and OHCs as a purinergic receptor subtype responsible for the homeostatic regulation of hair cells and auditory sensory transduction.
Collapse
Affiliation(s)
- Ziyin Huang
- Department of Physiology, The University of Auckland, Building 502-401, 85 Park Road, Grafton, Auckland, 1023, New Zealand
- Section of Audiology, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
| | - Jacqueline M Ross
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
- Biomedical Imaging Research Unit, The University of Auckland, Auckland, New Zealand
| | - Shelly C Y Lin
- Department of Physiology, The University of Auckland, Building 502-401, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Prakansha N Kumar
- Department of Physiology, The University of Auckland, Building 502-401, 85 Park Road, Grafton, Auckland, 1023, New Zealand
- Section of Audiology, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
| | - Kevin Roy
- Department of Physiology, The University of Auckland, Building 502-401, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Srdjan M Vlajkovic
- Department of Physiology, The University of Auckland, Building 502-401, 85 Park Road, Grafton, Auckland, 1023, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
| | - Peter R Thorne
- Department of Physiology, The University of Auckland, Building 502-401, 85 Park Road, Grafton, Auckland, 1023, New Zealand
- Section of Audiology, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
| | - Haruna Suzuki-Kerr
- Department of Physiology, The University of Auckland, Building 502-401, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Domarecka E, Olze H, Szczepek AJ. The Size and Localization of Ribeye and GluR2 in the Auditory Inner Hair Cell Synapse of C57BL/6 Mice Are Affected by Short-Pulse Corticosterone in a Sex-Dependent Manner. Brain Sci 2025; 15:441. [PMID: 40426612 PMCID: PMC12110336 DOI: 10.3390/brainsci15050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Inner hair cell (IHC) ribbon synapses are the initial synapses in the auditory pathway, comprising presynaptic ribbons and postsynaptic glutamate receptors on the peripheral afferent fibers. The excitatory neurotransmitter glutamate primarily signals through AMPA-type heterotetrameric receptors (AMPARs), composed of GluR1, GluR2, GluR3, and GluR4 subunits. Research shows that corticosterone affects AMPA receptor subunits in the central nervous system. The present study investigates the effects of corticosterone on AMPA receptor subunits in the murine cochlea. Methods: Cochlear explants were isolated from male and female C57BL/6 pups (postnatal days 4-5), treated for 20 min with 100 nM corticosterone, and cultured for an additional 24 h. The concentration of AMPAR protein subunits was quantified using an ELISA assay, while gene expression was analyzed using RT-PCR. The synaptic localization patterns of GluR2 and Ribeye were examined using immunofluorescence and confocal microscopy. Results: Male C57BL/6 mice have a significantly greater basal concentration of the GluR2 subunit than females and more GluR2 puncta per IHC than females. Corticosterone increases the size of Ribeye in males and increases twofold GluR2/Ribeye colocalization in the apical region of females. Conclusions: Exposure of membranous cochleae to corticosterone induces changes consistent with neuroplasticity in the auditory periphery. The observed effect is sex-dependent.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.D.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
4
|
Kreeger LJ, Honnuraiah S, Maeker S, Shea S, Fishell G, Goodrich L. An anatomical and physiological basis for flexible coincidence detection in the auditory system. eLife 2025; 13:RP100492. [PMID: 40232945 PMCID: PMC11999698 DOI: 10.7554/elife.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Animals navigate the auditory world by recognizing complex sounds, from the rustle of a predator to the call of a potential mate. This ability depends in part on the octopus cells of the auditory brainstem, which respond to multiple frequencies that change over time, as occurs in natural stimuli. Unlike the average neuron, which integrates inputs over time on the order of tens of milliseconds, octopus cells must detect momentary coincidence of excitatory inputs from the cochlea during an ongoing sound on both the millisecond and submillisecond time scale. Here, we show that octopus cells receive inhibitory inputs on their dendrites that enhance opportunities for coincidence detection in the cell body, thereby allowing for responses both to rapid onsets at the beginning of a sound and to frequency modulations during the sound. This mechanism is crucial for the fundamental process of integrating the synchronized frequencies of natural auditory signals over time.
Collapse
Affiliation(s)
- Lauren J Kreeger
- Harvard Medical School, Department of NeurobiologyBostonUnited States
| | - Suraj Honnuraiah
- Harvard Medical School, Department of NeurobiologyBostonUnited States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Sydney Maeker
- Harvard Medical School, Department of NeurobiologyBostonUnited States
| | - Siobhan Shea
- Harvard Medical School, Department of NeurobiologyBostonUnited States
| | - Gordon Fishell
- Harvard Medical School, Department of NeurobiologyBostonUnited States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Lisa Goodrich
- Harvard Medical School, Department of NeurobiologyBostonUnited States
| |
Collapse
|
5
|
Pal I, Bhattacharyya A, V-Ghaffari B, Williams ED, Xiao M, Rutherford MA, Rubio ME. Female mice lacking GluA3 show early onset of hearing loss, cochlear synaptopathy, and afferent terminal swellings in ambient sound levels. iScience 2025; 28:111799. [PMID: 39935454 PMCID: PMC11810710 DOI: 10.1016/j.isci.2025.111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/12/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate excitatory cochlear transmission. However, unique roles of AMPAR subunits are unresolved. Lack of subunit GluA3 (Gria3 KO ) in male mice reduced cochlear output by 8 postnatal weeks. Here, we studied the role of X-linked Gria3 in cochlear function and synapse anatomy in females. Auditory brainstem responses (ABRs) were similar in 3-week-old female Gria3 WT and Gria3 KO mice raised in quiet. However, after switching to ambient sound, ABR thresholds were elevated and wave-1 amplitudes were diminished at 5-week and older in Gria3 KO . A quiet vivarium precluded this effect. Paired synapses were similar in number, but lone ribbons and ribbonless synapses were more frequent, and swollen afferent terminals were observed only in female Gria3 KO mice in ambient sound. Synaptic GluA4:GluA2 ratios increased relative to Gria3 WT , particularly in ambient sound, suggesting an activity-dependent increase in calcium-permeable AMPARs in Gria3 KO . We propose that lack of GluA3 induces a sex-dependent vulnerability to AMPAR-mediated excitotoxicity.
Collapse
Affiliation(s)
- Indra Pal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Atri Bhattacharyya
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak V-Ghaffari
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Essence Devine Williams
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maolei Xiao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark Allen Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - María Eulalia Rubio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
6
|
Wong NF, Brongo SE, Forero EA, Sun S, Cook CJ, Lauer AM, Müller U, Xu-Friedman MA. Convergence of Type 1 Spiral Ganglion Neuron Subtypes onto Principal Neurons of the Anteroventral Cochlear Nucleus. J Neurosci 2025; 45:e1507242024. [PMID: 39663118 PMCID: PMC11800758 DOI: 10.1523/jneurosci.1507-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/07/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
The mammalian auditory system encodes sounds with subtypes of spiral ganglion neurons (SGNs) that differ in sound level sensitivity, permitting discrimination across a wide range of levels. Recent work suggests the physiologically defined SGN subtypes correspond to at least three molecular subtypes. It is not known how information from the different subtypes converges within the cochlear nucleus. We examined this issue using transgenic mice of both sexes that express Cre recombinase in SGNs that are positive for markers of two subtypes: CALB2 (calretinin) in type 1a SGNs and LYPD1 in type 1c SGNs, which correspond to high- and low-sensitivity subtypes, respectively. We crossed these with mice expressing floxed channelrhodopsin, which allowed specific activation of axons from type 1a or 1c SGNs using optogenetics. We made voltage-clamp recordings from bushy cells in the anteroventral cochlear nucleus (AVCN) and found that the synapses formed by CALB2- and LYPD1-positive SGNs had similar EPSC amplitudes and short-term plasticity. Immunohistochemistry revealed that individual bushy cells receive a mix of 1a, 1b, and 1c synapses with VGluT1-positive puncta of similar sizes. We used optogenetic stimulation during in vivo recordings to classify chopper and primary-like units as receiving versus nonreceiving 1a- or 1c-type inputs. These groups showed no significant difference in threshold or spontaneous rate, suggesting the subtypes do not segregate into distinct processing streams in the AVCN. Our results indicate that principal cells in the AVCN integrate information from all SGN subtypes with extensive convergence, which could optimize sound encoding across a large dynamic range.
Collapse
Affiliation(s)
- Nicole F Wong
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Sydney E Brongo
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Evan A Forero
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Shuohao Sun
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Connor J Cook
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Amanda M Lauer
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Ulrich Müller
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| |
Collapse
|
7
|
Kostrikov S, Hjortkjaer J, Dau T, Corfas G, Liberman LD, Liberman MC. A modiolar-pillar gradient in auditory-nerve dendritic length: A novel post-synaptic contribution to dynamic range? Hear Res 2025; 456:109172. [PMID: 39708764 PMCID: PMC11772111 DOI: 10.1016/j.heares.2024.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Auditory-nerve fibers (ANFs) from a given cochlear region can vary in threshold sensitivity by up to 60 dB, corresponding to a 1000-fold difference in stimulus level, although each fiber innervates a single inner hair cell (IHC) via a single synapse. ANFs with high-thresholds also have low spontaneous rates (SRs) and synapse on the side of the IHC closer to the modiolus, whereas the low-threshold, high-SR fibers synapse on the side closer to the pillar cells. Prior biophysical work has identified modiolar-pillar differences in both pre- and post-synaptic properties, but a comprehensive explanation for the wide range of sensitivities remains elusive. Here, in guinea pigs, we used immunostaining for several neuronal markers, including Caspr, a key protein in nodes of Ranvier, to reveal a novel modiolar-pillar gradient in the location of the first ANF heminodes, presumed to be the site of the spike generator, just outside the sensory epithelium. Along the cochlea, from apex to base, the unmyelinated terminal dendrites of modiolar ANFs were 2-4 times longer than those of pillar ANFs. This modiolar-pillar gradient in dendritic length, coupled with the 2-4 fold smaller caliber of modiolar dendrites seen in prior single-fiber labeling studies, suggests there could be a large difference in the number of length constants between the synapse and the spike initiation zone for low- vs high-SR fibers. The resultant differences in attenuation of post-synaptic potentials propagating along these unmyelinated dendrites could be a key contributor to the observed range of threshold sensitivities among ANFs.
Collapse
Affiliation(s)
- Serhii Kostrikov
- Department of Health Technology, Centre for Auditory Neuroscience, Hearing Systems, Technical University of Denmark, Lyngby, Denmark
| | - Jens Hjortkjaer
- Department of Health Technology, Centre for Auditory Neuroscience, Hearing Systems, Technical University of Denmark, Lyngby, Denmark
| | - Torsten Dau
- Department of Health Technology, Centre for Auditory Neuroscience, Hearing Systems, Technical University of Denmark, Lyngby, Denmark
| | - Gabriel Corfas
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| | - Leslie D Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Choi JS, Kim KS, Kim HJ. Functional and Structural Changes in the Inner Ear and Cochlear Hair Cell Loss Induced by Hypergravity. Int J Mol Sci 2025; 26:758. [PMID: 39859470 PMCID: PMC11765760 DOI: 10.3390/ijms26020758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea. These components share similar structures and neural functions, highlighting the importance of investigating changes in auditory nerve cells in response to gravitational alterations. To address this gap, we studied the functional and structural changes in the inner ear following exposure to hypergravity stimuli. Our findings demonstrate changes in auditory brainstem responses (ABRs) in the cochlea. ABR recordings were used to analyze click thresholds, as well as the amplitude and latency of tone bursts. The click thresholds at all frequencies increased in the group exposed to hypergravity in the long term. Additionally, tone burst results revealed significantly reduced amplitudes at high frequencies and delayed latencies in the hypergravity models. Notably, greater hair cell loss was observed in the middle and basal turns of the cochlea, indicating that mid and high-frequency regions are more vulnerable to hypergravity stimulation. Furthermore, nerve damage on the cochlear surface was evident in subjects exposed to 4G stimulation for 4 weeks. These findings suggest that the inner ear and its neural activity can be functionally and structurally affected by prolonged exposure to hypergravity.
Collapse
Affiliation(s)
- Jin Sil Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea; (J.S.C.); (K.-S.K.)
- Inha Research Institute for Aerospace Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Kyu-Sung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea; (J.S.C.); (K.-S.K.)
- Inha Research Institute for Aerospace Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Hyun Ji Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea; (J.S.C.); (K.-S.K.)
- Inha Research Institute for Aerospace Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
9
|
De Faveri F, Ceriani F, Marcotti W. In vivo spontaneous Ca 2+ activity in the pre-hearing mammalian cochlea. Nat Commun 2025; 16:29. [PMID: 39747044 PMCID: PMC11695946 DOI: 10.1038/s41467-024-55519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo. Here we show how calcium dynamics in the cochlear neuroepithelium of live pre-hearing mice shape the activity of the inner hair cells (IHCs) and their afferent synapses. Both IHCs and supporting cells (SCs) generate spontaneous calcium-dependent activity. Calcium waves from SCs synchronise the activity of nearby IHCs, which then spreads longitudinally recruiting several additional IHCs via a calcium wave-independent mechanism. This synchronised IHC activity in vivo increases the probability of afferent terminal recruitment. Moreover, the modiolar-to-pillar segregation in sound sensitivity of mature auditory nerve fibres appears to be primed at pre-hearing ages.
Collapse
Affiliation(s)
| | - Federico Ceriani
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
10
|
Jaime Tobón LM, Moser T. Bridging the gap between presynaptic hair cell function and neural sound encoding. eLife 2024; 12:RP93749. [PMID: 39718472 DOI: 10.7554/elife.93749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.
Collapse
Affiliation(s)
- Lina María Jaime Tobón
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center, University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging of Excitable Cells', Göttingen, Germany
| | - Tobias Moser
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center, University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging of Excitable Cells', Göttingen, Germany
| |
Collapse
|
11
|
O’Connor AP, Amariutei AE, Zanella A, Hool SA, Carlton AJ, Kong F, Saenz-Roldan M, Jeng JY, Lecomte MJ, Johnson SL, Safieddine S, Marcotti W. In vivo AAV9-Myo7a gene rescue restores hearing and cholinergic efferent innervation in inner hair cells. JCI Insight 2024; 9:e182138. [PMID: 39641274 PMCID: PMC11623941 DOI: 10.1172/jci.insight.182138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024] Open
Abstract
In the mammalian cochlea, sensory hair cells are crucial for the transduction of acoustic stimuli into electrical signals, which are then relayed to the central auditory pathway via spiral ganglion neuron (SGN) afferent dendrites. The SGN output is directly modulated by inhibitory cholinergic axodendritic synapses from the efferent fibers originating in the superior olivary complex. When the adult cochlea is subjected to noxious stimuli or aging, the efferent system undergoes major rewiring, such that it reestablishes direct axosomatic contacts with the inner hair cells (IHCs), which occur only transiently during prehearing stages of development. The trigger, origin, and degree of efferent plasticity in the cochlea remains largely unknown. Using functional and morphological approaches, we demonstrate that efferent plasticity in the adult cochlea occurs as a direct consequence of mechanoelectrical transducer current dysfunction. We also show that, different from prehearing stages of development, the lateral olivocochlear - but not the medial olivocochlear - efferent fibers are those that form the axosomatic synapses with the IHCs. The study also demonstrates that in vivo restoration of IHC function using AAV-Myo7a rescue reestablishes the synaptic profile of adult IHCs and improves hearing, highlighting the potential of using gene-replacement therapy for progressive hearing loss.
Collapse
Affiliation(s)
- Andrew P. O’Connor
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ana E. Amariutei
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Alice Zanella
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Sarah A. Hool
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Adam J. Carlton
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Fanbo Kong
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Mauricio Saenz-Roldan
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Marie-José Lecomte
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Saaid Safieddine
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Kreeger LJ, Honnuraiah S, Maeker S, Shea S, Fishell G, Goodrich LV. An Anatomical and Physiological Basis for Flexible Coincidence Detection in the Auditory System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582808. [PMID: 38464181 PMCID: PMC10925315 DOI: 10.1101/2024.02.29.582808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Animals navigate the auditory world by recognizing complex sounds, from the rustle of a predator to the call of a potential mate. This ability depends in part on the octopus cells of the auditory brainstem, which respond to multiple frequencies that change over time, as occurs in natural stimuli. Unlike the average neuron, which integrates inputs over time on the order of tens of milliseconds, octopus cells must detect momentary coincidence of excitatory inputs from the cochlea during an ongoing sound on both the millisecond and submillisecond time scale. Here, we show that octopus cells receive inhibitory inputs on their dendrites that enhance opportunities for coincidence detection in the cell body, thereby allowing for responses both to rapid onsets at the beginning of a sound and to frequency modulations during the sound. This mechanism is crucial for the fundamental process of integrating the synchronized frequencies of natural auditory signals over time.
Collapse
Affiliation(s)
- Lauren J Kreeger
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Suraj Honnuraiah
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sydney Maeker
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Siobhan Shea
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Gord Fishell
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lisa V Goodrich
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| |
Collapse
|
13
|
Kostrikov S, Hjortkjaer J, Dau T, Corfas G, Liberman LD, Liberman MC. A modiolar-pillar gradient in auditory-nerve dendritic length: a novel post-synaptic contribution to dynamic range? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621861. [PMID: 39574647 PMCID: PMC11580876 DOI: 10.1101/2024.11.04.621861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Auditory-nerve fibers (ANFs) from a given cochlear region can vary in threshold sensitivity by up to 60 dB, corresponding to a 1000-fold difference in stimulus level, although each fiber innervates a single inner hair cell (IHC) via a single synapse. ANFs with high-thresholds also have low spontaneous rates (SRs) and synapse on the side of the IHC closer to the modiolus, whereas the low-threshold, high-SR fibers synapse on the side closer to the pillar cells. Prior biophysical work has identified modiolar-pillar differences in both pre- and post-synaptic properties, but a comprehensive explanation for the wide range of sensitivities remains elusive. Here, in guinea pigs, we used immunostaining for several neuronal markers, including Caspr, a key protein in nodes of Ranvier, to reveal a novel modiolar-pillar gradient in the location of the first ANF heminodes, presumed to be the site of the spike generator, just outside the sensory epithelium. Along the cochlea, from apex to base, the unmyelinated terminal dendrites of modiolar ANFs were 2 - 4 times longer than those of pillar ANFs. This modiolar-pillar gradient in dendritic length, coupled with the 2 - 4 fold smaller caliber of modiolar dendrites seen in prior single-fiber labeling studies, suggests there could be a large difference in the number of length constants between the synapse and the spike initiation zone for low- vs high-SR fibers. The resultant differences in attenuation of post-synaptic potentials propagating along these unmyelinated dendrites could be a key contributor to the observed range of threshold sensitivities among ANFs.
Collapse
|
14
|
Zink ME, Zhen L, McHaney JR, Klara J, Yurasits K, Cancel V, Flemm O, Mitchell C, Datta J, Chandrasekaran B, Parthasarathy A. Increased listening effort and cochlear neural degeneration underlie behavioral deficits in speech perception in noise in normal hearing middle-aged adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606213. [PMID: 39149285 PMCID: PMC11326149 DOI: 10.1101/2024.08.01.606213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Middle-age is a critical period of rapid changes in brain function that presents an opportunity for early diagnostics and intervention for neurodegenerative conditions later in life. Hearing loss is one such early indicator linked to many comorbidities later in life. However, current clinical tests fail to capture hearing difficulties for ∼10% of middle-aged adults seeking help at hearing clinics. Cochlear neural degeneration (CND) could play a role in these hearing deficits, but our current understanding is limited by the lack of objective diagnostics and uncertainty regarding its perceptual consequences. Here, using a cross-species approach, we measured envelope following responses (EFRs) - neural ensemble responses to sound originating from the peripheral auditory pathway - in young and middle-aged adults with normal audiometric thresholds, and compared these responses to young and middle-aged Mongolian gerbils, where CND was histologically confirmed. We observed near identical changes in EFRs across species that were associated with CND. Perceptual effects measured as behavioral readouts showed deficits in the most challenging listening conditions and were associated with CND. Additionally, pupil-indexed listening effort increased even at moderate task difficulties where behavioral outcomes were matched. Our results reveal perceptual deficits in middle-aged adults driven by CND and increases in listening effort, which may result in increased listening fatigue and conversational disengagement.
Collapse
|
15
|
Jukic A, Lei Z, Cebul ER, Pinter K, Tadesse Y, Jarysta A, David S, Mosqueda N, Tarchini B, Kindt K. Presynaptic Nrxn3 is essential for ribbon-synapse maturation in hair cells. Development 2024; 151:dev202723. [PMID: 39254120 PMCID: PMC11488651 DOI: 10.1242/dev.202723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Hair cells of the inner ear and lateral-line system rely on specialized ribbon synapses to transmit sensory information to the central nervous system. The molecules required to assemble these synapses are not fully understood. We show that Nrxn3, a presynaptic adhesion molecule, is crucial for ribbon-synapse maturation in hair cells. In both mouse and zebrafish models, the loss of Nrxn3 results in significantly fewer intact ribbon synapses. We show in zebrafish that, initially, Nrxn3 loss does not alter pre- and postsynapse numbers but, later, synapses fail to pair, leading to postsynapse loss. We also demonstrate that Nrxn3 subtly influences synapse selectivity in zebrafish lateral-line hair cells that detect anterior flow. Loss of Nrxn3 leads to a 60% loss of synapses in zebrafish, which dramatically reduces pre- and postsynaptic responses. Despite fewer synapses, auditory responses in zebrafish and mice are unaffected. This work demonstrates that Nrxn3 is a crucial and conserved molecule required for the maturation of ribbon synapses. Understanding how ribbon synapses mature is essential to generating new therapies to treat synaptopathies linked to auditory or vestibular dysfunction.
Collapse
Affiliation(s)
- Alma Jukic
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Elizabeth R. Cebul
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Yommi Tadesse
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | | | - Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Natalie Mosqueda
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Lu Y, Jiang Y, Wang F, Wu H, Hua Y. Electron Microscopic Mapping of Mitochondrial Morphology in the Cochlear Nerve Fibers. J Assoc Res Otolaryngol 2024; 25:341-354. [PMID: 38937328 PMCID: PMC11349726 DOI: 10.1007/s10162-024-00957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
To enable nervous system function, neurons are powered in a use-dependent manner by mitochondria undergoing morphological-functional adaptation. In a well-studied model system-the mammalian cochlea, auditory nerve fibers (ANFs) display distinct electrophysiological properties, which is essential for collectively sampling acoustic information of a large dynamic range. How exactly the associated mitochondrial networks are deployed in functionally differentiated ANFs remains scarcely interrogated. Here, we leverage volume electron microscopy and machine-learning-assisted image analysis to phenotype mitochondrial morphology and distribution along ANFs of full-length in the mouse cochlea inner spiral bundle. This reveals greater variance in mitochondrial size with increased ANF habenula to terminal path length. Particularly, we analyzed the ANF terminal-residing mitochondria, which are critical for local calcium uptake during sustained afferent activities. Our results suggest that terminal-specific enrichment of mitochondria, in addition to terminal size and overall mitochondrial abundance of the ANF, correlates with heterogenous mitochondrial contents of the terminal.
Collapse
Affiliation(s)
- Yan Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Jiang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunfeng Hua
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Vincent PFY, Young ED, Edge ASB, Glowatzki E. Auditory hair cells and spiral ganglion neurons regenerate synapses with refined release properties in vitro. Proc Natl Acad Sci U S A 2024; 121:e2315599121. [PMID: 39058581 PMCID: PMC11294990 DOI: 10.1073/pnas.2315599121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing "synaptopathy" and hearing loss. Cocultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that, when P3-5 denervated organs of Corti are cocultured with SGNs, newly formed IHC/SGN synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When using older organs of Corti at P10-11, synaptic activity probed by deconvolution showed more mature release properties, closer to the specialized mode of IHC synaptic transmission crucial for coding the sound signal. This functional assessment of newly formed IHC synapses developed here, provides a powerful tool for testing approaches to improve synapse regeneration.
Collapse
Affiliation(s)
- Philippe F. Y. Vincent
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Eric D. Young
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Albert S. B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA02114
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Harvard Stem Cell Institute, Cambridge, MA02139
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD21205
| |
Collapse
|
18
|
Dörje NM, Shvachiy L, Kück F, Outeiro TF, Strenzke N, Beutner D, Setz C. Age-related alterations in efferent medial olivocochlear-outer hair cell and primary auditory ribbon synapses in CBA/J mice. Front Cell Neurosci 2024; 18:1412450. [PMID: 38988659 PMCID: PMC11234844 DOI: 10.3389/fncel.2024.1412450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Hearing decline stands as the most prevalent single sensory deficit associated with the aging process. Giving compelling evidence suggesting a protective effect associated with the efferent auditory system, the goal of our study was to characterize the age-related changes in the number of efferent medial olivocochlear (MOC) synapses regulating outer hair cell (OHC) activity compared with the number of afferent inner hair cell ribbon synapses in CBA/J mice over their lifespan. Methods Organs of Corti of 3-month-old CBA/J mice were compared with mice aged between 10 and 20 months, grouped at 2-month intervals. For each animal, one ear was used to characterize the synapses between the efferent MOC fibers and the outer hair cells (OHCs), while the contralateral ear was used to analyze the ribbon synapses between inner hair cells (IHCs) and type I afferent nerve fibers of spiral ganglion neurons (SGNs). Each cochlea was separated in apical, middle, and basal turns, respectively. Results The first significant age-related decline in afferent IHC-SGN ribbon synapses was observed in the basal cochlear turn at 14 months, the middle turn at 16 months, and the apical turn at 18 months of age. In contrast, efferent MOC-OHC synapses in CBA/J mice exhibited a less pronounced loss due to aging which only became significant in the basal and middle turns of the cochlea by 20 months of age. Discussion This study illustrates an age-related reduction on efferent MOC innervation of OHCs in CBA/J mice starting at 20 months of age. Our findings indicate that the morphological decline of efferent MOC-OHC synapses due to aging occurs notably later than the decline observed in afferent IHC-SGN ribbon synapses.
Collapse
Affiliation(s)
- Nele Marie Dörje
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Cardiovascular Centre, University of Lisbon, Lisbon, Portugal
| | - Fabian Kück
- University Medical Center Göttingen, Department of Medical Statistics, Core Facility Medical Biometry and Statistical Bioinformatics, Göttingen, Germany
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola Strenzke
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Dirk Beutner
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
| | - Cristian Setz
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
19
|
Pal I, Bhattacharyya A, V-Ghaffari B, Williams ED, Xiao M, Rutherford MA, Rubio ME. Female GluA3-KO mice show early onset hearing loss and afferent swellings in ambient sound levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581467. [PMID: 38659964 PMCID: PMC11042237 DOI: 10.1101/2024.02.21.581467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
AMPA-type glutamate receptors (AMPAR) mediate excitatory cochlear transmission. However, the unique roles of AMPAR subunits are unresolved. Lack of subunit GluA3 (Gria3KO) in male mice reduced cochlear output by 8-weeks of age. Since Gria3 is X-linked and considering sex differences in hearing vulnerability, we hypothesized accelerated presbycusis in Gria3KO females. Here, auditory brainstem responses (ABR) were similar in 3-week-old female Gria3WT and Gria3KO mice. However, when raised in ambient sound, ABR thresholds were elevated and wave-1 amplitudes were diminished at 5-weeks and older in Gria3KO. In contrast, these metrics were similar between genotypes when raised in quiet. Paired synapses were similar in number, but lone ribbons and ribbonless synapses were increased in female Gria3KO mice in ambient sound compared to Gria3WT or to either genotype raised in quiet. Synaptic GluA4:GluA2 ratios increased relative to Gria3WT, particularly in ambient sound, suggesting an activity-dependent increase in calcium-permeable AMPARs in Gria3KO. Swollen afferent terminals were observed by 5-weeks only in Gria3KO females reared in ambient sound. We propose that lack of GluA3 induces sex-dependent vulnerability to AMPAR-mediated excitotoxicity.
Collapse
Affiliation(s)
- Indra Pal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Atri Bhattacharyya
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Babak V-Ghaffari
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Essence D. Williams
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Maolei Xiao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - María Eulalia Rubio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
20
|
Wu PZ, Liberman LD, Liberman MC. Noise-induced synaptic loss and its post-exposure recovery in CBA/CaJ vs. C57BL/6J mice. Hear Res 2024; 445:108996. [PMID: 38547565 PMCID: PMC11024800 DOI: 10.1016/j.heares.2024.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Acute noise-induced loss of synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs) has been documented in several strains of mice, but the extent of post-exposure recovery reportedly varies dramatically. If such inter-strain heterogeneity is real, it could be exploited to probe molecular pathways mediating neural remodeling in the adult cochlea. Here, we compared synaptopathy repair in CBA/CaJ vs. C57BL/6J, which are at opposite ends of the reported recovery spectrum. We evaluated C57BL/6J mice 0 h, 24 h, 2 wks or 8 wks after exposure for 2 h to octave-band noise (8-16 kHz) at either 90, 94 or 98 dB SPL, to compare with analogous post-exposure results in CBA/CaJ at 98 or 101 dB. We counted pre- and post-synaptic puncta in immunostained cochleas, using machine learning to classify paired (GluA2 and CtBP2) vs. orphan (CtBP2 only) puncta, and batch-processing to quantify immunostaining intensity. At 98 dB, both strains show ongoing loss of ribbons and synapses between 0 and 24 h, followed by partial recovery, however the extent and degree of these changes were greater in C57BL/6J. Much of the synaptic recovery is due to transient reduction in GluA2 intensity in synaptopathic regions. In contrast, CtBP2 intensity showed only transient increases (at 2 wks). Neurofilament staining revealed transient extension of ANF terminals in C57BL/6J, but not in CBA/CaJ, peaking at 24 h and reverting by 2 wks. Thus, although interstrain differences in synapse recovery are dominated by reversible changes in GluA2 receptor levels, the neurite extension seen in C57BL/6J suggests a qualitative difference in regenerative capacity.
Collapse
Affiliation(s)
- Pei-Zhe Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Leslie D Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Bovee S, Klump GM, Pyott SJ, Sielaff C, Köppl C. Cochlear Ribbon Synapses in Aged Gerbils. Int J Mol Sci 2024; 25:2738. [PMID: 38473985 DOI: 10.3390/ijms25052738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
In mammalian hearing, type-I afferent auditory nerve fibers comprise the basis of the afferent auditory pathway. They are connected to inner hair cells of the cochlea via specialized ribbon synapses. Auditory nerve fibers of different physiological types differ subtly in their synaptic location and morphology. Low-spontaneous-rate auditory nerve fibers typically connect on the modiolar side of the inner hair cell, while high-spontaneous-rate fibers are typically found on the pillar side. In aging and noise-damaged ears, this fine-tuned balance between auditory nerve fiber populations can be disrupted and the functional consequences are currently unclear. Here, using immunofluorescent labeling of presynaptic ribbons and postsynaptic glutamate receptor patches, we investigated changes in synaptic morphology at three different tonotopic locations along the cochlea of aging gerbils compared to those of young adults. Quiet-aged gerbils showed about 20% loss of afferent ribbon synapses. While the loss was random at apical, low-frequency cochlear locations, at the basal, high-frequency location it almost exclusively affected the modiolar-located synapses. The subtle differences in volumes of pre- and postsynaptic elements located on the inner hair cell's modiolar versus pillar side were unaffected by age. This is consistent with known physiology and suggests a predominant, age-related loss in the low-spontaneous-rate auditory nerve population in the cochlear base, but not the apex.
Collapse
Affiliation(s)
- Sonny Bovee
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Georg M Klump
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Charlotte Sielaff
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
22
|
Bizup B, Brutsaert S, Cunningham CL, Thathiah A, Tzounopoulos T. Cochlear zinc signaling dysregulation is associated with noise-induced hearing loss, and zinc chelation enhances cochlear recovery. Proc Natl Acad Sci U S A 2024; 121:e2310561121. [PMID: 38354264 PMCID: PMC10895357 DOI: 10.1073/pnas.2310561121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Exposure to loud noise triggers sensory organ damage and degeneration that, in turn, leads to hearing loss. Despite the troublesome impact of noise-induced hearing loss (NIHL) in individuals and societies, treatment strategies that protect and restore hearing are few and insufficient. As such, identification and mechanistic understanding of the signaling pathways involved in NIHL are required. Biological zinc is mostly bound to proteins, where it plays major structural or catalytic roles; however, there is also a pool of unbound, mobile (labile) zinc. Labile zinc is mostly found in vesicles in secretory tissues, where it is released and plays a critical signaling role. In the brain, labile zinc fine-tunes neurotransmission and sensory processing. However, injury-induced dysregulation of labile zinc signaling contributes to neurodegeneration. Here, we tested whether zinc dysregulation occurs and contributes to NIHL in mice. We found that ZnT3, the vesicular zinc transporter responsible for loading zinc into vesicles, is expressed in cochlear hair cells and the spiral limbus, with labile zinc also present in the same areas. Soon after noise trauma, ZnT3 and zinc levels are significantly increased, and their subcellular localization is vastly altered. Disruption of zinc signaling, either via ZnT3 deletion or pharmacological zinc chelation, mitigated NIHL, as evidenced by enhanced auditory brainstem responses, distortion product otoacoustic emissions, and number of hair cell synapses. These data reveal that noise-induced zinc dysregulation is associated with cochlear dysfunction and recovery after NIHL, and point to zinc chelation as a potential treatment for mitigating NIHL.
Collapse
Affiliation(s)
- Brandon Bizup
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA15261
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA15261
| | - Sofie Brutsaert
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA15261
| | - Christopher L. Cunningham
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA15261
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA15261
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA15261
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA15261
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA15261
| |
Collapse
|
23
|
Lu Y, Liu J, Li B, Wang H, Wang F, Wang S, Wu H, Han H, Hua Y. Spatial patterns of noise-induced inner hair cell ribbon loss in the mouse mid-cochlea. iScience 2024; 27:108825. [PMID: 38313060 PMCID: PMC10835352 DOI: 10.1016/j.isci.2024.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
In the mammalian cochlea, moderate acoustic overexposure leads to loss of ribbon-type synapse between the inner hair cell (IHC) and its postsynaptic spiral ganglion neuron (SGN), causing a reduced dynamic range of hearing but not a permanent threshold elevation. A prevailing view is that such ribbon loss (known as synaptopathy) selectively impacts the low-spontaneous-rate and high-threshold SGN fibers contacting predominantly the modiolar IHC face. However, the spatial pattern of synaptopathy remains scarcely characterized in the most sensitive mid-cochlear region, where two morphological subtypes of IHC with distinct ribbon size gradients coexist. Here, we used volume electron microscopy to investigate noise exposure-related changes in the mouse IHCs with and without ribbon loss. Our quantifications reveal that IHC subtypes differ in the worst-hit area of synaptopathy. Moreover, we show relative enrichment of mitochondria in the surviving SGN terminals, providing key experimental evidence for the long-proposed role of SGN-terminal mitochondria in synaptic vulnerability.
Collapse
Affiliation(s)
- Yan Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai 200125, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jing Liu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Bei Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai 200125, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Haoyu Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shengxiong Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai 200125, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Hua Han
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunfeng Hua
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai 200125, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| |
Collapse
|
24
|
Jukic A, Lei Z, Cebul ER, Pinter K, Mosqueda N, David S, Tarchini B, Kindt K. Presynaptic Nrxn3 is essential for ribbon-synapse assembly in hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580267. [PMID: 38410471 PMCID: PMC10896334 DOI: 10.1101/2024.02.14.580267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hair cells of the inner ear rely on specialized ribbon synapses to transmit sensory information to the central nervous system. The molecules required to assemble these synapses are not fully understood. We show that Nrxn3, a presynaptic adhesion molecule, is critical for ribbon-synapse assembly in hair cells. In both mouse and zebrafish models, loss of Nrxn3 results in significantly fewer intact ribbon synapses. In zebrafish we demonstrate that a 60% loss of synapses in nrxn3 mutants dramatically reduces both presynaptic responses in hair cells and postsynaptic responses in afferent neurons. Despite a reduction in synapse function in this model, we find no deficits in the acoustic startle response, a behavior reliant on these synapses. Overall, this work demonstrates that Nrxn3 is a critical and conserved molecule required to assemble ribbon synapses. Understanding how ribbon synapses assemble is a key step towards generating novel therapies to treat forms of age-related and noise-induced hearing loss that occur due to loss of ribbon synapses.
Collapse
Affiliation(s)
- Alma Jukic
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Elizabeth R Cebul
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Natalie Mosqueda
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | | | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| |
Collapse
|
25
|
Xie R, Wang M, Zhang C. Mechanisms of age-related hearing loss at the auditory nerve central synapses and postsynaptic neurons in the cochlear nucleus. Hear Res 2024; 442:108935. [PMID: 38113793 PMCID: PMC10842789 DOI: 10.1016/j.heares.2023.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Sound information is transduced from mechanical vibration to electrical signals in the cochlea, conveyed to and further processed in the brain to form auditory perception. During the process, spiral ganglion neurons (SGNs) are the key cells that connect the peripheral and central auditory systems by receiving information from hair cells in the cochlea and transmitting it to neurons of the cochlear nucleus (CN). Decades of research in the cochlea greatly improved our understanding of SGN function under normal and pathological conditions, especially about the roles of different subtypes of SGNs and their peripheral synapses. However, it remains less clear how SGN central terminals or auditory nerve (AN) synapses connect to CN neurons, and ultimately how peripheral pathology links to structural alterations and functional deficits in the central auditory nervous system. This review discusses recent progress about the morphological and physiological properties of different subtypes of AN synapses and associated postsynaptic CN neurons, their changes during aging, and the potential mechanisms underlying age-related hearing loss.
Collapse
Affiliation(s)
- Ruili Xie
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA; Department of Neuroscience, The Ohio State University, 420W 12th Ave, Columbus, OH 43210, USA.
| | - Meijian Wang
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA
| | - Chuangeng Zhang
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA
| |
Collapse
|
26
|
Li G, Gao Y, Wu H, Zhao T. Gentamicin administration leads to synaptic dysfunction in inner hair cells. Toxicol Lett 2024; 391:86-99. [PMID: 38101494 DOI: 10.1016/j.toxlet.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Ototoxicity is a major side effect of aminoglycosides, which can cause irreversible hearing loss. Previous studies on aminoglycoside-induced ototoxicity have primarily focused on the loss of sensory hair cells. Recent investigations have revealed that aminoglycosides can also lead to the loss of ribbon synapses in inner hair cells (IHCs). However, the functional implications of ribbon synapse loss and the underlying mechanisms remain unclear. In this study, we intraperitoneally injected C57BL/6 J mice with 300 mg/kg gentamicin once daily for 3, 10, and 20 days. Then, we performed immunofluorescence staining, patch-clamp recording, proteomics analysis and western blotting to characterize the changes in ribbon synapses in IHCs and the associated mechanisms. After gentamicin treatment, the auditory brainstem response (ABR) threshold was elevated, and the ABR wave I amplitude was decreased. We also observed loss of ribbon synapses in IHCs. Interestingly, ribbon synapse loss occurred on both the modiolar and pillar sides of IHCs. Whole-cell patch-clamp recordings in IHCs revealed a reduction in the calcium current amplitude, along with a shifted half-activation voltage and altered calcium voltage dependency. Moreover, exocytosis of IHCs was reduced, consistent with the reduction in the ABR wave I amplitude. Through proteomic analysis, western blotting, and immunofluorescence staining, we found that gentamicin treatment resulted in downregulation of myosin VI, a protein crucial for synaptic vesicle recycling and replenishment in IHCs. Furthermore, we evaluated the kinetics of endocytosis and found a significant reduction in IHC exocytosis, possibly reflecting the impact of myosin VI downregulation on synaptic vesicle recycling. In summary, our findings demonstrate that gentamicin treatment leads to synaptic dysfunction in IHCs, highlighting the important role of myosin VI downregulation in gentamicin-induced synaptic damage.
Collapse
Affiliation(s)
- Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yunge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Ting Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
27
|
Vincent PF, Young ED, Edge AS, Glowatzki E. Auditory Hair Cells and Spiral Ganglion Neurons Regenerate Synapses with Refined Release Properties In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561095. [PMID: 38076928 PMCID: PMC10705289 DOI: 10.1101/2023.10.05.561095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing 'synaptopathy 'and hearing loss. Co-cultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that newly formed IHC synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When older organs of Corti were plated, synaptic activity probed by deconvolution, showed more mature release properties, closer to the highly specialized mode of IHC synaptic transmission that is crucial for coding the sound signal. This newly developed functional assessment of regenerated IHC synapses provides a powerful tool for testing approaches to improve synapse regeneration.
Collapse
Affiliation(s)
- Philippe F.Y. Vincent
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Eric D. Young
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Albert S.B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Long Z, Lin W, Li P, Wang B, Pan Q, Yang X, Lee WW, Chung HSH, Yang Z. One-wire reconfigurable and damage-tolerant sensor matrix inspired by the auditory tonotopy. SCIENCE ADVANCES 2023; 9:eadi6633. [PMID: 38019910 PMCID: PMC10686563 DOI: 10.1126/sciadv.adi6633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Sensor matrices are essential in various fields including robotics, aviation, health care, and industrial machinery. However, conventional sensor matrix systems often face challenges such as limited reconfigurability, complex wiring, and poor robustness. To address these issues, we introduce a one-wire reconfigurable sensor matrix that is capable of conforming to three-dimensional curved surfaces and resistant to cross-talk and fractures. Our frequency-located technology, inspired by the auditory tonotopy, reduces the number of output wires from row × column to a single wire by superimposing the signals of all sensor units with unique frequency identities. The sensor units are connected through a shared redundant network, giving great freedom for reconfiguration and facilitating quick repairs. The one-wire frequency-located technology is demonstrated in two applications-a pressure sensor matrix and a pressure-temperature multimodal sensor matrix. In addition, we also show its potential in monitoring strain distribution in an airplane wing, emphasizing its advantages in simplified wiring and improved robustness.
Collapse
Affiliation(s)
- Zhihe Long
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, Hong Kong, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Weikang Lin
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, Hong Kong, China
| | - Pengyu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, Hong Kong, China
| | - Biao Wang
- School of Artificial Intelligence, Shanghai University, Shanghai, China
| | - Qiqi Pan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, Hong Kong, China
| | - Xiaodan Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, Hong Kong, China
| | - Wang Wei Lee
- Robotics X Laboratory, Tencent Technology (Shenzhen) Co. Ltd, Shenzhen, China
| | - Henry Shu-Hung Chung
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Moser T, Karagulyan N, Neef J, Jaime Tobón LM. Diversity matters - extending sound intensity coding by inner hair cells via heterogeneous synapses. EMBO J 2023; 42:e114587. [PMID: 37800695 PMCID: PMC10690447 DOI: 10.15252/embj.2023114587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 10/07/2023] Open
Abstract
Our sense of hearing enables the processing of stimuli that differ in sound pressure by more than six orders of magnitude. How to process a wide range of stimulus intensities with temporal precision is an enigmatic phenomenon of the auditory system. Downstream of dynamic range compression by active cochlear micromechanics, the inner hair cells (IHCs) cover the full intensity range of sound input. Yet, the firing rate in each of their postsynaptic spiral ganglion neurons (SGNs) encodes only a fraction of it. As a population, spiral ganglion neurons with their respective individual coding fractions cover the entire audible range. How such "dynamic range fractionation" arises is a topic of current research and the focus of this review. Here, we discuss mechanisms for generating the diverse functional properties of SGNs and formulate testable hypotheses. We postulate that an interplay of synaptic heterogeneity, molecularly distinct subtypes of SGNs, and efferent modulation serves the neural decomposition of sound information and thus contributes to a population code for sound intensity.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging of Excitable Cells”GöttingenGermany
| | - Nare Karagulyan
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hertha Sponer CollegeCluster of Excellence “Multiscale Bioimaging of Excitable Cells” Cluster of ExcellenceGöttingenGermany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Lina María Jaime Tobón
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hertha Sponer CollegeCluster of Excellence “Multiscale Bioimaging of Excitable Cells” Cluster of ExcellenceGöttingenGermany
| |
Collapse
|
30
|
Moverman DJ, Liberman LD, Kraemer S, Corfas G, Liberman MC. Ultrastructure of noise-induced cochlear synaptopathy. Sci Rep 2023; 13:19456. [PMID: 37945811 PMCID: PMC10636047 DOI: 10.1038/s41598-023-46859-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Acoustic overexposure can eliminate synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs), even if hair-cell function recovers. This synaptopathy has been extensively studied by confocal microscopy, however, understanding the nature and sequence of damage requires ultrastructural analysis. Here, we used focused ion-beam scanning electron microscopy to mill, image, segment and reconstruct ANF terminals in mice, 1 day and 1 week after synaptopathic exposure (8-16 kHz, 98 dB SPL). At both survivals, ANF terminals were normal in number, but 62% and 53%, respectively, lacked normal synaptic specializations. Most non-synapsing fibers (57% and 48% at 1 day and 1 week) remained in contact with an IHC and contained healthy-looking organelles. ANFs showed a transient increase in mitochondrial content (51%) and efferent innervation (34%) at 1 day. Fibers maintaining synaptic connections showed hypertrophy of pre-synaptic ribbons at both 1 day and 1 week. Non-synaptic fibers were lower in mitochondrial content and typically on the modiolar side of the IHC, where ANFs with high-thresholds and low spontaneous rates are normally found. Even 1 week post-exposure, many ANF terminals remained in IHC contact despite loss of synaptic specializations, thus, regeneration efforts at early post-exposure times should concentrate on synaptogenesis rather than neurite extension.
Collapse
Affiliation(s)
- Daniel J Moverman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114-3096, USA
| | - Leslie D Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114-3096, USA
| | - Stephan Kraemer
- Center for Nanoscale Systems, Harvard College, Cambridge, MA, 02138, USA
| | - Gabriel Corfas
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114-3096, USA.
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Wang M, Lin S, Xie R. Apical-basal distribution of different subtypes of spiral ganglion neurons in the cochlea and the changes during aging. PLoS One 2023; 18:e0292676. [PMID: 37883357 PMCID: PMC10602254 DOI: 10.1371/journal.pone.0292676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Sound information is transmitted from the cochlea to the brain mainly by type I spiral ganglion neurons (SGNs), which consist of different subtypes with distinct physiological properties and selective expression of molecular markers. It remains unclear how these SGN subtypes distribute along the tonotopic axis, and whether the distribution pattern changes during aging that might underlie age-related hearing loss (ARHL). We investigated these questions using immunohistochemistry in three age groups of CBA/CaJ mice of either sex, including 2-5 months (young), 17-19 months (middle-age), and 28-32 months (old). Mouse cochleae were cryo-sectioned and triple-stained using antibodies against Tuj1, calretinin (CR) and calbindin (CB), which are reportedly expressed in all type I, subtype Ia, and subtype Ib SGNs, respectively. Labeled SGNs were classified into four groups based on the expression pattern of stained markers, including CR+ (subtype Ia), CB+ (subtype Ib), CR+CB+ (dual-labeled Ia/Ib), and CR-CB- (subtype Ic) neurons. The distribution of these SGN groups was analyzed in the apex, middle, and base regions of the cochleae. It showed that the prevalence of subtype Ia, Ib and dual-labeled Ia/Ib SGNs are high in the apex and low in the base. In contrast, the distribution pattern is reversed in Ic SGNs. Such frequency-dependent distribution is largely maintained during aging except for a preferential reduction of Ic SGNs, especially in the base. These findings corroborate the prior study based on RNAscope that SGN subtypes show differential vulnerability during aging. It suggests that sound processing of different frequencies involves distinct combinations of SGN subtypes, and the age-dependent loss of Ic SGNs in the base may especially impact high-frequency hearing during ARHL.
Collapse
Affiliation(s)
- Meijian Wang
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States of Ameirca
| | - Shengyin Lin
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States of Ameirca
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States of Ameirca
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States of Ameirca
| |
Collapse
|
32
|
Michanski S, Kapoor R, Steyer AM, Möbius W, Früholz I, Ackermann F, Gültas M, Garner CC, Hamra FK, Neef J, Strenzke N, Moser T, Wichmann C. Piccolino is required for ribbon architecture at cochlear inner hair cell synapses and for hearing. EMBO Rep 2023; 24:e56702. [PMID: 37477166 PMCID: PMC10481675 DOI: 10.15252/embr.202256702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Cochlear inner hair cells (IHCs) form specialized ribbon synapses with spiral ganglion neurons that tirelessly transmit sound information at high rates over long time periods with extreme temporal precision. This functional specialization is essential for sound encoding and is attributed to a distinct molecular machinery with unique players or splice variants compared to conventional neuronal synapses. Among these is the active zone (AZ) scaffold protein piccolo/aczonin, which is represented by its short splice variant piccolino at cochlear and retinal ribbon synapses. While the function of piccolo at synapses of the central nervous system has been intensively investigated, the role of piccolino at IHC synapses remains unclear. In this study, we characterize the structure and function of IHC synapses in piccolo gene-trap mutant rats (Pclogt/gt ). We find a mild hearing deficit with elevated thresholds and reduced amplitudes of auditory brainstem responses. Ca2+ channel distribution and ribbon morphology are altered in apical IHCs, while their presynaptic function seems to be unchanged. We conclude that piccolino contributes to the AZ organization in IHCs and is essential for normal hearing.
Collapse
Affiliation(s)
- Susann Michanski
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
| | - Rohan Kapoor
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- IMPRS Molecular Biology, Göttingen Graduate School for Neuroscience and Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Wiebke Möbius
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
- Electron Microscopy Core Unit, Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Iris Früholz
- Developmental, Neural, and Behavioral Biology Master ProgramUniversity of GöttingenGöttingenGermany
| | | | - Mehmet Gültas
- Faculty of AgricultureSouth Westphalia University of Applied SciencesSoestGermany
| | - Craig C Garner
- German Center for Neurodegenerative DiseasesBerlinGermany
- NeuroCureCluster of ExcellenceCharité – UniversitätsmedizinBerlinGermany
| | - F Kent Hamra
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Jakob Neef
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Nicola Strenzke
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
| | - Tobias Moser
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
| |
Collapse
|
33
|
Karagulyan N, Moser T. Synaptic activity is not required for establishing heterogeneity of inner hair cell ribbon synapses. Front Mol Neurosci 2023; 16:1248941. [PMID: 37745283 PMCID: PMC10512025 DOI: 10.3389/fnmol.2023.1248941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Neural sound encoding in the mammalian cochlea faces the challenge of representing audible sound pressures that vary over six orders of magnitude. The cochlea meets this demand through the use of active micromechanics as well as the diversity and adaptation of afferent neurons and their synapses. Mechanisms underlying neural diversity likely include heterogeneous presynaptic input from inner hair cells (IHCs) to spiral ganglion neurons (SGNs) as well as differences in the molecular profile of SGNs and in their efferent control. Here, we tested whether glutamate release from IHCs, previously found to be critical for maintaining different molecular SGN profiles, is required for establishing heterogeneity of active zones (AZs) in IHCs. We analyzed structural and functional heterogeneity of IHC AZs in mouse mutants with disrupted glutamate release from IHCs due to lack of a vesicular glutamate transporter (Vglut3) or impaired exocytosis due to defective otoferlin. We found the variance of the voltage-dependence of presynaptic Ca2+ influx to be reduced in exocytosis-deficient IHCs of otoferlin mutants. Yet, the spatial gradients of maximal amplitude and voltage-dependence of Ca2+ influx along the pillar-modiolar IHC axis were maintained in both mutants. Further immunohistochemical analysis showed an intact spatial gradient of ribbon size in Vglut3-/- mice. These results indicate that IHC exocytosis and glutamate release are not strictly required for establishing the heterogeneity of IHC AZs.
Collapse
Affiliation(s)
- Nare Karagulyan
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Nanophysiology Group, Max Planck Institute of Multidisciplinary Sciences, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Hertha Sponer College, Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Nanophysiology Group, Max Planck Institute of Multidisciplinary Sciences, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
34
|
Siebald C, Vincent PFY, Bottom RT, Sun S, Reijntjes DOJ, Manca M, Glowatzki E, Müller U. Molecular signatures define subtypes of auditory afferents with distinct peripheral projection patterns and physiological properties. Proc Natl Acad Sci U S A 2023; 120:e2217033120. [PMID: 37487063 PMCID: PMC10400978 DOI: 10.1073/pnas.2217033120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/06/2023] [Indexed: 07/26/2023] Open
Abstract
Type I spiral ganglion neurons (SGNs) are the auditory afferents that transmit sound information from cochlear inner hair cells (IHCs) to the brainstem. These afferents consist of physiological subtypes that differ in their spontaneous firing rate (SR), activation threshold, and dynamic range and have been described as low, medium, and high SR fibers. Lately, single-cell RNA sequencing experiments have revealed three molecularly defined type I SGN subtypes. The extent to which physiological type I SGN subtypes correspond to molecularly defined subtypes is unclear. To address this question, we have generated mouse lines expressing CreERT2 in SGN subtypes that allow for a physiological assessment of molecular subtypes. We show that Lypd1-CreERT2 expressing SGNs represent a well-defined group of neurons that preferentially innervate the IHC modiolar side and exhibit a narrow range of low SRs. In contrast, Calb2-CreERT2 expressing SGNs preferentially innervate the IHC pillar side and exhibit a wider range of SRs, thus suggesting that a strict stratification of all SGNs into three molecular subclasses is not obvious, at least not with the CreERT2 tools used here. Genetically marked neuronal subtypes refine their innervation specificity onto IHCs postnatally during the time when activity is required to refine their molecular phenotype. Type I SGNs thus consist of genetically defined subtypes with distinct physiological properties and innervation patterns. The molecular subtype-specific lines characterized here will provide important tools for investigating the role of the physiologically distinct type I SGNs in encoding sound signals.
Collapse
Affiliation(s)
- Caroline Siebald
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Philippe F. Y. Vincent
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Riley T. Bottom
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Shuohao Sun
- National Institute of Biological Science, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing100084, China
| | - Daniel O. J. Reijntjes
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Marco Manca
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Elisabeth Glowatzki
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
35
|
Leclère JC, Dulon D. Otoferlin as a multirole Ca 2+ signaling protein: from inner ear synapses to cancer pathways. Front Cell Neurosci 2023; 17:1197611. [PMID: 37538852 PMCID: PMC10394277 DOI: 10.3389/fncel.2023.1197611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Humans have six members of the ferlin protein family: dysferlin, myoferlin, otoferlin, fer1L4, fer1L5, and fer1L6. These proteins share common features such as multiple Ca2+-binding C2 domains, FerA domains, and membrane anchoring through their single C-terminal transmembrane domain, and are believed to play a key role in calcium-triggered membrane fusion and vesicle trafficking. Otoferlin plays a crucial role in hearing and vestibular function. In this review, we will discuss how we see otoferlin working as a Ca2+-dependent mechanical sensor regulating synaptic vesicle fusion at the hair cell ribbon synapses. Although otoferlin is also present in the central nervous system, particularly in the cortex and amygdala, its role in brain tissues remains unknown. Mutations in the OTOF gene cause one of the most frequent genetic forms of congenital deafness, DFNB9. These mutations produce severe to profound hearing loss due to a defect in synaptic excitatory glutamatergic transmission between the inner hair cells and the nerve fibers of the auditory nerve. Gene therapy protocols that allow normal rescue expression of otoferlin in hair cells have just started and are currently in pre-clinical phase. In parallel, studies have linked ferlins to cancer through their effect on cell signaling and development, allowing tumors to form and cancer cells to adapt to a hostile environment. Modulation by mechanical forces and Ca2+ signaling are key determinants of the metastatic process. Although ferlins importance in cancer has not been extensively studied, data show that otoferlin expression is significantly associated with survival in specific cancer types, including clear cell and papillary cell renal carcinoma, and urothelial bladder cancer. These findings indicate a role for otoferlin in the carcinogenesis of these tumors, which requires further investigation to confirm and understand its exact role, particularly as it varies by tumor site. Targeting this protein may lead to new cancer therapies.
Collapse
Affiliation(s)
- Jean-Christophe Leclère
- Department of Head and Neck Surgery, Brest University Hospital, Brest, France
- Laboratory of Neurophysiologie de la Synapse Auditive, Université de Bordeaux, Bordeaux, France
| | - Didier Dulon
- Laboratory of Neurophysiologie de la Synapse Auditive, Université de Bordeaux, Bordeaux, France
- Institut de l’Audition, Institut Pasteur & INSERM UA06, Paris, France
| |
Collapse
|
36
|
Trigila AP, Castagna VC, Berasain L, Montini D, Rubinstein M, Gomez-Casati ME, Franchini LF. Accelerated Evolution Analysis Uncovers PKNOX2 as a Key Transcription Factor in the Mammalian Cochlea. Mol Biol Evol 2023; 40:msad128. [PMID: 37247388 PMCID: PMC10337857 DOI: 10.1093/molbev/msad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
The genetic bases underlying the evolution of morphological and functional innovations of the mammalian inner ear are poorly understood. Gene regulatory regions are thought to play an important role in the evolution of form and function. To uncover crucial hearing genes whose regulatory machinery evolved specifically in mammalian lineages, we mapped accelerated noncoding elements (ANCEs) in inner ear transcription factor (TF) genes and found that PKNOX2 harbors the largest number of ANCEs within its transcriptional unit. Using reporter gene expression assays in transgenic zebrafish, we determined that four PKNOX2-ANCEs drive differential expression patterns when compared with ortholog sequences from close outgroup species. Because the functional role of PKNOX2 in cochlear hair cells has not been previously investigated, we decided to study Pknox2 null mice generated by CRISPR/Cas9 technology. We found that Pknox2-/- mice exhibit reduced distortion product otoacoustic emissions (DPOAEs) and auditory brainstem response (ABR) thresholds at high frequencies together with an increase in peak 1 amplitude, consistent with a higher number of inner hair cells (IHCs)-auditory nerve synapsis observed at the cochlear basal region. A comparative cochlear transcriptomic analysis of Pknox2-/- and Pknox2+/+ mice revealed that key auditory genes are under Pknox2 control. Hence, we report that PKNOX2 plays a critical role in cochlear sensitivity at higher frequencies and that its transcriptional regulation underwent lineage-specific evolution in mammals. Our results provide novel insights about the contribution of PKNOX2 to normal auditory function and to the evolution of high-frequency hearing in mammals.
Collapse
Affiliation(s)
- Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria C Castagna
- Facultad de Medicina, Instituto de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lara Berasain
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Dante Montini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
37
|
Frank MM, Sitko AA, Suthakar K, Torres Cadenas L, Hunt M, Yuk MC, Weisz CJC, Goodrich LV. Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system. eLife 2023; 12:e83855. [PMID: 36876911 PMCID: PMC10147377 DOI: 10.7554/elife.83855] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.
Collapse
Affiliation(s)
- Michelle M Frank
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Kirupa Suthakar
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Mackenzie Hunt
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mary Caroline Yuk
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Catherine JC Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
38
|
Shrestha BR, Wu L, Goodrich LV. Runx1 controls auditory sensory neuron diversity in mice. Dev Cell 2023; 58:306-319.e5. [PMID: 36800995 PMCID: PMC10202259 DOI: 10.1016/j.devcel.2023.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Sound stimulus is encoded in mice by three molecularly and physiologically diverse subtypes of sensory neurons, called Ia, Ib, and Ic spiral ganglion neurons (SGNs). Here, we show that the transcription factor Runx1 controls SGN subtype composition in the murine cochlea. Runx1 is enriched in Ib/Ic precursors by late embryogenesis. Upon the loss of Runx1 from embryonic SGNs, more SGNs take on Ia rather than Ib or Ic identities. This conversion was more complete for genes linked to neuronal function than to connectivity. Accordingly, synapses in the Ib/Ic location acquired Ia properties. Suprathreshold SGN responses to sound were enhanced in Runx1CKO mice, confirming the expansion of neurons with Ia-like functional properties. Runx1 deletion after birth also redirected Ib/Ic SGNs toward Ia identity, indicating that SGN identities are plastic postnatally. Altogether, these findings show that diverse neuronal identities essential for normal auditory stimulus coding arise hierarchically and remain malleable during postnatal development.
Collapse
Affiliation(s)
- Brikha R Shrestha
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.
| | - Lorna Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
40
|
Effects of pyrroloquinoline quinone on noise-induced and age-related hearing loss in mice. Sci Rep 2022; 12:15911. [PMID: 36151123 PMCID: PMC9508078 DOI: 10.1038/s41598-022-19842-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
We investigated whether the oxidoreductase cofactor pyrroloquinoline quinone (PQQ) prevents noise-induced and age-related hearing loss (NIHL and ARHL) in mice. To assess NIHL, 8 week-old mice with and without PQQ administration were exposed to noise for 4 h. PQQ was orally administered for one week before and after noise exposure and subcutaneously once before noise exposure. For ARHL evaluation, mice were given drinking water with or without PQQ starting at 2 months of age. In the NIHL model, PQQ-treated mice had auditory brainstem response (ABR) thresholds of significantly reduced elevation at 8 kHz, a significantly increased number of hair cells at the basal turn, and significantly better maintained synapses beneath the inner hair cells compared to controls. In the ARHL model, PQQ significantly attenuated the age-related increase in ABR thresholds at 8 and 32 kHz at 10 months of age compared to controls. In addition, the hair cells, spiral ganglion cells, ribbon synapses, stria vascularis and nerve fibers were all significantly better maintained in PQQ-treated animals compared to controls at 10 months of age. These physiological and histological results demonstrate that PQQ protects the auditory system from NIHL and ARHL in mice.
Collapse
|
41
|
McGill M, Hight AE, Watanabe YL, Parthasarathy A, Cai D, Clayton K, Hancock KE, Takesian A, Kujawa SG, Polley DB. Neural signatures of auditory hypersensitivity following acoustic trauma. eLife 2022; 11:e80015. [PMID: 36111669 PMCID: PMC9555866 DOI: 10.7554/elife.80015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Neurons in sensory cortex exhibit a remarkable capacity to maintain stable firing rates despite large fluctuations in afferent activity levels. However, sudden peripheral deafferentation in adulthood can trigger an excessive, non-homeostatic cortical compensatory response that may underlie perceptual disorders including sensory hypersensitivity, phantom limb pain, and tinnitus. Here, we show that mice with noise-induced damage of the high-frequency cochlear base were behaviorally hypersensitive to spared mid-frequency tones and to direct optogenetic stimulation of auditory thalamocortical neurons. Chronic two-photon calcium imaging from ACtx pyramidal neurons (PyrNs) revealed an initial stage of spatially diffuse hyperactivity, hyper-correlation, and auditory hyperresponsivity that consolidated around deafferented map regions three or more days after acoustic trauma. Deafferented PyrN ensembles also displayed hypersensitive decoding of spared mid-frequency tones that mirrored behavioral hypersensitivity, suggesting that non-homeostatic regulation of cortical sound intensity coding following sensorineural loss may be an underlying source of auditory hypersensitivity. Excess cortical response gain after acoustic trauma was expressed heterogeneously among individual PyrNs, yet 40% of this variability could be accounted for by each cell's baseline response properties prior to acoustic trauma. PyrNs with initially high spontaneous activity and gradual monotonic intensity growth functions were more likely to exhibit non-homeostatic excess gain after acoustic trauma. This suggests that while cortical gain changes are triggered by reduced bottom-up afferent input, their subsequent stabilization is also shaped by their local circuit milieu, where indicators of reduced inhibition can presage pathological hyperactivity following sensorineural hearing loss.
Collapse
Affiliation(s)
- Matthew McGill
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Yurika L Watanabe
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
| | - Aravindakshan Parthasarathy
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Dongqin Cai
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kameron Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Anne Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
42
|
Jeng JY, Carlton AJ, Goodyear RJ, Chinowsky C, Ceriani F, Johnson SL, Sung TC, Dayn Y, Richardson GP, Bowl MR, Brown SD, Manor U, Marcotti W. AAV-mediated rescue of Eps8 expression in vivo restores hair-cell function in a mouse model of recessive deafness. Mol Ther Methods Clin Dev 2022; 26:355-370. [PMID: 36034774 PMCID: PMC9382420 DOI: 10.1016/j.omtm.2022.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
The transduction of acoustic information by hair cells depends upon mechanosensitive stereociliary bundles that project from their apical surface. Mutations or absence of the stereociliary protein EPS8 cause deafness in humans and mice, respectively. Eps8 knockout mice (Eps8 -/- ) have hair cells with immature stereocilia and fail to become sensory receptors. Here, we show that exogenous delivery of Eps8 using Anc80L65 in P1-P2 Eps8 -/- mice in vivo rescued the hair bundle structure of apical-coil hair cells. Rescued hair bundles correctly localize EPS8, WHIRLIN, MYO15, and BAIAP2L2, and generate normal mechanoelectrical transducer currents. Inner hair cells with normal-looking stereocilia re-expressed adult-like basolateral ion channels (BK and KCNQ4) and have normal exocytosis. The number of hair cells undergoing full recovery was not sufficient to rescue hearing in Eps8 -/- mice. Adeno-associated virus (AAV)-transduction of P3 apical-coil and P1-P2 basal-coil hair cells does not rescue hair cells, nor does Anc80L65-Eps8 delivery in adult Eps8 -/- mice. We propose that AAV-induced gene-base therapy is an efficient strategy to recover the complex hair-cell defects in Eps8 -/- mice. However, this therapeutic approach may need to be performed in utero since, at postnatal ages, Eps8 -/- hair cells appear to have matured or accumulated damage beyond the point of repair.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Adam J. Carlton
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Richard J. Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Colbie Chinowsky
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Federico Ceriani
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Stuart L. Johnson
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Tsung-Chang Sung
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yelena Dayn
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Steve D.M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Walter Marcotti
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
43
|
Grierson KE, Hickman TT, Liberman MC. Dopaminergic and cholinergic innervation in the mouse cochlea after noise-induced or age-related synaptopathy. Hear Res 2022; 422:108533. [PMID: 35671600 PMCID: PMC11195664 DOI: 10.1016/j.heares.2022.108533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Cochlear synaptopathy, the loss of or damage to connections between auditory-nerve fibers (ANFs) and inner hair cells (IHCs), is a prominent pathology in noise-induced and age-related hearing loss. Here, we investigated if degeneration of the olivocochlear (OC) efferent innervation is also a major aspect of the synaptopathic ear, by quantifying the volume and spatial organization of its cholinergic and dopaminergic components, using antibodies to vesicular acetylcholine transporter (VAT) and tyrosine hydroxylase (TH), respectively. CBA/CaJ male mice were examined 1 day to 8 months after a synaptopathic noise exposure, and compared to unexposed age-matched controls and unexposed aged mice at 24-28 months. In normal ears, cholinergic lateral (L)OC terminals were denser in the apical half of the cochlea and on the modiolar side of the inner hair cells (IHCs), where ANFs of low-spontaneous rate are typically found, while dopaminergic terminals were more common in the basal third of the cochlea and, re the IHC axes, were offset towards the habenula with respect to cholinergic terminals. The noise had only small and transient effects on the density of LOC innervation, its spatial organization around the IHC axes, or the extent to which TH and VAT signal were colocalized. The synaptopathic noise also had relatively small and transient effects on cholinergic innervation density in the outer hair cell (OHC) area, which normally peaks in the 16 kHz region and falls monotonically towards higher and lower frequencies. In contrast, in the aged ears, there was massive degeneration of OHC efferents, especially in the apical half of the cochlea, where there was also significant loss of OHCs. In the IHC area, there was significant loss of cholinergic terminals in both apical and basal regions and of dopaminergic innervation in the basal half. Furthermore, the cholinergic terminals in the aged ears spread from their normal clustering near the IHC basolateral pole, where the ANF synapses are found, to positions up and down the IHC somata and regions of the neuropil closer to the habenula. This apparent migration was most striking in the apex, where the hair cell pathology was greatest, and may be a harbinger of impending hair cell death.
Collapse
Affiliation(s)
- Kiera E Grierson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA; Hearing Research Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, AUS
| | - Tyler T Hickman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA.
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA
| |
Collapse
|
44
|
Signatures of cochlear processing in neuronal coding of auditory information. Mol Cell Neurosci 2022; 120:103732. [PMID: 35489636 DOI: 10.1016/j.mcn.2022.103732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
The vertebrate ear is endowed with remarkable perceptual capabilities. The faintest sounds produce vibrations of magnitudes comparable to those generated by thermal noise and can nonetheless be detected through efficient amplification of small acoustic stimuli. Two mechanisms have been proposed to underlie such sound amplification in the mammalian cochlea: somatic electromotility and active hair-bundle motility. These biomechanical mechanisms may work in concert to tune auditory sensitivity. In addition to amplitude sensitivity, the hearing system shows exceptional frequency discrimination allowing mammals to distinguish complex sounds with great accuracy. For instance, although the wide hearing range of humans encompasses frequencies from 20 Hz to 20 kHz, our frequency resolution extends to one-thirtieth of the interval between successive keys on a piano. In this article, we review the different cochlear mechanisms underlying sound encoding in the auditory system, with a particular focus on the frequency decomposition of sounds. The relation between peak frequency of activation and location along the cochlea - known as tonotopy - arises from multiple gradients in biophysical properties of the sensory epithelium. Tonotopic mapping represents a major organizational principle both in the peripheral hearing system and in higher processing levels and permits the spectral decomposition of complex tones. The ribbon synapses connecting sensory hair cells to auditory afferents and the downstream spiral ganglion neurons are also tuned to process periodic stimuli according to their preferred frequency. Though sensory hair cells and neurons necessarily filter signals beyond a few kHz, many animals can hear well beyond this range. We finally describe how the cochlear structure shapes the neural code for further processing in order to send meaningful information to the brain. Both the phase-locked response of auditory nerve fibers and tonotopy are key to decode sound frequency information and place specific constraints on the downstream neuronal network.
Collapse
|
45
|
Metabotropic Glutamate Receptors at Ribbon Synapses in the Retina and Cochlea. Cells 2022; 11:cells11071097. [PMID: 35406660 PMCID: PMC8998116 DOI: 10.3390/cells11071097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Our senses define our view of the world. They allow us to adapt to environmental stimuli and are essential for communication and social behaviour. For most humans, seeing and hearing are central senses for their daily life. Our eyes and ears respond to an extraordinary broad range of stimuli covering about 12 log units of light intensity or acoustic power, respectively. The cellular basis is represented by sensory cells (photoreceptors in the retina and inner hair cells in the cochlea) that convert sensory inputs into electrical signals. Photoreceptors and inner hair cells have developed a specific pre-synaptic structure, termed synaptic ribbon, that is decorated with numerous vesicles filled with the excitatory neurotransmitter glutamate. At these ribbon synapses, glutamatergic signal transduction is guided by distinct sets of metabotropic glutamate receptors (mGluRs). MGluRs belong to group II and III of the receptor classification can inhibit neuronal activity, thus protecting neurons from overstimulation and subsequent degeneration. Consequently, dysfunction of mGluRs is associated with vision and hearing disorders. In this review, we introduce the principle characteristics of ribbon synapses and describe group II and III mGluRs in these fascinating structures in the retina and cochlea.
Collapse
|
46
|
Deng X, Hu Z. Hearing Recovery Induced by DNA Demethylation in a Chemically Deafened Adult Mouse Model. Front Cell Neurosci 2022; 16:792089. [PMID: 35250483 PMCID: PMC8891629 DOI: 10.3389/fncel.2022.792089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Functional hair cell regeneration in the adult mammalian inner ear remains challenging. This study aimed to study the function of new hair cells induced by a DNA demethylating agent 5-azacytidine. Adult mice were deafened chemically, followed by injection of 5-azacytidine or vehicle into the inner ear. Functionality of regenerated hair cells was evaluated by expression of hair cell proteins, auditory brainstem response (ABR), and distortion-product otoacoustic emission (DPOAE) tests for 6 weeks. In the vehicle-treated group, no cells expressed the hair cell-specific protein myosin VIIa in the cochlea, whereas numerous myosin VIIa-expressing cells were found in the 5-azacytidine-treated cochlea, suggesting the regeneration of auditory hair cells. Moreover, regenerated hair cells were co-labeled with functional proteins espin and prestin. Expression of ribbon synapse proteins suggested synapse formation between new hair cells and neurons. In hearing tests, progressive improvements in ABR [5-30 dB sound pressure level (SPL)] and DPOAE (5-20 dB) thresholds were observed in 5-azacytidine-treated mice. In vehicle-treated mice, there were <5 dB threshold changes in hearing tests. This study demonstrated the ability of 5-azacytidine to promote the functional regeneration of auditory hair cells in a mature mouse model via DNA demethylation, which may provide insights into hearing regeneration using an epigenetic approach.
Collapse
Affiliation(s)
- Xin Deng
- Department of Otolaryngology-Head and Neck Surgery (HNS), Wayne State University School of Medicine, Detroit, MI, United States
| | - Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery (HNS), Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell VA Medical Center, Detroit, MI, United States
| |
Collapse
|
47
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
48
|
Suthakar K, Liberman MC. Auditory-nerve responses in mice with noise-induced cochlear synaptopathy. J Neurophysiol 2021; 126:2027-2038. [PMID: 34788179 DOI: 10.1152/jn.00342.2021] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cochlear synaptopathy is the noise-induced or age-related loss of ribbon synapses between inner hair cells (IHCs) and auditory-nerve fibers (ANFs), first reported in CBA/CaJ mice. Recordings from single ANFs in anesthetized, noise-exposed guinea pigs suggested that neurons with low spontaneous rates (SRs) and high thresholds are more vulnerable than low-threshold, high-SR fibers. However, there is extensive postexposure regeneration of ANFs in guinea pigs but not in mice. Here, we exposed CBA/CaJ mice to octave-band noise and recorded sound-evoked and spontaneous activity from single ANFs at least 2 wk later. Confocal analysis of cochleae immunostained for pre- and postsynaptic markers confirmed the expected loss of 40%-50% of ANF synapses in the basal half of the cochlea; however, our data were not consistent with a selective loss of low-SR fibers. Rather they suggested a loss of both SR groups in synaptopathic regions. Single-fiber thresholds and frequency tuning recovered to pre-exposure levels; however, response to tone bursts showed increased peak and steady-state firing rates, as well as decreased jitter in first-spike latencies. This apparent gain-of-function increased the robustness of tone-burst responses in the presence of continuous masking noise. This study suggests that the nature of noise-induced synaptic damage varies between different species and that, in mouse, the noise-induced hyperexcitability seen in central auditory circuits is also observed at the level of the auditory nerve.NEW & NOTEWORTHY Noise-induced damage to synapses between inner hair cells and auditory-nerve fibers (ANFs) can occur without permanent hair cell damage, resulting in pathophysiology that "hides" behind normal thresholds. Prior single-fiber neurophysiology in guinea pig suggested that noise selectively targets high-threshold ANFs. Here, we show that the lingering pathophysiology differs in mouse, with both ANF groups affected and a paradoxical gain-of-function in surviving low-threshold fibers, including increased onset rate, decreased onset jitter, and reduced maskability.
Collapse
Affiliation(s)
- Kirupa Suthakar
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
49
|
Liu J, Wang S, Lu Y, Wang H, Wang F, Qiu M, Xie Q, Han H, Hua Y. Aligned Organization of Synapses and Mitochondria in Auditory Hair Cells. Neurosci Bull 2021; 38:235-248. [PMID: 34837647 PMCID: PMC8975952 DOI: 10.1007/s12264-021-00801-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/25/2021] [Indexed: 10/19/2022] Open
Abstract
Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell (IHC). This feature is believed to be critical for audition over a wide dynamic range, but whether the spatial gradient of ribbon morphology is fine-tuned in each IHC and how the mitochondrial network is organized to meet local energy demands of synaptic transmission remain unclear. By means of three-dimensional electron microscopy and artificial intelligence-based algorithms, we demonstrated the cell-wide structural quantification of ribbons and mitochondria in mature mid-cochlear IHCs of mice. We found that adjacent IHCs in staggered pairs differ substantially in cell body shape and ribbon morphology gradient as well as mitochondrial organization. Moreover, our analysis argues for a location-specific arrangement of correlated ribbon and mitochondrial function at the basolateral IHC pole.
Collapse
Affiliation(s)
- Jing Liu
- grid.9227.e0000000119573309National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China ,grid.410726.60000 0004 1797 8419School of Artificial Intelligence, School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408 China ,grid.507732.4CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031 China
| | - Shengxiong Wang
- grid.24516.340000000123704535Putuo People’s Hospital, Tongji University, Shanghai, 200060 China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China
| | - Yan Lu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China ,grid.412523.3Department of Otolaryngology–Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai, 200125 China ,grid.16821.3c0000 0004 0368 8293Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China ,grid.412987.10000 0004 0630 1330Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200125 China
| | - Haoyu Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China ,grid.412523.3Department of Otolaryngology–Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai, 200125 China ,grid.16821.3c0000 0004 0368 8293Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China ,grid.412987.10000 0004 0630 1330Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200125 China
| | - Fangfang Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125 China
| | - Miaoxin Qiu
- grid.24516.340000000123704535Putuo People’s Hospital, Tongji University, Shanghai, 200060 China
| | - Qiwei Xie
- grid.28703.3e0000 0000 9040 3743Research Base of Beijing Modern Manufacturing Development, Beijing University of Technology, Beijing, 100124 China
| | - Hua Han
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,School of Artificial Intelligence, School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, 200125, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200125, China.
| |
Collapse
|
50
|
Joshi Y, Petit CP, Miot S, Guillet M, Sendin G, Bourien J, Wang J, Pujol R, El Mestikawy S, Puel JL, Nouvian R. VGLUT3-p.A211V variant fuses stereocilia bundles and elongates synaptic ribbons. J Physiol 2021; 599:5397-5416. [PMID: 34783032 PMCID: PMC9299590 DOI: 10.1113/jp282181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Abstract DFNA25 is an autosomal‐dominant and progressive form of human deafness caused by mutations in the SLC17A8 gene, which encodes the vesicular glutamate transporter type 3 (VGLUT3). To resolve the mechanisms underlying DFNA25, we studied phenotypes of mice harbouring the p.A221V mutation in humans (corresponding to p.A224V in mice). Using auditory brainstem response and distortion product otoacoustic emissions, we showed progressive hearing loss with intact cochlear amplification in the VGLUT3A224V/A224V mouse. The summating potential was reduced, indicating the alteration of inner hair cell (IHC) receptor potential. Scanning electron microscopy examinations demonstrated the collapse of stereocilia bundles in IHCs, leaving those from outer hair cells unaffected. In addition, IHC ribbon synapses underwent structural and functional modifications at later stages. Using super‐resolution microscopy, we observed oversized synaptic ribbons and patch‐clamp membrane capacitance measurements showed an increase in the rate of the sustained releasable pool exocytosis. These results suggest that DFNA25 stems from a failure in the mechano‐transduction followed by a change in synaptic transfer. The VGLUT3A224V/A224V mouse model opens the way to a deeper understanding and to a potential treatment for DFNA25. Key points The vesicular glutamate transporter type 3 (VGLUT3) loads glutamate into the synaptic vesicles of auditory sensory cells, the inner hair cells (IHCs). The VGLUT3‐p.A211V variant is associated with human deafness DFNA25. Mutant mice carrying the VGLUT3‐p.A211V variant show progressive hearing loss. IHCs from mutant mice harbour distorted stereocilary bundles, which detect incoming sound stimulation, followed by oversized synaptic ribbons, which release glutamate onto the afferent nerve fibres. These results suggest that DFNA25 stems from the failure of auditory sensory cells to faithfully transduce acoustic cues into neural messages.
Collapse
Affiliation(s)
- Yuvraj Joshi
- INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Stéphanie Miot
- INM, Univ Montpellier, INSERM, Montpellier, France.,Sorbonne Universités, Université Pierre et Marie Curie UM 119, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | | | | | | | - Jing Wang
- INM, Univ Montpellier, INSERM, Montpellier, France
| | - Rémy Pujol
- INM, Univ Montpellier, INSERM, Montpellier, France
| | - Salah El Mestikawy
- Sorbonne Universités, Université Pierre et Marie Curie UM 119, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | | | - Régis Nouvian
- INM, Univ Montpellier, INSERM, Montpellier, France.,INM, Univ Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|