1
|
Mutalik SP, Ho CT, O’Shaughnessy EC, Frasineanu AG, Shah AB, Gupton SL. TRIM9 Controls Growth Cone Responses to Netrin Through DCC and UNC5C. J Neurochem 2025; 169:e70002. [PMID: 39871643 PMCID: PMC11834693 DOI: 10.1111/jnc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits diverse axonal responses, beyond engaging the netrin receptor DCC and UNC5 family members, remains elusive. Here, we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: Attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1. We find that repulsive turning in a netrin gradient is blocked by knockdown of UNC5C, whereas attractive turning is impaired by knockdown of DCC. TRIM9 is a brain-enriched E3 ubiquitin ligase previously shown to bind and cluster the attractive receptor DCC at the plasma membrane and regulate netrin-dependent attractive responses. However, whether TRIM9 also regulated repulsive responses to netrin-1 remained to be seen. In this study, we show that TRIM9 localizes and interacts with both the attractive netrin receptor DCC and the repulsive netrin receptor, UNC5C. We find that deletion of murine Trim9 alters both attractive and repulsive axon turning and changes in growth cones size in response to murine netrin-1. TRIM9 was required for netrin-1-dependent changes in the surface levels of DCC and UNC5C in the growth cone during morphogenesis. We demonstrate that DCC at the membrane regulates the growth cone area and show that TRIM9 negatively regulates FAK activity in the absence of both repulsive and attractive concentrations of netrin-1. Together, our work demonstrates that TRIM9 interacts with and regulates both DCC and UNC5C during attractive and repulsive axonal responses to netrin-1.
Collapse
Affiliation(s)
- Sampada P. Mutalik
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chris T. Ho
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ellen C. O’Shaughnessy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Anca G. Frasineanu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Aneri B. Shah
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Correspondence to: Stephanie L. Gupton ()
| |
Collapse
|
2
|
Bogaciu CA, Rizzoli SO. Membrane trafficking of synaptic adhesion molecules. J Physiol 2024. [PMID: 39322997 DOI: 10.1113/jp286401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Synapse formation and stabilization are aided by several families of adhesion molecules, which are generally seen as specialized surface receptors. The function of most surface receptors, including adhesion molecules, is modulated in non-neuronal cells by the processes of endocytosis and recycling, which control the number of active receptors found on the cell surface. These processes have not been investigated extensively at the synapse. This review focuses on the current status of this topic, summarizing general findings on the membrane trafficking of the most prominent synaptic adhesion molecules. Remarkably, evidence for endocytosis processes has been obtained for many synaptic adhesion proteins, including dystroglycans, latrophilins, calsyntenins, netrins, teneurins, neurexins, neuroligins and neuronal pentraxins. Less evidence has been obtained on their recycling, possibly because of the lack of specific assays. We conclude that the trafficking of the synaptic adhesion molecules is an important topic, which should receive more attention in the future.
Collapse
Affiliation(s)
- Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Liu J, Wang Y, Liu X, Han J, Tian Y. Spatiotemporal changes in Netrin/Dscam1 signaling dictate axonal projection direction in Drosophila small ventral lateral clock neurons. eLife 2024; 13:RP96041. [PMID: 39052321 PMCID: PMC11272162 DOI: 10.7554/elife.96041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Axon projection is a spatial- and temporal-specific process in which the growth cone receives environmental signals guiding axons to their final destination. However, the mechanisms underlying changes in axonal projection direction without well-defined landmarks remain elusive. Here, we present evidence showcasing the dynamic nature of axonal projections in Drosophila's small ventral lateral clock neurons (s-LNvs). Our findings reveal that these axons undergo an initial vertical projection in the early larval stage, followed by a subsequent transition to a horizontal projection in the early-to-mid third instar larvae. The vertical projection of s-LNv axons correlates with mushroom body calyx expansion, while the s-LNv-expressed Down syndrome cell adhesion molecule (Dscam1) interacts with Netrins to regulate the horizontal projection. During a specific temporal window, locally newborn dorsal clock neurons secrete Netrins, facilitating the transition of axonal projection direction in s-LNvs. Our study establishes a compelling in vivo model to probe the mechanisms of axonal projection direction switching in the absence of clear landmarks. These findings underscore the significance of dynamic local microenvironments in the complementary regulation of axonal projection direction transitions.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Yuedong Wang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Xian Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
- Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| |
Collapse
|
4
|
Mutalik SP, O'Shaughnessy EC, Ho CT, Gupton SL. TRIM9 controls growth cone responses to netrin through DCC and UNC5C. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593135. [PMID: 38765979 PMCID: PMC11100671 DOI: 10.1101/2024.05.08.593135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits these diverse axonal responses, beyond engaging the attractive receptor DCC and repulsive receptors of the UNC5 family, remains elusive. Here we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1. TRIM9 is a brain-enriched E3 ubiquitin ligase previously shown to bind and cluster the attractive receptor DCC at the plasma membrane and regulate netrin-dependent attractive responses. However, whether TRIM9 also regulated repulsive responses to netrin-1 remained to be seen. In this study, we show that TRIM9 localizes and interacts with both the attractive netrin receptor DCC and the repulsive netrin receptor, UNC5C, and that deletion of murine Trim9 alters both attractive and repulsive responses to murine netrin-1. TRIM9 was required for netrin-1-dependent changes in surface levels of DCC and total levels of UNC5C in the growth cone during morphogenesis. We demonstrate that DCC at the membrane regulates growth cone area and show that TRIM9 negatively regulates FAK activity in the absence of netrin-1. We investigate membrane dynamics of the UNC5C receptor using pH-mScarlet fused to the extracellular domain of UNC5C. Minutes after netrin addition, levels of UNC5C at the plasma membrane drop in a TRIM9-independent fashion, however TRIM9 regulated the mobility of UNC5C in the plasma membrane in the absence of netrin-1. Together this work demonstrates that TRIM9 interacts with and regulates both DCC and UNC5C during attractive and repulsive axonal responses to netrin-1.
Collapse
|
5
|
Martínez-Mármol R, Muhaisen A, Cotrufo T, Roselló-Busquets C, Ros O, Hernaiz-Llorens M, Pérez-Branguli F, Andrés RM, Parcerisas A, Pascual M, Ulloa F, Soriano E. Syntaxin-1 is necessary for UNC5A-C/Netrin-1-dependent macropinocytosis and chemorepulsion. Front Mol Neurosci 2023; 16:1253954. [PMID: 37829513 PMCID: PMC10565356 DOI: 10.3389/fnmol.2023.1253954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Brain connectivity requires correct axonal guidance to drive axons to their appropriate targets. This process is orchestrated by guidance cues that exert attraction or repulsion to developing axons. However, the intricacies of the cellular machinery responsible for the correct response of growth cones are just being unveiled. Netrin-1 is a bifunctional molecule involved in axon pathfinding and cell migration that induces repulsion during postnatal cerebellar development. This process is mediated by UNC5 homolog receptors located on external granule layer (EGL) tracts. Methods Biochemical, imaging and cell biology techniques, as well as syntaxin-1A/B (Stx1A/B) knock-out mice were used in primary cultures and brain explants. Results and discussion Here, we demonstrate that this response is characterized by enhanced membrane internalization through macropinocytosis, but not clathrin-mediated endocytosis. We show that UNC5A, UNC5B, and UNC5C receptors form a protein complex with the t-SNARE syntaxin-1. By combining botulinum neurotoxins, an shRNA knock-down strategy and Stx1 knock-out mice, we demonstrate that this SNARE protein is required for Netrin1-induced macropinocytosis and chemorepulsion, suggesting that Stx1 is crucial in regulating Netrin-1-mediated axonal guidance.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Cristina Roselló-Busquets
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Oriol Ros
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Francesc Pérez-Branguli
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen, Germany
| | - Rosa Maria Andrés
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Vic, Spain
- Biosciences Department, Faculty of Sciences, Technology and Engineerings, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Marta Pascual
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| |
Collapse
|
6
|
Binamé F, Pham-Van LD, Bagnard D. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cell Mol Life Sci 2021; 78:5257-5273. [PMID: 34019104 PMCID: PMC11073109 DOI: 10.1007/s00018-021-03852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Lucas D Pham-Van
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Dominique Bagnard
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France.
| |
Collapse
|
7
|
Torres-Berrío A, Hernandez G, Nestler EJ, Flores C. The Netrin-1/DCC Guidance Cue Pathway as a Molecular Target in Depression: Translational Evidence. Biol Psychiatry 2020; 88:611-624. [PMID: 32593422 PMCID: PMC7529861 DOI: 10.1016/j.biopsych.2020.04.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
The Netrin-1/DCC guidance cue pathway plays a critical role in guiding growing axons toward the prefrontal cortex during adolescence and in the maturational organization and adult plasticity of prefrontal cortex connectivity. In this review, we put forward the idea that alterations in prefrontal cortex architecture and function, which are intrinsically linked to the development of major depressive disorder, originate in part from the dysregulation of the Netrin-1/DCC pathway by a mechanism that involves microRNA-218. We discuss evidence derived from mouse models of stress and from human postmortem brain and genome-wide association studies indicating an association between the Netrin-1/DCC pathway and major depressive disorder. We propose a potential role of circulating microRNA-218 as a biomarker of stress vulnerability and major depressive disorder.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Integrated Program in Neuroscience, Montreal, Quebec, Canada; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Wu G, Wang Z, Shan P, Huang S, Lin S, Huang W, Huang Z. Suppression of Netrin-1 attenuates angiotension II-induced cardiac remodeling through the PKC/MAPK signaling pathway. Biomed Pharmacother 2020; 130:110495. [PMID: 32688140 DOI: 10.1016/j.biopha.2020.110495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myocardial remodeling caused by angiotensin II (Ang II) is essential for the pathological process of heart failure. Netrin-1, which is an axonal guidance cue, has been shown to be involved in the inflammatory response, tumorigenesis, and angiogenesis in non-neuronal tissues. However, the role of Netrin-1 in cardiac remodeling has not been fully elucidated. METHODS The rat cardiomyocyte cell line H9c2 and primary neonatal rat cardiomyocytes were treated with Ang II. Cells were transfected with siRNA to silence Netrin-1 expression. Real-time polymerase chain reaction and Western blot analysis were used to detect the markers for fibrosis, apoptosis, and hypertrophy in cardiomyocytes. An Annexin V-EGFP/PI cell apoptosis detection kit was used to measure the level of apoptosis caused by angiotensin II. RESULTS We found that Netrin-1 expression was upregulated in the H9c2 cells and the neonatal rat cardiomyocytes stimulated by Ang II. The increased Netrin-1 expression was decreased by valsartan to block AT1R. Importantly, the application of Netrin-1 siRNA significantly alleviated the degrees of myocardial hypertrophy, fibrosis (reflected by Myhc, collagen I, and TGF-β) and apoptosis (reflected by the level of Caspase 3, Bax, and Bcl-2) induced by Ang II. In addition, the silencing of Netrin-1 substantially decreased the phosphorylation of PKCα, JNK, and P38. We treated H9c2 cells with LY317615, SP600125, and SB203580, inhibitors of PKCα, JNK, and P38, respectively, thereby resulting in a substantial decrease in hypertrophy, fibrosis, and apoptosis. CONCLUSIONS Ang II produces cardiac hypertrophy, fibrosis, and apoptosis through the upregulation of Netrin-1 and the activation of the AT1R/PKCα/MAPK (JNK, P38) pathway. Suppression of Netrin-1 can relieve Ang II-induced cardiac remodeling via inhibition of the PKCα/MAPK (JNK and P38) signaling pathway. Thus, Netrin-1 may be a novel therapeutic target for Ang II-mediated cardiac remodeling.
Collapse
Affiliation(s)
- Gaojun Wu
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Zhengxian Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Peiren Shan
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Shanjun Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Shuang Lin
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| |
Collapse
|
9
|
Nichols EL, Smith CJ. Synaptic-like Vesicles Facilitate Pioneer Axon Invasion. Curr Biol 2019; 29:2652-2664.e4. [DOI: 10.1016/j.cub.2019.06.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/24/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
|
10
|
Shao Q, Yang T, Huang H, Majumder T, Khot BA, Khouzani MM, Alarmanazi F, Gore YK, Liu G. Disease-associated mutations in human TUBB3 disturb netrin repulsive signaling. PLoS One 2019; 14:e0218811. [PMID: 31226147 PMCID: PMC6588280 DOI: 10.1371/journal.pone.0218811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/10/2019] [Indexed: 11/28/2022] Open
Abstract
Missense mutations in the human TUBB3 gene cause a variety of neurological disorders associated with defects in axon guidance and neuronal migration, but the underlying molecular mechanisms are not well understood. Recent studies have shown that direct coupling of dynamic TUBB3 in microtubules with netrin receptors is required for netrin-1-mediated axon guidance, and the interaction of netrin-1 repulsive receptor UNC5C with TUBB3 is involved in netrin-1 mediated axonal repulsion. Here, we report that TUBB3 mutations perturb netrin-1/UNC5C repulsive signaling in the developing nervous system. Among twelve mutants reported in previous studies, five of them show significantly reduced interaction with UNC5C in comparison to the wild-type TUBB3. TUBB3 mutants R262C and R62Q exhibit decreased subcellular colocalization with UNC5C in the peripheral area of the growth cone of primary mouse neurons. Netrin-1 reduces the colocalization of UNC5C with wild-type TUBB3, but not TUBB3 mutants R262C or R62Q, in the growth cone. Results from the in vitro cosedimentation assay indicate that netrin-1 inhibits cosedimentation of UNC5C with polymerized microtubules in primary mouse neurons expressing the wild-type TUBB3, but not R262C or R62Q. Expression of either R262C or R62Q not only blocks netrin-1-induced growth cone collapse and axonal repulsion of primary EGL cells in vitro, but also results in axon projections defects of chicken dorsal root ganglion neurons in ovo. Our study reveals that human TUBB3 mutations specifically perturb netrin-1/UNC5C-mediated repulsion.
Collapse
Affiliation(s)
- Qiangqiang Shao
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Tao Yang
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Huai Huang
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Tanushree Majumder
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Bhakti Ajit Khot
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | | | - Farrah Alarmanazi
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Yasmin K. Gore
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
During neural development, growing axons navigate over long distances to reach their targets. A critical step in this process is the regulation of its surface receptors on the axon’s growth cone in response to environmental cues. We focus on how the UNC-5 receptor in Caenorhabditis elegans motor axons is regulated during axon repulsion. By combining C. elegans genetics, biochemistry, and imaging, we found that MAX-1 SUMOylation and AP-3 complex have significant roles in UNC-5–mediated axon repulsion. Our findings reveal how SUMOylation and AP-3–mediated trafficking and degradation interact to help the growing axon find its final target. During neural development, growing axons express specific surface receptors in response to various environmental guidance cues. These axon guidance receptors are regulated through intracellular trafficking and degradation to enable navigating axons to reach their targets. In Caenorhabditis elegans, the UNC-5 receptor is necessary for dorsal migration of developing motor axons. We previously found that MAX-1 is required for UNC-5–mediated axon repulsion, but its mechanism of action remained unclear. Here, we demonstrate that UNC-5–mediated axon repulsion in C. elegans motor axons requires both max-1 SUMOylation and the AP-3 complex β subunit gene, apb-3. Genetic interaction studies show that max-1 is SUMOylated by gei-17/PIAS1 and acts upstream of apb-3. Biochemical analysis suggests that constitutive interaction of MAX-1 and UNC-5 receptor is weakened by MAX-1 SUMOylation and by the presence of APB-3, a competitive interactor with UNC-5. Overexpression of APB-3 reroutes the trafficking of UNC-5 receptor into the lysosome for protein degradation. In vivo fluorescence recovery after photobleaching experiments shows that MAX-1 SUMOylation and APB-3 are required for proper trafficking of UNC-5 receptor in the axon. Our results demonstrate that SUMOylation of MAX-1 plays an important role in regulating AP-3–mediated trafficking and degradation of UNC-5 receptors during axon guidance.
Collapse
|
12
|
Boyer NP, Gupton SL. Revisiting Netrin-1: One Who Guides (Axons). Front Cell Neurosci 2018; 12:221. [PMID: 30108487 PMCID: PMC6080411 DOI: 10.3389/fncel.2018.00221] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022] Open
Abstract
Proper patterning of the nervous system requires that developing axons find appropriate postsynaptic partners; this entails microns to meters of extension through an extracellular milieu exhibiting a wide range of mechanical and chemical properties. Thus, the elaborate networks of fiber tracts and non-fasciculated axons evident in mature organisms are formed via complex pathfinding. The macroscopic structures of axon projections are highly stereotyped across members of the same species, indicating precise mechanisms guide their formation. The developing axon exhibits directionally biased growth toward or away from external guidance cues. One of the most studied guidance cues is netrin-1, however, its presentation in vivo remains debated. Guidance cues can be secreted to form soluble or chemotactic gradients or presented bound to cells or the extracellular matrix to form haptotactic gradients. The growth cone, a highly specialized dynamic structure at the end of the extending axon, detects these guidance cues via transmembrane receptors, such as the netrin-1 receptors deleted in colorectal cancer (DCC) and UNC5. These receptors orchestrate remodeling of the cytoskeleton and cell membrane through both chemical and mechanotransductive pathways, which result in traction forces generated by the cytoskeleton against the extracellular environment and translocation of the growth cone. Through intracellular signaling responses, netrin-1 can trigger either attraction or repulsion of the axon. Here we review the mechanisms by which the classical guidance cue netrin-1 regulates intracellular effectors to respond to the extracellular environment in the context of axon guidance during development of the central nervous system and discuss recent findings that demonstrate the critical importance of mechanical forces in this process.
Collapse
Affiliation(s)
- Nicholas P. Boyer
- Neurobiology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Reciprocal antagonism between the netrin-1 receptor uncoordinated-phenotype-5A (UNC5A) and the hepatitis C virus. Oncogene 2017; 36:6712-6724. [PMID: 28783179 DOI: 10.1038/onc.2017.271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of hepatocellular carcinoma (HCC), mainly through cirrhosis induction, spurring research for a deeper understanding of HCV versus host interactions in cirrhosis. The present study investigated crosstalks between HCV infection and UNC5A, a netrin-1 dependence receptor that is inactivated in cancer. UNC5A and HCV parameters were monitored in patients samples (n=550) as well as in in vitro. In patients, UNC5A mRNA expression is significantly decreased in clinical HCV(+) specimens irrespective of the viral genotype, but not in (HBV)(+) liver biopsies, as compared to uninfected samples. UNC5A mRNA is downregulated in F2 (3-fold; P=0.009), in F3 (10-fold, P=0.0004) and more dramatically so in F4/cirrhosis (44-fold; P<0.0001) histological stages of HCV(+) hepatic lesions compared to histologically matched HCV(-) tissues. UNC5A transcript was found strongly downregulated in HCC samples (33-fold; P<0.0001) as compared with non-HCC samples. In vivo, association of UNC5A transcripts with polyribosomes is decreased by 50% in HCV(+) livers. Consistent results were obtained in vitro showing HCV-dependent depletion of UNC5A in HCV-infected hepatocyte-like cells and in primary human hepatocytes. Using luciferase reporter constructs, HCV cumulatively decreased UNC5A transcription from the UNC5 promoter and translation in a UNC5A 5'UTR-dependent manner. Proximity ligation assays, kinase assays, as well as knockdown and forced expression experiments identified UNC5A as capable of impeding autophagy and promoting HCV restriction through specific impact on virion infectivity, in a cell death-independent and DAPK-related manner. In conclusion, while the UNC5A dependence receptor counteracts HCV persistence through regulation of autophagy in a DAPK-dependent manner, it is dramatically decreased in all instances in HCC samples, and specifically by HCV in cirrhosis. Such data argue for the evaluation of the implication of UNC5A in liver carcinogenesis.
Collapse
|
14
|
Uncoupling of UNC5C with Polymerized TUBB3 in Microtubules Mediates Netrin-1 Repulsion. J Neurosci 2017; 37:5620-5633. [PMID: 28483977 DOI: 10.1523/jneurosci.2617-16.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 11/21/2022] Open
Abstract
Modulation of microtubule (MT) dynamics is a key event of cytoskeleton remodeling in the growth cone (GC) during axon outgrowth and pathfinding. Our previous studies have shown that the direct interaction of netrin receptor DCC and DSCAM with polymerized TUBB3, a neuron-specific MT subunit in the brain, is required for netrin-1-mediated axon outgrowth, branching, and attraction. Here, we show that uncoupling of polymerized TUBB3 with netrin-1-repulsive receptor UNC5C is involved in netrin-1-mediated axonal repulsion. TUBB3 directly interacted with UNC5C and partially colocalized with UNC5C in the peripheral area of the GC of primary neurons from the cerebellar external granule layer of P2 mouse pups of both sexes. Netrin-1 reduced this interaction as well as the colocalization of UNC5C and TUBB3 in the GC. Results from the in vitro cosedimentation assay indicated that UNC5C interacted with polymerized TUBB3 in MTs and netrin-1 decreased this interaction. Knockdown of either TUBB3 or UNC5C blocked netrin-1-promoted axon repulsion in vitro and caused defects in axon projection of DRG toward the spinal cord in vivo Furthermore, live-cell imaging of end-binding protein 3 tagged with EGFP (EB3-GFP) in primary external granule layer cells showed that netrin-1 differentially increased MT dynamics in the GC with more MT growth in the distal than the proximal region of the GC during repulsion, and knockdown of either UNC5C or TUBB3 abolished the netrin-1 effect. Together, these data indicate that the disengagement of UNC5C with polymerized TUBB3 plays an essential role in netrin-1/UNC5C-mediated axon repulsion.SIGNIFICANCE STATEMENT Proper regulation of microtubule (MT) dynamics in the growth cone plays an important role in axon guidance. However, whether guidance cues modulate MT dynamics directly or indirectly is unclear. Here, we report that dissociation of UNC5C and polymerized TUBB3, the highly dynamic β-tubulin isoform in neurons, is essential for netrin-1/UNC5C-promoted axon repulsion. These results not only provide a working model of direct modulation of MTs by guidance cues in growth cone navigation but also help us to understand molecular mechanisms underlying developmental brain disorders associated with TUBB3 mutations.
Collapse
|
15
|
Gopal AA, Rappaz B, Rouger V, Martyn IB, Dahlberg PD, Meland RJ, Beamish IV, Kennedy TE, Wiseman PW. Netrin-1-Regulated Distribution of UNC5B and DCC in Live Cells Revealed by TICCS. Biophys J 2017; 110:623-634. [PMID: 26840727 DOI: 10.1016/j.bpj.2015.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023] Open
Abstract
Netrins are secreted proteins that direct cell migration and adhesion during development. Netrin-1 binds its receptors deleted in colorectal cancer (DCC) and the UNC5 homologs (UNC5A-D) to activate downstream signaling that ultimately directs cytoskeletal reorganization. To investigate how netrin-1 regulates the dynamic distribution of DCC and UNC5 homologs, we applied fluorescence confocal and total internal reflection fluorescence microscopy, and sliding window temporal image cross correlation spectroscopy, to measure time profiles of the plasma membrane distribution, aggregation state, and interaction fractions of fluorescently tagged netrin receptors expressed in HEK293T cells. Our measurements reveal changes in receptor aggregation that are consistent with netrin-1-induced recruitment of DCC-enhanced green fluorescent protein (EGFP) from intracellular vesicles to the plasma membrane. Netrin-1 also induced colocalization of coexpressed full-length DCC-EGFP with DCC-T-mCherry, a putative DCC dominant negative that replaces the DCC intracellular domain with mCherry, consistent with netrin-1-induced receptor oligomerization, but with no change in aggregation state with time, providing evidence that signaling via the DCC intracellular domain triggers DCC recruitment to the plasma membrane. UNC5B expressed alone was also recruited by netrin-1 to the plasma membrane. Coexpressed DCC and UNC5 homologs are proposed to form a heteromeric netrin-receptor complex to mediate a chemorepellent response. Application of temporal image cross correlation spectroscopy to image series of cells coexpressing UNC5B-mCherry and DCC-EGFP revealed a netrin-1-induced increase in colocalization, with both receptors recruited to the plasma membrane from preexisting clusters, consistent with vesicular recruitment and receptor heterooligomerization. Plasma membrane recruitment of DCC or UNC5B was blocked by application of the netrin-1 VI-V peptide, which fails to activate chemoattraction, or by pharmacological block of Src family kinase signaling, consistent with receptor recruitment requiring netrin-1-activated signaling. Our findings reveal a mechanism activated by netrin-1 that recruits DCC and UNC5B to the plasma membrane.
Collapse
Affiliation(s)
- Angelica A Gopal
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Benjamin Rappaz
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vincent Rouger
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Iain B Martyn
- Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Peter D Dahlberg
- Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rachel J Meland
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ian V Beamish
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Paul W Wiseman
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Blasiak A, Kilinc D, Lee GU. Neuronal Cell Bodies Remotely Regulate Axonal Growth Response to Localized Netrin-1 Treatment via Second Messenger and DCC Dynamics. Front Cell Neurosci 2017; 10:298. [PMID: 28105005 PMCID: PMC5214882 DOI: 10.3389/fncel.2016.00298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
Netrin-1 modulates axonal growth direction and speed. Its best characterized receptor, Deleted in Colorectal Cancer (DCC), is localized to growth cones, but also observed in the cell bodies. We hypothesized that cell bodies sense Netrin-1 and contribute to axon growth rate modulation, mediated by the second messenger system. We cultured mouse cortical neurons in microfluidic devices to isolate distal axon and cell body microenvironments. Compared to isolated axonal treatment, global Netrin-1 treatment decreased the axon elongation rate and affected the dynamics of total and membranous DCC, calcium, and cyclic nucleotides. Signals induced by locally applied Netrin-1 propagated in both anterograde and retrograde directions, demonstrated by the long-range increase in DCC and by the increased frequency of calcium transients in cell bodies, evoked by axonal Netrin-1. Blocking the calcium efflux from endoplasmic reticulum suppressed the membranous DCC response. Our findings support the notion that neurons sense Netrin-1 along their entire lengths in making axonal growth decisions.
Collapse
Affiliation(s)
- Agata Blasiak
- Bionanosciences Group, School of Chemistry, University College Dublin Dublin, Ireland
| | - Devrim Kilinc
- Bionanosciences Group, School of Chemistry, University College DublinDublin, Ireland; UCD Conway Institute of Biomedical and Biomolecular Research, University College DublinDublin, Ireland
| | - Gil U Lee
- Bionanosciences Group, School of Chemistry, University College DublinDublin, Ireland; UCD Conway Institute of Biomedical and Biomolecular Research, University College DublinDublin, Ireland
| |
Collapse
|
17
|
Bhattacharjee N, Folch A. Large-scale microfluidic gradient arrays reveal axon guidance behaviors in hippocampal neurons. MICROSYSTEMS & NANOENGINEERING 2017; 3:17003. [PMID: 31057858 PMCID: PMC6445017 DOI: 10.1038/micronano.2017.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/30/2016] [Accepted: 12/10/2016] [Indexed: 05/05/2023]
Abstract
High-throughput quantitative approaches to study axon growth behaviors have remained a challenge. We have developed a 1024-chamber microfluidic gradient generator array that enables large-scale investigations of axon guidance and growth dynamics from individual primary mammalian neurons, which are exposed to gradients of diffusible molecules. Our microfluidic method (a) generates statistically rich data sets, (b) produces a stable, reproducible gradient with negligible shear stresses on the culture surface, (c) is amenable to the long-term culture of primary neurons without any unconventional protocol, and (d) eliminates the confounding influence of cell-secreted factors. Using this platform, we demonstrate that hippocampal axon guidance in response to a netrin-1 gradient is concentration-dependent-attractive at higher concentrations and repulsive at lower concentrations. We also show that the turning of the growth cone depends on the angle of incidence of the gradient. Our study highlights the potential of microfluidic devices in producing large amounts of data from morphogen and chemokine gradients that play essential roles not only in axonal navigation but also in stem cell differentiation, cell migration, and immune response.
Collapse
Affiliation(s)
- Nirveek Bhattacharjee
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Foege N423-A, Seattle, WA 98195, USA
- ()
| | - Albert Folch
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Foege N423-A, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Long H, Yoshikawa S, Thomas JB. Equivalent Activities of Repulsive Axon Guidance Receptors. J Neurosci 2016; 36:1140-50. [PMID: 26818503 PMCID: PMC4728722 DOI: 10.1523/jneurosci.3406-15.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 12/07/2015] [Indexed: 01/31/2023] Open
Abstract
Receptors on the growth cone at the leading edge of elongating axons play critical guidance roles by recognizing cues via their extracellular domains and transducing signals via their intracellular domains, resulting in changes in direction of growth. An important concept to have emerged in the axon guidance field is the importance of repulsion as a major guidance mechanism. Given the number and variety of different repulsive receptors, it is generally thought that there are likely to be qualitative differences in the signals they transduce. However, the nature of these possible differences is unknown. By creating chimeras using the extracellular and intracellular domains of three different Drosophila repulsive receptors, Unc5, Roundabout (Robo), and Derailed (Drl) and expressing them in defined cells within the embryonic nervous system, we examined the responses elicited by their intracellular domains systematically. Surprisingly, we found no qualitative differences in growth cone response or axon growth, suggesting that, despite their highly diverged sequences, each intracellular domain elicits repulsion via a common pathway. In terms of the signaling pathway(s) used by the repulsive receptors, mutations in the guanine nucleotide exchange factor Trio strongly enhance the repulsive activity of all three intracellular domains, suggesting that repulsion by Unc5, Robo, and Drl, and perhaps repulsion in general, involves Trio activity. SIGNIFICANCE STATEMENT A prevailing concept that has emerged in the axon guidance field is the importance of repulsion as a guidance mechanism for steering axons to their appropriate targets. Given the number and variety of different repulsive receptors, it is generally thought that there are differences in the signals that they transduce. However, this has never been tested directly. We have used the advanced genetics of Drosophila to compare directly the outputs of different repulsive receptors. Surprisingly, we found no qualitative differences in receptor-mediated repulsion, suggesting that, despite their highly diverged domain structure, each receptor couples to a common repulsive pathway. We went on to show that this common pathway involves Trio, a guanine nucleotide exchange factor known to promote cytoskeletal remodeling.
Collapse
Affiliation(s)
- Hong Long
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Shingo Yoshikawa
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - John B Thomas
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
19
|
Blasiak A, Lee GU, Kilinc D. Neuron Subpopulations with Different Elongation Rates and DCC Dynamics Exhibit Distinct Responses to Isolated Netrin-1 Treatment. ACS Chem Neurosci 2015; 6:1578-90. [PMID: 26190161 DOI: 10.1021/acschemneuro.5b00142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Correct wiring of the nervous system requires guidance cues, diffusible or substrate-bound proteins that steer elongating axons to their target tissues. Netrin-1, the best characterized member of the Netrins family of guidance molecules, is known to induce axon turning and modulate axon elongation rate; however, the factors regulating the axonal response to Netrin-1 are not fully understood. Using microfluidics, we treated fluidically isolated axons of mouse primary cortical neurons with Netrin-1 and characterized axon elongation rates, as well as the membrane localization of deleted in colorectal cancer (DCC), a well-established receptor of Netrin-1. The capacity to stimulate and observe a large number of individual axons allowed us to conduct distribution analyses, through which we identified two distinct neuron subpopulations based on different elongation behavior and different DCC membrane dynamics. Netrin-1 reduced the elongation rates in both subpopulations, where the effect was more pronounced in the slow growing subpopulation. Both the source of Ca(2+) influx and the basal cytosolic Ca(2+) levels regulated the effect of Netrin-1, for example, Ca(2+) efflux from the endoplasmic reticulum due to the activation of Ryanodine channels blocked Netrin-1-induced axon slowdown. Netrin-1 treatment resulted in a rapid membrane insertion of DCC, followed by a gradual internalization. DCC membrane dynamics were different in the central regions of the growth cones compared to filopodia and axon shafts, highlighting the temporal and spatial heterogeneity in the signaling events downstream of Netrin-1. Cumulatively, these results demonstrate the power of microfluidic compartmentalization and distribution analysis in describing the complex axonal Netrin-1 response.
Collapse
Affiliation(s)
- Agata Blasiak
- Bionanoscience Group, School
of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin
4, Ireland
| | - Gil U. Lee
- Bionanoscience Group, School
of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin
4, Ireland
| | - Devrim Kilinc
- Bionanoscience Group, School
of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin
4, Ireland
| |
Collapse
|
20
|
Chance RK, Bashaw GJ. Slit-Dependent Endocytic Trafficking of the Robo Receptor Is Required for Son of Sevenless Recruitment and Midline Axon Repulsion. PLoS Genet 2015; 11:e1005402. [PMID: 26335920 PMCID: PMC4559387 DOI: 10.1371/journal.pgen.1005402] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/26/2015] [Indexed: 01/07/2023] Open
Abstract
Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth cone motility is critical to learning how proper wiring is established during development. Roundabout (Robo) is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and vertebrates. Here we show that endocytic trafficking of the Robo receptor in response to Slit-binding is necessary for its repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo activation assays support a role for Clathrin-dependent endocytosis, and entry into both the early and late endosomes as positive regulators of Slit-Robo signaling. We identify two conserved motifs in Robo's cytoplasmic domain that are required for its Clathrin-dependent endocytosis and activation in vitro; gain of function and genetic rescue experiments provide strong evidence that these trafficking events are required for Robo repulsive guidance activity in vivo. Our data support a model in which Robo's ligand-dependent internalization from the cell surface to the late endosome is essential for receptor activation and proper repulsive guidance at the midline by allowing recruitment of the downstream effector Son of Sevenless in a spatially constrained endocytic trafficking compartment.
Collapse
Affiliation(s)
- Rebecca K. Chance
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
21
|
Tojima T, Kamiguchi H. Exocytic and endocytic membrane trafficking in axon development. Dev Growth Differ 2015; 57:291-304. [DOI: 10.1111/dgd.12218] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
22
|
Subrepellent doses of Slit1 promote Netrin-1 chemotactic responses in subsets of axons. Neural Dev 2015; 10:5. [PMID: 25888985 PMCID: PMC4373007 DOI: 10.1186/s13064-015-0036-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background Axon pathfinding is controlled by guidance cues that elicit specific attractive or repulsive responses in growth cones. It has now become clear that some cues such as Netrin-1 can trigger either attraction or repulsion in a context-dependent manner. In particular, it was recently found that the repellent Slit1 enables the attractive response of rostral thalamic axons to Netrin-1. This finding raised the intriguing possibility that Netrin-1 and Slit1, two essential guidance cues, may act more generally in an unexpected combinatorial manner to orient specific axonal populations. To address this major issue, we have used an innovative microfluidic device compatible not only with dissociated neuronal cultures but also with explant cultures to systematically and quantitatively characterize the combinatorial activity of Slit1 and Netrin-1 on rostral thalamic axons as well as on hippocampal neurons. Results We found that on rostral thalamic axons, only a subthreshold concentration of the repellent Slit1 triggered an attractive response to a gradient of Netrin-1. On hippocampal neurons, we similarly found that Slit1 alone is repulsive and a subthreshold concentration of Slit1 triggered a potent attractive or repulsive behavioral response to a gradient of Netrin-1, depending on the nature of the substrate. Conclusions Our study reveals that at subthreshold repulsive levels, Slit1 acts as a potent promoter of both Netrin-1 attractive and repulsive activities on distinct neuronal cell types, thereby opening novel perspectives on the role of combinations of cues in brain wiring. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0036-8) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Lee SJ, Jung YH, Oh SY, Yong MS, Ryu JM, Han HJ. Netrin-1 induces MMP-12-dependent E-cadherin degradation via the distinct activation of PKCα and FAK/Fyn in promoting mesenchymal stem cell motility. Stem Cells Dev 2014; 23:1870-82. [PMID: 24738865 DOI: 10.1089/scd.2013.0632] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Netrin-1 (Ntn-1) is a potent inducer of neuronal cell migration; however, its molecular mechanism that guides the migratory behavior of stem cells has not been characterized. In this study, we investigate the role of Ntn-1 in promoting the motility of human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and its related signaling pathways. Ntn-1 (50 ng/mL) significantly increased motility of UCB-MSCs, which was inhibited by blocking antibodies for deleted in colorectal cancer (DCC) and integrin (IN) α6β4. Ntn-1 in DCC stimulated protein kinase Cα (PKCα) activation, but not PKCɛ, PKCθ, and PKCζ, while Ntn-1 in INα6β4 induced the phosphorylation of focal adhesion kinase (FAK) and Fyn. Notably, Ntn-1 induced phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and nuclear factor kappa-B (NF-κB), but they were concurrently downregulated by blocking the activities of PKCα, FAK, and Fyn. Ntn-1 uniquely increased the MMP-12 expression of all the matrix metalloproteinase (MMP) isoforms present in UCB-MSCs, though this was significantly blocked by an NF-κB inhibitor. Finally, Ntn-1 induced the MMP-12-dependent degradation of E-cadherin (E-cad), while Ntn-1 abrogated the interaction between E-cad and p120-catenin. In addition, Ntn-1 has the ability to stimulate cytoskeletal reorganization-related proteins, such as Cdc42, Rac1, Profilin-1, Cofilin-1, α-Actinin-4, and filamentous actin (F-actin) in UCB-MSCs. These results demonstrate that Ntn-1 induces MMP-12-dependent E-cad degradation via the distinct activation of PKCα and FAK/Fyn, which is necessary to govern the activation of ERK, JNK, and NF-κB in promoting motility of UCB-MSCs.
Collapse
Affiliation(s)
- Sei-Jung Lee
- 1 Department of Veterinary Physiology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul, Korea
| | | | | | | | | | | |
Collapse
|
24
|
ADAM metalloproteases promote a developmental switch in responsiveness to the axonal repellant Sema3A. Nat Commun 2014; 5:4058. [PMID: 24898499 DOI: 10.1038/ncomms5058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/06/2014] [Indexed: 11/08/2022] Open
Abstract
During embryonic development, axons can gain and lose sensitivity to guidance cues, and this flexibility is essential for the correct wiring of the nervous system. Yet, the underlying molecular mechanisms are largely unknown. Here we show that receptor cleavage by ADAM (A Disintegrin And Metalloprotease) metalloproteases promotes murine sensory axons loss of responsiveness to the chemorepellant Sema3A. Genetic ablation of ADAM10 and ADAM17 disrupts the developmental downregulation of Neuropilin-1 (Nrp1), the receptor for Sema3A, in sensory axons. Moreover, this is correlated with gain of repulsive response to Sema3A. Overexpression of Nrp1 in neurons reverses axonal desensitization to Sema3A, but this is hampered in a mutant Nrp1 with high susceptibility to cleavage. Lastly, we detect guidance errors of proprioceptive axons in ADAM knockouts that are consistent with enhanced response to Sema3A. Our results provide the first evidence for involvement of ADAMs in regulating developmental switch in responsiveness to axonal guidance cues.
Collapse
|
25
|
Wang L, Lam JSY, Zhao H, Wang J, Chan SO. Localization of protein kinase C isoforms in the optic pathway of mouse embryos and their role in axon routing at the optic chiasm. Brain Res 2014; 1575:22-32. [PMID: 24863469 DOI: 10.1016/j.brainres.2014.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/08/2014] [Accepted: 05/16/2014] [Indexed: 12/16/2022]
Abstract
Protein kinase C (PKC) plays a key role in many receptor-mediated signaling pathways that regulate cell growth and development. However, its roles in guiding axon growth and guidance in developing neural pathways are largely unknown. To investigate possible functions of PKC in the growth and guidance of axons in the optic chiasm, we first determined the localization of major PKC isoforms in the retinofugal pathway of mouse embryos, at the stage when axons navigate through the midline. Results showed that PKC was expressed in isoform specific patterns in the pathway. PKC-α immunoreactivity was detected in the chiasm and the optic tract. PKC-βΙΙ was strong in the optic stalk but was attenuated on axons in the diencephalon. Immunostaining for PKC-ε showed a colocalization in the chiasmatic neurons that express a surface antigen stage specific embryonic antigen-1 (SSEA-1). These chiasmatic neurons straddled the midline of the optic chiasm, and have been shown in earlier studies a role in regulation of axon growth and guidance. Expression levels of PKC-βΙ, -δ and -γ were barely detectable in the pathway. Blocking of PKC signaling with Ro-32-0432, an inhibitor specific for PKC-α and -β at nanomolar concentration, produced a dramatic reduction of ipsilateral axons from both nasal retina and temporal crescent. We conclude from these studies that PKC-α and -βΙΙ are the predominant forms in the developing optic pathway, whereas PKC-ε is the major form in the chiasmatic neurons. Furthermore, PKC-α and -βΙΙ are likely involved in signaling pathways triggered by inhibitory molecules at the midline that guide optic axons to the uncrossed pathway.
Collapse
Affiliation(s)
- Liqing Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Joyce Shi-Ying Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Jun Wang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
26
|
Leyva-Díaz E, del Toro D, Menal MJ, Cambray S, Susín R, Tessier-Lavigne M, Klein R, Egea J, López-Bendito G. FLRT3 is a Robo1-interacting protein that determines Netrin-1 attraction in developing axons. Curr Biol 2014; 24:494-508. [PMID: 24560577 DOI: 10.1016/j.cub.2014.01.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Guidance molecules are normally presented to cells in an overlapping fashion; however, little is known about how their signals are integrated to control the formation of neural circuits. In the thalamocortical system, the topographical sorting of distinct axonal subpopulations relies on the emergent cooperation between Slit1 and Netrin-1 guidance cues presented by intermediate cellular targets. However, the mechanism by which both cues interact to drive distinct axonal responses remains unknown. RESULTS Here, we show that the attractive response to the guidance cue Netrin-1 is controlled by Slit/Robo1 signaling and by FLRT3, a novel coreceptor for Robo1. While thalamic axons lacking FLRT3 are insensitive to Netrin-1, thalamic axons containing FLRT3 can modulate their Netrin-1 responsiveness in a context-dependent manner. In the presence of Slit1, both Robo1 and FLRT3 receptors are required to induce Netrin-1 attraction by the upregulation of surface DCC through the activation of protein kinase A. Finally, the absence of FLRT3 produces defects in axon guidance in vivo. CONCLUSIONS These results highlight a novel mechanism by which interactions between limited numbers of axon guidance cues can multiply the responses in developing axons, as required for proper axonal tract formation in the mammalian brain.
Collapse
Affiliation(s)
- Eduardo Leyva-Díaz
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Daniel del Toro
- Department of Molecules - Signals - Development, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Maria José Menal
- Molecular and Developmental Neurobiology Group, IRBLLEIDA, University of Lleida, 25198 Lleida, Spain
| | - Serafi Cambray
- Molecular and Developmental Neurobiology Group, IRBLLEIDA, University of Lleida, 25198 Lleida, Spain
| | - Rafael Susín
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, Rockefeller University, New York, NY 10065, USA
| | - Rüdiger Klein
- Department of Molecules - Signals - Development, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Joaquim Egea
- Molecular and Developmental Neurobiology Group, IRBLLEIDA, University of Lleida, 25198 Lleida, Spain.
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| |
Collapse
|
27
|
Liu J, Kong CZ, Gong DX, Zhang Z, Zhu YY. PKC α regulates netrin-1/UNC5B-mediated survival pathway in bladder cancer. BMC Cancer 2014; 14:93. [PMID: 24528886 PMCID: PMC3937025 DOI: 10.1186/1471-2407-14-93] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 02/11/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Netrin-1 and its receptor UNC5B play important roles in angiogenesis, embryonic development, cancer and inflammation. However, their expression patttern and biological roles in bladder cancer have not been well characterized. The present study aims to investigating the clinical significance of PKC α, netrin-1 and UNC5B in bladder cancer as well as their association with malignant biological behavior of cancer cells. METHODS Netrin-1 and UNC5B expression was examined in 120 bladder cancer specimens using immunohistochemistry and in 40 fresh cancer tissues by western blot. Immunofluorescence was performed in cancer cell lines. PKC α agonist PMA and PKC siRNA was employed in bladder cancer cells. CCK-8, wound healing assays and flow cytometry analysis were used to examine cell proliferation, migration and cell cycle, respectively. RESULTS Netrin-1 expression was positively correlated with histological grade, T stage, metastasis and poor prognosis in bladder cancer tissues. Immunofluorescence showed elevated netrin-1 and decreased UNC5B expression in bladder cancer cells compared with normal bladder cell line. Furthermore, cell proliferation, migration and cell cycle progression were promoted with PMA treatment while inhibited by calphostin C. In addition, PMA treatment could induce while calphostin C reduce netrin-1 expression in bladder cancer cells. CONCLUSIONS The present study identified netrin-1/UNC5B, which could be regulated by PKC signaling, was important mediators of bladder cancer progression.
Collapse
Affiliation(s)
| | - Chui-ze Kong
- Department of Urology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | | | | | | |
Collapse
|
28
|
Lien TL, Ban J, Tormen M, Migliorini E, Grenci G, Pozzato A, Torre V. Can hippocampal neurites and growth cones climb over obstacles? PLoS One 2013; 8:e73966. [PMID: 24040128 PMCID: PMC3765352 DOI: 10.1371/journal.pone.0073966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Guidance molecules, such as Sema3A or Netrin-1, can induce growth cone (GC) repulsion or attraction in the presence of a flat surface, but very little is known of the action of guidance molecules in the presence of obstacles. Therefore we combined chemical and mechanical cues by applying a steady Netrin-1 stream to the GCs of dissociated hippocampal neurons plated on polydimethylsiloxane (PDMS) surfaces patterned with lines 2 µm wide, with 4 µm period and with a height varying from 100 to 600 nm. GC turning experiments performed 24 hours after plating showed that filopodia crawl over these lines within minutes. These filopodia do not show staining for the adhesion marker Paxillin. GCs and neurites crawl over lines 100 nm high, but less frequently and on a longer time scale over lines higher than 300 nm; neurites never crawl over lines 600 nm high. When neurons are grown for 3 days over patterned surfaces, also neurites can cross lines 300 nm and 600 nm high, grow parallel to and on top of these lines and express Paxillin. Axons - selectively stained with SMI 312 - do not differ from dendrites in their ability to cross these lines. Our results show that highly motile structures such as filopodia climb over high obstacle in response to chemical cues, but larger neuronal structures are less prompt and require hours or days to climb similar obstacles.
Collapse
Affiliation(s)
- Thuy Linh Lien
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Jelena Ban
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Massimo Tormen
- Istituto Officina dei Materiali (IOM-CNR), Basovizza, Trieste, Italy
| | - Elisa Migliorini
- Istituto Officina dei Materiali (IOM-CNR), Basovizza, Trieste, Italy
| | - Gianluca Grenci
- Istituto Officina dei Materiali (IOM-CNR), Basovizza, Trieste, Italy
| | | | - Vincent Torre
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
- * E-mail:
| |
Collapse
|
29
|
Interactional expression of netrin-1 and its dependence receptor UNC5B in prostate carcinoma. Tumour Biol 2013; 34:2765-72. [DOI: 10.1007/s13277-013-0834-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022] Open
|
30
|
Zhan B, Kong C, Guo K, Zhang Z. PKCα is involved in the progression of kidney carcinoma through regulating netrin-1/UNC5B signaling pathway. Tumour Biol 2013; 34:1759-66. [PMID: 23526078 DOI: 10.1007/s13277-013-0714-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/20/2013] [Indexed: 01/22/2023] Open
Abstract
With a special interest towards a better understanding of signal pathways, we attempted to discover a safer and more effective therapeutic strategy for kidney carcinoma. Recent studies had suggested a role mediated by PKCα for netrin-1 and its receptors in the initiation and progression of tumors. Real-time PCR and western blotting were used to determine the expression levels of netrin-1 and UNC5B. We made use of the agonist of PKCα (phorbol-12-myristate 13-acetate-PMA) and the inhibitor of PKCα (calphostin C) to treat renal cell carcinoma (RCC) cells, and MTT assays were used to measure cell proliferation. By immunofluorescence, we identified the localization of netrin-1 and UNC5B in RCC cell lines 769-P and ACHN. The expression of UNC5B in tumor tissues was significantly downregulated compared to the corresponding normal tissues in which netrin-1 was upregulated. In low grade tumors, UNC5B expression was more prominent while netrin-1 expression was the opposite when compared with high grade ones. Proliferation of ACHN cells was concentration dependent in the presence of PMA and calphostin C. Netrin-1 and UNC5B expressions were upregulated in cells treated with PMA while calphostin C reversed this upregulation. By immunofluorescence, we identified that netrin-1 was highly expressed in the nuclear but none of UNC5B. Our data highly suggested that PMA-induced upregulation and calphostin C-induced reversion of netrin-1 and UNC5B in kidney carcinoma were accompanied by the activation of the netrin-1/UNC5B pathways.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province, People's Republic of China, 110001.
| | | | | | | |
Collapse
|
31
|
Pinato G, Cojoc D, Lien LT, Ansuini A, Ban J, D'Este E, Torre V. Less than 5 Netrin-1 molecules initiate attraction but 200 Sema3A molecules are necessary for repulsion. Sci Rep 2012; 2:675. [PMID: 22997549 PMCID: PMC3447186 DOI: 10.1038/srep00675] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/03/2012] [Indexed: 11/09/2022] Open
Abstract
Guidance molecules, such as Sema3A or Netrin-1, induce growth cone (GC) repulsion or attraction. In order to determine the speed of action and efficiency of these guidance cues we developed an experimental procedure to deliver controlled amounts of these molecules. Lipid vesicles encapsulating 10-10(4) molecules of Sema3A or Netrin-1 were manipulated with high spatial and temporal resolution by optical tweezers and their photolysis triggered by laser pulses. Guidance molecules released from the vesicles diffused and reached the GC membrane in a few seconds. Following their arrival, GCs retracted or grew in 20-120 s. By determining the number of guidance molecules trapped inside vesicles and estimating the fraction of guidance molecules reaching the GC, we show that the arrival of less than 5 Netrin-1 molecules on the GC membrane is sufficient to induce growth. In contrast, the arrival of about 200 Sema3A molecules is necessary to induce filopodia repulsion.
Collapse
Affiliation(s)
- Giulietta Pinato
- Istituto Officina dei Materiali (IOM-CNR), Area Science Park, Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Purohit AA, Li W, Qu C, Dwyer T, Shao Q, Guan KL, Liu G. Down syndrome cell adhesion molecule (DSCAM) associates with uncoordinated-5C (UNC5C) in netrin-1-mediated growth cone collapse. J Biol Chem 2012; 287:27126-38. [PMID: 22685302 DOI: 10.1074/jbc.m112.340174] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the developing nervous system, neuronal growth cones explore the extracellular environment for guidance cues, which can guide them along specific trajectories toward their targets. Netrin-1, a bifunctional guidance cue, binds to deleted in colorectal cancer (DCC) and DSCAM mediating axon attraction, and UNC5 mediating axon repulsion. Here, we show that DSCAM interacts with UNC5C and this interaction is stimulated by netrin-1 in primary cortical neurons and postnatal cerebellar granule cells. DSCAM partially co-localized with UNC5C in primary neurons and brain tissues. Netrin-1 induces axon growth cone collapse of mouse cerebellum external granule layer (EGL) cells, and the knockdown of DSCAM or UNC5C by specific shRNAs or blocking their signaling by overexpressing dominant negative mutants suppresses netrin-1-induced growth cone collapse. Similarly, the simultaneous knockdown of DSCAM and UNC5C also blocks netrin-1-induced growth cone collapse in EGL cells. Netrin-1 increases tyrosine phosphorylation of endogenous DSCAM, UNC5C, FAK, Fyn, and PAK1, and promotes complex formation of DSCAM with these signaling molecules in primary postnatal cerebellar neurons. Inhibition of Src family kinases efficiently reduces the interaction of DSCAM with UNC5C, FAK, Fyn, and PAK1 and tyrosine phosphorylation of these proteins as well as growth cone collapse of mouse EGL cells induced by netrin-1. The knockdown of DSCAM inhibits netrin-induced tyrosine phosphorylation of UNC5C and Fyn as well as the interaction of UNC5C with Fyn. The double knockdown of both receptors abolishes the induction of Fyn tyrosine phosphorylation by netrin-1. Our study reveals the first evidence that DSCAM coordinates with UNC5C in netrin-1 repulsion.
Collapse
Affiliation(s)
- Anish A Purohit
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Identification of the neogenin-binding site on the repulsive guidance molecule A. PLoS One 2012; 7:e32791. [PMID: 22396795 PMCID: PMC3291610 DOI: 10.1371/journal.pone.0032791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/31/2012] [Indexed: 11/25/2022] Open
Abstract
Repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the chick retinotectal system. RGMa, one of the 3 isoforms found in mammals, is involved in laminar patterning, cephalic neural tube closure, axon guidance, and inhibition of axonal regeneration. In addition to its roles in the nervous system, RGMa plays a role in enhancing helper T-cell activation. Binding of RGM to its receptor, neogenin, is considered necessary to transduce these signals; however, information on the binding of RGM to neogenin is limited. Using co-immunoprecipitation studies, we have identified that the RGMa region required for binding to neogenin contains amino acids (aa) 259–295. Synthesized peptide consisting of aa 284–293 directly binds to the extracellular domain (ECD) of recombinant neogenin, and addition of this peptide inhibits RGMa-induced growth cone collapse in mouse cortical neurons. Thus, we propose that this peptide is a promising lead in finding reagents capable of inhibiting RGMa signaling.
Collapse
|
34
|
Steketee MB, Goldberg JL. Signaling endosomes and growth cone motility in axon regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:35-73. [PMID: 23211459 DOI: 10.1016/b978-0-12-407178-0.00003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development and regeneration, growth cones guide neurites to their targets by altering their motility in response to extracellular guidance cues. One class of cues critical to nervous system development is the neurotrophins. Neurotrophin binding to their cognate receptors stimulates their endocytosis into signaling endosomes. Current data indicate that the spatiotemporal localization of signaling endosomes can direct diverse processes regulating cell motility, including membrane trafficking, cytoskeletal remodeling, adhesion dynamics, and local translation. Recent experiments manipulating signaling endosome localization in neuronal growth cones support these views and place the neurotrophin signaling endosome in a central role regulating growth cone motility during axon growth and regeneration.
Collapse
|
35
|
Abstract
BACKGROUND The vagus nerve is the major neural connection between the gastrointestinal tract and the central nervous system. During fetal development, axons from the cell bodies of the nodose ganglia and the dorsal motor nucleus grow into the gut to find their enteric targets, providing the vagal sensory and motor innervations respectively. Vagal sensory and motor axons innervate selective targets, suggesting a role for guidance cues in the establishment of the normal pattern of enteric vagal innervation. PURPOSE This review explores known molecular mechanisms that guide vagal innervation in the gastrointestinal tract. Guidance and growth factors, such as netrin-1 and its receptor, deleted in colorectal cancer, extracellular matrix molecules, such as laminin-111, and members of the neurotrophin family of molecules, such as brain-derived neurotrophic factor have been identified as mediating the guidance of vagal axons to the fetal mouse gut. In addition to increasing our understanding of the development of enteric innervation, studies of vagal development may also reveal clinically relevant insights into the underlying mechanisms of vago-vagal communication with the gastrointestinal tract.
Collapse
Affiliation(s)
- E M Ratcliffe
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
36
|
Lai Wing Sun K, Correia JP, Kennedy TE. Netrins: versatile extracellular cues with diverse functions. Development 2011; 138:2153-69. [PMID: 21558366 DOI: 10.1242/dev.044529] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Netrins are secreted proteins that were first identified as guidance cues, directing cell and axon migration during neural development. Subsequent findings have demonstrated that netrins can influence the formation of multiple tissues, including the vasculature, lung, pancreas, muscle and mammary gland, by mediating cell migration, cell-cell interactions and cell-extracellular matrix adhesion. Recent evidence also implicates the ongoing expression of netrins and netrin receptors in the maintenance of cell-cell organisation in mature tissues. Here, we review the mechanisms involved in netrin signalling in vertebrate and invertebrate systems and discuss the functions of netrin signalling during the development of neural and non-neural tissues.
Collapse
Affiliation(s)
- Karen Lai Wing Sun
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | |
Collapse
|
37
|
Webber CA, Christie KJ, Cheng C, Martinez JA, Singh B, Singh V, Thomas D, Zochodne DW. Schwann cells direct peripheral nerve regeneration through the Netrin-1 receptors, DCC and Unc5H2. Glia 2011; 59:1503-17. [DOI: 10.1002/glia.21194] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/16/2011] [Indexed: 11/11/2022]
|
38
|
Itofusa R, Kamiguchi H. Polarizing membrane dynamics and adhesion for growth cone navigation. Mol Cell Neurosci 2011; 48:332-8. [PMID: 21459144 DOI: 10.1016/j.mcn.2011.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022] Open
Abstract
Neuronal network formation relies on the motile behavior of growth cones at the tip of navigating axons. Accumulating evidence indicates that growth cone motility requires spatially controlled endocytosis and exocytosis that can redistribute bulk membrane and functional cargos such as cell adhesion molecules. For axon elongation, the growth cone recycles cell adhesion molecules from its rear to its leading front through endosomes, thereby polarizing growth cone adhesiveness along the axis of migration direction. In response to extracellular guidance cues, the growth cone turns by retrieving membrane components from the retractive side or by supplying them to the side facing the new direction. We propose that polarized membrane trafficking creates adhesion gradients along and across the front-to-rear axis of growth cones that are essential for axon elongation and turning, respectively. This review will examine how growth cone adhesiveness can be patterned by spatially coordinated endocytosis and exocytosis of cell adhesion molecules. This article is part of a Special Issue entitled 'Neuronal Function'.
Collapse
Affiliation(s)
- Rurika Itofusa
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | |
Collapse
|
39
|
Second messengers and membrane trafficking direct and organize growth cone steering. Nat Rev Neurosci 2011; 12:191-203. [PMID: 21386859 DOI: 10.1038/nrn2996] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graded distributions of extracellular cues guide developing axons toward their targets. A network of second messengers - Ca(2+) and cyclic nucleotides - shapes cue-derived information into either attractive or repulsive signals that steer growth cones bidirectionally. Emerging evidence suggests that such guidance signals create a localized imbalance between exocytosis and endocytosis, which in turn redirects membrane, adhesion and cytoskeletal components asymmetrically across the growth cone to bias the direction of axon extension. These recent advances allow us to propose a unifying model of how the growth cone translates shallow gradients of environmental information into polarized activity of the steering machinery for axon guidance.
Collapse
|
40
|
Staii C, Viesselmann C, Ballweg J, Williams JC, Dent EW, Coppersmith SN, Eriksson MA. Distance dependence of neuronal growth on nanopatterned gold surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:233-9. [PMID: 21121598 DOI: 10.1021/la102331x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Understanding network development in the brain is of tremendous fundamental importance, but it is immensely challenging because of the complexity of both its architecture and function. The mechanisms of axonal navigation to target regions and the specific interactions with guidance factors such as membrane-bound proteins, chemical gradients, mechanical guidance cues, etc., are largely unknown. A current limitation for the study of neural network formation is the ability to control precisely the connectivity of small groups of neurons. A first step in designing such networks is to understand the "rules" central nervous system (CNS) neurons use to form functional connections with one another. Here we begin to delineate novel rules for growth and connectivity of small numbers of neurons patterned on Au substrates in simplified geometries. These studies yield new insights into the mechanisms determining the organizational features present in intact systems. We use a previously reported atomic force microscopy (AFM) nanolithography method to control precisely the location and growth of neurons on these surfaces. By examining a series of systems with different geometrical parameters, we quantitatively and systematically analyze how neuronal growth depends on these parameters.
Collapse
Affiliation(s)
- Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, United States.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ratcliffe EM. Molecular development of the extrinsic sensory innervation of the gastrointestinal tract. Auton Neurosci 2010; 161:1-5. [PMID: 21147045 DOI: 10.1016/j.autneu.2010.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 10/27/2010] [Accepted: 11/02/2010] [Indexed: 12/19/2022]
Abstract
The extrinsic sensory innervation of the gastrointestinal tract is the conduit through which the gut and the central nervous system communicate. The hindbrain receives information directly from the bowel via the vagus nerve, while information from spinal afferents arrives in the central nervous system through the dorsal root ganglia. This review focuses on the molecular development of these vagal and spinal innervations, with an emphasis on mechanisms that involve axon guidance. During development, axons from both the nodose ganglia and dorsal root ganglia grow into the gut, innervate their appropriate enteric targets and avoid inappropriate cells in the gut wall. These developmental outcomes suggest that both attractive and repellent molecules are important in establishing the normal pattern of the extrinsic sensory innervation. In the fetal mouse gut, the guidance of vagal sensory axons is mediated by axon guidance molecules, such as netrin and the netrin receptor, deleted in colorectal cancer (DCC), as well as extracellular matrix molecules, such as laminin-111. Dorsal root ganglion neurons are known to express, and their axons to respond to, axon guidance molecules. The question of whether or not these molecules are involved in guiding spinal afferents to the bowel, however, has not yet been examined. It is anticipated that a better understanding of how vagal and spinal afferents innervate the fetal gut and reach specific enteric locations will provide deeper insights into the underlying mechanisms of normal and abnormal sensation from the gastrointestinal tract.
Collapse
Affiliation(s)
- Elyanne M Ratcliffe
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Canada.
| |
Collapse
|
42
|
Williamson WR, Yang T, Terman JR, Hiesinger PR. Guidance receptor degradation is required for neuronal connectivity in the Drosophila nervous system. PLoS Biol 2010; 8:e1000553. [PMID: 21151882 PMCID: PMC2998435 DOI: 10.1371/journal.pbio.1000553] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/21/2010] [Indexed: 12/23/2022] Open
Abstract
Axon pathfinding and synapse formation rely on precise spatiotemporal localization of guidance receptors. However, little is known about the neuron-specific intracellular trafficking mechanisms that underlie the sorting and activity of these receptors. Here we show that loss of the neuron-specific v-ATPase subunit a1 leads to progressive endosomal guidance receptor accumulations after neuronal differentiation. In the embryo and in adult photoreceptors, these accumulations occur after axon pathfinding and synapse formation is complete. In contrast, receptor missorting occurs sufficiently early in neurons of the adult central nervous system to cause connectivity defects. An increase of guidance receptors, but not of membrane proteins without signaling function, causes specific gain-of-function phenotypes. A point mutant that promotes sorting but prevents degradation reveals spatiotemporally specific guidance receptor turnover and accelerates developmental defects in photoreceptors and embryonic motor neurons. Our findings indicate that a neuron-specific endolysosomal degradation mechanism is part of the cell biological machinery that regulates guidance receptor turnover and signaling.
Collapse
Affiliation(s)
- W. Ryan Williamson
- Department of Physiology and Green Center for Systems Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Taehong Yang
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - P. Robin Hiesinger
- Department of Physiology and Green Center for Systems Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Wang J, Valo Z, Bowers CW, Smith DD, Liu Z, Singer-Sam J. Dual DNA methylation patterns in the CNS reveal developmentally poised chromatin and monoallelic expression of critical genes. PLoS One 2010; 5:e13843. [PMID: 21079792 PMCID: PMC2973945 DOI: 10.1371/journal.pone.0013843] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/15/2010] [Indexed: 11/30/2022] Open
Abstract
As a first step towards discovery of genes expressed from only one allele in the CNS, we used a tiling array assay for DNA sequences that are both methylated and unmethylated (the MAUD assay). We analyzed regulatory regions of the entire mouse brain transcriptome, and found that approximately 10% of the genes assayed showed dual DNA methylation patterns. They include a large subset of genes that display marks of both active and silent, i.e., poised, chromatin during development, consistent with a link between differential DNA methylation and lineage-specific differentiation within the CNS. Sixty-five of the MAUD hits and 57 other genes whose function is of relevance to CNS development and/or disorders were tested for allele-specific expression in F1 hybrid clonal neural stem cell (NSC) lines. Eight MAUD hits and one additional gene showed such expression. They include Lgi1, which causes a subtype of inherited epilepsy that displays autosomal dominance with incomplete penetrance; Gfra2, a receptor for glial cell line-derived neurotrophic factor GDNF that has been linked to kindling epilepsy; Unc5a, a netrin-1 receptor important in neurodevelopment; and Cspg4, a membrane chondroitin sulfate proteoglycan associated with malignant melanoma and astrocytoma in human. Three of the genes, Camk2a, Kcnc4, and Unc5a, show preferential expression of the same allele in all clonal NSC lines tested. The other six genes show a stochastic pattern of monoallelic expression in some NSC lines and bi-allelic expression in others. These results support the estimate that 1–2% of genes expressed in the CNS may be subject to allelic exclusion, and demonstrate that the group includes genes implicated in major disorders of the CNS as well as neurodevelopment.
Collapse
Affiliation(s)
- Jinhui Wang
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Zuzana Valo
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Chauncey W. Bowers
- Division of Computational Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - David D. Smith
- Division of Biostatistics, City of Hope National Medical Center, Duarte, California, United States of America
| | - Zheng Liu
- Bioinformatics Core Facility, Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Judith Singer-Sam
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Manitt C, Labelle-Dumais C, Eng C, Grant A, Mimee A, Stroh T, Flores C. Peri-pubertal emergence of UNC-5 homologue expression by dopamine neurons in rodents. PLoS One 2010; 5:e11463. [PMID: 20628609 PMCID: PMC2900213 DOI: 10.1371/journal.pone.0011463] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 06/11/2010] [Indexed: 01/01/2023] Open
Abstract
Puberty is a critical period in mesocorticolimbic dopamine (DA) system development, particularly for the medial prefrontal cortex (mPFC) projection which achieves maturity in early adulthood. The guidance cue netrin-1 organizes neuronal networks by attracting or repelling cellular processes through DCC (deleted in colorectal cancer) and UNC-5 homologue (UNC5H) receptors, respectively. We have shown that variations in netrin-1 receptor levels lead to selective reorganization of mPFC DA circuitry, and changes in DA-related behaviors, in transgenic mice and in rats. Significantly, these effects are only observed after puberty, suggesting that netrin-1 mediated effects on DA systems vary across development. Here we report on the normal expression of DCC and UNC5H in the ventral tegmental area (VTA) by DA neurons from embryonic life to adulthood, in both mice and rats. We show a dramatic and enduring pubertal change in the ratio of DCC:UNC5H receptors, reflecting a shift toward predominant UNC5H function. This shift in DCC:UNC5H ratio coincides with the pubertal emergence of UNC5H expression by VTA DA neurons. Although the distribution of DCC and UNC5H by VTA DA neurons changes during puberty, the pattern of netrin-1 immunoreactivity in these cells does not. Together, our findings suggest that DCC:UNC5H ratios in DA neurons at critical periods may have important consequences for the organization and function of mesocorticolimbic DA systems.
Collapse
Affiliation(s)
- Colleen Manitt
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Cassandre Labelle-Dumais
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Conrad Eng
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Alanna Grant
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Andrea Mimee
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Thomas Stroh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Cecilia Flores
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| |
Collapse
|
45
|
Murray A, Naeem A, Barnes SH, Drescher U, Guthrie S. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II. Neural Dev 2010; 5:16. [PMID: 20569485 PMCID: PMC2907369 DOI: 10.1186/1749-8104-5-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/22/2010] [Indexed: 11/28/2022] Open
Abstract
Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A). It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK) and myosin light chain kinase (MLCK), which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.
Collapse
Affiliation(s)
- Ailish Murray
- MRC Centre for Developmental Neurobiology, King's College, London, UK
| | | | | | | | | |
Collapse
|
46
|
Tojima T, Itofusa R, Kamiguchi H. Asymmetric clathrin-mediated endocytosis drives repulsive growth cone guidance. Neuron 2010; 66:370-7. [PMID: 20471350 DOI: 10.1016/j.neuron.2010.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
Abstract
Asymmetric Ca(2+) elevations across the axonal growth cone mediate its turning responses to attractive and repulsive guidance cues. Here we show that clathrin-mediated endocytosis acts downstream of Ca(2+) signals as driving machinery for growth cone turning. In dorsal root ganglion neurons, the formation of clathrin-coated pits is facilitated asymmetrically across the growth cone by a directionally applied chemorepellent, semaphorin 3A, or by Ca(2+) signals that mediate repulsive guidance. In contrast, coated pit formation remains symmetric in the presence of attractive Ca(2+) signals. Inhibition of clathrin-mediated endocytosis abolishes growth cone repulsion, but not attraction, induced by Ca(2+) or extracellular physiological cues. Furthermore, asymmetric perturbation of the balance of endocytosis and exocytosis in the growth cone is sufficient to initiate its turning toward the side with less endocytosis or more exocytosis. With our previous finding that growth cone attraction involves asymmetric exocytosis, we propose that the balance between membrane addition and removal dictates bidirectional axon guidance.
Collapse
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
47
|
Abstract
Determining how axon guidance receptors transmit signals to allow precise pathfinding decisions is fundamental to our understanding of nervous system development and may suggest new strategies to promote axon regeneration after injury or disease. Signaling mechanisms that act downstream of four prominent families of axon guidance cues--netrins, semaphorins, ephrins, and slits--have been extensively studied in both invertebrate and vertebrate model systems. Although details of these signaling mechanisms are still fragmentary and there appears to be considerable diversity in how different guidance receptors regulate the motility of the axonal growth cone, a number of common themes have emerged. Here, we review recent insights into how specific receptors for each of these guidance cues engage downstream regulators of the growth cone cytoskeleton to control axon guidance.
Collapse
Affiliation(s)
- Greg J Bashaw
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
48
|
Muramatsu R, Nakahara S, Ichikawa J, Watanabe K, Matsuki N, Koyama R. The ratio of 'deleted in colorectal cancer' to 'uncoordinated-5A' netrin-1 receptors on the growth cone regulates mossy fibre directionality. ACTA ACUST UNITED AC 2009; 133:60-75. [PMID: 19858080 DOI: 10.1093/brain/awp266] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proper axonal targeting is fundamental to the establishment of functional neural circuits. The hippocampal mossy fibres normally project towards the CA3 region. In the hippocampi of patients with temporal lobe epilepsy and related animal models, however, mossy fibres project towards the molecular layer and produce the hyperexcitable recurrent networks. The cellular and molecular mechanisms underlying this aberrant axonal targeting, known as mossy fibre sprouting, remain unclear. Netrin-1 attracts or repels axons depending on the composition of its attraction-mediating receptor, deleted in colorectal cancer, and its repulsion-mediating receptor, uncoordinated-5, on the growth cone; but the roles of netrin-1-dependent guidance in pathological conditions are largely unknown. In this study, we examined the role of netrin-1 and its receptors in mossy fibre guidance and report that enhanced neuronal activity changes netrin-1-mediated cell targeting by the axons under hyperexcitable conditions. Netrin-1 antibody or Dcc ribonucleic acid interference attenuated mossy fibre growth towards CA3 in slice overlay assays. The axons were repelled from CA3 and ultimately innervated the molecular layer when hyperactivity was pharmacologically introduced. We first hypothesized that a reduction in netrin-1 expression in CA3 underlies the phenomenon, but found that its expression was increased. We then examined two possible activity-dependent changes in netrin-1 receptor expression: a reduction in the deleted in colorectal cancer receptor and induction of uncoordinated-5 receptor. Hyperactivity did not affect the surface expression of the deleted in colorectal cancer receptor on the growth cone, but it increased that of uncoordinated-5A, which was suppressed by blocking cyclic adenosine monophosphate signalling. In addition, Dcc knockdown did not affect hyperactivity-induced mossy fibre sprouting in the slice cultures, whereas Unc5a knockdown rescued the mistargeting. Thus, netrin-1 appears to attract mossy fibres via the deleted in colorectal cancer receptor, while it repels them via cyclic adenosine monophosphate-induced uncoordinated-5A under hyperexcitable conditions, resulting in mossy fibre sprouting.
Collapse
Affiliation(s)
- Rieko Muramatsu
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
49
|
O'Donnell M, Chance RK, Bashaw GJ. Axon growth and guidance: receptor regulation and signal transduction. Annu Rev Neurosci 2009; 32:383-412. [PMID: 19400716 DOI: 10.1146/annurev.neuro.051508.135614] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of precise connectivity patterns during the establishment of the nervous system depends on the regulated action of diverse, conserved families of guidance cues and their neuronal receptors. Determining how these signaling pathways function to regulate axon growth and guidance is fundamentally important to understanding wiring specificity in the nervous system and will undoubtedly shed light on many neural developmental disorders. Considerable progress has been made in defining the mechanisms that regulate the correct spatial and temporal distribution of guidance receptors and how these receptors in turn signal to the growth cone cytoskeleton to control steering decisions. This review focuses on recent advances in our understanding of the mechanisms mediating growth cone guidance with a particular emphasis on the control of guidance receptor regulation and signaling.
Collapse
Affiliation(s)
- Michael O'Donnell
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
50
|
Hong K, Nishiyama M. From Guidance Signals to Movement: Signaling Molecules Governing Growth Cone Turning. Neuroscientist 2009; 16:65-78. [DOI: 10.1177/1073858409340702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Directed growth cone movements in response to external guidance signals are required for the establishment of functional neuronal connections during development, adult nerve regeneration, and adult neurogenesis. Growth cone intrinsic properties permit different growth cone responses (e.g., attraction or repulsion) to a guidance signal, and alterations to these intrinsic properties often result in opposite growth cone responses. This article reviews the current knowledge of growth cone signaling, emphasizing the dependency of Ca2+ signaling on membrane potential shifts, and cyclic nucleotide and phosphoinositide signaling pathways during growth cone turning in response to guidance signals. We also discuss how asymmetrical growth cone signaling is achieved for the fine-tuned growth cone movement.
Collapse
Affiliation(s)
- Kyonsoo Hong
- Department of Biochemistry, New York University School of Medicine, New York, New York,
| | - Makoto Nishiyama
- Department of Biochemistry, New York University School of Medicine, New York, New York
| |
Collapse
|