1
|
Weng C, Groh AM, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 PMCID: PMC11624867 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M.R. Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G. R. Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Prado C, Herrada AA, Hevia D, Goiry LG, Escobedo N. Role of innate immune cells in multiple sclerosis. Front Immunol 2025; 16:1540263. [PMID: 40034690 PMCID: PMC11872933 DOI: 10.3389/fimmu.2025.1540263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune, inflammatory and neurodegenerative disease affecting the central nervous system (CNS). MS is associated with a complex interplay between neurodegenerative and inflammatory processes, mostly attributed to pathogenic T and B cells. However, a growing body of preclinical and clinical evidence indicates that innate immunity plays a crucial role in MS promotion and progression. Accordingly, preclinical and clinical studies targeting different innate immune cells to control MS are currently under study, highlighting the importance of innate immunity in this pathology. Here, we reviewed recent findings regarding the role played by innate immune cells in the pathogenesis of MS. Additionally, we discuss potential new treatments for MS based on targets against innate immune components.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Daniel Hevia
- Center for Studies and Innovation in Dentistry, Facultad de Odontología, Universidad Finis Terrae, Santiago, Chile
| | - Lorna Galleguillos Goiry
- Neurology and Psychiatry Department, Clínica Alemana, Neurology and Neurosurgery Department, Clínica Dávila, Santiago, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
3
|
Pogoda-Wesołowska A, Sługocka N, Synowiec A, Brodaczewska K, Mejer-Zahorowski M, Ziękiewicz M, Szypowski W, Szymański P, Stępień A. The current state of knowledge on the role of NKG2D ligands in multiple sclerosis and other autoimmune diseases. Front Mol Neurosci 2025; 17:1493308. [PMID: 39866909 PMCID: PMC11758245 DOI: 10.3389/fnmol.2024.1493308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing. However, its exact cause remains unclear. The main tests used to support the diagnosis are magnetic resonance imaging (MRI) examination and cerebrospinal fluid (CSF) analysis. Nonetheless, to date, no sensitive or specific marker has been identified for the detection of the disease at its initial stage. In recent years, researchers have focused on the fact that the number of natural killer cell group 2 member D (NKG2D) family of C-type lectin-like receptor + (NKG2D+) T cells in the peripheral blood, CSF, and brain tissue has been shown to be higher in patients with MS than in controls. The activating receptor belonging to the NKG2D is stimulated by specific ligands: in humans these are major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) and MHC class I polypeptide-related sequence B (MICB) proteins and UL16 binding 1-6 proteins (ULBP1-6). Under physiological conditions, the aforementioned ligands are expressed at low or undetectable levels but can be induced in response to stress factors. NKG2D ligands (NKG2DLs) are involved in epigenetic regulation of their expression. To date, studies in cell cultures, animal models, and brain tissues have revealed elevated expression of MICA/B, ULPB4, and its mouse homolog murine UL16 binding protein-like transcript (MULT1), in oligodendrocytes and astrocytes from patients with MS. Furthermore, soluble forms of NKG2DLs were elevated in the plasma and CSF of patients with MS compared to controls. In this review, we aim to describe the role of NKG2D and NKG2DLs, and their interactions in the pathogenesis of MS, as well as in other autoimmune diseases such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), and celiac disease (CeD). We also assess the potential of these proteins as diagnostic markers and consider future perspectives for targeting NKG2D ligands and their pathways as therapeutic targets in MS.
Collapse
Affiliation(s)
| | - Nina Sługocka
- Faculty of Medicine, University of Warsaw, Warsaw, Poland
| | - Agnieszka Synowiec
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marcin Mejer-Zahorowski
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Maciej Ziękiewicz
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Wojciech Szypowski
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Piotr Szymański
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Adam Stępień
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| |
Collapse
|
4
|
Drosu N, Bjornevik K, Cortese M, Levy M, Sollid LM. Coeliac disease as a model for understanding multiple sclerosis. Nat Rev Neurol 2024; 20:685-690. [PMID: 39379493 DOI: 10.1038/s41582-024-01025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The genetic architecture of multiple sclerosis (MS) is similar to that of coeliac disease, with human leukocyte antigen (HLA) being the greatest genetic determinant in both diseases. Furthermore, similar to the involvement of gluten in coeliac disease, Epstein-Barr virus (EBV) infection is now widely considered to be an important environmental factor in MS. The molecular basis for the HLA association in coeliac disease is well defined, and B cells have a clear role in antigen presentation to gluten-specific CD4+ T cells. By contrast, the mechanisms underlying the HLA association of MS are unknown but accumulating evidence indicates a similar role of B cells acting as antigen-presenting cells. The growing parallels suggest that much could be learned about the mechanisms of MS by using coeliac disease as a model. In this Perspective article, we discuss the insights that could be gained from these parallels and consider the possibility of antiviral treatment against EBV as a therapy for MS that is analogous to the gluten-free diet in coeliac disease.
Collapse
Affiliation(s)
- Natalia Drosu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marianna Cortese
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ludvig M Sollid
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| |
Collapse
|
5
|
Hofstra BM, Kas MJH, Verbeek DS. Comprehensive analysis of genetic risk loci uncovers novel candidate genes and pathways in the comorbidity between depression and Alzheimer's disease. Transl Psychiatry 2024; 14:253. [PMID: 38862462 PMCID: PMC11166962 DOI: 10.1038/s41398-024-02968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
There is growing evidence of a shared pathogenesis between Alzheimer's disease and depression. Therefore, we aimed to further investigate their shared disease mechanisms. We made use of publicly available brain-specific eQTL data and gene co-expression networks of previously reported genetic loci associated with these highly comorbid disorders. No direct genetic overlap was observed between Alzheimer's disease and depression in our dataset, but we did detect six shared brain-specific eQTL genes: SRA1, MICA, PCDHA7, PCDHA8, PCDHA10 and PCDHA13. Several pathways were identified as shared between Alzheimer's disease and depression by conducting clustering pathway analysis on hippocampal co-expressed genes; synaptic signaling and organization, myelination, development, and the immune system. This study highlights trans-synaptic signaling and synaptoimmunology in the hippocampus as main shared pathomechanisms of Alzheimer's disease and depression.
Collapse
Affiliation(s)
- Bente M Hofstra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Balint E, Feng E, Giles EC, Ritchie TM, Qian AS, Vahedi F, Montemarano A, Portillo AL, Monteiro JK, Trigatti BL, Ashkar AA. Bystander activated CD8 + T cells mediate neuropathology during viral infection via antigen-independent cytotoxicity. Nat Commun 2024; 15:896. [PMID: 38316762 PMCID: PMC10844499 DOI: 10.1038/s41467-023-44667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Although many viral infections are linked to the development of neurological disorders, the mechanism governing virus-induced neuropathology remains poorly understood, particularly when the virus is not directly neuropathic. Using a mouse model of Zika virus (ZIKV) infection, we found that the severity of neurological disease did not correlate with brain ZIKV titers, but rather with infiltration of bystander activated NKG2D+CD8+ T cells. Antibody depletion of CD8 or blockade of NKG2D prevented ZIKV-associated paralysis, suggesting that CD8+ T cells induce neurological disease independent of TCR signaling. Furthermore, spleen and brain CD8+ T cells exhibited antigen-independent cytotoxicity that correlated with NKG2D expression. Finally, viral infection and inflammation in the brain was necessary but not sufficient to induce neurological damage. We demonstrate that CD8+ T cells mediate virus-induced neuropathology via antigen-independent, NKG2D-mediated cytotoxicity, which may serve as a therapeutic target for treatment of virus-induced neurological disease.
Collapse
Affiliation(s)
- Elizabeth Balint
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily Feng
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elizabeth C Giles
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Tyrah M Ritchie
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexander S Qian
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amelia Montemarano
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ana L Portillo
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jonathan K Monteiro
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bernardo L Trigatti
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Kim HW, Wang S, Davies AJ, Oh SB. The therapeutic potential of natural killer cells in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00133-9. [PMID: 37385878 DOI: 10.1016/j.tins.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Novel disease-modifying treatments for neuropathic pain are urgently required. The cellular immune response to nerve injury represents a promising target for therapeutic development. Recently, the role of natural killer (NK) cells in both CNS and PNS disease has been the subject of growing interest. In this opinion article, we set out the case for NK cell-based intervention as a promising avenue for development in the management of neuropathic pain. We explore the potential cellular and molecular targets of NK cells in the PNS by contrasting with their reported functional roles in CNS diseases, and we suggest strategies for using the beneficial functions of NK cells and immune-based therapeutics in the context of neuropathic pain.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Shuaiwei Wang
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexander J Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Carmena Moratalla A, Carpentier Solorio Y, Lemaître F, Farzam-Kia N, Da Cal S, Guimond JV, Haddad E, Duquette P, Girard JM, Prat A, Larochelle C, Arbour N. Specific alterations in NKG2D + T lymphocytes in relapsing-remitting and progressive multiple sclerosis patients. Mult Scler Relat Disord 2023; 71:104542. [PMID: 36716577 DOI: 10.1016/j.msard.2023.104542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND T lymphocytes exhibit numerous alterations in relapsing-remitting (RRMS), secondary progressive (SPMS), and primary progressive multiple sclerosis (PPMS). The NKG2D pathway has been involved in MS pathology. NKG2D is a co-activating receptor on subsets of CD4+ and most CD8+ T lymphocytes. The ligands of NKG2D are expressed at low levels in normal tissues but are elevated in MS postmortem brain tissues compared with controls. Whether the NKG2D pathway shows specific changes in different forms of MS remains unclear. METHODS We performed unsupervised and supervised flow cytometry analysis to characterize peripheral blood T lymphocytes from RRMS, SPMS, and PPMS patients and healthy controls (HC). We used an in vitro microscopy approach to assess the role of NKG2D in the interactions between human CD8+T lymphocytes and human astrocytes. RESULTS Specific CD8+, CD4+, and CD4-CD8- T cell populations exhibited altered frequency in MS patients' subgroups. The proportion of NKG2D+ T lymphocytes declined with age in PPMS patients but not in RRMS and HC. This reduced percentage of NKG2D+ cells was due to lower abundance of γδ and αβ CD4-CD8- T lymphocytes in PPMS patients. NKG2D+ T lymphocytes were significantly less abundant in RRMS than in HC; this was caused by a decreased frequency of CD4-CD8- and CD8+ T lymphocytes and was not linked to age. Blocking NKG2D increased the motility of CD8+ T lymphocytes co-cultured with astrocytes expressing NKG2D ligand. Moreover, preventing NKG2D from interacting with its ligands increased the proportion of CD8+ T lymphocytes exhibiting a kinapse-like behavior characterized by short-term interaction while reducing those displaying a long-lasting synapse-like behavior. These results support that NKG2D participates in the establishment of long-term interactions between activated CD8+ T lymphocytes and astrocytes. CONCLUSION Our data demonstrate specific alterations in NKG2D+ T lymphocytes in MS patients' subgroups and suggest that NKG2D contributes to the interactions between human CD8+ T lymphocytes and human astrocytes.
Collapse
Affiliation(s)
- Ana Carmena Moratalla
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Yves Carpentier Solorio
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Florent Lemaître
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Negar Farzam-Kia
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Sandra Da Cal
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9
| | - Jean Victor Guimond
- CLSC des Faubourgs, CIUSSS du Centre-Sud-de-l'Ile-de-Montréal, Montreal, QC, Canada
| | - Elie Haddad
- Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics, Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Pierre Duquette
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - J Marc Girard
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - Catherine Larochelle
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9; MS-CHUM Clinic 900 St-Denis Street, Montreal, QC, Canada, H2X0A9
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM) 900 St-Denis Street Montreal, QC, Canada, H2X0A9.
| |
Collapse
|
9
|
Molina-Gonzalez I, Miron VE, Antel JP. Chronic oligodendrocyte injury in central nervous system pathologies. Commun Biol 2022; 5:1274. [PMID: 36402839 PMCID: PMC9675815 DOI: 10.1038/s42003-022-04248-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Myelin, the membrane surrounding neuronal axons, is critical for central nervous system (CNS) function. Injury to myelin-forming oligodendrocytes (OL) in chronic neurological diseases (e.g. multiple sclerosis) ranges from sublethal to lethal, leading to OL dysfunction and myelin pathology, and consequent deleterious impacts on axonal health that drive clinical impairments. This is regulated by intrinsic factors such as heterogeneity and age, and extrinsic cellular and molecular interactions. Here, we discuss the responses of OLs to injury, and perspectives for therapeutic targeting. We put forward that targeting mature OL health in neurological disease is a promising therapeutic strategy to support CNS function.
Collapse
Affiliation(s)
- Irene Molina-Gonzalez
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK
| | - Veronique E. Miron
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK ,grid.415502.7Barlo Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, Canada
| | - Jack P. Antel
- grid.14709.3b0000 0004 1936 8649Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| |
Collapse
|
10
|
Sadeghi Hassanabadi N, Broux B, Marinović S, Gotthardt D. Innate Lymphoid Cells - Neglected Players in Multiple Sclerosis. Front Immunol 2022; 13:909275. [PMID: 35784374 PMCID: PMC9247827 DOI: 10.3389/fimmu.2022.909275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a highly debilitating autoimmune disease affecting millions of individuals worldwide. Although classically viewed as T-cell mediated disease, the role of innate lymphoid cells (ILC) such as natural killer (NK) cells and ILC 1-3s has become a focal point as several findings implicate them in the disease pathology. The role of ILCs in MS is still not completely understood as controversial findings have been reported assigning them either a protective or disease-accelerating role. Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that ILCs infiltrate the central nervous system (CNS), mediate inflammation, and have a disease exacerbating role by influencing the recruitment of autoreactive T-cells. Elucidating the detailed role of ILCs and altered signaling pathways in MS is essential for a more complete picture of the disease pathology and novel therapeutic targets. We here review the current knowledge about ILCs in the development and progression of MS and preclinical models of MS and discuss their potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Bieke Broux
- University MSCenter; Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Sonja Marinović
- Division of Molecular Medicine, Laboratory of Personalized Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- *Correspondence: Dagmar Gotthardt,
| |
Collapse
|
11
|
Zang X, Chen S, Zhu J, Ma J, Zhai Y. The Emerging Role of Central and Peripheral Immune Systems in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:872134. [PMID: 35547626 PMCID: PMC9082639 DOI: 10.3389/fnagi.2022.872134] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
For decades, it has been widely believed that the blood-brain barrier (BBB) provides an immune privileged environment in the central nervous system (CNS) by blocking peripheral immune cells and humoral immune factors. This view has been revised in recent years, with increasing evidence revealing that the peripheral immune system plays a critical role in regulating CNS homeostasis and disease. Neurodegenerative diseases are characterized by progressive dysfunction and the loss of neurons in the CNS. An increasing number of studies have focused on the role of the connection between the peripheral immune system and the CNS in neurodegenerative diseases. On the one hand, peripherally released cytokines can cross the BBB, cause direct neurotoxicity and contribute to the activation of microglia and astrocytes. On the other hand, peripheral immune cells can also infiltrate the brain and participate in the progression of neuroinflammatory and neurodegenerative diseases. Neurodegenerative diseases have a high morbidity and disability rate, yet there are no effective therapies to stop or reverse their progression. In recent years, neuroinflammation has received much attention as a therapeutic target for many neurodegenerative diseases. In this review, we highlight the emerging role of the peripheral and central immune systems in neurodegenerative diseases, as well as their interactions. A better understanding of the emerging role of the immune systems may improve therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si Chen
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - JunYao Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junwen Ma
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Jamann H, Cui QL, Desu HL, Pernin F, Tastet O, Halaweh A, Farzam-kia N, Mamane VH, Ouédraogo O, Cleret-Buhot A, Daigneault A, Balthazard R, Klement W, Lemaître F, Arbour N, Antel J, Stratton JA, Larochelle C. Contact-Dependent Granzyme B-Mediated Cytotoxicity of Th17-Polarized Cells Toward Human Oligodendrocytes. Front Immunol 2022; 13:850616. [PMID: 35479072 PMCID: PMC9035748 DOI: 10.3389/fimmu.2022.850616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by the loss of myelin and of myelin-producing oligodendrocytes (OLs) in the central nervous system (CNS). Pro-inflammatory CD4+ Th17 cells are considered pathogenic in MS and are harmful to OLs. We investigated the mechanisms driving human CD4+ T cell-mediated OL cell death. Using fluorescent and brightfield in vitro live imaging, we found that compared to Th2-polarized cells, Th17-polarized cells show greater interactions with primary human OLs and human oligodendrocytic cell line MO3.13, displaying longer duration of contact, lower mean speed, and higher rate of vesicle-like structure formation at the sites of contact. Using single-cell RNA sequencing, we assessed the transcriptomic profile of primary human OLs and Th17-polarized cells in direct contact or separated by an insert. We showed that upon close interaction, OLs upregulate the expression of mRNA coding for chemokines and antioxidant/anti-apoptotic molecules, while Th17-polarized cells upregulate the expression of mRNA coding for chemokines and pro-inflammatory cytokines such as IL-17A, IFN-γ, and granzyme B. We found that secretion of CCL3, CXCL10, IFN-γ, TNFα, and granzyme B is induced upon direct contact in cocultures of human Th17-polarized cells with human OLs. In addition, we validated by flow cytometry and immunofluorescence that granzyme B levels are upregulated in Th17-polarized compared to Th2-polarized cells and are even higher in Th17-polarized cells upon direct contact with OLs or MO3.13 cells compared to Th17-polarized cells separated from OLs by an insert. Moreover, granzyme B is detected in OLs and MO3.13 cells following direct contact with Th17-polarized cells, suggesting the release of granzyme B from Th17-polarized cells into OLs/MO3.13 cells. To confirm granzyme B–mediated cytotoxicity toward OLs, we showed that recombinant human granzyme B can induce OLs and MO3.13 cell death. Furthermore, pretreatment of Th17-polarized cells with a reversible granzyme B blocker (Ac-IEPD-CHO) or a natural granzyme B blocker (serpina3N) improved survival of MO3.13 cells upon coculture with Th17 cells. In conclusion, we showed that human Th17-polarized cells form biologically significant contacts with human OLs and exert direct toxicity by releasing granzyme B.
Collapse
Affiliation(s)
- Hélène Jamann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Haritha L. Desu
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Florian Pernin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Alexandre Halaweh
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Immunology and Infectiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Negar Farzam-kia
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Victoria Hannah Mamane
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Oumarou Ouédraogo
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Immunology and Infectiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Aurélie Cleret-Buhot
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Audrey Daigneault
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Renaud Balthazard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Wendy Klement
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Florent Lemaître
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Catherine Larochelle
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Catherine Larochelle,
| |
Collapse
|
13
|
Carmena Moratalla A, Carpentier Solorio Y, Lemaitre F, Farzam-Kia N, Levert A, Zandee SEJ, Lahav B, Guimond JV, Haddad E, Girard M, Duquette P, Larochelle C, Prat A, Arbour N. Stress Signal ULBP4, an NKG2D Ligand, Is Upregulated in Multiple Sclerosis and Shapes CD8 + T-Cell Behaviors. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/1/e1119. [PMID: 34873031 PMCID: PMC8656234 DOI: 10.1212/nxi.0000000000001119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES We posit the involvement of the natural killer group 2D (NKG2D) pathway in multiple sclerosis (MS) pathology via the presence of specific NKG2D ligands (NKG2DLs). We aim to evaluate the expression of NKG2DLs in the CNS and CSF of patients with MS and to identify cellular stressors inducing the expression of UL16-binding protein 4 (ULBP4), the only detectable NKG2DL. Finally, we evaluate the impact of ULBP4 on functions such as cytokine production and motility by CD8+ T lymphocytes, a subset largely expressing NKG2D, the cognate receptor. METHODS Human postmortem brain samples and CSF from patients with MS and controls were used to evaluate NKG2DL expression. In vitro assays using primary cultures of human astrocytes and neurons were performed to identify stressors inducing ULBP4 expression. Human CD8+ T lymphocytes from MS donors and age/sex-matched healthy controls were isolated to evaluate the functional impact of soluble ULBP4. RESULTS We detected mRNA coding for the 8 identified human NKG2DLs in brain samples from patients with MS and controls, but only ULBP4 protein expression was detectable by Western blot. ULBP4 levels were greater in patients with MS, particularly in active and chronic active lesions and normal-appearing white matter, compared with normal-appearing gray matter from MS donors and white and gray matter from controls. Soluble ULBP4 was also detected in CSF of patients with MS and controls, but a smaller shed/soluble form of 25 kDa was significantly elevated in CSF from female patients with MS compared with controls and male patients with MS. Our data indicate that soluble ULBP4 affects various functions of CD8+ T lymphocytes. First, it enhanced the production of the proinflammatory cytokines GM-CSF and interferon-γ (IFNγ). Second, it increased CD8+ T lymphocyte motility and favored a kinapse-like behavior when cultured in the presence of human astrocytes. CD8+ T lymphocytes from patients with MS were especially altered by the presence of soluble ULBP4 compared with healthy controls. DISCUSSION Our study provides new evidence for the involvement of NKG2D and its ligand ULBP4 in MS pathology. Our results point to ULBP4 as a viable target to specifically block 1 component of the NKG2D pathway without altering immune surveillance involving other NKG2DL.
Collapse
Affiliation(s)
- Ana Carmena Moratalla
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Yves Carpentier Solorio
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Florent Lemaitre
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Negar Farzam-Kia
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Annie Levert
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Stephanie E J Zandee
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Boaz Lahav
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Jean Victor Guimond
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Elie Haddad
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Marc Girard
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Pierre Duquette
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Catherine Larochelle
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Alexandre Prat
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Nathalie Arbour
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
15
|
Schwichtenberg SC, Wisgalla A, Schroeder-Castagno M, Alvarez-González C, Schlickeiser S, Siebert N, Bellmann-Strobl J, Wernecke KD, Paul F, Dörr J, Infante-Duarte C. Fingolimod Therapy in Multiple Sclerosis Leads to the Enrichment of a Subpopulation of Aged NK Cells. Neurotherapeutics 2021; 18:1783-1797. [PMID: 34244929 PMCID: PMC8608997 DOI: 10.1007/s13311-021-01078-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Fingolimod is an approved oral treatment for relapsing-remitting multiple sclerosis (RRMS) that modulates agonistically the sphingosin-1-phosphate receptor (S1PR), inhibiting thereby the egress of lymphocytes from the lymph nodes. In this interventional prospective clinical phase IV trial, we longitudinally investigated the impact of fingolimod on frequencies of NK cell subpopulations by flow cytometry in 17 RRMS patients at baseline and 1, 3, 6, and 12 months after treatment initiation. Clinical outcome was assessed by the Expanded Disability Status Scale (EDSS) and annualized relapse rates (ARR). Over the study period, median EDSS remained stable from month 3 to month 12, and ARR decreased compared to ARR in the 24 months prior treatment. Treatment was paralleled by an increased frequency of circulating NK cells, due primarily to an increase in CD56dimCD94low mature NK cells, while the CD56bright fraction and CD127+ innate lymphoid cells (ILCs) decreased over time. An unsupervised clustering algorithm further revealed that a particular fraction of NK cells defined by the expression of CD56dimCD16++KIR+/-NKG2A-CD94-CCR7+/-CX3CR1+/-NKG2C-NKG2D+NKp46-DNAM1++CD127+ increased during treatment. This specific phenotype might reflect a status of aged, fully differentiated, and less functional NK cells. Our study confirms that fingolimod treatment affects both NK cells and ILC. In addition, our study suggests that treatment leads to the enrichment of a specific NK cell subset characterized by an aged phenotype. This might limit the anti-microbial and anti-tumour NK cell activity in fingolimod-treated patients.
Collapse
Affiliation(s)
- Svenja C Schwichtenberg
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
| | - Anne Wisgalla
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for "Psychiatrie Und Medizinische Klinik M.S. Psychosomatik,", Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Maria Schroeder-Castagno
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
| | - Cesar Alvarez-González
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Föhrer Str. 15, 13353, Berlin, Germany
| | - Nadja Siebert
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Klaus-Dieter Wernecke
- Charité - Universitätsmedizin Berlin and CRO SOSTANA GmbH, Wildensteiner Straße 27, 10318, Berlin, Germany
| | - Friedemann Paul
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Jan Dörr
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Current Affiliation: Multiple Sclerosis Center, Oberhavel Kliniken, Marwitzer Straße 91, 16761, Hennigsdorf, Germany
| | - Carmen Infante-Duarte
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany.
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
16
|
Balint E, Ashkar AA. Remote hyperinflammation drives neurological disease via T-cell-mediated innate-like cytotoxicity. Cell Mol Immunol 2021; 18:1638-1640. [PMID: 34099888 PMCID: PMC8245544 DOI: 10.1038/s41423-021-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 02/03/2023] Open
Affiliation(s)
- Elizabeth Balint
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Ali A Ashkar
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Lemaître F, Carmena Moratalla A, Farzam-Kia N, Carpentier Solorio Y, Tastet O, Cleret-Buhot A, Guimond JV, Haddad E, Arbour N. Capturing T Lymphocytes' Dynamic Interactions With Human Neural Cells Using Time-Lapse Microscopy. Front Immunol 2021; 12:668483. [PMID: 33968073 PMCID: PMC8100528 DOI: 10.3389/fimmu.2021.668483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
To fully perform their functions, T lymphocytes migrate within organs’ parenchyma and interact with local cells. Infiltration of T lymphocytes within the central nervous system (CNS) is associated with numerous neurodegenerative disorders. Nevertheless, how these immune cells communicate and respond to neural cells remains unresolved. To investigate the behavior of T lymphocytes that reach the CNS, we have established an in vitro co-culture model and analyzed the spatiotemporal interactions between human activated CD8+ T lymphocytes and primary human astrocytes and neurons using time-lapse microscopy. By combining multiple variables extracted from individual CD8+ T cell tracking, we show that CD8+ T lymphocytes adopt a more motile and exploratory behavior upon interacting with astrocytes than with neurons. Pretreatment of astrocytes or neurons with IL-1β to mimic in vivo inflammation significantly increases CD8+ T lymphocyte motility. Using visual interpretation and analysis of numerical variables extracted from CD8+ T cell tracking, we identified four distinct CD8+ T lymphocyte behaviors: scanning, dancing, poking and round. IL-1β-pretreatment significantly increases the proportion of scanning CD8+ T lymphocytes, which are characterized by active exploration, and reduces the proportion of round CD8+ T lymphocytes, which are less active. Blocking MHC class I on astrocytes significantly diminishes the proportion of poking CD8+ T lymphocytes, which exhibit synapse-like interactions. Lastly, our co-culture time-lapse model is easily adaptable and sufficiently sensitive and powerful to characterize and quantify spatiotemporal interactions between human T lymphocytes and primary human cells in different conditions while preserving viability of fragile cells such as neurons and astrocytes.
Collapse
Affiliation(s)
- Florent Lemaître
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Negar Farzam-Kia
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Aurélie Cleret-Buhot
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Jean Victor Guimond
- Centre Local de Services Communautaires des Faubourgs, Centre Intégré Universitaire en Santé et Services Sociaux du Centre-Sud-de-l'Ile-de-Montréal, Montréal, QC, Canada
| | - Elie Haddad
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
18
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
19
|
Michel L, Grasmuck C, Charabati M, Lécuyer MA, Zandee S, Dhaeze T, Alvarez JI, Li R, Larouche S, Bourbonnière L, Moumdjian R, Bouthillier A, Lahav B, Duquette P, Bar-Or A, Gommerman JL, Peelen E, Prat A. Activated leukocyte cell adhesion molecule regulates B lymphocyte migration across central nervous system barriers. Sci Transl Med 2020; 11:11/518/eaaw0475. [PMID: 31723036 DOI: 10.1126/scitranslmed.aaw0475] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/10/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
The presence of B lymphocyte-associated oligoclonal immunoglobulins in the cerebrospinal fluid is a classic hallmark of multiple sclerosis (MS). The clinical efficacy of anti-CD20 therapies supports a major role for B lymphocytes in MS development. Although activated oligoclonal populations of pathogenic B lymphocytes are able to traffic between the peripheral circulation and the central nervous system (CNS) in patients with MS, molecular players involved in this migration have not yet been elucidated. In this study, we demonstrated that activated leukocyte cell adhesion molecule (ALCAM/CD166) identifies subsets of proinflammatory B lymphocytes and drives their transmigration across different CNS barriers in mouse and human. We also showcased that blocking ALCAM alleviated disease severity in animals affected by a B cell-dependent form of experimental autoimmune encephalomyelitis. Last, we determined that the proportion of ALCAM+ B lymphocytes was increased in the peripheral blood and within brain lesions of patients with MS. Our findings indicate that restricting access to the CNS by targeting ALCAM on pathogenic B lymphocytes might represent a promising strategy for the development of next-generation B lymphocyte-targeting therapies for the treatment of MS.
Collapse
Affiliation(s)
- Laure Michel
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Camille Grasmuck
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Marc Charabati
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Marc-André Lécuyer
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Stephanie Zandee
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Tessa Dhaeze
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Jorge I Alvarez
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Larouche
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Lyne Bourbonnière
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | | | - Boaz Lahav
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Pierre Duquette
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Evelyn Peelen
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Alexandre Prat
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC Canada. .,Neuroimmunology Unit, Centre de recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| |
Collapse
|
20
|
Benkhoucha M, Senoner I, Lalive PH. c-Met is expressed by highly autoreactive encephalitogenic CD8+ cells. J Neuroinflammation 2020; 17:68. [PMID: 32075650 PMCID: PMC7031922 DOI: 10.1186/s12974-019-1676-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022] Open
Abstract
Background CD8+ T lymphocytes are critical mediators of neuroinflammatory diseases. Understanding the mechanisms that govern the function of this T cell population is crucial to better understanding central nervous system autoimmune disease pathology. We recently identified a novel population of highly cytotoxic c-Met-expressing CD8+ T lymphocytes and found that hepatocyte growth factor (HGF) limits effective murine cytotoxic T cell responses in cancer models. Here, we examined the role of c-Met-expressing CD8+ T cells by using a MOG35–55 T cell-mediated EAE model. Methods Mice were subcutaneously immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35–55 in complete Freund’s adjuvant (CFA). Peripheral and CNS inflammation was evaluated at peak disease and chronic phase, and c-Met expression by CD8 was evaluated by flow cytometry and immunofluorescence. Molecular, cellular, and killing function analysis were performed by real-time PCR, ELISA, flow cytometry, and killing assay. Results In the present study, we observed that a fraction of murine effector CD8+ T cells expressed c-Met receptor (c-Met+CD8+) in an experimental autoimmune encephalitis (EAE) model. Phenotypic and functional analysis of c-Met+CD8+ T cells revealed that they recognize the encephalitogenic epitope myelin oligodendrocyte glycoprotein37–50. We demonstrated that this T cell population produces higher levels of interferon-γ and granzyme B ex vivo and that HGF directly restrains the cytolytic function of c-Met+CD8+ T cells in cell-mediated cytotoxicity reactions Conclusions Altogether, our findings suggest that the HGF/c-Met pathway could be exploited to modulate CD8+ T cell-mediated neuroinflammation.
Collapse
Affiliation(s)
- Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isis Senoner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrice H Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Department of Neurosciences, Division of Neurology, University Hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
21
|
Tahrali I, Kucuksezer UC, Akdeniz N, Altintas A, Uygunoglu U, Aktas-Cetin E, Deniz G. CD3 -CD56 + NK cells display an inflammatory profile in RR-MS patients. Immunol Lett 2019; 216:63-69. [PMID: 31589897 DOI: 10.1016/j.imlet.2019.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
Abstract
Multiple Sclerosis (MS) is an immune-mediated and neurodegenerative disease of central nervous system. Relapsing-remitting (RR)-MS occurring with acute attacks and remissions, is the most common clinical type of MS. There are different strategies applied in first-line treatment of RR-MS patients such as interferon-beta (IFN-β) and glatiramer acetate. In this study, activating and inhibitory receptor expressions and interleukin (IL)-22 levels of NK cells were investigated in RR-MS patients with or without IFN-β therapy. Activating receptor expression and IL-22 levels of NK cells were increased in RR-MS patients under IFN-β therapy. Elevated NK cells with activating profile and increased IL-22 under IFN-β therapy suggest that IFN-β treatment might direct NK cells toward a pro-inflammatory status.
Collapse
Affiliation(s)
- Ilhan Tahrali
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | - Umut Can Kucuksezer
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | - Nilgun Akdeniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | - Ayse Altintas
- Koc University, Faculty of Medicine, Department of Neurology, Istanbul, Turkey; Istanbul University Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Ugur Uygunoglu
- Istanbul University Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Esin Aktas-Cetin
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | - Gunnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey.
| |
Collapse
|
22
|
Healy LM, Yaqubi M, Ludwin S, Antel JP. Species differences in immune-mediated CNS tissue injury and repair: A (neuro)inflammatory topic. Glia 2019; 68:811-829. [PMID: 31724770 DOI: 10.1002/glia.23746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
Cells of the adaptive and innate immune systems in the brain parenchyma and in the meningeal spaces contribute to physiologic functions and disease states in the central nervous system (CNS). Animal studies have demonstrated the involvement of immune constituents, along with major histocompatibility complex (MHC) molecules, in neural development and rare genetic disorders (e.g., colony stimulating factor 1 receptor [CSF1R] deficiency). Genome wide association studies suggest a comparable role of the immune system in humans. Although the CNS can be the target of primary autoimmune disorders, no current experimental model captures all of the features of the most common human disorder placed in this category, multiple sclerosis (MS). Such features include spontaneous onset, environmental contributions, and a recurrent/progressive disease course in a genetically predisposed host. Numerous therapeutic interventions related to antigen and cytokine specific therapies have demonstrated effectiveness in experimental autoimmune encephalomyelitis (EAE), the animal model used to define principles underlying immune-mediated mechanisms in MS. Despite the similarities in the two diseases, most treatments used to ameliorate EAE have failed to translate to the human disease. As directly demonstrated in animal models and implicated by correlative studies in humans, adaptive and innate immune constituents within the systemic compartment and resident in the CNS contribute to the disease course of neurodegenerative and neurobehavioral disorders. The expanding knowledge of the molecular properties of glial cells provides increasing insights into species related variables. These variables affect glial bidirectional interactions with the immune system as well as their own production of "immune molecules" that mediate tissue injury and repair.
Collapse
Affiliation(s)
- Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Samuel Ludwin
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
23
|
Banerjee PP, Pang L, Soldan SS, Miah SM, Eisenberg A, Maru S, Waldman A, Smith EA, Rosenberg-Hasson Y, Hirschberg D, Smith A, Ablashi DV, Campbell KS, Orange JS. KIR2DL4-HLAG interaction at human NK cell-oligodendrocyte interfaces regulates IFN-γ-mediated effects. Mol Immunol 2019; 115:39-55. [PMID: 30482463 PMCID: PMC6543535 DOI: 10.1016/j.molimm.2018.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/11/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022]
Abstract
Interactions between germline-encoded natural killer (NK) cell receptors and their respective ligands on tumorigenic or virus-infected cells determine NK cell cytotoxic activity and/or cytokine secretion. NK cell cytokine responses can be augmented in and can potentially contribute to multiple sclerosis (MS), an inflammatory disease of the central nervous system focused upon the oligodendrocytes (OLs). To investigate mechanisms by which NK cells may contribute to MS pathogenesis, we developed an in vitro human model of OL-NK cell interaction. We found that activated, but not resting human NK cells form conjugates with, and mediate cytotoxicity against, human oligodendrocytes. NK cells, when in conjugate with OLs, rapidly synthesize and polarize IFN-γ toward the OLs. IFN-γ is capable of reducing myelin oligodendrocyte and myelin associated glycoproteins (MOG and MAG) content. This activity is independent of MHC class-I mediated inhibition via KIR2DL1, but dependent upon the interaction between NK cell-expressed KIR2DL4 and its oligodendrocyte-expressed ligand, HLA-G. NK cells from patients with MS express higher levels of IFN-γ following conjugation to OLs, more actively promote in vitro reduction of MOG and MAG and have higher frequencies of the KIR2DL4 positive population. These data collectively suggest a mechanism by which NK cells can promote pathogenic effects upon OLs.
Collapse
Affiliation(s)
- P P Banerjee
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX-77030, USA; Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates St, Houston, TX, 77030, USA.
| | - L Pang
- Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates St, Houston, TX, 77030, USA
| | - S S Soldan
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA
| | - S M Miah
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - A Eisenberg
- The Children's Hospital of Philadelphia Research Institute, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - S Maru
- The Children's Hospital of Philadelphia Research Institute, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - A Waldman
- The Children's Hospital of Philadelphia Research Institute, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - E A Smith
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX-77030, USA; Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates St, Houston, TX, 77030, USA
| | - Y Rosenberg-Hasson
- Human Immune Monitoring Center, Stanford School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - D Hirschberg
- Human Immune Monitoring Center, Stanford School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - A Smith
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX-77030, USA; Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates St, Houston, TX, 77030, USA
| | - D V Ablashi
- Human Herpes Virus 6 Foundation, 1482 East Valley Road, Suite 619 Santa Barbara, CA 93108, USA
| | - K S Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - J S Orange
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX-77030, USA; Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates St, Houston, TX, 77030, USA
| |
Collapse
|
24
|
Shepard CJ, Cline SG, Hinds D, Jahanbakhsh S, Prokop JW. Breakdown of multiple sclerosis genetics to identify an integrated disease network and potential variant mechanisms. Physiol Genomics 2019; 51:562-577. [PMID: 31482761 DOI: 10.1152/physiolgenomics.00120.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genetics of multiple sclerosis (MS) are highly polygenic with few insights into mechanistic associations with pathology. In this study, we assessed MS genetics through linkage disequilibrium and missense variant interpretation to yield a MS gene network. This network of 96 genes was taken through pathway analysis, tissue expression profiles, single cell expression segregation, expression quantitative trait loci (eQTLs), genome annotations, transcription factor (TF) binding profiles, structural genome looping, and overlap with additional associated genetic traits. This work revealed immune system dysfunction, nerve cell myelination, energetic control, transcriptional regulation, and variants that overlap multiple autoimmune disorders. Tissue-specific expression and eQTLs of MS genes implicate multiple immune cell types including macrophages, neutrophils, and T cells, while the genes in neural cell types enrich for oligodendrocyte and myelin sheath biology. There are eQTLs in linkage with lead MS variants in 25 genes including the multitissue eQTL, rs9271640, for HLA-DRB1/DRB5. Using multiple functional genomic databases, we identified noncoding variants that disrupt TF binding for GABPA, CTCF, EGR1, YY1, SPI1, CLOCK, ARNTL, BACH1, and GFI1. Overall, this paper suggests multiple genetic mechanisms for MS associated variants while highlighting the importance of a systems biology and network approach when elucidating intersections of the immune and nervous system.
Collapse
Affiliation(s)
- C Joy Shepard
- Department of Biology, Athens State University, Athens, Alabama.,Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sara G Cline
- Department of Biology, Athens State University, Athens, Alabama
| | - David Hinds
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Seyedehameneh Jahanbakhsh
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
25
|
Campos-Silva C, Kramer MK, Valés-Gómez M. NKG2D-ligands: Putting everything under the same umbrella can be misleading. HLA 2019. [PMID: 29521021 DOI: 10.1111/tan.13246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NKG2D is a key receptor for the activation of immune effector cells, mainly Natural Killer cells and T lymphocytes, in infection, cancer and autoimmune diseases. Since the detection of ligands for NKG2D in sera of cancer patients is, in many human models, indicative of prognosis, a large number of studies have been undertaken to improve understanding of the biology regulating this receptor and its ligands, with the aim of translating this knowledge into clinical practice. Although it is becoming clear that the NKG2D system can be used as a tool for diagnosis and manipulated for therapy, some questions remain open due to the complexity associated with the existence of a large number of ligands, each one of them displaying distinct biological properties. In this review, we have highlighted some key aspects of this system that differ between humans and mice, including the properties of NKG2D, as well as the genetic and biochemical complexity of NKG2D-ligands. All of these features affect the characteristics of the immune response exerted by NKG2D-expressing cells and are likely to be important factors in the clearance of a tumour or the development of autoimmunity. Implementation of more global analyses, including information on genotype, transcription and protein properties (cellular vs released to the blood stream) of NKG2D-ligands expressed in patients will be necessary to fully understand the links between this system and disease progression.
Collapse
Affiliation(s)
- C Campos-Silva
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - M K Kramer
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - M Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
26
|
Legroux L, Moratalla AC, Laurent C, Deblois G, Verstraeten SL, Arbour N. NKG2D and Its Ligand MULT1 Contribute to Disease Progression in a Mouse Model of Multiple Sclerosis. Front Immunol 2019; 10:154. [PMID: 30787931 PMCID: PMC6372829 DOI: 10.3389/fimmu.2019.00154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
NKG2D is an activating receptor expressed on the surface of immune cells including subsets of T lymphocytes. NKG2D binds multiple ligands (NKG2DL) whose expression are differentially triggered in a cell type and stress specific manner. The NKG2D-NKG2DL interaction has been involved in autoimmune disorders but its role in animal models of multiple sclerosis (MS) remains incompletely resolved. Here we show that NKG2D and its ligand MULT1 contribute to the pathobiology of experimental autoimmune encephalomyelitis (EAE). MULT1 protein levels are increased in the central nervous system (CNS) at EAE disease peak; soluble MULT1 is elevated in the cerebrospinal fluid of both active and passive EAE. We establish that such soluble MULT1 enhances effector functions (e.g., IFNγ production) of activated CD8 T lymphocytes from wild type but not from NKG2D-deficient (Klrk1−/−) mice in vitro. The adoptive transfer of activated T lymphocytes from wild type donors induced a significantly reduced EAE disease in Klrk1−/− compared to wild type (Klrk1+/+) recipients. Characterization of T lymphocytes infiltrating the CNS of recipient mice shows that donor (CD45.1) rather than endogenous (CD45.2) CD4 T cells are the main producers of key cytokines (IFNγ, GM-CSF). In contrast, infiltrating CD8 T lymphocytes include mainly endogenous (CD45.2) cells exhibiting effector properties (NKG2D, granzyme B and IFNγ). Our data support the notion that endogenous CD8 T cells contribute to passive EAE pathobiology in a NKG2D-dependent manner. Collectively, our results point to the deleterious role of NKG2D and its MULT1 in the pathobiology of a MS mouse model.
Collapse
Affiliation(s)
- Laurine Legroux
- Department of Neurosciences Université de Montréal, Montreal, QC, Canada
| | | | - Cyril Laurent
- Department of Neurosciences Université de Montréal, Montreal, QC, Canada
| | - Gabrielle Deblois
- Department of Neurosciences Université de Montréal, Montreal, QC, Canada
| | | | - Nathalie Arbour
- Department of Neurosciences Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
27
|
Can We Design a Nogo Receptor-Dependent Cellular Therapy to Target MS? Cells 2018; 8:cells8010001. [PMID: 30577457 PMCID: PMC6357095 DOI: 10.3390/cells8010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
The current landscape of therapeutics designed to treat multiple sclerosis (MS) and its pathological sequelae is saturated with drugs that modify disease course and limit relapse rates. While these small molecules and biologicals are producing profound benefits to patients with reductions in annualized relapse rates, the repair or reversal of demyelinated lesions with or without axonal damage, remains the principle unmet need for progressive forms of the disease. Targeting the extracellular pathological milieu and the signaling mechanisms that drive neurodegeneration are potential means to achieve neuroprotection and/or repair in the central nervous system of progressive MS patients. The Nogo-A receptor-dependent signaling mechanism has raised considerable interest in neurological disease paradigms since it can promulgate axonal transport deficits, further demyelination, and extant axonal dystrophy, thereby limiting remyelination. If specific therapeutic regimes could be devised to directly clear the Nogo-A-enriched myelin debris in an expedited manner, it may provide the necessary CNS environment for neurorepair to become a clinical reality. The current review outlines novel means to achieve neurorepair with biologicals that may be directed to sites of active demyelination.
Collapse
|
28
|
Wu D, Zhang J, Qian T, Dai Y, Mashaghi A, Xu J, Hong J. IFN-γ Regulates the Expression of MICA in Human Corneal Epithelium Through miRNA4448 and NFκB. Front Immunol 2018; 9:1530. [PMID: 30013574 PMCID: PMC6036181 DOI: 10.3389/fimmu.2018.01530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
Purpose Major histocompatibility complex class I-related chain A (MICA), a non-classical major histocompatibility complex molecule, can stimulate or co-stimulate CD8+ T cells or natural killer (nk) cells, thus affecting cornea allograft survival. This study investigated IFN-γ regulation of MICA expression levels in human corneal epithelium by miRNA4448. Methods MICA expression levels in human corneal epithelial cells (HCECs) stimulated with IFN-γ were detected by qRT-PCR and an enzyme-linked immunosorbent assay, and differential miRNA expression levels were measured. qRT-PCR, Western blotting, and immunofluorescence staining revealed nuclear factor kappa B (NFκB)/P65 expression in IFN-γ-treated and miRNA4448-overexpressed HCECs. A luciferase reporter assay was used to predict the interaction between NFκB and MICA. Additionally, HCECs were transfected with MICA plasmid or treated with IFN-γ and NKG2D-mAb and cocultured with NK cells and CD8+ T cells. Cell apoptosis was measured using Annexin V/PI staining. qRT-PCR detected the expression of anti-apoptosis factor Survivin and apoptosis factor Caspase 3 in MICA-transfected and IFN-γ-treated HCECs after co-culturing with NK cells and CD8+ T cells. Results IFN-γ (500 ng/ml, 24 h) upregulated MICA expression in HCECs in vitro. Among six differentially expressed microRNAs, miRNA4448 levels decreased the most after IFN-γ treatment. The overexpression of miRNA4448 decreased MICA expression. miRNA4448 downregulated NFκB/P65 expression in IFN-γ-induced HCEC, and it was determined that NFκB/P65 directly targeted MICA by binding to the promotor region. A coculture with NK cells and CD8+ T cells demonstrated that MICA overexpression enhanced HCEC apoptosis, which could be inhibited by NKG2D-mAb. Simultaneously, Survivin mRNA expression decreased and Caspase3 mRNA expression increased upon the interaction between MICA and NK (CD8+ T) cells in HCECs. Conclusion IFN-γ enhances the expression of MICA in HCECs by modulating miRNA4448 and NFκB/P65 levels, thereby contributing to HCEC apoptosis induced by NK and CD8+ T cells. This discovery may lead to new insights into the pathogenesis of corneal allograft rejection.
Collapse
Affiliation(s)
- Dan Wu
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tingting Qian
- Department of Immunology and Biotherapy Research Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqin Dai
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Leiden, Netherlands
| | - Jianjiang Xu
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Leiden, Netherlands.,Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Myopia, Ministry of Health (Fudan University), Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Monteiro A, Cruto C, Rosado P, Martinho A, Rosado L, Fonseca M, Paiva A. Characterization of circulating gamma-delta T cells in relapsing vs remission multiple sclerosis. J Neuroimmunol 2018; 318:65-71. [DOI: 10.1016/j.jneuroim.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/23/2022]
|
30
|
Antel JP, Lin YH, Cui QL, Pernin F, Kennedy TE, Ludwin SK, Healy LM. Immunology of oligodendrocyte precursor cells in vivo and in vitro. J Neuroimmunol 2018; 331:28-35. [PMID: 29566973 DOI: 10.1016/j.jneuroim.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/23/2022]
Abstract
Remyelination following myelin/oligodendrocyte injury in the central nervous system (CNS) is dependent on oligodendrocyte progenitor cells (OPCs) migrating into lesion sites, differentiating into myelinating oligodendrocytes (OLs), and ensheathing axons. Experimental models indicate that robust OPC-dependent remyelination can occur in the CNS; in contrast, histologic and imaging studies of lesions in the human disease multiple sclerosis (MS) indicate the variable extent of this response, which is particularly limited in more chronic MS lesions. Immune-mediated mechanisms can contribute either positively or negatively to the presence and functional responses of OPCs. This review addresses i) the molecular signature and functional properties of OPCs in the adult human brain; ii) the status (presence and function) of OPCs in MS lesions; iii) experimental models and in vitro data highlighting the contribution of adaptive and innate immune constituents to OPC injury and remyelination; and iv) effects of MS-directed immunotherapies on OPCs, either directly or indirectly via effects on specific immune constituents.
Collapse
Affiliation(s)
- Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Florian Pernin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Samuel K Ludwin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Luke M Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
31
|
Bowen KE, Mathew SO, Borgmann K, Ghorpade A, Mathew PA. A novel ligand on astrocytes interacts with natural cytotoxicity receptor NKp44 regulating immune response mediated by NK cells. PLoS One 2018; 13:e0193008. [PMID: 29447242 PMCID: PMC5814005 DOI: 10.1371/journal.pone.0193008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022] Open
Abstract
NK cells play important role in immunity against pathogens and cancer. NK cell functions are regulated by inhibitory and activating receptors binding corresponding ligands on the surface of target cells. NK cells were shown to be recruited to the CNS following several pathological conditions. NK cells could impact CNS physiology by killing glial cells and by secreting IFN-γ. Astrocytes are intimately involved in immunological and inflammatory events occurring in the CNS and reactive astrogliosis is a key feature in HIV-associated neurocognitive disorders. There is little data on NK-astrocyte interactions and ligands expressed on astrocytes that could impact NK cell function. Natural cytotoxicity receptors (NCRs) play a critical role in the cytolytic function of NK cells. Among the NCRs, NKp44 is unique in expression and signal transduction. NKp44 is expressed only upon activation of NK cells and it can mediate both activating and inhibitory signals to NK cells. Here, we have studied the expression and function of natural cytotoxicity receptor NKp44 upon NK-astrocytes interactions in the presence or absence of an HIV peptide (HIV-3S peptide) shown to induce NK cell killing of CD4+ T cells during HIV–infection. Using a fusion protein consisting of the extracellular domain of NKp44 fused to Fc portion of human IgG, we determined the expression of a novel ligand for NKp44 (NKp44L) on astrocytes. Incubation of astrocytes with HIV-3S peptide downregulated NKp44L expression on astrocytes implicating protection from NK mediated killing. Thus, our study showed that NKp44 have a protective effect on astrocytes from NK cell mediated killing during HIV infection and impact astrocyte role in HAND.
Collapse
Affiliation(s)
- Kelly E Bowen
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Stephen O Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Porunelloor A Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
32
|
Impact of aging immune system on neurodegeneration and potential immunotherapies. Prog Neurobiol 2017; 157:2-28. [PMID: 28782588 DOI: 10.1016/j.pneurobio.2017.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
Abstract
The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging.
Collapse
|
33
|
Bolourian A, Mojtahedi Z. Possible damage to immune-privileged sites in natural killer cell therapy in cancer patients: side effects of natural killer cell therapy. Immunotherapy 2017; 9:281-288. [PMID: 28231718 DOI: 10.2217/imt-2016-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Natural killer (NK) cells target the cells losing MHC-I in cancer, a phenotype that is similar to certain cells in immune-privileged sites whose milieus are separated from peripheral blood. NK cells are reported to be quantitatively and qualitatively different in immune-privileged sites from those cytotoxic ones in the blood. We hypothesize that cytotoxic and expanded NK cells induced in cancer patients may be turned into pathogenic factors if they enter immune-privileged microenvironments in susceptible individuals, such as, patients with brain cancer or a blood-brain barrier dysfunction. Therefore, in susceptible individuals, different levels of caution should be taken based on the seriousness of the side effect as discussed in this perspective.
Collapse
Affiliation(s)
| | - Zahra Mojtahedi
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Lagumersindez-Denis N, Wrzos C, Mack M, Winkler A, van der Meer F, Reinert MC, Hollasch H, Flach A, Brühl H, Cullen E, Schlumbohm C, Fuchs E, Linington C, Barrantes-Freer A, Metz I, Wegner C, Liebetanz D, Prinz M, Brück W, Stadelmann C, Nessler S. Differential contribution of immune effector mechanisms to cortical demyelination in multiple sclerosis. Acta Neuropathol 2017; 134:15-34. [PMID: 28386765 PMCID: PMC5486638 DOI: 10.1007/s00401-017-1706-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/25/2017] [Indexed: 12/16/2022]
Abstract
Cortical demyelination is a widely recognized hallmark of multiple sclerosis (MS) and correlate of disease progression and cognitive decline. The pathomechanisms initiating and driving gray matter damage are only incompletely understood. Here, we determined the infiltrating leukocyte subpopulations in 26 cortical demyelinated lesions of biopsied MS patients and assessed their contribution to cortical lesion formation in a newly developed mouse model. We find that conformation-specific anti-myelin antibodies contribute to cortical demyelination even in the absence of the classical complement pathway. T cells and natural killer cells are relevant for intracortical type 2 but dispensable for subpial type 3 lesions, whereas CCR2+ monocytes are required for both. Depleting CCR2+ monocytes in marmoset monkeys with experimental autoimmune encephalomyelitis using a novel humanized CCR2 targeting antibody translates into significantly less cortical demyelination and disease severity. We conclude that biologics depleting CCR2+ monocytes might be attractive candidates for preventing cortical lesion formation and ameliorating disease progression in MS.
Collapse
|
35
|
Djelloul M, Popa N, Pelletier F, Raguénez G, Boucraut J. RAE-1 expression is induced during experimental autoimmune encephalomyelitis and is correlated with microglia cell proliferation. Brain Behav Immun 2016; 58:209-217. [PMID: 27444966 DOI: 10.1016/j.bbi.2016.07.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/30/2016] [Accepted: 07/16/2016] [Indexed: 01/06/2023] Open
Abstract
Retinoic acid early induced transcript-1 (RAE-1) glycoproteins are ligands of the activating immune receptor NKG2D. They are known as stress molecules induced in pathological conditions. We previously reported that progenitor cells express RAE-1 in physiological conditions and we described a correlation between RAE-1 expression and cell proliferation. In addition, we showed that Raet1 transcripts are induced in the spinal cord of experimental autoimmune encephalomyelitis (EAE) mice. EAE is a model for multiple sclerosis which is accompanied by microglia proliferation and activation, recruitment of immune cells and neurogenesis. We herein studied the time course expression of the two members of the Raet1 gene family present in C57BL/6 mice, namely Raet1d and Raet1e, in the spinal cord during EAE. We report that Raet1d and Raet1e genes are induced early upon EAE onset and reach a maximal expression at the peak of the pathology. We show that myeloid cells, i.e. macrophages as well as microglia, are cellular sources of Raet1 transcripts. We also demonstrate that only Raet1d expression is induced in microglia, whereas macrophages expressed both Raet1d and Raet1e. Furthermore, we investigated the dynamics of RAE-1 expression in microglia cultures. RAE-1 induction correlated with cell proliferation but not with M1/M2 phenotypic orientation. We finally demonstrate that macrophage colony-stimulating factor (M-CSF) is a major factor controlling RAE-1 expression in microglia.
Collapse
Affiliation(s)
- Mehdi Djelloul
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - Natalia Popa
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - Florence Pelletier
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - Gilda Raguénez
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - José Boucraut
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France.
| |
Collapse
|
36
|
USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation. Nat Immunol 2016; 18:54-63. [DOI: 10.1038/ni.3581] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022]
|
37
|
Ruck T, Bittner S, Afzali AM, Göbel K, Glumm S, Kraft P, Sommer C, Kleinschnitz C, Preuße C, Stenzel W, Wiendl H, Meuth SG. The NKG2D-IL-15 signaling pathway contributes to T-cell mediated pathology in inflammatory myopathies. Oncotarget 2016; 6:43230-43. [PMID: 26646698 PMCID: PMC4791228 DOI: 10.18632/oncotarget.6462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/14/2015] [Indexed: 12/29/2022] Open
Abstract
NKG2D is an activating receptor on T cells, which has been implicated in the pathogenesis of autoimmune diseases. T cells are critically involved in idiopathic inflammatory myopathies (IIM) and have been proposed as specific therapeutic targets. However, the mechanisms underlying T cell-mediated progressive muscle destruction in IIM remain to be elucidated. We here determined the involvement of the NKG2D – IL-15 signaling pathway. Primary human myoblasts expressed NKG2D ligands, which were further upregulated upon inflammatory stimuli. In parallel, shedding of the soluble NKG2D ligand MICA (sMICA) decreased upon inflammation potentially diminishing inhibition of NKG2D signaling. Membrane-related expression of IL-15 by myoblasts induced differentiation of naïve CD8+ T cells into highly activated, cytotoxic CD8+NKG2Dhigh T cells demonstrating NKG2D-dependent lysis of myoblasts in vitro. CD8+NKG2Dhigh T cell frequencies were increased in the peripheral blood of polymyositis (PM) patients and correlated with serum creatinine kinase concentrations, while serum sMICA levels were not significantly changed. In muscle biopsy specimens from PM patients expression of the NKG2D ligand MICA/B was upregulated, IL-15 was expressed by muscle cells, CD68+ macrophages as well as CD4+ T cells, and CD8+NKG2D+ cells were frequently detected within inflammatory infiltrates arguing for a local signaling circuit in the inflammatory muscle milieu. In conclusion, the NKG2D – IL-15 signaling pathway contributes to progressive muscle destruction in IIM potentially opening new therapeutic avenues.
Collapse
Affiliation(s)
- Tobias Ruck
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Kerstin Göbel
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Sarah Glumm
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Peter Kraft
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | | | - Corinna Preuße
- Department of Neuropathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Muenster, Germany
| |
Collapse
|
38
|
Macchi B, Mastino A. Programmed cell death and natural killer cells in multiple sclerosis: new potential therapeutic targets? Neural Regen Res 2016; 11:733-4. [PMID: 27335552 PMCID: PMC4904459 DOI: 10.4103/1673-5374.182695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Beatrice Macchi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Antonio Mastino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy; The Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
39
|
Sénécal V, Deblois G, Beauseigle D, Schneider R, Brandenburg J, Newcombe J, Moore CS, Prat A, Antel J, Arbour N. Production of IL-27 in multiple sclerosis lesions by astrocytes and myeloid cells: Modulation of local immune responses. Glia 2015; 64:553-69. [PMID: 26649511 DOI: 10.1002/glia.22948] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023]
Abstract
The mechanisms whereby human glial cells modulate local immune responses are not fully understood. Interleukin-27 (IL-27), a pleiotropic cytokine, has been shown to dampen the severity of experimental autoimmune encephalomyelitis, but it is still unresolved whether IL-27 plays a role in the human disease multiple sclerosis (MS). IL-27 contribution to local modulation of immune responses in the brain of MS patients was investigated. The expression of IL-27 subunits (EBI3 and p28) and its cognate receptor IL-27R (the gp130 and TCCR chains) was elevated within post-mortem MS brain lesions compared with normal control brains. Moreover, astrocytes (GFAP(+) cells) as well as microglia and macrophages (Iba1(+) cells) were important sources of IL-27. Brain-infiltrating CD4 and CD8 T lymphocytes expressed the IL-27R specific chain (TCCR) implying that these cells could respond to local IL-27 sources. In primary cultures of human astrocytes inflammatory cytokines increased IL-27 production, whereas myeloid cell inflammatory M1 polarization and inflammatory cytokines enhanced IL-27 expression in microglia and macrophages. Astrocytes in postmortem tissues and in vitro expressed IL-27R. Moreover, IL-27 triggered the phosphorylation of the transcription regulator STAT1, but not STAT3 in human astrocytes; indeed IL-27 up-regulated MHC class I expression on astrocytes in a STAT1-dependent manner. These findings demonstrated that IL-27 and its receptor were elevated in MS lesions and that local IL-27 can modulate immune properties of astrocytes and infiltrating immune cells. Thus, therapeutic strategies targeting IL-27 may influence not only peripheral but also local inflammatory responses within the brain of MS patients.
Collapse
Affiliation(s)
- Vincent Sénécal
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Gabrielle Deblois
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Diane Beauseigle
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Raphael Schneider
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jonas Brandenburg
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jia Newcombe
- NeuroResource, UCL Institute of Neurology, University College London, London, WC1N 1PJ, England
| | - Craig S Moore
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Alexandre Prat
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Nathalie Arbour
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| |
Collapse
|
40
|
Properties of human central nervous system neurons in a glia-depleted (isolated) culture system. J Neurosci Methods 2015; 253:142-50. [PMID: 26093165 DOI: 10.1016/j.jneumeth.2015.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Current methods for studying human neurons depend on a feeder layer of astroglia supplemented with animal serum to support the growing neurons. These requirements undermine many of the advantages provided by in vitro cell culture approaches when compared with more complex in vivo techniques. NEW METHOD Here, we identified a reliable marker (MHCI) that allows for direct isolation of primary neurons from fetal human brain. We utilized a magnetic labeling and isolation technique to separate neurons from other neural cells. We established a defined condition, omitting the astroglial supports that could maintain the human neurons for varying amounts of time. RESULTS We showed that the new method significantly improved the purity of human neurons in culture without the need for further chemical/mechanical enrichment. We demonstrated the suitability of these neurons for functional studies including Rho-kinase dependent regulation of neurite outgrowth and ensheathment in co-cultures with oligodendrocyte progenitor cells derived from fetal human brain. COMPARISON WITH EXISTING METHODS The accountability for neuron-only seeding and the controllable density allows for better neuronal maturation and better visualization of the different neuronal compartments. The higher purity culture constitutes an effective system to study and screen for compounds that impact neuron biology without potential confounding effects from glial crowding. CONCLUSIONS High purity human neurons generated using the improved method will enable enhanced reliability in the discovery and development of drugs with neuroregenerative and neuroprotective activity.
Collapse
|
41
|
Multiple Sclerosis and T Lymphocytes: An Entangled Story. J Neuroimmune Pharmacol 2015; 10:528-46. [PMID: 25946987 DOI: 10.1007/s11481-015-9614-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/29/2015] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is the prototypic inflammatory disease of the central nervous system (CNS) characterized by multifocal areas of demyelination, axonal damage, activation of glial cells, and immune cell infiltration. Despite intensive years of research, the etiology of this neurological disorder remains elusive. Nevertheless, the abundance of immune cells such as T lymphocytes and their products in CNS lesions of MS patients supports the notion that MS is an immune-mediated disorder. An important body of evidence gathered from MS animal models such as experimental autoimmune encephalomyelitis (EAE), points to the central contribution of CD4 T lymphocytes in disease pathogenesis. Both Th1 (producing interferon-γ) and Th17 (producing interleukin 17) CD4 T lymphocytes targeting CNS self-antigens have been implicated in MS and EAE pathobiology. Moreover, several publications suggest that CD8 T lymphocytes also participate in the development of MS lesions. The migration of activated T lymphocytes from the periphery into the CNS has been identified as a crucial step in the formation of MS lesions. Several factors promote such T cell extravasation including: molecules (e.g., cell adhesion molecules) implicated in the T cell-blood brain barrier interaction, and chemokines produced by neural cells. Finally, once in the CNS, T lymphocytes need to be reactivated by local antigen presenting cells prior to enter the parenchyma where they can initiate damage. Further investigations will be necessary to elucidate the impact of environmental factors (e.g., gut microbiota) and CNS intrinsic properties (e.g., microglial activation) on this inflammatory neurological disease.
Collapse
|
42
|
New Directions in Multiple Sclerosis Therapy: Matching Therapy with Pathogenesis. Can J Neurol Sci 2014; 37 Suppl 2:S42-8. [DOI: 10.1017/s0317167100022423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT:All currently approved therapies for multiple sclerosis (MS) modulate systemic immune components prior to their entry into the central nervous system (CNS). Available data indicate they lack impact on the progressive phases of disease; the more potent systemic immune-directed agents predispose to development of infectious or neoplastic disorders. Development of new agents that enhance disease stage related efficacy and limit systemic toxicity will need to consider the underlying mechanisms related to each phase of the clinical disorder, namely relapses, remission, and progression. This report focuses on disease related mechanisms ongoing within the CNS that contribute to the different phases of MS and how these may serve as potential therapeutic targets. Such mechanisms include CNS compartment specific immunologic properties especially as related to the innate immune system and neural cell-related properties that are determinants of the extent of actual tissue injury and repair (or lack thereof).
Collapse
|
43
|
Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 2014; 141:302-13. [PMID: 23981039 DOI: 10.1111/imm.12163] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022] Open
Abstract
Communication between the immune system and the central nervous system (CNS) is exemplified by cross-talk between glia and neurons shown to be essential for maintaining homeostasis. While microglia are actively modulated by neurons in the healthy brain, little is known about the cross-talk between oligodendrocytes and microglia. Oligodendrocytes, the myelin-forming cells in the CNS, are essential for the propagation of action potentials along axons, and additionally serve to support neurons by producing neurotrophic factors. In demyelinating diseases such as multiple sclerosis, oligodendrocytes are thought to be the victims. Here, we review evidence that oligodendrocytes also have strong immune functions, express a wide variety of innate immune receptors, and produce and respond to chemokines and cytokines that modulate immune responses in the CNS. We also review evidence that during stress events in the brain, oligodendrocytes can trigger a cascade of protective and regenerative responses, in addition to responses that elicit progressive neurodegeneration. Knowledge of the cross-talk between microglia and oligodendrocytes may continue to uncover novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and degeneration.
Collapse
Affiliation(s)
- Laura Peferoen
- Pathology Department, VU University Medical Centre, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
44
|
Ruck T, Bittner S, Gross CC, Breuer J, Albrecht S, Korr S, Göbel K, Pankratz S, Henschel CM, Schwab N, Staszewski O, Prinz M, Kuhlmann T, Meuth SG, Wiendl H. CD4+NKG2D+ T cells exhibit enhanced migratory and encephalitogenic properties in neuroinflammation. PLoS One 2013; 8:e81455. [PMID: 24282598 PMCID: PMC3839937 DOI: 10.1371/journal.pone.0081455] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022] Open
Abstract
Migration of encephalitogenic CD4(+) T lymphocytes across the blood-brain barrier is an essential step in the pathogenesis of multiple sclerosis (MS). We here demonstrate that expression of the co-stimulatory receptor NKG2D defines a subpopulation of CD4(+) T cells with elevated levels of markers for migration, activation, and cytolytic capacity especially when derived from MS patients. Furthermore, CD4(+)NKG2D(+) cells produce high levels of proinflammatory IFN-γ and IL-17 upon stimulation. NKG2D promotes the capacity of CD4(+)NKG2D(+) cells to migrate across endothelial cells in an in vitro model of the blood-brain barrier. CD4(+)NKG2D(+) T cells are enriched in the cerebrospinal fluid of MS patients, and a significant number of CD4(+) T cells in MS lesions coexpress NKG2D. We further elucidated the role of CD4(+)NKG2D(+) T cells in the mouse system. NKG2D blockade restricted central nervous system migration of T lymphocytes in vivo, leading to a significant decrease in the clinical and pathologic severity of experimental autoimmune encephalomyelitis, an animal model of MS. Blockade of NKG2D reduced killing of cultivated mouse oligodendrocytes by activated CD4(+) T cells. Taken together, we identify CD4(+)NKG2D(+) cells as a subpopulation of T helper cells with enhanced migratory, encephalitogenic and cytotoxic properties involved in inflammatory CNS lesion development.
Collapse
Affiliation(s)
- Tobias Ruck
- Department of Neurology, University of Münster, Münster, Germany
| | - Stefan Bittner
- Department of Neurology, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Münster, Münster, Germany
| | | | - Johanna Breuer
- Department of Neurology, University of Münster, Münster, Germany
| | - Stefanie Albrecht
- Institute of Neuropathology, University of Münster, Münster, Germany
| | - Sabrina Korr
- Institute of Neuropathology, University of Münster, Münster, Germany
| | - Kerstin Göbel
- Department of Neurology, University of Münster, Münster, Germany
| | - Susann Pankratz
- Department of Neurology, University of Münster, Münster, Germany
| | | | - Nicholas Schwab
- Department of Neurology, University of Münster, Münster, Germany
| | - Ori Staszewski
- Institute of Neuropathology and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University of Münster, Münster, Germany
| | - Sven G. Meuth
- Department of Neurology, University of Münster, Münster, Germany
- Institute of Physiology I - Neuropathophysiology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
45
|
Guerra N, Pestal K, Juarez T, Beck J, Tkach K, Wang L, Raulet DH. A selective role of NKG2D in inflammatory and autoimmune diseases. Clin Immunol 2013; 149:432-9. [PMID: 24211717 DOI: 10.1016/j.clim.2013.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 02/04/2023]
Abstract
The NKG2D activating receptor has been implicated in numerous autoimmune diseases. We tested the role of NKG2D in models of autoimmunity and inflammation using NKG2D knockout mice and antibody blockade experiments. The severity of experimental autoimmune encephalitis (EAE) was decreased in NKG2D-deficient mice when the disease was induced with a limiting antigen dose, but unchanged with an optimal antigen dose. Surprisingly, however, NKG2D deficiency had no detectable effect in several other models, including two models of type 1 diabetes, and a model of intestinal inflammation induced by poly(I:C). NKG2D antibody blockade in normal mice also failed to inhibit disease in the NOD diabetes model or the intestinal inflammation model. Published evidence using NKG2D knockout mice demonstrated a role for NKG2D in mouse models of atherosclerosis and liver inflammation, as well as in chronic obstructive pulmonary disease. Therefore, our results suggest that NKG2D plays selective roles in inflammatory diseases.
Collapse
Affiliation(s)
- Nadia Guerra
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, 489 Life Sciences, Addition, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Life Science, Imperial College London, Imperial College Road, SW7 2AZ, London
| | - Kathleen Pestal
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, 489 Life Sciences, Addition, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Tiffany Juarez
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, 489 Life Sciences, Addition, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Jennifer Beck
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, 489 Life Sciences, Addition, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Karen Tkach
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, 489 Life Sciences, Addition, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Lin Wang
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, 489 Life Sciences, Addition, University of California at Berkeley, Berkeley, CA 94720, USA
| | - David H Raulet
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, 489 Life Sciences, Addition, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
46
|
Sauer BM, Schmalstieg WF, Howe CL. Axons are injured by antigen-specific CD8(+) T cells through a MHC class I- and granzyme B-dependent mechanism. Neurobiol Dis 2013; 59:194-205. [PMID: 23899663 DOI: 10.1016/j.nbd.2013.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/02/2013] [Accepted: 07/17/2013] [Indexed: 01/19/2023] Open
Abstract
Axon injury is a central determinant of irreversible neurological deficit and disease progression in patients with multiple sclerosis (MS). CD8(+) lymphocytes (CTLs) within inflammatory demyelinated MS lesions correlate with acute axon injury and neurological deficits. The mechanisms of these correlations are unknown. We interrogated CTL-mediated axon injury using the transgenic OT-I antigen-specific CTL model system in conjunction with a chambered cortical neuron culture platform that permitted the isolated manipulation of axons independent of neuron cell bodies and glia. Interferon gamma upregulated, through a dose dependent mechanism, the axonal expression of functional major histocompatibility complex class I (MHC I) molecules competent to present immunologically-relevant antigens derived from endogenously expressed proteins. Antigen-specific CTLs formed cytotoxic immune synapses with and directly injured axons expressing antigen-loaded MHC I molecules. CTL-mediated axon injury was mechanistically dependent upon axonal MHC I antigen presentation, T cell receptor specificity and axoplasmic granzyme B activity. Despite extensive distal CTL-mediated axon injury, acute neuron cell body apoptosis was not observed. These findings present a novel model of immune-mediated axon injury and offer anti-axonal CTLs and granzyme B as targets for the therapeutic protection of axons and prevention of neurological deficits in MS patients.
Collapse
Affiliation(s)
- Brian M Sauer
- Medical Scientist Training Program, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA; Neurobiology of Disease Training Program, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
47
|
Fogel LA, Yokoyama WM, French AR. Natural killer cells in human autoimmune disorders. Arthritis Res Ther 2013; 15:216. [PMID: 23856014 PMCID: PMC3979027 DOI: 10.1186/ar4232] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play a critical role in early host defense against viruses. Through their cytolytic capacity and generation of cytokines and chemokines, NK cells modulate the activity of other components of the innate and adaptive immune systems and have been implicated in the initiation or maintenance of autoimmune responses. This review focuses on recent research elucidating a potential immunoregulatory role for NK cells in T-cell and B-cell-mediated autoimmune disorders in humans, with a particular focus on multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematous. A better understanding of the contributions of NK cells to the development of autoimmunity may lead to novel therapeutic targets in these diseases.
Collapse
|
48
|
Zaguia F, Saikali P, Ludwin S, Newcombe J, Beauseigle D, McCrea E, Duquette P, Prat A, Antel JP, Arbour N. Cytotoxic NKG2C+ CD4 T cells target oligodendrocytes in multiple sclerosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:2510-8. [PMID: 23396942 DOI: 10.4049/jimmunol.1202725] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms whereby immune cells infiltrating the CNS in multiple sclerosis patients contribute to tissue injury remain to be defined. CD4 T cells are key players of this inflammatory response. Myelin-specific CD4 T cells expressing CD56, a surrogate marker of NK cells, were shown to be cytotoxic to human oligodendrocytes. Our aim was to identify NK-associated molecules expressed by human CD4 T cells that confer this oligodendrocyte-directed cytotoxicity. We observed that myelin-reactive CD4 T cell lines, as well as short-term PHA-activated CD4 T cells, can express NKG2C, the activating receptor interacting with HLA-E, a nonclassical MHC class I molecule. These cells coexpress CD56 and NKG2D, have elevated levels of cytotoxic molecules FasL, granzyme B, and perforin compared with their NKG2C-negative counterparts, and mediate significant in vitro cytotoxicity toward human oligodendrocytes, which upregulated HLA-E upon inflammatory cytokine treatment. A significantly elevated proportion of ex vivo peripheral blood CD4 T cells, but not CD8 T cells or NK cells, from multiple sclerosis patients express NKG2C compared with controls. In addition, immunohistochemical analyses showed that multiple sclerosis brain tissues display HLA-E(+) oligodendrocytes and NKG2C(+) CD4 T cells. Our results implicate a novel mechanism through which infiltrating CD4 T cells contribute to tissue injury in multiple sclerosis.
Collapse
Affiliation(s)
- Fatma Zaguia
- Department of Medicine, Research Center of the Hospital Center of the University of Montreal-Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lymphocytes with cytotoxic activity induce rapid microtubule axonal destabilization independently and before signs of neuronal death. ASN Neuro 2013; 5:e00105. [PMID: 23289514 PMCID: PMC3565378 DOI: 10.1042/an20120087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MS (multiple sclerosis) is the most prevalent autoimmune disease of the CNS (central nervous system) historically characterized as an inflammatory and demyelinating disease. More recently, extensive neuronal pathology has lead to its classification as a neurodegenerative disease as well. While the immune system initiates the autoimmune response it remains unclear how it orchestrates neuronal damage. In our previous studies, using in vitro cultured embryonic neurons, we demonstrated that MBP (myelin basic protein)-specific encephalitogenic CD4 T-cells induce early neuronal damage. In an extension of those studies, here we show that polarized CD4 Th1 and Th17 cells as wells as CD8 T-cells and NK (natural killer) cells induce microtubule destabilization within neurites in a contact-independent manner. Owing to the cytotoxic potential of these immune cells, we isolated the luminal components of lytic granules and determined that they were sufficient to drive microtubule destabilization. Since lytic granules contain cytolytic proteins, we determined that the induction of microtubule destabilization occurred prior to signs of apoptosis. Furthermore, we determined that microtubule destabilization was largely restricted to axons, sparing dendrites. This study demonstrated that lymphocytes with cytolytic activity have the capacity to directly drive MAD (microtubule axonal destabilization) in a bystander manner that is independent of neuronal death.
Collapse
|
50
|
Kaur G, Trowsdale J, Fugger L. Natural killer cells and their receptors in multiple sclerosis. ACTA ACUST UNITED AC 2012; 136:2657-76. [PMID: 22734127 DOI: 10.1093/brain/aws159] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immune system has crucial roles in the pathogenesis of multiple sclerosis. While the adaptive immune cell subsets, T and B cells, have been the main focus of immunological research in multiple sclerosis, it is now important to realize that the innate immune system also has a key involvement in regulating autoimmune responses in the central nervous system. Natural killer cells are innate lymphocytes that play vital roles in a diverse range of infections. There is evidence that they influence a number of autoimmune conditions. Recent studies in multiple sclerosis and its murine model, experimental autoimmune encephalomyelitis, are starting to provide some understanding of the role of natural killer cells in regulating inflammation in the central nervous system. Natural killer cells express a diverse range of polymorphic cell surface receptors, which interact with polymorphic ligands; this interaction controls the function and the activation status of the natural killer cell. In this review, we discuss evidence for the role of natural killer cells in multiple sclerosis and experimental autoimmune encephalomyelitis. We consider how a change in the balance of signals received by the natural killer cell influences its involvement in the ensuing immune response, in relation to multiple sclerosis.
Collapse
Affiliation(s)
- Gurman Kaur
- MRC Human Immunology Unit, Nuffield Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | | | | |
Collapse
|