1
|
Kaushik K, Chapman G, Prakasam R, Batool F, Saleh M, Determan J, Huettner JE, Kroll KL. Requirements for the neurodevelopmental disorder-associated gene ZNF292 in human cortical interneuron development and function. Cell Rep 2025; 44:115597. [PMID: 40257863 DOI: 10.1016/j.celrep.2025.115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/27/2024] [Accepted: 03/31/2025] [Indexed: 04/23/2025] Open
Abstract
Pathogenic mutation of the zinc-finger transcription factor ZNF292 is a recently defined contributor to human neurodevelopmental disorders (NDDs). However, the gene's roles in cortical development and regulatory networks under its control were previously undefined. Here, human stem cell models of ZNF292 deficiency, resembling pathogenic haploinsufficiency, are used to derive cortical inhibitory neuron progenitors and neurons. ZNF292-deficient progenitors undergo precocious differentiation but subsequently exhibit compromised interneuron maturation and function. In progenitors, genome-wide occupancy and transcriptomic analyses identify direct target genes controlling neuronal differentiation and synapse formation that are upregulated upon ZNF292 deficiency. By contrast, deficiency in interneurons compromises ZNF292 genome-wide association with and causes downregulation of direct target genes promoting interneuron maturation and function, including other NDD genes. ZNF292-deficient interneurons also exhibit altered channel activities, elevated GABA responsiveness, and hallmarks of neuronal hyperactivity. Together, the results of this work define neurodevelopmental requirements for ZNF292, some of which may contribute to pathogenic ZNF292 mutation-related NDDs.
Collapse
Affiliation(s)
- Komal Kaushik
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gareth Chapman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Faiza Batool
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maamoon Saleh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julianna Determan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Eid L, Lokmane L, Raju PK, Tene Tadoum SB, Jiang X, Toulouse K, Lupien-Meilleur A, Charron-Ligez F, Toumi A, Backer S, Lachance M, Lavertu-Jolin M, Montseny M, Lacaille JC, Bloch-Gallego E, Rossignol E. Both GEF domains of the autism and developmental epileptic encephalopathy-associated Trio protein are required for proper tangential migration of GABAergic interneurons. Mol Psychiatry 2025; 30:1338-1358. [PMID: 39300136 PMCID: PMC11919732 DOI: 10.1038/s41380-024-02742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Recessive and de novo mutations in the TRIO gene are associated with intellectual deficiency (ID), autism spectrum disorder (ASD) and developmental epileptic encephalopathies (DEE). TRIO is a dual guanine nucleotide exchange factor (GEF) that activates Rac1, Cdc42 and RhoA. Trio has been extensively studied in excitatory neurons, and has recently been found to regulate the switch from tangential to radial migration in GABAergic interneurons (INs) through GEFD1-Rac1-dependent SDF1α/CXCR4 signaling. Given the central role of Rho-GTPases during neuronal migration and the implication of IN pathologies in ASD and DEE, we investigated the relative roles of both Trio's GEF domains in regulating the dynamics of INs tangential migration. In Trio-/- mice, we observed reduced numbers of tangentially migrating INs, with intact progenitor proliferation. Further, we noted increased growth cone collapse in developing INs, suggesting altered cytoskeleton dynamics. To bypass the embryonic mortality of Trio-/- mice, we generated Dlx5/6Cre;Trioc/c conditional mutant mice (TriocKO), which develop spontaneous seizures and behavioral deficits reminiscent of ASD and ID. These phenotypes are associated with reduced cortical IN density and functional cortical inhibition. Mechanistically, this reduction of cortical IN numbers reflects a premature switch to radial migration, with an aberrant early entry in the cortical plate, as well as major deficits in cytoskeletal dynamics, including enhanced leading neurite branching and slower nucleokinesis reflecting reduced actin filament condensation and turnover as well as a loss of response to the motogenic effect of EphA4/ephrin A2 reverse signaling. Further, we show that both Trio GEFD1 and GEFD2 domains are required for proper IN migration, with a dominant role of the RhoA-activating GEFD2 domain. Altogether, our data show a critical role of the DEE/ASD-associated Trio gene in the establishment of cortical inhibition and the requirement of both GEF domains in regulating IN migration dynamics.
Collapse
Affiliation(s)
- Lara Eid
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Ludmilla Lokmane
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Praveen K Raju
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Samuel Boris Tene Tadoum
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Xiao Jiang
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Karolanne Toulouse
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Alexis Lupien-Meilleur
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - François Charron-Ligez
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Asmaa Toumi
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Stéphanie Backer
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Mathieu Lachance
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Marisol Lavertu-Jolin
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Marie Montseny
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Jean-Claude Lacaille
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Groupe de recherche sur la signalisation neurale et la circuiterie, Université de Montréal, Montréal, QC, Canada
| | - Evelyne Bloch-Gallego
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France.
| | - Elsa Rossignol
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada.
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada.
- Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Wutikeli H, Yu Y, Zhang T, Cao J, Nawy S, Shen Y. Role of Elavl-like RNA-binding protein in retinal development and signal transduction. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167518. [PMID: 39307290 DOI: 10.1016/j.bbadis.2024.167518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
RNA-binding proteins (RBPs) play central roles in post-transcriptional gene regulation. However, the function of RBP in retinal progenitor cell differentiation and synaptic signal transmission are largely unexplored. Previously we have shown that Elavl2 regulates amacrine cell (AC) differentiation during retinogenesis, by directly binding to Nr4a2 and Barhl2. Elavl2 is expressed in early neuronal progenitors to mature neurons, and Elavl4 expression begins slightly later, during cortical neuron development as a paralog. Here, Retinal-specific Elavl2 and Elavl4 double knockout mice were made to further explore the role of Elavl2 and Elavl4 in retinal development and signal transduction. We disclose that Elavl4 binds to Satb1 to regulate Neurod1, then promoting retinal progenitor and amacrine cells differentiation. We were also surprised to find that Elavl2 interacted with GABAB receptors at the RNA and protein levels. In conclusion, Elavl2 and Elavl4 regulate amacrine cells differentiation through different pathways, leading to decreased scotopic vision. Our findings reveal the roles of Elavl2 and Elavl4 in retinal amacrine cells differentiation in modulating visual functions.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Yao Yu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Tianlu Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | | | - Scott Nawy
- University of California Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Miyoshi G, Ueta Y, Yagasaki Y, Kishi Y, Fishell G, Machold RP, Miyata M. Developmental trajectories of GABAergic cortical interneurons are sequentially modulated by dynamic FoxG1 expression levels. Proc Natl Acad Sci U S A 2024; 121:e2317783121. [PMID: 38588430 PMCID: PMC11032493 DOI: 10.1073/pnas.2317783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.
Collapse
Affiliation(s)
- Goichi Miyoshi
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi city, Gunma371-8511, Japan
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Yoshifumi Ueta
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yuki Yagasaki
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, University of Tokyo, Bunkyo, Tokyo113-0032, Japan
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo, Tokyo113-0033, Japan
| | - Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Stanley Center at the Broad Institute, Cambridge, MA02142
| | - Robert P. Machold
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Mariko Miyata
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| |
Collapse
|
5
|
Wang A, Ferguson KA, Gupta J, Higley MJ, Cardin JA. Developmental trajectory of cortical somatostatin interneuron function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583539. [PMID: 38496673 PMCID: PMC10942364 DOI: 10.1101/2024.03.05.583539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
GABAergic inhibition is critical to the proper development of neocortical circuits. However, GABAergic interneurons are highly diverse and the developmental roles of distinct inhibitory subpopulations remain largely unclear. Dendrite-targeting, somatostatin-expressing interneurons (SST-INs) in the mature cortex regulate synaptic integration and plasticity in excitatory pyramidal neurons (PNs) and exhibit unique feature selectivity. Relatively little is known about early postnatal SST-IN activity or impact on surrounding local circuits. We examined juvenile SST-INs and PNs in mouse primary visual cortex. PNs exhibited stable visual responses and feature selectivity from eye opening onwards. In contrast, SST-INs developed visual responses and feature selectivity during the third postnatal week in parallel with a rapid increase in excitatory synaptic innervation. SST-INs largely exerted a multiplicative effect on nearby PN visual responses at all ages, but this impact increased over time. Our results identify a developmental window for the emergence of an inhibitory circuit mechanism for normalization.
Collapse
Affiliation(s)
| | | | - Jyoti Gupta
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Michael J. Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Jessica A. Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| |
Collapse
|
6
|
Rhodes CT, Asokumar D, Sohn M, Naskar S, Elisha L, Stevenson P, Lee DR, Zhang Y, Rocha PP, Dale RK, Lee S, Petros TJ. Loss of Ezh2 in the medial ganglionic eminence alters interneuron fate, cell morphology and gene expression profiles. Front Cell Neurosci 2024; 18:1334244. [PMID: 38419656 PMCID: PMC10899338 DOI: 10.3389/fncel.2024.1334244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Enhancer of zeste homolog 2 (Ezh2) is responsible for trimethylation of histone 3 at lysine 27 (H3K27me3), resulting in repression of gene expression. Here, we explore the role of Ezh2 in forebrain GABAergic interneuron development. Methods We removed Ezh2 in the MGE by generating Nkx2-1Cre;Ezh2 conditional knockout mice. We then characterized changes in MGE-derived interneuron fate and electrophysiological properties in juvenile mice, as well as alterations in gene expression, chromatin accessibility and histone modifications in the MGE. Results Loss of Ezh2 increases somatostatin-expressing (SST+) and decreases parvalbumin-expressing (PV+) interneurons in the forebrain. We observe fewer MGE-derived interneurons in the first postnatal week, indicating reduced interneuron production. Intrinsic electrophysiological properties in SST+ and PV+ interneurons are normal, but PV+ interneurons display increased axonal complexity in Ezh2 mutant mice. Single nuclei multiome analysis revealed differential gene expression patterns in the embryonic MGE that are predictive of these cell fate changes. Lastly, CUT&Tag analysis revealed that some genomic loci are particularly resistant or susceptible to shifts in H3K27me3 levels in the absence of Ezh2, indicating differential selectivity to epigenetic perturbation. Discussion Thus, loss of Ezh2 in the MGE alters interneuron fate, morphology, and gene expression and regulation. These findings have important implications for both normal development and potentially in disease etiologies.
Collapse
Affiliation(s)
- Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Dhanya Asokumar
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Shovan Naskar
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Lielle Elisha
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Parker Stevenson
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- National Cancer Institute (NCI), NIH, Bethesda, MD, United States
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Soohyun Lee
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| |
Collapse
|
7
|
Munguba H, Nikouei K, Hochgerner H, Oberst P, Kouznetsova A, Ryge J, Muñoz-Manchado AB, Close J, Batista-Brito R, Linnarsson S, Hjerling-Leffler J. Transcriptional maintenance of cortical somatostatin interneuron subtype identity during migration. Neuron 2023; 111:3590-3603.e5. [PMID: 37625400 DOI: 10.1016/j.neuron.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Although cardinal cortical interneuron identity is established upon cell-cycle exit, it remains unclear whether specific interneuron subtypes are pre-established, and if so, how their identity is maintained prior to circuit integration. We conditionally removed Sox6 (Sox6-cKO) in migrating somatostatin (Sst+) interneurons and assessed the effects on their mature identity. In adolescent mice, five of eight molecular Sst+ subtypes were nearly absent in the Sox6-cKO cortex without a reduction in cell number. Sox6-cKO cells displayed electrophysiological maturity and expressed genes enriched within the broad class of Sst+ interneurons. Furthermore, we could infer subtype identity prior to cortical integration (embryonic day 18.5), suggesting that the loss in subtype was due to disrupted subtype maintenance. Conversely, Sox6 removal at postnatal day 7 did not disrupt marker expression in the mature cortex. Therefore, Sox6 is necessary during migration for maintenance of Sst+ subtype identity, indicating that subtype maintenance requires active transcriptional programs.
Collapse
Affiliation(s)
- Hermany Munguba
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kasra Nikouei
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Hochgerner
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Polina Oberst
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Kouznetsova
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Ryge
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ana Belén Muñoz-Manchado
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Renata Batista-Brito
- Einstein College of Medicine, Dominick Purpura Department of Neuroscience, 1300 Morris Park Ave, The Bronx, NY 10461, USA; Einstein College of Medicine, Department of Psychiatry and Behavioral Sciences, 1300 Morris Park Ave, The Bronx, NY 10461, USA; Einstein College of Medicine, Department of Genetics, 1300 Morris Park Ave, The Bronx, NY 10461, USA
| | - Sten Linnarsson
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Turovsky EA, Tarabykin VS, Varlamova EG. Deletion of the Neuronal Transcription Factor Satb1 Induced Disturbance of the Kinome and Mechanisms of Hypoxic Preconditioning. BIOLOGY 2023; 12:1207. [PMID: 37759606 PMCID: PMC10667992 DOI: 10.3390/biology12091207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
Genetic disorders affecting the functioning of the brain lead not only to the development of numerous hereditary diseases but also to the development of neurodegenerative and cognitive disorders. The result of this may be the disability of part of the able-bodied population. Almost all pathological states of the brain are characterized by serious defects in the intracellular and intercellular signaling of neurons and glial cells. At the same time, the mechanisms of disruption of these signaling cascades are not well understood due to the large number of molecules, including transcription factors that, when mutated, cause brain malformations. The transcription factor Satb1 is one of the least studied factors in the cerebral cortex, and the effects of its deletion in the postnatal brain are practically not studied. Hyperexcitability of neurons is observed in many genetic diseases of the nervous system (Hirschsprung's disease, Martin-Bell syndrome, Huntington's disease, Alzheimer's, etc.), as well as in ischemic brain phenomena and convulsive and epileptic conditions of the brain. In turn, all these disorders of brain physiology are associated with defects in intracellular and intercellular signaling and are often the result of genetic disorders. Using Satb1 mutant mice and calcium neuroimaging, we show that Satb1 deletion in projection neurons of the neocortex causes downregulation of protein kinases PKC, CaMKII, and AKT/PKB, while a partial deletion does not cause a dramatic disruption of kinome and Ca2+ signaling. As a result, Satb1-null neurons are characterized by increased spontaneous Ca2+ activity and hyperexcitability when modeling epileptiform activity. As a result of the deletion of Satb1, preconditioning mechanisms are disrupted in neurons during episodes of hypoxia. This occurs against the background of increased sensitivity of neurons to a decrease in the partial pressure of oxygen, which may indicate the vulnerability of neuronal networks and be accompanied by impaired expression of the Satb1 transcription factor. Here, we show that Satb1 deletion impaired the expression of a number of key kinases and neuronal hyperexcitation in models of epileptiform activity and hypoxia.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia;
| | - Viktor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia;
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
9
|
Lozano D, López JM, Jiménez S, Morona R, Ruíz V, Martínez A, Moreno N. Expression of SATB1 and SATB2 in the brain of bony fishes: what fish reveal about evolution. Brain Struct Funct 2023; 228:921-945. [PMID: 37002478 PMCID: PMC10147777 DOI: 10.1007/s00429-023-02632-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
AbstractSatb1 and Satb2 belong to a family of homeodomain proteins with highly conserved functional and regulatory mechanisms and posttranslational modifications in evolution. However, although their distribution in the mouse brain has been analyzed, few data exist in other non-mammalian vertebrates. In the present study, we have analyzed in detail the sequence of SATB1 and SATB2 proteins and the immunolocalization of both, in combination with additional neuronal markers of highly conserved populations, in the brain of adult specimens of different bony fish models at key evolutionary points of vertebrate diversification, in particular including representative species of sarcopterygian and actinopterygian fishes. We observed a striking absence of both proteins in the pallial region of actinopterygians, only detected in lungfish, the only sarcopterygian fish. In the subpallium, including the amygdaloid complex, or comparable structures, we identified that the detected expressions of SATB1 and SATB2 have similar topologies in the studied models. In the caudal telencephalon, all models showed significant expression of SATB1 and SATB2 in the preoptic area, including the acroterminal domain of this region, where the cells were also dopaminergic. In the alar hypothalamus, all models showed SATB2 but not SATB1 in the subparaventricular area, whereas in the basal hypothalamus the cladistian species and the lungfish presented a SATB1 immunoreactive population in the tuberal hypothalamus, also labeled with SATB2 in the latter and colocalizing with the gen Orthopedia. In the diencephalon, all models, except the teleost fish, showed SATB1 in the prethalamus, thalamus and pretectum, whereas only lungfish showed also SATB2 in prethalamus and thalamus. At the midbrain level of actinopterygian fish, the optic tectum, the torus semicircularis and the tegmentum harbored populations of SATB1 cells, whereas lungfish housed SATB2 only in the torus and tegmentum. Similarly, the SATB1 expression in the rhombencephalic central gray and reticular formation was a common feature. The presence of SATB1 in the solitary tract nucleus is a peculiar feature only observed in non-teleost actinopterygian fishes. At these levels, none of the detected populations were catecholaminergic or serotonergic. In conclusion, the protein sequence analysis revealed a high degree of conservation of both proteins, especially in the functional domains, whereas the neuroanatomical pattern of SATB1 and SATB2 revealed significant differences between sarcopterygians and actinopterygians, and these divergences may be related to the different functional involvement of both in the acquisition of various neural phenotypes.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Víctor Ruíz
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ana Martínez
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain.
| |
Collapse
|
10
|
Aegisdottir HM, Thorolfsdottir RB, Sveinbjornsson G, Stefansson OA, Gunnarsson B, Tragante V, Thorleifsson G, Stefansdottir L, Thorgeirsson TE, Ferkingstad E, Sulem P, Norddahl G, Rutsdottir G, Banasik K, Christensen AH, Mikkelsen C, Pedersen OB, Brunak S, Bruun MT, Erikstrup C, Jacobsen RL, Nielsen KR, Sørensen E, Frigge ML, Hjorleifsson KE, Ivarsdottir EV, Helgadottir A, Gretarsdottir S, Steinthorsdottir V, Oddsson A, Eggertsson HP, Halldorsson GH, Jones DA, Anderson JL, Knowlton KU, Nadauld LD, Haraldsson M, Thorgeirsson G, Bundgaard H, Arnar DO, Thorsteinsdottir U, Gudbjartsson DF, Ostrowski SR, Holm H, Stefansson K. Genetic variants associated with syncope implicate neural and autonomic processes. Eur Heart J 2023; 44:1070-1080. [PMID: 36747475 DOI: 10.1093/eurheartj/ehad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023] Open
Abstract
AIMS Syncope is a common and clinically challenging condition. In this study, the genetics of syncope were investigated to seek knowledge about its pathophysiology and prognostic implications. METHODS AND RESULTS This genome-wide association meta-analysis included 56 071 syncope cases and 890 790 controls from deCODE genetics (Iceland), UK Biobank (United Kingdom), and Copenhagen Hospital Biobank Cardiovascular Study/Danish Blood Donor Study (Denmark), with a follow-up assessment of variants in 22 412 cases and 286 003 controls from Intermountain (Utah, USA) and FinnGen (Finland). The study yielded 18 independent syncope variants, 17 of which were novel. One of the variants, p.Ser140Thr in PTPRN2, affected syncope only when maternally inherited. Another variant associated with a vasovagal reaction during blood donation and five others with heart rate and/or blood pressure regulation, with variable directions of effects. None of the 18 associations could be attributed to cardiovascular or other disorders. Annotation with regard to regulatory elements indicated that the syncope variants were preferentially located in neural-specific regulatory regions. Mendelian randomization analysis supported a causal effect of coronary artery disease on syncope. A polygenic score (PGS) for syncope captured genetic correlation with cardiovascular disorders, diabetes, depression, and shortened lifespan. However, a score based solely on the 18 syncope variants performed similarly to the PGS in detecting syncope risk but did not associate with other disorders. CONCLUSION The results demonstrate that syncope has a distinct genetic architecture that implicates neural regulatory processes and a complex relationship with heart rate and blood pressure regulation. A shared genetic background with poor cardiovascular health was observed, supporting the importance of a thorough assessment of individuals presenting with syncope.
Collapse
Affiliation(s)
- Hildur M Aegisdottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | | | | | | | | | | | | | | | | | - Egil Ferkingstad
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Patrick Sulem
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | | | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Alex Hoerby Christensen
- The Unit for Inherited Cardiac Diseases, Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, Herlev 2730, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Department of Clinical Immunology, Zealand University Hospital - Køge, Lykkebækvej 1, Køge 4600, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, J. B. Winsløws Vej 4, Odense 5000, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, Aarhus 8000, Denmark
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Kaspar Rene Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32, Aalborg 9000, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Michael L Frigge
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | | | - Anna Helgadottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | | | - Asmundur Oddsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | | | - David A Jones
- Precision Genomics, Intermountain Healthcare, 600 S. Medical Center Drive, Saint George, UT 84790, USA
| | - Jeffrey L Anderson
- Intermountain Medical Center, Intermountain Heart Institute, 5171 S. Cottonwood Street Building 1, Salt Lake City, UT 84107, USA
- Department of Internal Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, 5171 S. Cottonwood Street Building 1, Salt Lake City, UT 84107, USA
- School of Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - Lincoln D Nadauld
- Precision Genomics, Intermountain Healthcare, 600 S. Medical Center Drive, Saint George, UT 84790, USA
- School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| | | | - Magnus Haraldsson
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
- Department of Psychiatry, Landspitali, The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
- Department of Medicine, Landspitali, The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Henning Bundgaard
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- The Capital Regions Unit for Inherited Cardiac Diseases, Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - David O Arnar
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
- Department of Medicine, Landspitali, The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Hjardarhagi 4, Reykjavik 107, Iceland
| | - Sisse R Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| |
Collapse
|
11
|
Pai ELL, Stafford AM, Vogt D. Cellular signaling impacts upon GABAergic cortical interneuron development. Front Neurosci 2023; 17:1138653. [PMID: 36998738 PMCID: PMC10043199 DOI: 10.3389/fnins.2023.1138653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The development and maturation of cortical GABAergic interneurons has been extensively studied, with much focus on nuclear regulation via transcription factors. While these seminal events are critical for the establishment of interneuron developmental milestones, recent studies on cellular signaling cascades have begun to elucidate some potential contributions of cell signaling during development. Here, we review studies underlying three broad signaling families, mTOR, MAPK, and Wnt/beta-catenin in cortical interneuron development. Notably, each pathway harbors signaling factors that regulate a breadth of interneuron developmental milestones and properties. Together, these events may work in conjunction with transcriptional mechanisms and other events to direct the complex diversity that emerges during cortical interneuron development and maturation.
Collapse
Affiliation(s)
- Emily Ling-Lin Pai
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - April M. Stafford
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, United States
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- *Correspondence: Daniel Vogt,
| |
Collapse
|
12
|
Vancura B, Geiller T, Losonczy A. Organization and Plasticity of Inhibition in Hippocampal Recurrent Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532296. [PMID: 36993553 PMCID: PMC10054977 DOI: 10.1101/2023.03.13.532296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Excitatory-inhibitory interactions structure recurrent network dynamics for efficient cortical computations. In the CA3 area of the hippocampus, recurrent circuit dynamics, including experience-induced plasticity at excitatory synapses, are thought to play a key role in episodic memory encoding and consolidation via rapid generation and flexible selection of neural ensembles. However, in vivo activity of identified inhibitory motifs supporting this recurrent circuitry has remained largely inaccessible, and it is unknown whether CA3 inhibition is also modifiable upon experience. Here we use large-scale, 3-dimensional calcium imaging and retrospective molecular identification in the mouse hippocampus to obtain the first comprehensive description of molecularly-identified CA3 interneuron dynamics during both spatial navigation and sharp-wave ripple (SWR)-associated memory consolidation. Our results uncover subtype-specific dynamics during behaviorally distinct brain-states. Our data also demonstrate predictive, reflective, and experience-driven plastic recruitment of specific inhibitory motifs during SWR-related memory reactivation. Together these results assign active roles for inhibitory circuits in coordinating operations and plasticity in hippocampal recurrent circuits.
Collapse
|
13
|
Ryner RF, Derera ID, Armbruster M, Kansara A, Sommer ME, Pirone A, Noubary F, Jacob M, Dulla CG. Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome. J Neurosci 2023; 43:1422-1440. [PMID: 36717229 PMCID: PMC9987578 DOI: 10.1523/jneurosci.0572-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/β-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via β-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the β-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased β-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which β-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.
Collapse
Affiliation(s)
- Rachael F Ryner
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Cell, Molecular, and Developmental Biology Graduate Program, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Isabel D Derera
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Anar Kansara
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mary E Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Antonella Pirone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Michele Jacob
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
14
|
Nunnelly LF, Campbell M, Lee DI, Dummer P, Gu G, Menon V, Au E. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat Commun 2022; 13:7735. [PMID: 36517477 PMCID: PMC9751150 DOI: 10.1038/s41467-022-35518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The medial ganglionic eminence (MGE) produces both locally-projecting interneurons, which migrate long distances to structures such as the cortex as well as projection neurons that occupy subcortical nuclei. Little is known about what regulates the migratory behavior and axonal projections of these two broad classes of neurons. We find that St18 regulates the migration and morphology of MGE neurons in vitro. Further, genetic loss-of-function of St18 in mice reveals a reduction in projection neurons of the globus pallidus pars externa. St18 functions by influencing cell fate in MGE lineages as we observe a large expansion of nascent cortical interneurons at the expense of putative GPe neurons in St18 null embryos. Downstream of St18, we identified Cbx7, a component of Polycomb repressor complex 1, and find that it is essential for projection neuron-like migration but not morphology. Thus, we identify St18 as a key regulator of projection neuron vs. interneuron identity.
Collapse
Affiliation(s)
- Luke F Nunnelly
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Melissa Campbell
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dylan I Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Patrick Dummer
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Edmund Au
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Columbia Translational Neuroscience Initiative Scholar, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Arjun McKinney A, Petrova R, Panagiotakos G. Calcium and activity-dependent signaling in the developing cerebral cortex. Development 2022; 149:dev198853. [PMID: 36102617 PMCID: PMC9578689 DOI: 10.1242/dev.198853] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Calcium influx can be stimulated by various intra- and extracellular signals to set coordinated gene expression programs into motion. As such, the precise regulation of intracellular calcium represents a nexus between environmental cues and intrinsic genetic programs. Mounting genetic evidence points to a role for the deregulation of intracellular calcium signaling in neuropsychiatric disorders of developmental origin. These findings have prompted renewed enthusiasm for understanding the roles of calcium during normal and dysfunctional prenatal development. In this Review, we describe the fundamental mechanisms through which calcium is spatiotemporally regulated and directs early neurodevelopmental events. We also discuss unanswered questions about intracellular calcium regulation during the emergence of neurodevelopmental disease, and provide evidence that disruption of cell-specific calcium homeostasis and/or redeployment of developmental calcium signaling mechanisms may contribute to adult neurological disorders. We propose that understanding the normal developmental events that build the nervous system will rely on gaining insights into cell type-specific calcium signaling mechanisms. Such an understanding will enable therapeutic strategies targeting calcium-dependent mechanisms to mitigate disease.
Collapse
Affiliation(s)
- Arpana Arjun McKinney
- Graduate Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Ralitsa Petrova
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Georgia Panagiotakos
- Graduate Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Pumo GM, Kitazawa T, Rijli FM. Epigenetic and Transcriptional Regulation of Spontaneous and Sensory Activity Dependent Programs During Neuronal Circuit Development. Front Neural Circuits 2022; 16:911023. [PMID: 35664458 PMCID: PMC9158562 DOI: 10.3389/fncir.2022.911023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity generated before the onset of sensory transduction has a key role in wiring developing sensory circuits. From axonal targeting, to synapse formation and elimination, to the balanced integration of neurons into developing circuits, this type of activity is implicated in a variety of cellular processes. However, little is known about its molecular mechanisms of action, especially at the level of genome regulation. Conversely, sensory experience-dependent activity implements well-characterized transcriptional and epigenetic chromatin programs that underlie heterogeneous but specific genomic responses that shape both postnatal circuit development and neuroplasticity in the adult. In this review, we focus on our knowledge of the developmental processes regulated by spontaneous activity and the underlying transcriptional mechanisms. We also review novel findings on how chromatin regulates the specificity and developmental induction of the experience-dependent program, and speculate their relevance for our understanding of how spontaneous activity may act at the genomic level to instruct circuit assembly and prepare developing neurons for sensory-dependent connectivity refinement and processing.
Collapse
Affiliation(s)
- Gabriele M. Pumo
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department Biozentrum, University of Basel, Basel, Switzerland
| | - Taro Kitazawa
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Filippo M. Rijli
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Nasir-Ahmad S, Vanstone KA, Novelli M, Lee SCS, Do MTH, Martin PR, Grünert U. Satb1 expression in retinal ganglion cells of marmosets, macaques, and humans. J Comp Neurol 2022; 530:923-940. [PMID: 34622958 PMCID: PMC8831458 DOI: 10.1002/cne.25258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022]
Abstract
Recent advances in single-cell RNA sequencing have enabled the molecular distinction of ganglion cell populations in mammalian retinas. Here we used antibodies against the transcription factor special AT-rich binding protein 1 (Satb1, a protein which is expressed by on-off direction-selective ganglion cells in mouse retina) to study Satb1 expression in the retina of marmosets (Callithrix jacchus), macaques (Macaca fascicularis), and humans. In all species, Satb1 was exclusively expressed in retinal ganglion cells. The Satb1 cells made up ∼2% of the ganglion cell population in the central retina of all species, rising to a maximum ∼7% in peripheral marmoset retina. Intracellular injections in marmoset and macaque retinas revealed that most Satb1 expressing ganglion cells are widefield ganglion cells. In marmoset, Satb1 cells have a densely branching dendritic tree and include broad and narrow thorny, recursive bistratified, and parasol cells, all of which show some costratification with the outer or inner cholinergic amacrine cells. The recursive bistratified cells showed the strongest costratification but did not show extensive cofasciculation as reported for on-off direction-selective ganglion cells in rabbit and rodent retinas. In macaque, Satb1 was not expressed in recursive bistratified cells, but in large sparsely branching cells. Our findings further support the idea that the expression of transcription factors in retinal ganglion cells is not conserved across Old World (human and macaque) and New World (marmoset) primates and provides a further step to link a molecular marker with specific cell types.
Collapse
Affiliation(s)
- Subha Nasir-Ahmad
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Kurt A Vanstone
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia
| | - Mario Novelli
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia
| | - Sammy C S Lee
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul R Martin
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Ulrike Grünert
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Voss L, Bartos M, Elgueta C, Sauer JF. Interneuron function and cognitive behavior are preserved upon postnatal removal of Lhx6. Sci Rep 2022; 12:4923. [PMID: 35318414 PMCID: PMC8941127 DOI: 10.1038/s41598-022-09003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
LIM homeobox domain transcription factor 6 (Lhx6) is crucial for the prenatal specification and differentiation of hippocampal GABAergic interneuron precursors. Interestingly, Lhx6 remains to be expressed in parvalbumin-positive hippocampal interneurons (PVIs) long after specification and differentiation have been completed, the functional implications of which remain elusive. We addressed the role of adult-expressed Lhx6 in the hippocampus by knocking down Lhx6 in adult mice (> 8 weeks old) using viral or transgenic expression of Cre-recombinase in Lhx6loxP/loxP mice. Late removal of Lhx6 did not affect the number of PVIs and had no impact on the morphological and physiological properties of PVIs. Furthermore, mice lacking Lhx6 in PVIs displayed normal cognitive behavior. Loss of Lhx6 only partially reduced the expression of Sox6 and Arx, downstream transcription factors that depend on Lhx6 during embryonic development of PVIs. Our data thus suggest that while Lhx6 is vitally important to drive interneuron transcriptional networks during early development, it becomes uncoupled from downstream effectors during postnatal life.
Collapse
Affiliation(s)
- Lars Voss
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Claudio Elgueta
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Jonas-Frederic Sauer
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Gomes-Duarte A, Venø MT, de Wit M, Senthilkumar K, Broekhoven MH, van den Herik J, Heeres FR, van Rossum D, Rybiczka-Tesulov M, Legnini I, van Rijen PC, van Eijsden P, Gosselaar PH, Rajewsky N, Kjems J, Vangoor VR, Pasterkamp RJ. Expression of Circ_Satb1 Is Decreased in Mesial Temporal Lobe Epilepsy and Regulates Dendritic Spine Morphology. Front Mol Neurosci 2022; 15:832133. [PMID: 35310884 PMCID: PMC8927295 DOI: 10.3389/fnmol.2022.832133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a chronic disease characterized by recurrent seizures that originate in the temporal lobes of the brain. Anti-epileptic drugs (AEDs) are the standard treatment for managing seizures in mTLE patients, but are frequently ineffective. Resective surgery is an option for some patients, but does not guarantee a postoperative seizure-free period. Therefore, further insight is needed into the pathogenesis of mTLE to enable the design of new therapeutic strategies. Circular RNAs (circRNAs) have been identified as important regulators of neuronal function and have been implicated in epilepsy. However, the mechanisms through which circRNAs contribute to epileptogenesis remain unknown. Here, we determine the circRNA transcriptome of the hippocampus and cortex of mTLE patients by using RNA-seq. We report 333 differentially expressed (DE) circRNAs between healthy individuals and mTLE patients, of which 23 circRNAs displayed significant adjusted p-values following multiple testing correction. Interestingly, hippocampal expression of circ_Satb1, a circRNA derived from special AT-rich sequence binding protein 1 (SATB1), is decreased in both mTLE patients and in experimental epilepsy. Our work shows that circ_Satb1 displays dynamic patterns of neuronal expression in vitro and in vivo. Further, circ_Satb1-specific knockdown using CRISPR/CasRx approaches in hippocampal cultures leads to defects in dendritic spine morphology, a cellular hallmark of mTLE. Overall, our results identify a novel epilepsy-associated circRNA with disease-specific expression and previously unidentified cellular effects that are relevant for epileptogenesis.
Collapse
Affiliation(s)
- Andreia Gomes-Duarte
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Morten T. Venø
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Omiics ApS, Aarhus, Denmark
| | - Marina de Wit
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ketharini Senthilkumar
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mark H. Broekhoven
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joëlle van den Herik
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Fleur R. Heeres
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Daniëlle van Rossum
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mateja Rybiczka-Tesulov
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ivano Legnini
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Peter C. van Rijen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Pieter van Eijsden
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Peter H. Gosselaar
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Vamshidhar R. Vangoor
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - R. Jeroen Pasterkamp
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: R. Jeroen Pasterkamp,
| |
Collapse
|
20
|
Analysis of recent shared ancestry in a familial cohort identifies coding and noncoding autism spectrum disorder variants. NPJ Genom Med 2022; 7:13. [PMID: 35190550 PMCID: PMC8861044 DOI: 10.1038/s41525-022-00284-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
Autism spectrum disorder (ASD) is a collection of neurodevelopmental disorders characterized by deficits in social communication and restricted, repetitive patterns of behavior or interests. ASD is highly heritable, but genetically and phenotypically heterogeneous, reducing the power to identify causative genes. We performed whole genome sequencing (WGS) in an ASD cohort of 68 individuals from 22 families enriched for recent shared ancestry. We identified an average of 3.07 million variants per genome, of which an average of 112,512 were rare. We mapped runs of homozygosity (ROHs) in affected individuals and found an average genomic homozygosity of 9.65%, consistent with expectations for multiple generations of consanguineous unions. We identified potentially pathogenic rare exonic or splice site variants in 12 known (including KMT2C, SCN1A, SPTBN1, SYNE1, ZNF292) and 12 candidate (including CHD5, GRB10, PPP1R13B) ASD genes. Furthermore, we annotated noncoding variants in ROHs with brain-specific regulatory elements and identified putative disease-causing variants within brain-specific promoters and enhancers for 5 known ASD and neurodevelopmental disease genes (ACTG1, AUTS2, CTNND2, CNTNAP4, SPTBN4). We also identified copy number variants in two known ASD and neurodevelopmental disease loci in two affected individuals. In total we identified potentially etiological variants in known ASD or neurodevelopmental disease genes for ~61% (14/23) of affected individuals. We combined WGS with homozygosity mapping and regulatory element annotations to identify candidate ASD variants. Our analyses add to the growing number of ASD genes and variants and emphasize the importance of leveraging recent shared ancestry to map disease variants in complex neurodevelopmental disorders.
Collapse
|
21
|
Knowles R, Dehorter N, Ellender T. From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. J Neurosci 2021; 41:9483-9502. [PMID: 34789560 PMCID: PMC8612473 DOI: 10.1523/jneurosci.0620-21.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding how neurons of the striatum are formed and integrate into complex synaptic circuits is essential to provide insight into striatal function in health and disease. In this review, we summarize our current understanding of the development of striatal neurons and associated circuits with a focus on their embryonic origin. Specifically, we address the role of distinct types of embryonic progenitors, found in the proliferative zones of the ganglionic eminences in the ventral telencephalon, in the generation of diverse striatal interneurons and projection neurons. Indeed, recent evidence would suggest that embryonic progenitor origin dictates key characteristics of postnatal cells, including their neurochemical content, their location within striatum, and their long-range synaptic inputs. We also integrate recent observations regarding embryonic progenitors in cortical and other regions and discuss how this might inform future research on the ganglionic eminences. Last, we examine how embryonic progenitor dysfunction can alter striatal formation, as exemplified in Huntington's disease and autism spectrum disorder, and how increased understanding of embryonic progenitors can have significant implications for future research directions and the development of improved therapeutic options.SIGNIFICANCE STATEMENT This review highlights recently defined novel roles for embryonic progenitor cells in shaping the functional properties of both projection neurons and interneurons of the striatum. It outlines the developmental mechanisms that guide neuronal development from progenitors in the embryonic ganglionic eminences to progeny in the striatum. Where questions remain open, we integrate observations from cortex and other regions to present possible avenues for future research. Last, we provide a progenitor-centric perspective onto both Huntington's disease and autism spectrum disorder. We suggest that future investigations and manipulations of embryonic progenitor cells in both research and clinical settings will likely require careful consideration of their great intrinsic diversity and neurogenic potential.
Collapse
Affiliation(s)
- Rhys Knowles
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
22
|
Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021; 15:776809. [PMID: 34803599 PMCID: PMC8595945 DOI: 10.3389/fnins.2021.776809] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental diseases (NDDs), such as autism spectrum disorders, epilepsy, and schizophrenia, are characterized by diverse facets of neurological and psychiatric symptoms, differing in etiology, onset and severity. Such symptoms include mental delay, cognitive and language impairments, or restrictions to adaptive and social behavior. Nevertheless, all have in common that critical milestones of brain development are disrupted, leading to functional deficits of the central nervous system and clinical manifestation in child- or adulthood. To approach how the different development-associated neuropathologies can occur and which risk factors or critical processes are involved in provoking higher susceptibility for such diseases, a detailed understanding of the mechanisms underlying proper brain formation is required. NDDs rely on deficits in neuronal identity, proportion or function, whereby a defective development of the cerebral cortex, the seat of higher cognitive functions, is implicated in numerous disorders. Such deficits can be provoked by genetic and environmental factors during corticogenesis. Thereby, epigenetic mechanisms can act as an interface between external stimuli and the genome, since they are known to be responsive to external stimuli also in cortical neurons. In line with that, DNA methylation, histone modifications/variants, ATP-dependent chromatin remodeling, as well as regulatory non-coding RNAs regulate diverse aspects of neuronal development, and alterations in epigenomic marks have been associated with NDDs of varying phenotypes. Here, we provide an overview of essential steps of mammalian corticogenesis, and discuss the role of epigenetic mechanisms assumed to contribute to pathophysiological aspects of NDDs, when being disrupted.
Collapse
Affiliation(s)
- Julia Reichard
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Mahadevan V, Mitra A, Zhang Y, Yuan X, Peltekian A, Chittajallu R, Esnault C, Maric D, Rhodes C, Pelkey KA, Dale R, Petros TJ, McBain CJ. NMDARs Drive the Expression of Neuropsychiatric Disorder Risk Genes Within GABAergic Interneuron Subtypes in the Juvenile Brain. Front Mol Neurosci 2021; 14:712609. [PMID: 34630033 PMCID: PMC8500094 DOI: 10.3389/fnmol.2021.712609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Medial ganglionic eminence (MGE)-derived parvalbumin (PV)+, somatostatin (SST)+and Neurogliaform (NGFC)-type cortical and hippocampal interneurons, have distinct molecular, anatomical, and physiological properties. However, the molecular mechanisms regulating their maturation remain poorly understood. Here, via single-cell transcriptomics, we show that the obligate NMDA-type glutamate receptor (NMDAR) subunit gene Grin1 mediates transcriptional regulation of gene expression in specific subtypes of MGE-derived interneurons, leading to altered subtype abundances. Notably, MGE-specific early developmental Grin1 loss results in a broad downregulation of diverse transcriptional, synaptogenic and membrane excitability regulatory programs in the juvenile brain. These widespread gene expression abnormalities mirror aberrations that are typically associated with neurodevelopmental disorders. Our study hence provides a road map for the systematic examination of NMDAR signaling in interneuron subtypes, revealing potential MGE-specific genetic targets that could instruct future therapies of psychiatric disorders.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Areg Peltekian
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ramesh Chittajallu
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Christopher Rhodes
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| |
Collapse
|
24
|
Role of Satb1 and Satb2 Transcription Factors in the Glutamate Receptors Expression and Ca 2+ Signaling in the Cortical Neurons In Vitro. Int J Mol Sci 2021; 22:ijms22115968. [PMID: 34073140 PMCID: PMC8198236 DOI: 10.3390/ijms22115968] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
Transcription factors Satb1 and Satb2 are involved in the processes of cortex development and maturation of neurons. Alterations in the expression of their target genes can lead to neurodegenerative processes. Molecular and cellular mechanisms of regulation of neurotransmission by these transcription factors remain poorly understood. In this study, we have shown that transcription factors Satb1 and Satb2 participate in the regulation of genes encoding the NMDA-, AMPA-, and KA- receptor subunits and the inhibitory GABA(A) receptor. Deletion of gene for either Satb1 or Satb2 homologous factors induces the expression of genes encoding the NMDA receptor subunits, thereby leading to higher amplitudes of Ca2+-signals in neurons derived from the Satb1-deficient (Satb1fl/+ * NexCre/+) and Satb1-null mice (Satb1fl/fl * NexCre/+) in response to the selective agonist reducing the EC50 for the NMDA receptor. Simultaneously, there is an increase in the expression of the Gria2 gene, encoding the AMPA receptor subunit, thus decreasing the Ca2+-signals of neurons in response to the treatment with a selective agonist (5-Fluorowillardiine (FW)). The Satb1 deletion increases the sensitivity of the KA receptor to the agonist (domoic acid), in the cortical neurons of the Satb1-deficient mice but decreases it in the Satb1-null mice. At the same time, the Satb2 deletion decreases Ca2+-signals and the sensitivity of the KA receptor to the agonist in neurons from the Satb1-null and the Satb1-deficient mice. The Satb1 deletion affects the development of the inhibitory system of neurotransmission resulting in the suppression of the neuron maturation process and switching the GABAergic responses from excitatory to inhibitory, while the Satb2 deletion has a similar effect only in the Satb1-null mice. We show that the Satb1 and Satb2 transcription factors are involved in the regulation of the transmission of excitatory signals and inhibition of the neuronal network in the cortical cell culture.
Collapse
|
25
|
Iannone AF, De Marco García NV. The Emergence of Network Activity Patterns in the Somatosensory Cortex - An Early Window to Autism Spectrum Disorders. Neuroscience 2021; 466:298-309. [PMID: 33887384 DOI: 10.1016/j.neuroscience.2021.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022]
Abstract
Across mammalian species, patterned activity in neural populations is a prominent feature of developing sensory cortices. Numerous studies have long appreciated the diversity of these patterns, characterizing their differences in spatial and temporal dynamics. In the murine somatosensory cortex, neuronal co-activation is thought to guide the formation of sensory maps and prepare the cortex for sensory processing after birth. While pioneering studies deftly utilized slice electrophysiology and unit recordings to characterize correlated activity, a detailed understanding of the underlying circuits remains poorly understood. More recently, advances in in vivo calcium imaging in awake mouse pups and increasing genetic tractability of neuronal types have allowed unprecedented manipulation of circuit components at select developmental timepoints. These novel approaches have proven fundamental in uncovering the identity of neurons engaged in correlated activity during development. In particular, recent studies have highlighted interneurons as key in refining the spatial extent and temporal progression of patterned activity. Here, we discuss how emergent synchronous activity across the first postnatal weeks is shaped by underlying gamma aminobutyric acid (GABA)ergic contributors in the somatosensory cortex. Further, the importance of participation in specific activity patterns per se for neuronal maturation and perdurance will be of particular highlight in this survey of recent literature. Finally, we underscore how aberrant neuronal synchrony and disrupted inhibitory interneuron activity underlie sensory perturbations in neurodevelopmental disorders, particularly Autism Spectrum Disorders (ASDs), emphasizing the importance of future investigative approaches that incorporate the spatiotemporal features of patterned activity alongside the cellular components to probe disordered circuit assembly.
Collapse
Affiliation(s)
- Andrew F Iannone
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
26
|
Yang J, Yang X, Tang K. Interneuron development and dysfunction. FEBS J 2021; 289:2318-2336. [PMID: 33844440 DOI: 10.1111/febs.15872] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Understanding excitation and inhibition balance in the brain begins with the tale of two basic types of neurons, glutamatergic projection neurons and GABAergic interneurons. The diversity of cortical interneurons is contributed by multiple origins in the ventral forebrain, various tangential migration routes, and complicated regulations of intrinsic factors, extrinsic signals, and activities. Abnormalities of interneuron development lead to dysfunction of interneurons and inhibitory circuits, which are highly associated with neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and intellectual disability. In this review, we mainly discuss recent findings on the development of cortical interneuron and on neurodevelopmental disorders related to interneuron dysfunction.
Collapse
Affiliation(s)
- Jiaxin Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Xiong Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| |
Collapse
|
27
|
Boshans LL, Soh H, Wood WM, Nolan TM, Mandoiu II, Yanagawa Y, Tzingounis AV, Nishiyama A. Direct reprogramming of oligodendrocyte precursor cells into GABAergic inhibitory neurons by a single homeodomain transcription factor Dlx2. Sci Rep 2021; 11:3552. [PMID: 33574458 PMCID: PMC7878775 DOI: 10.1038/s41598-021-82931-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocyte precursor cells (NG2 glia) are uniformly distributed proliferative cells in the mammalian central nervous system and generate myelinating oligodendrocytes throughout life. A subpopulation of OPCs in the neocortex arises from progenitor cells in the embryonic ganglionic eminences that also produce inhibitory neurons. The neuronal fate of some progenitor cells is sealed before birth as they become committed to the oligodendrocyte lineage, marked by sustained expression of the oligodendrocyte transcription factor Olig2, which represses the interneuron transcription factor Dlx2. Here we show that misexpression of Dlx2 alone in postnatal mouse OPCs caused them to switch their fate to GABAergic neurons within 2 days by downregulating Olig2 and upregulating a network of inhibitory neuron transcripts. After two weeks, some OPC-derived neurons generated trains of action potentials and formed clusters of GABAergic synaptic proteins. Our study revealed that the developmental molecular logic can be applied to promote neuronal reprogramming from OPCs.
Collapse
Affiliation(s)
- Linda L Boshans
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - William M Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Timothy M Nolan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Ion I Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
28
|
Ramanujam PL, Mehrotra S, Kumar RP, Verma S, Deshpande G, Mishra RK, Galande S. Global chromatin organizer SATB1 acts as a context-dependent regulator of the Wnt/Wg target genes. Sci Rep 2021; 11:3385. [PMID: 33564000 PMCID: PMC7873079 DOI: 10.1038/s41598-021-81324-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Special AT-rich binding protein-1 (SATB1) integrates higher-order chromatin architecture with gene regulation, thereby regulating multiple signaling pathways. In mammalian cells SATB1 directly interacts with β-catenin and regulates the expression of Wnt targets by binding to their promoters. Whether SATB1 regulates Wnt/wg signaling by recruitment of β-catenin and/or its interactions with other components remains elusive. Since Wnt/Wg signaling is conserved from invertebrates to humans, we investigated SATB1 functions in regulation of Wnt/Wg signaling by using mammalian cell-lines and Drosophila. Here, we present evidence that in mammalian cells, SATB1 interacts with Dishevelled, an upstream component of the Wnt/Wg pathway. Conversely, ectopic expression of full-length human SATB1 but not that of its N- or C-terminal domains in the eye imaginal discs and salivary glands of third instar Drosophila larvae increased the expression of Wnt/Wg pathway antagonists and suppressed phenotypes associated with activated Wnt/Wg pathway. These data argue that ectopically-provided SATB1 presumably modulates Wnt/Wg signaling by acting as negative regulator in Drosophila. Interestingly, comparison of SATB1 with PDZ- and homeo-domain containing Drosophila protein Defective Proventriculus suggests that both proteins exhibit limited functional similarity in the regulation of Wnt/Wg signaling in Drosophila. Collectively, these findings indicate that regulation of Wnt/Wg pathway by SATB1 is context-dependent.
Collapse
Affiliation(s)
- Praveena L Ramanujam
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sonam Mehrotra
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Mumbai, India
| | | | | | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | - Sanjeev Galande
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
29
|
Hanganu-Opatz IL, Butt SJB, Hippenmeyer S, De Marco García NV, Cardin JA, Voytek B, Muotri AR. The Logic of Developing Neocortical Circuits in Health and Disease. J Neurosci 2021; 41:813-822. [PMID: 33431633 PMCID: PMC7880298 DOI: 10.1523/jneurosci.1655-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire functionality during development. This review summarizes recent research on the development of the neocortex, from genetic determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical circuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Simon J B Butt
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Jessica A Cardin
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520
| | - Bradley Voytek
- University of California San Diego, Department of Cognitive Science, Halıcıoğlu Data Science Institute, Neurosciences Graduate Program, La Jolla, California 92093
- University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, California 92093
| | - Alysson R Muotri
- University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, California 92093
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny, La Jolla, California 92037
| |
Collapse
|
30
|
Spiegel I. Experience-regulated molecular mechanisms in cortical GABAergic interneurons: from cellular functions to control over circuit plasticity. Curr Opin Neurobiol 2020; 67:145-154. [PMID: 33316573 DOI: 10.1016/j.conb.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 01/30/2023]
Abstract
Experience-induced changes in GABAergic interneurons (INs) are thought to control the plasticity of neural circuits in the developing and adult cortex. However, it remains poorly understood how experience and the ensuing neuronal activity alter the properties and connectivity of specific IN subtypes and how these cellular changes, in turn, control the plasticity of cortical circuits. Here, I discuss recent experimental and theoretical studies that point to specific experience-induced changes in select IN subtypes as central regulators of plasticity in the cortex. In particular, I focus on the recent identification of several experience-regulated secreted molecules that modulate specific sets of synapses in IN subtypes. I argue that elucidating these molecular mechanisms will allow us to test experimentally the predictions made by theoretical models about the plasticity functions of specific IN subtypes.
Collapse
Affiliation(s)
- Ivo Spiegel
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
31
|
Turrero García M, Baizabal JM, Tran DN, Peixoto R, Wang W, Xie Y, Adam MA, English LA, Reid CM, Brito SI, Booker MA, Tolstorukov MY, Harwell CC. Transcriptional regulation of MGE progenitor proliferation by PRDM16 controls cortical GABAergic interneuron production. Development 2020; 147:dev187526. [PMID: 33060132 PMCID: PMC7687860 DOI: 10.1242/dev.187526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 10/05/2020] [Indexed: 11/20/2022]
Abstract
The mammalian cortex is populated by neurons derived from neural progenitors located throughout the embryonic telencephalon. Excitatory neurons are derived from the dorsal telencephalon, whereas inhibitory interneurons are generated in its ventral portion. The transcriptional regulator PRDM16 is expressed by radial glia, neural progenitors present in both regions; however, its mechanisms of action are still not fully understood. It is unclear whether PRDM16 plays a similar role in neurogenesis in both dorsal and ventral progenitor lineages and, if so, whether it regulates common or unique networks of genes. Here, we show that Prdm16 expression in mouse medial ganglionic eminence (MGE) progenitors is required for maintaining their proliferative capacity and for the production of proper numbers of forebrain GABAergic interneurons. PRDM16 binds to cis-regulatory elements and represses the expression of region-specific neuronal differentiation genes, thereby controlling the timing of neuronal maturation. PRDM16 regulates convergent developmental gene expression programs in the cortex and MGE, which utilize both common and region-specific sets of genes to control the proliferative capacity of neural progenitors, ensuring the generation of correct numbers of cortical neurons.
Collapse
Affiliation(s)
| | | | - Diana N Tran
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Peixoto
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yajun Xie
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Manal A Adam
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren A English
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Salvador I Brito
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew A Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Göngrich C, Krapacher FA, Munguba H, Fernández-Suárez D, Andersson A, Hjerling-Leffler J, Ibáñez CF. ALK4 coordinates extracellular and intrinsic signals to regulate development of cortical somatostatin interneurons. J Cell Biol 2020; 219:jcb.201905002. [PMID: 31676717 PMCID: PMC7039195 DOI: 10.1083/jcb.201905002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/03/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Göngrich et al. show that the activin receptor ALK4 is a key regulator of the specification of somatostatin interneurons. They find that intrinsic transcriptional programs interact with extracellular signals present in the environment of MGE cells to regulate cortical interneuron specification. Although the role of transcription factors in fate specification of cortical interneurons is well established, how these interact with extracellular signals to regulate interneuron development is poorly understood. Here we show that the activin receptor ALK4 is a key regulator of the specification of somatostatin interneurons. Mice lacking ALK4 in GABAergic neurons of the medial ganglionic eminence (MGE) showed marked deficits in distinct subpopulations of somatostatin interneurons from early postnatal stages of cortical development. Specific losses were observed among distinct subtypes of somatostatin+/Reelin+ double-positive cells, including Hpse+ layer IV cells targeting parvalbumin+ interneurons, leading to quantitative alterations in the inhibitory circuitry of this layer. Activin-mediated ALK4 signaling in MGE cells induced interaction of Smad2 with SATB1, a transcription factor critical for somatostatin interneuron development, and promoted SATB1 nuclear translocation and repositioning within the somatostatin gene promoter. These results indicate that intrinsic transcriptional programs interact with extracellular signals present in the environment of MGE cells to regulate cortical interneuron specification.
Collapse
Affiliation(s)
| | | | - Hermany Munguba
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | - Annika Andersson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Physiology, National University of Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore.,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
33
|
Abstract
Cortical interneurons display striking differences in shape, physiology, and other attributes, challenging us to appropriately classify them. We previously suggested that interneuron types should be defined by their role in cortical processing. Here, we revisit the question of how to codify their diversity based upon their division of labor and function as controllers of cortical information flow. We suggest that developmental trajectories provide a guide for appreciating interneuron diversity and argue that subtype identity is generated using a configurational (rather than combinatorial) code of transcription factors that produce attractor states in the underlying gene regulatory network. We present our updated three-stage model for interneuron specification: an initial cardinal step, allocating interneurons into a few major classes, followed by definitive refinement, creating subclasses upon settling within the cortex, and lastly, state determination, reflecting the incorporation of interneurons into functional circuit ensembles. We close by discussing findings indicating that major interneuron classes are both evolutionarily ancient and conserved. We propose that the complexity of cortical circuits is generated by phylogenetically old interneuron types, complemented by an evolutionary increase in principal neuron diversity. This suggests that a natural neurobiological definition of interneuron types might be derived from a match between their developmental origin and computational function.
Collapse
Affiliation(s)
- Gord Fishell
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02142, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Adam Kepecs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
| |
Collapse
|
34
|
Stroud H, Yang MG, Tsitohay YN, Davis CP, Sherman MA, Hrvatin S, Ling E, Greenberg ME. An Activity-Mediated Transition in Transcription in Early Postnatal Neurons. Neuron 2020; 107:874-890.e8. [PMID: 32589877 DOI: 10.1016/j.neuron.2020.06.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/31/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
The maturation of the mammalian brain occurs after birth, and this stage of neuronal development is frequently impaired in neurological disorders, such as autism and schizophrenia. However, the mechanisms that regulate postnatal brain maturation are poorly defined. By purifying neuronal subpopulations across brain development in mice, we identify a postnatal switch in the transcriptional regulatory circuits that operates in the maturing mammalian brain. We show that this developmental transition includes the formation of hundreds of cell-type-specific neuronal enhancers that appear to be modulated by neuronal activity. Once selected, these enhancers are active throughout adulthood, suggesting that their formation in early life shapes neuronal identity and regulates mature brain function.
Collapse
Affiliation(s)
- Hume Stroud
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Marty G Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Yael N Tsitohay
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Maxwell A Sherman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Emi Ling
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
35
|
Oláh VJ, Lukacsovich D, Winterer J, Arszovszki A, Lőrincz A, Nusser Z, Földy C, Szabadics J. Functional specification of CCK+ interneurons by alternative isoforms of Kv4.3 auxiliary subunits. eLife 2020; 9:58515. [PMID: 32490811 PMCID: PMC7269670 DOI: 10.7554/elife.58515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
CCK-expressing interneurons (CCK+INs) are crucial for controlling hippocampal activity. We found two firing phenotypes of CCK+INs in rat hippocampal CA3 area; either possessing a previously undetected membrane potential-dependent firing or regular firing phenotype, due to different low-voltage-activated potassium currents. These different excitability properties destine the two types for distinct functions, because the former is essentially silenced during realistic 8–15 Hz oscillations. By contrast, the general intrinsic excitability, morphology and gene-profiles of the two types were surprisingly similar. Even the expression of Kv4.3 channels were comparable, despite evidences showing that Kv4.3-mediated currents underlie the distinct firing properties. Instead, the firing phenotypes were correlated with the presence of distinct isoforms of Kv4 auxiliary subunits (KChIP1 vs. KChIP4e and DPP6S). Our results reveal the underlying mechanisms of two previously unknown types of CCK+INs and demonstrate that alternative splicing of few genes, which may be viewed as a minor change in the cells’ whole transcriptome, can determine cell-type identity.
Collapse
Affiliation(s)
- Viktor János Oláh
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Antónia Arszovszki
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Andrea Lőrincz
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - János Szabadics
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
36
|
Symmank J, Gölling V, Gerstmann K, Zimmer G. The Transcription Factor LHX1 Regulates the Survival and Directed Migration of POA-derived Cortical Interneurons. Cereb Cortex 2020; 29:1644-1658. [PMID: 29912395 DOI: 10.1093/cercor/bhy063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
The delicate balance of excitation and inhibition is crucial for proper function of the cerebral cortex, relying on the accurate number and subtype composition of inhibitory gamma-aminobutyric (GABA)-expressing interneurons. Various intrinsic and extrinsic factors precisely orchestrate their multifaceted development including the long-range migration from the basal telencephalon to cortical targets as well as interneuron survival throughout the developmental period. Particularly expressed guidance receptors were described to channel the migration of cortical interneurons deriving from the medial ganglionic eminence (MGE) and the preoptic area (POA) along distinct routes. Hence, unveiling the regulatory genetic networks controlling subtype-specific gene expression profiles is key to understand interneuron-specific developmental programs and to reveal causes for associated disorders. In contrast to MGE-derived interneurons, little is known about the transcriptional networks in interneurons born in the POA. Here, we provide first evidence for the LIM-homeobox transcription factor LHX1 as a crucial key player in the post-mitotic development of POA-derived cortical interneurons. By transcriptional regulation of related genes, LHX1 modulates their survival as well as the subtype-specific expression of guidance receptors of the Eph/ephrin family, thereby affecting directional migration and layer distribution in the adult cortex.
Collapse
Affiliation(s)
- Judit Symmank
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Vanessa Gölling
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Katrin Gerstmann
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
37
|
Mossner JM, Batista-Brito R, Pant R, Cardin JA. Developmental loss of MeCP2 from VIP interneurons impairs cortical function and behavior. eLife 2020; 9:55639. [PMID: 32343226 PMCID: PMC7213975 DOI: 10.7554/elife.55639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Rett Syndrome is a devastating neurodevelopmental disorder resulting from mutations in the gene MECP2. Mutations of Mecp2 that are restricted to GABAergic cell types largely replicate the behavioral phenotypes associated with mouse models of Rett Syndrome, suggesting a pathophysiological role for inhibitory interneurons. Recent work has suggested that vasoactive intestinal peptide-expressing (VIP) interneurons may play a critical role in the proper development and function of cortical circuits, making them a potential key point of vulnerability in neurodevelopmental disorders. However, little is known about the role of VIP interneurons in Rett Syndrome. Here we find that loss of MeCP2 specifically from VIP interneurons replicates key neural and behavioral phenotypes observed following global Mecp2 loss of function.
Collapse
Affiliation(s)
- James M Mossner
- Department of Neuroscience, Yale University, New Haven, United States
| | - Renata Batista-Brito
- Department of Neuroscience, Yale University, New Haven, United States.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | - Rima Pant
- Department of Neuroscience, Yale University, New Haven, United States
| | - Jessica A Cardin
- Department of Neuroscience, Yale University, New Haven, United States.,Kavli Institute for Neuroscience, Yale University, New Haven, United States
| |
Collapse
|
38
|
Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh PR, Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 2019; 16:1289-1296. [PMID: 31740819 PMCID: PMC6884693 DOI: 10.1038/s41592-019-0619-0] [Citation(s) in RCA: 4579] [Impact Index Per Article: 763.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 09/06/2019] [Indexed: 12/18/2022]
Abstract
The emerging diversity of single-cell RNA-seq datasets allows for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. However, it is challenging to analyze them together, particularly when datasets are assayed with different technologies, because biological and technical differences are interspersed. We present Harmony (https://github.com/immunogenomics/harmony), an algorithm that projects cells into a shared embedding in which cells group by cell type rather than dataset-specific conditions. Harmony simultaneously accounts for multiple experimental and biological factors. In six analyses, we demonstrate the superior performance of Harmony to previously published algorithms while requiring fewer computational resources. Harmony enables the integration of ~106 cells on a personal computer. We apply Harmony to peripheral blood mononuclear cells from datasets with large experimental differences, five studies of pancreatic islet cells, mouse embryogenesis datasets and the integration of scRNA-seq with spatial transcriptomics data.
Collapse
Affiliation(s)
- Ilya Korsunsky
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nghia Millard
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jean Fan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Kamil Slowikowski
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kevin Wei
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuriy Baglaenko
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Brenner
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
39
|
Duan ZRS, Che A, Chu P, Modol L, Bollmann Y, Babij R, Fetcho RN, Otsuka T, Fuccillo MV, Liston C, Pisapia DJ, Cossart R, De Marco García NV. GABAergic Restriction of Network Dynamics Regulates Interneuron Survival in the Developing Cortex. Neuron 2019; 105:75-92.e5. [PMID: 31780329 DOI: 10.1016/j.neuron.2019.10.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
During neonatal development, sensory cortices generate spontaneous activity patterns shaped by both sensory experience and intrinsic influences. How these patterns contribute to the assembly of neuronal circuits is not clearly understood. Using longitudinal in vivo calcium imaging in un-anesthetized mouse pups, we show that spatially segregated functional assemblies composed of interneurons and pyramidal cells are prominent in the somatosensory cortex by postnatal day (P) 7. Both reduction of GABA release and synaptic inputs onto pyramidal cells erode the emergence of functional topography, leading to increased network synchrony. This aberrant pattern effectively blocks interneuron apoptosis, causing increased survival of parvalbumin and somatostatin interneurons. Furthermore, the effect of GABA on apoptosis is mediated by inputs from medial ganglionic eminence (MGE)-derived but not caudal ganglionic eminence (CGE)-derived interneurons. These findings indicate that immature MGE interneurons are fundamental for shaping GABA-driven activity patterns that balance the number of interneurons integrating into maturing cortical networks.
Collapse
Affiliation(s)
- Zhe Ran S Duan
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Alicia Che
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Philip Chu
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura Modol
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Yannick Bollmann
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Rachel Babij
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Robert N Fetcho
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Takumi Otsuka
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marc V Fuccillo
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Conor Liston
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rosa Cossart
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
40
|
Winterer J, Lukacsovich D, Que L, Sartori AM, Luo W, Földy C. Single-cell RNA-Seq characterization of anatomically identified OLM interneurons in different transgenic mouse lines. Eur J Neurosci 2019; 50:3750-3771. [PMID: 31420995 PMCID: PMC6973274 DOI: 10.1111/ejn.14549] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 01/18/2023]
Abstract
Inhibitory GABAergic interneurons create different brain activity patterns that correlate with behavioural states. In this characterizing study, we used single-cell RNA-Seq to analyse anatomically- and electrophysiologically identified hippocampal oriens-lacunosum moleculare (OLM) interneurons. OLMs express somatostatin (Sst), generate feedback inhibition and play important roles in theta oscillations and fear encoding. Although an anatomically- and biophysically homogenous population, OLMs presumably comprise of two functionally distinct types with different developmental origins, inferred from the expression pattern of serotonin type-3a (5-HT3a, or Htr3a) receptor subunit and 5-HT excitability in a set of OLMs. To broadly characterize OLM cells, we used the Sst-Cre and the BAC transgenic Htr3a-Cre mouse lines and separately analysed SstCre-OLM and Htr3aCre-OLM types. We found a surprisingly consistent expression of Npy in OLMs, which was previously not associated with the identity of this type. Our analyses furthermore revealed uniform expression of developmental origin-related genes, including transcription factors and neurexin isoforms, without providing support for the current view that OLMs may originate from multiple neurogenic zones. Together, we found that OLMs constitute a highly homogenous transcriptomic population. Finally, our results revealed surprisingly infrequent expression of Htr3a in only ~10% of OLMs and an apparently specific expression of the 5-HT3b subunit-coding gene Htr3b in Htr3aCre-OLMs, but not in SstCre-OLMs. However, additional in situ hybridization experiments suggested that the differential expression of Htr3b may represent an unexpected consequence arising from the design of the Htr3a-Cre BAC transgenic line.
Collapse
Affiliation(s)
- Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Zürich, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Zürich, Switzerland
| | - Lin Que
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Zürich, Switzerland
| | - Andrea M Sartori
- Institute for Regenerative Medicine, Department of Health Sciences and Technology, ETH Zürich, University of Zürich, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Zürich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Natural Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
41
|
Chen D, Wang C, Li M, She X, Yuan Y, Chen H, Zhang W, Zhao C. Loss of Foxg1 Impairs the Development of Cortical SST-Interneurons Leading to Abnormal Emotional and Social Behaviors. Cereb Cortex 2019; 29:3666-3682. [DOI: 10.1093/cercor/bhz114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
FOXG1 syndrome is a severe encephalopathy that exhibit intellectual disability, emotional disorder, and limited social communication. To elucidate the contribution of somatostatin-expressing interneurons (SST-INs) to the cellular basis underlying FOXG1 syndrome, here, by crossing SST-cre with a Foxg1fl/fl line, we selectively ablated Foxg1. Loss of Foxg1 resulted in an obvious reduction in the number of SST-INs, accompanied by an altered ratio of subtypes. Foxg1-deficient SST-INs exhibited decreased membrane excitability and a changed ratio of electrophysiological firing patterns, which subsequently led to an excitatory/inhibitory imbalance. Moreover, cognitive defects, limited social interactions, and depression-like behaviors were detected in Foxg1 cKO mice. Treatment with low-dose of clonazepam effectively alleviated the defects. These results identify a link of SST-IN development to the aberrant emotion, cognition, and social capacities in patients. Our findings identify a novel role of Foxg1 in SST-IN development and put new insights into the cellular basis of FOXG1 syndrome.
Collapse
Affiliation(s)
- Dongsheng Chen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Chunlian Wang
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Meiyi Li
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Xinyu She
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Huanxin Chen
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Weining Zhang
- School of Medicine, Jiangsu University, ZhenJiang, Jiangsu Province, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| |
Collapse
|
42
|
Priya R, Paredes MF, Karayannis T, Yusuf N, Liu X, Jaglin X, Graef I, Alvarez-Buylla A, Fishell G. Activity Regulates Cell Death within Cortical Interneurons through a Calcineurin-Dependent Mechanism. Cell Rep 2019; 22:1695-1709. [PMID: 29444424 DOI: 10.1016/j.celrep.2018.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/26/2017] [Accepted: 12/30/2017] [Indexed: 02/03/2023] Open
Abstract
We demonstrate that cortical interneurons derived from ventral eminences, including the caudal ganglionic eminence, undergo programmed cell death. Moreover, with the exception of VIP interneurons, this occurs in a manner that is activity-dependent. In addition, we demonstrate that, within interneurons, Calcineurin, a calcium-dependent protein phosphatase, plays a critical role in sequentially linking activity to maturation (E15-P5) and survival (P5-P20). Specifically, embryonic inactivation of Calcineurin results in a failure of interneurons to morphologically mature and prevents them from undergoing apoptosis. By contrast, early postnatal inactivation of Calcineurin increases apoptosis. We conclude that Calcineurin serves a dual role of promoting first the differentiation of interneurons and, subsequently, their survival.
Collapse
Affiliation(s)
- Rashi Priya
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Mercedes Francisca Paredes
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theofanis Karayannis
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Nusrath Yusuf
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Xingchen Liu
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Xavier Jaglin
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Isabella Graef
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gord Fishell
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad Institute, 75 Ames Street, Cambridge, MA 02142, USA.
| |
Collapse
|
43
|
Denaxa M, Neves G, Rabinowitz A, Kemlo S, Liodis P, Burrone J, Pachnis V. Modulation of Apoptosis Controls Inhibitory Interneuron Number in the Cortex. Cell Rep 2019; 22:1710-1721. [PMID: 29444425 PMCID: PMC6230259 DOI: 10.1016/j.celrep.2018.01.064] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
Cortical networks are composed of excitatory projection neurons and inhibitory interneurons. Finding the right balance between the two is important for controlling overall cortical excitation and network dynamics. However, it is unclear how the correct number of cortical interneurons (CIs) is established in the mammalian forebrain. CIs are generated in excess from basal forebrain progenitors, and their final numbers are adjusted via an intrinsically determined program of apoptosis that takes place during an early postnatal window. Here, we provide evidence that the extent of CI apoptosis during this critical period is plastic and cell-type specific and can be reduced in a cell-autonomous manner by acute increases in neuronal activity. We propose that the physiological state of the emerging neural network controls the activity levels of local CIs to modulate their numbers in a homeostatic manner. Lhx6 is required for survival of CIs generated in the MGE MGE-derived CI loss is compensated for by a decrease in CGE-derived interneuron apoptosis Increases in cortical network activity are correlated with improved CI survival Transient, cell-autonomous depolarization improves the survival of grafted CIs
Collapse
Affiliation(s)
- Myrto Denaxa
- Nervous System Development and Homeostasis Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Guilherme Neves
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| | - Adam Rabinowitz
- Bioinformatics and Biostatistics Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sarah Kemlo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Petros Liodis
- Molecular Neurobiology, National Institute for Medical Research, the Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Juan Burrone
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
44
|
Matveeva EA, Al-Tinawi QMH, Rouchka EC, Fondufe-Mittendorf YN. Coupling of PARP1-mediated chromatin structural changes to transcriptional RNA polymerase II elongation and cotranscriptional splicing. Epigenetics Chromatin 2019; 12:15. [PMID: 30777121 PMCID: PMC6378753 DOI: 10.1186/s13072-019-0261-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/12/2019] [Indexed: 01/02/2023] Open
Abstract
Background Recently, we showed that PARP1 is involved in cotranscriptional splicing, possibly by bridging chromatin to RNA and recruiting splicing factors. It also can influence alternative splicing decisions through the regulation of RNAPII elongation. In this study, we investigated the effect of PARP1-mediated chromatin changes on RNAPII movement, during transcription and alternative splicing. Results We show that RNAPII pauses at PARP1–chromatin structures within the gene body. Knockdown of PARP1 abolishes this RNAPII pausing, suggesting that PARP1 may regulate RNAPII elongation. Additionally, PARP1 alters nucleosome deposition and histone post-translational modifications at specific exon–intron boundaries, thereby affecting RNAPII movement. Lastly, genome-wide analyses confirmed that PARP1 influences changes in RNAPII elongation by either reducing or increasing the rate of RNAPII elongation depending on the chromatin context. Conclusions These studies suggest a context-specific effect of PARP1–chromatin binding on RNA polymerase movement and provide a platform to delineate PARP1’s role in RNA biogenesis and processing. Electronic supplementary material The online version of this article (10.1186/s13072-019-0261-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena A Matveeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Qamar M H Al-Tinawi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.,Alfaisal University, Al Maather' Riyadh, 12714, Saudi Arabia
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, 522 East Gray Street, Louisville, KY, 40292, USA.,Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| | | |
Collapse
|
45
|
Gray JM, Spiegel I. Cell-type-specific programs for activity-regulated gene expression. Curr Opin Neurobiol 2018; 56:33-39. [PMID: 30529822 DOI: 10.1016/j.conb.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
Experience leaves a lasting mark on neural circuit function in part through activity-regulated gene (ARG) expression. New genome wide approaches have revealed that ARG programs are highly cell-type-specific, raising the possibility that they mediate different forms of experience-dependent plasticity in different cell types. The cell-type specificity of these gene programs is achieved by a combination of cell-intrinsic mechanisms that determine the transcriptional response of each neuronal subtype to a given stimulus and by cell-extrinsic mechanisms that influence the nature of the stimulus a cell receives. A better understanding of these mechanisms could usher in an era of molecular systems neuroscience in which genetic perturbations of cell-type-specific plasticities are assessed using electrophysiology and in vivo imaging to reveal the neural basis of adaptive behaviors.
Collapse
Affiliation(s)
- Jesse M Gray
- Department of Genetics, Harvard Medical School, Boston, United States.
| | - Ivo Spiegel
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
46
|
Diverse facets of cortical interneuron migration regulation – Implications of neuronal activity and epigenetics. Brain Res 2018; 1700:160-169. [DOI: 10.1016/j.brainres.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023]
|
47
|
Wamsley B, Jaglin XH, Favuzzi E, Quattrocolo G, Nigro MJ, Yusuf N, Khodadadi-Jamayran A, Rudy B, Fishell G. Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons. Neuron 2018; 100:846-859.e7. [PMID: 30318414 PMCID: PMC6541232 DOI: 10.1016/j.neuron.2018.09.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/03/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Cortical interneurons display a remarkable diversity in their morphology, physiological properties, and connectivity. Elucidating the molecular determinants underlying this heterogeneity is essential for understanding interneuron development and function. We discovered that alternative splicing differentially regulates the integration of somatostatin- and parvalbumin-expressing interneurons into nascent cortical circuits through the cell-type-specific tailoring of mRNAs. Specifically, we identified a role for the activity-dependent splicing regulator Rbfox1 in the development of cortical interneuron-subtype-specific efferent connectivity. Our work demonstrates that Rbfox1 mediates largely non-overlapping alternative splicing programs within two distinct but related classes of interneurons.
Collapse
Affiliation(s)
- Brie Wamsley
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Xavier Hubert Jaglin
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Emilia Favuzzi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad, 75 Ames Street, Cambridge, MA 02142, USA
| | - Giulia Quattrocolo
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Maximiliano José Nigro
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Nusrath Yusuf
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad, 75 Ames Street, Cambridge, MA 02142, USA
| | - Alireza Khodadadi-Jamayran
- Genome Technology Center, Applied Bioinformatics Laboratories, NYU Langone Medical Center, 550 First Avenue, MSB 304, New York, NY 10016, USA
| | - Bernardo Rudy
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Gord Fishell
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad, 75 Ames Street, Cambridge, MA 02142, USA.
| |
Collapse
|
48
|
Kalemaki K, Konstantoudaki X, Tivodar S, Sidiropoulou K, Karagogeos D. Mice With Decreased Number of Interneurons Exhibit Aberrant Spontaneous and Oscillatory Activity in the Cortex. Front Neural Circuits 2018; 12:96. [PMID: 30429776 PMCID: PMC6220423 DOI: 10.3389/fncir.2018.00096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 11/13/2022] Open
Abstract
GABAergic (γ-aminobutyric acid) neurons are inhibitory neurons and protect neural tissue from excessive excitation. Cortical GABAergic neurons play a pivotal role for the generation of synchronized cortical network oscillations. Imbalance between excitatory and inhibitory mechanisms underlies many neuropsychiatric disorders and is correlated with abnormalities in oscillatory activity, especially in the gamma frequency range (30–80 Hz). We investigated the functional changes in cortical network activity in response to developmentally reduced inhibition in the adult mouse barrel cortex (BC). We used a mouse model that displays ∼50% fewer cortical interneurons due to the loss of Rac1 protein from Nkx2.1/Cre-expressing cells [Rac1 conditional knockout (cKO) mice], to examine how this developmental loss of cortical interneurons may affect basal synaptic transmission, synaptic plasticity, spontaneous activity, and neuronal oscillations in the adult BC. The decrease in the number of interneurons increased basal synaptic transmission, as examined by recording field excitatory postsynaptic potentials (fEPSPs) from layer II networks in the Rac1 cKO mouse cortex, decreased long-term potentiation (LTP) in response to tetanic stimulation but did not alter the pair-pulse ratio (PPR). Furthermore, under spontaneous recording conditions, Rac1 cKO brain slices exhibit enhanced sensitivity and susceptibility to emergent spontaneous activity. We also find that this developmental decrease in the number of cortical interneurons results in local neuronal networks with alterations in neuronal oscillations, exhibiting decreased power in low frequencies (delta, theta, alpha) and gamma frequency range (30–80 Hz) with an extra aberrant peak in high gamma frequency range (80–150 Hz). Therefore, our data show that disruption in GABAergic inhibition alters synaptic properties and plasticity, while it additionally disrupts the cortical neuronal synchronization in the adult BC.
Collapse
Affiliation(s)
- Katerina Kalemaki
- School of Medicine, University of Crete, Voutes University Campus, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | | | - Simona Tivodar
- School of Medicine, University of Crete, Voutes University Campus, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Kyriaki Sidiropoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Voutes University Campus, Heraklion, Greece
| | - Domna Karagogeos
- School of Medicine, University of Crete, Voutes University Campus, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
49
|
Lim L, Mi D, Llorca A, Marín O. Development and Functional Diversification of Cortical Interneurons. Neuron 2018; 100:294-313. [PMID: 30359598 PMCID: PMC6290988 DOI: 10.1016/j.neuron.2018.10.009] [Citation(s) in RCA: 445] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
In the cerebral cortex, GABAergic interneurons have evolved as a highly heterogeneous collection of cell types that are characterized by their unique spatial and temporal capabilities to influence neuronal circuits. Current estimates suggest that up to 50 different types of GABAergic neurons may populate the cerebral cortex, all derived from progenitor cells in the subpallium, the ventral aspect of the embryonic telencephalon. In this review, we provide an overview of the mechanisms underlying the generation of the distinct types of interneurons and their integration in cortical circuits. Interneuron diversity seems to emerge through the implementation of cell-intrinsic genetic programs in progenitor cells, which unfold over a protracted period of time until interneurons acquire mature characteristics. The developmental trajectory of interneurons is also modulated by activity-dependent, non-cell-autonomous mechanisms that influence their ability to integrate in nascent circuits and sculpt their final distribution in the adult cerebral cortex.
Collapse
Affiliation(s)
- Lynette Lim
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Da Mi
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| |
Collapse
|
50
|
Medrano-Fernández A, Delgado-Garcia JM, Del Blanco B, Llinares M, Sánchez-Campusano R, Olivares R, Gruart A, Barco A. The Epigenetic Factor CBP Is Required for the Differentiation and Function of Medial Ganglionic Eminence-Derived Interneurons. Mol Neurobiol 2018; 56:4440-4454. [PMID: 30334186 PMCID: PMC6505511 DOI: 10.1007/s12035-018-1382-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/05/2018] [Indexed: 02/04/2023]
Abstract
The development of inhibitory circuits depends on the action of a network of transcription factors and epigenetic regulators that are critical for interneuron specification and differentiation. Although the identity of many of these transcription factors is well established, much less is known about the specific contribution of the chromatin-modifying enzymes that sculpt the interneuron epigenome. Here, we generated a mouse model in which the lysine acetyltransferase CBP is specifically removed from neural progenitors at the median ganglionic eminence (MGE), the structure where the most abundant types of cortical interneurons are born. Ablation of CBP interfered with the development of MGE-derived interneurons in both sexes, causing a reduction in the number of functionally mature interneurons in the adult forebrain. Genetic fate mapping experiments not only demonstrated that CBP ablation impacts on different interneuron classes, but also unveiled a compensatory increment of interneurons that escaped recombination and cushion the excitatory-inhibitory imbalance. Consistent with having a reduced number of interneurons, CBP-deficient mice exhibited a high incidence of spontaneous epileptic seizures, and alterations in brain rhythms and enhanced low gamma activity during status epilepticus. These perturbations led to abnormal behavior including hyperlocomotion, increased anxiety and cognitive impairments. Overall, our study demonstrates that CBP is essential for interneuron development and the proper functioning of inhibitory circuitry in vivo.
Collapse
Affiliation(s)
- Alejandro Medrano-Fernández
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | | | - Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | - Marián Llinares
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | | | - Román Olivares
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain.
| |
Collapse
|