1
|
Hara Y, Kumamoto T, Yoshizawa-Sugata N, Hirai K, Song X, Kawaji H, Ohtaka-Maruyama C. The spatial transcriptome of the late-stage embryonic and postnatal mouse brain reveals spatiotemporal molecular markers. Sci Rep 2025; 15:12299. [PMID: 40210990 PMCID: PMC11985494 DOI: 10.1038/s41598-025-95496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 04/12/2025] Open
Abstract
The neocortical development process includes cell proliferation, differentiation, migration, and maturation, supported by precise genetic regulation. To understand these processes at the cellular and molecular levels, it is necessary to characterize the fundamental anatomical structures by gene expression. However, markers established in the adult brain sometimes behave differently in the fetal brain, actively changing during development. The spatial transcriptome is a powerful analytical method that enables sequence analysis while retaining spatial information. However, a deeper understanding of these data requires computational estimation, including integration with single-cell transcriptome data and aggregation of spots at the single-cell cluster level. The application of such analysis to biomarker discovery has only begun recently, and its application to the developing fetal brain is largely unexplored. In this study, we performed a spatial transcriptome analysis of the developing mouse brain to investigate spatio-temporal regulation of gene expression during development. Using these data, we conducted an integrated study with publicly available mouse data sets. Our data-driven analysis identified novel molecular markers of the choroid plexus, piriform cortex, and thalamus. Furthermore, we identified a novel molecular marker that can determine the dorsal endopiriform nucleus (DEn) of the developmental stage in the claustrum/DEn complex.
Collapse
Affiliation(s)
- Yuichiro Hara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Kitasato University School of Frontier Engineering, Sagamihara, Kanagawa, Japan
| | - Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Naoko Yoshizawa-Sugata
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Kumiko Hirai
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Xianghe Song
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Biological Science, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Bunkyo, Tokyo, Japan.
| | - Chiaki Ohtaka-Maruyama
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.
- Department of Biological Science, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|
2
|
Lei Y, Liu Y, Wang M, Yuan N, Hou Y, Ding L, Zhu Z, Wu Z, Li C, Zheng M, Zhang R, Ribeiro Gomes AR, Xu Y, Luo Z, Liu Z, Chai Q, Misery P, Zhong Y, Song X, Lamy C, Cui W, Yu Q, Fang J, An Y, Tian Y, Liu Y, Sun X, Wang R, Li H, Song J, Tan X, Wang H, Wang S, Han L, Zhang Y, Li S, Wang K, Wang G, Zhou W, Liu J, Yu C, Zhang S, Chang L, Toplanaj D, Chen M, Liu J, Zhao Y, Ren B, Shi H, Zhang H, Yan H, Ma J, Wang L, Li Y, Zuo Y, Lu L, Gu L, Li S, Wang Y, He Y, Li S, Zhang Q, Lu Y, Dou Y, Liu Y, Zhao A, Zhang M, Zhang X, Xia Y, Zhang W, Cao H, Lu Z, Yu Z, Li X, Wang X, Liang Z, Xu S, Liu C, Zheng C, Xu C, Liu Z, Li C, Sun YG, Xu X, Dehay C, Vezoli J, Poo MM, Yao J, Liu L, Wei W, Kennedy H, Shen Z. Single-cell spatial transcriptome atlas and whole-brain connectivity of the macaque claustrum. Cell 2025:S0092-8674(25)00273-9. [PMID: 40185102 DOI: 10.1016/j.cell.2025.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/03/2024] [Accepted: 02/28/2025] [Indexed: 04/07/2025]
Abstract
Claustrum orchestrates brain functions via its connections with numerous brain regions, but its molecular and cellular organization remains unresolved. Single-nucleus RNA sequencing of 227,750 macaque claustral cells identified 48 transcriptome-defined cell types, with most glutamatergic neurons similar to deep-layer insular neurons. Comparison of macaque, marmoset, and mouse transcriptomes revealed macaque-specific cell types. Retrograde tracer injections at 67 cortical and 7 subcortical regions defined four distinct distribution zones of retrogradely labeled claustral neurons. Joint analysis of whole-brain connectivity and single-cell spatial transcriptome showed that these four zones containing distinct compositions of glutamatergic (but not GABAergic) cell types preferentially connected to specific brain regions with a strong ipsilateral bias. Several macaque-specific glutamatergic cell types in ventral vs. dorsal claustral zones selectively co-projected to two functionally related areas-entorhinal cortex and hippocampus vs. motor cortex and putamen, respectively. These data provide the basis for elucidating the neuronal organization underlying diverse claustral functions.
Collapse
Affiliation(s)
- Ying Lei
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China; Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yuxuan Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Mingli Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Lingang Laboratory, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Nini Yuan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yujie Hou
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Lingjun Ding
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Zhiyong Zhu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Zihan Wu
- AI for Life Sciences Lab, Tencent, Shenzhen 518057, China
| | - Chao Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingyuan Zheng
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruiyi Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ana Rita Ribeiro Gomes
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Yuanfang Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoke Luo
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Zhen Liu
- Lingang Laboratory, Shanghai 200031, China
| | - Qinwen Chai
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Pierre Misery
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Yanqing Zhong
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinxiang Song
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Camille Lamy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Wei Cui
- BGI-Research, Qingdao 266555, China
| | - Qian Yu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiao Fang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Yingjie An
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ye Tian
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Yiwen Liu
- Lingang Laboratory, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Xing Sun
- Lingang Laboratory, Shanghai 200031, China
| | - Ruiqi Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huanhuan Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingjing Song
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Tan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - He Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiwen Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Han
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Shenyu Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kexin Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Guangling Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wanqiu Zhou
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Cong Yu
- BGI-Research, Qingdao 266555, China
| | - Shuzhen Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liangtang Chang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dafina Toplanaj
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Mengni Chen
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiabing Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Zhao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Biyu Ren
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanyu Shi
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haotian Yan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianyun Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Lina Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yichen Zuo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Linjie Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liqin Gu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuting Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Yinying He
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Qi Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanbing Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yannong Dou
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Anqi Zhao
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Minyuan Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyan Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Xia
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Zhang
- Lingang Laboratory, Shanghai 200031, China
| | - Huateng Cao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiyue Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zixian Yu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Xiaofei Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhifeng Liang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Shengjin Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Cirong Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Changhong Zheng
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Chun Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Zhiyong Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Chengyu Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Lingang Laboratory, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Yan-Gang Sun
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Xun Xu
- BGI-Research, Shenzhen 518103, China; Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Julien Vezoli
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Mu-Ming Poo
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Jianhua Yao
- AI for Life Sciences Lab, Tencent, Shenzhen 518057, China.
| | - Longqi Liu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China; Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; Lingang Laboratory, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China.
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France.
| | - Zhiming Shen
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China.
| |
Collapse
|
3
|
Negishi K, Duan Y, Batista A, Pishgar MS, Tsai PJ, Caldwell KE, Claypool SM, Reiner DJ, Madangopal R, Bossert JM, Yang Y, Shaham Y, Fredriksson I. The Role of Claustrum in Incubation of Opioid Seeking after Electric Barrier-Induced Voluntary Abstinence in Male and Female Rats. J Neurosci 2025; 45:e0561242025. [PMID: 39933931 PMCID: PMC11949475 DOI: 10.1523/jneurosci.0561-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
We previously reported that ventral subiculum (vSub) activity is critical to incubation of oxycodone seeking after abstinence induced by adverse consequences of drug seeking. Here, we studied the role of claustrum, a key vSub input, in this incubation. We trained male and female rats to self-administer oxycodone for 2 weeks and then induced abstinence by exposing them to an electric barrier for 2 weeks. We used retrograde tracing (cholera toxin B subunit) plus the activity marker Fos to identify projections to vSub cactivated during "incubated" relapse (Abstinence Day 15). We then used pharmacological reversible inactivation to determine the causal role of claustrum in incubation and the behavioral and anatomical specificity of this role. We also used an anatomical disconnection procedure to determine the causal role of claustrum-vSub connections in incubation. Finally, we analyzed an existing functional MRI dataset to determine if functional connectivity changes in claustrum-related circuits predict incubation of oxycodone seeking. Claustrum neurons projecting to vSub were activated during relapse tests after electric barrier-induced abstinence. Inactivation of claustrum but not areas dorsolateral to claustrum decreased incubation of oxycodone seeking after electric barrier-induced abstinence; claustrum inactivation had no effect on incubation after food choice-induced abstinence. Both ipsilateral and contralateral inactivation of claustrum-vSub projections decreased incubation after electric barrier-induced abstinence. Functional connectivity changes in claustrum-cortical circuits during electric barrier-induced abstinence predicted incubated oxycodone relapse. Our study identified a novel role of claustrum in relapse to opioid drugs after abstinence induced by adverse consequences of drug seeking.
Collapse
Affiliation(s)
- Kenichiro Negishi
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ying Duan
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ashley Batista
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Mona S Pishgar
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Kiera E Caldwell
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Sarah M Claypool
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - David J Reiner
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | | | | | - Yihong Yang
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ida Fredriksson
- Center for Social and Affective Neuroscience, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
4
|
Zedde M, Quatrale R, Cossu G, Sette MD, Pascarella R. The Role of the Claustrum in Parkinson's Disease and Vascular Parkinsonism: A Matter of Network? Life (Basel) 2025; 15:180. [PMID: 40003589 PMCID: PMC11855991 DOI: 10.3390/life15020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The mechanisms underlying extrapyramidal disorders and their anatomical substrate have been extensively investigated. Recently, the role of the claustrum in Parkinson's disease and other neurodegenerative conditions has been better detailed. The main aim of this review was to summarize the supporting evidence for the role of the claustrum in degenerative and vascular parkinsonism. METHODS The anatomy, biology, vascular supply, and connections of the claustrum in humans were identified and described, providing the substrate for the vascular involvement of the claustrum in large- and small-vessel disease. The vascular supply of the claustrum includes up to three different sources from a single artery, the middle cerebral artery, and it is known as territory with an intermediate hemodynamic risk. The connections of the claustrum make it a sensory integrator and a relevant point in several networks, from consciousness to movement planning. CONCLUSIONS The claustrum is still an incompletely explained structure. However, recent description of its multiple connections indicate that it is involved in several diseases, including Parkinson's disease. The evidence underlying its potential role in vascular parkinsonism is still scarce, but it might be a field warranting future investigations.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rocco Quatrale
- Dipartimento di Scienze Neurologiche, UOC di Neurologia—Ospedale dell’AngeloAULSS 3 Serenissima, 30174 Venice Mestre, Italy;
| | - Gianni Cossu
- Neurology Unit, Dept of Neuroscience, ARNAS Brotzu, 09047 Cagliari, Italy;
| | - Massimo Del Sette
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
5
|
Yamawaki N, Login H, Feld-Jakobsen SØ, Molnar BM, Kirkegaard MZ, Moltesen M, Okrasa A, Radulovic J, Tanimura A. Endopiriform neurons projecting to ventral CA1 are a critical node for recognition memory. eLife 2025; 13:RP99642. [PMID: 39835788 PMCID: PMC11750136 DOI: 10.7554/elife.99642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (ENvCA1-proj. neurons), embedded in recurrent circuits with other EN neurons and the piriform cortex. Although the ENvCA1-proj. neuron activity was biased toward novelty across stimulus categories, their chemogenetic inhibition selectively disrupted the memory-guided but not innate responses of mice to novelty. Based on our functional connectivity analysis, we suggest that ENvCA1-proj. neurons serve as an essential node for recognition memory through recurrent circuits mediating sustained attention to novelty, and through feed-forward inhibition of distal vCA1 neurons shifting memory-guided behavior from familiarity to novelty.
Collapse
Affiliation(s)
- Naoki Yamawaki
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
- PROMEMO, The Center for Proteins in Memory, Aarhus UniversityAarhusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAarhusDenmark
| | - Hande Login
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
- PROMEMO, The Center for Proteins in Memory, Aarhus UniversityAarhusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAarhusDenmark
| | | | | | | | - Maria Moltesen
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | | | - Jelena Radulovic
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
- PROMEMO, The Center for Proteins in Memory, Aarhus UniversityAarhusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAarhusDenmark
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of MedicineNew YorkUnited States
| | - Asami Tanimura
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
- PROMEMO, The Center for Proteins in Memory, Aarhus UniversityAarhusDenmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus UniversityAarhusDenmark
| |
Collapse
|
6
|
Atlan G, Matosevich N, Peretz-Rivlin N, Marsh-Yvgi I, Zelinger N, Chen E, Kleinman T, Bleistein N, Sheinbach E, Groysman M, Nir Y, Citri A. Claustrum neurons projecting to the anterior cingulate restrict engagement during sleep and behavior. Nat Commun 2024; 15:5415. [PMID: 38926345 PMCID: PMC11208603 DOI: 10.1038/s41467-024-48829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
The claustrum has been linked to attention and sleep. We hypothesized that this reflects a shared function, determining responsiveness to stimuli, which spans the axis of engagement. To test this hypothesis, we recorded claustrum population dynamics from male mice during both sleep and an attentional task ('ENGAGE'). Heightened activity in claustrum neurons projecting to the anterior cingulate cortex (ACCp) corresponded to reduced sensory responsiveness during sleep. Similarly, in the ENGAGE task, heightened ACCp activity correlated with disengagement and behavioral lapses, while low ACCp activity correlated with hyper-engagement and impulsive errors. Chemogenetic elevation of ACCp activity reduced both awakenings during sleep and impulsive errors in the ENGAGE task. Furthermore, mice employing an exploration strategy in the task showed a stronger correlation between ACCp activity and performance compared to mice employing an exploitation strategy which reduced task complexity. Our results implicate ACCp claustrum neurons in restricting engagement during sleep and goal-directed behavior.
Collapse
Affiliation(s)
- Gal Atlan
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Matosevich
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Peretz-Rivlin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Idit Marsh-Yvgi
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noam Zelinger
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eden Chen
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Timna Kleinman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Bleistein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Efrat Sheinbach
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Yuval Nir
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- Program in Child and Brain Development, Canadian Institute for Advanced Research; MaRS Centre, Toronto, ON, Canada.
| |
Collapse
|
7
|
Moon HS, Mahzarnia A, Stout J, Anderson RJ, Strain M, Tremblay JT, Han ZY, Niculescu A, MacFarlane A, King J, Ashley-Koch A, Clark D, Lutz MW, Badea A. Multivariate investigation of aging in mouse models expressing the Alzheimer's protective APOE2 allele: integrating cognitive metrics, brain imaging, and blood transcriptomics. Brain Struct Funct 2024; 229:231-249. [PMID: 38091051 PMCID: PMC11082910 DOI: 10.1007/s00429-023-02731-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/03/2023] [Indexed: 01/31/2024]
Abstract
APOE allelic variation is critical in brain aging and Alzheimer's disease (AD). The APOE2 allele associated with cognitive resilience and neuroprotection against AD remains understudied. We employed a multipronged approach to characterize the transition from middle to old age in mice with APOE2 allele, using behavioral assessments, image-derived morphometry and diffusion metrics, structural connectomics, and blood transcriptomics. We used sparse multiple canonical correlation analyses (SMCCA) for integrative modeling, and graph neural network predictions. Our results revealed brain sub-networks associated with biological traits, cognitive markers, and gene expression. The cingulate cortex emerged as a critical region, demonstrating age-associated atrophy and diffusion changes, with higher fractional anisotropy in males and middle-aged subjects. Somatosensory and olfactory regions were consistently highlighted, indicating age-related atrophy and sex differences. The hippocampus exhibited significant volumetric changes with age, with differences between males and females in CA3 and CA1 regions. SMCCA underscored changes in the cingulate cortex, somatosensory cortex, olfactory regions, and hippocampus in relation to cognition and blood-based gene expression. Our integrative modeling in aging APOE2 carriers revealed a central role for changes in gene pathways involved in localization and the negative regulation of cellular processes. Our results support an important role of the immune system and response to stress. This integrative approach offers novel insights into the complex interplay among brain connectivity, aging, and sex. Our study provides a foundation for understanding the impact of APOE2 allele on brain aging, the potential for detecting associated changes in blood markers, and revealing novel therapeutic intervention targets.
Collapse
Affiliation(s)
- Hae Sol Moon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Ali Mahzarnia
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Jacques Stout
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Anderson
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Madison Strain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jessica T Tremblay
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Zay Yar Han
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrei Niculescu
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Anna MacFarlane
- Department of Neuroscience, Duke University, Durham, NC, USA
| | - Jasmine King
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Darin Clark
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael W Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Alexandra Badea
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA.
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Lande AS, Garvert AC, Ebbesen NC, Jordbræk SV, Vervaeke K. Representations of tactile object location in the retrosplenial cortex. Curr Biol 2023; 33:4599-4610.e7. [PMID: 37774708 DOI: 10.1016/j.cub.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/23/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
How animals use tactile sensation to detect important objects and remember their location in a world-based coordinate system is unclear. Here, we hypothesized that the retrosplenial cortex (RSC), a key network for contextual memory and spatial navigation, represents the location of objects based on tactile sensation. We studied mice palpating objects with their whiskers while navigating in a tactile virtual reality in darkness. Using two-photon Ca2+ imaging, we discovered that a population of neurons in the agranular RSC signal the location of objects. Responses to objects do not simply reflect the sensory stimulus. Instead, they are highly position, task, and context dependent and often predict the upcoming object before it is within reach. In addition, a large fraction of neurons encoding object location maintain a memory trace of the object's location. These data show that the RSC encodes the location and arrangement of tactile objects in a spatial reference frame.
Collapse
Affiliation(s)
- Andreas Sigstad Lande
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Anna Christina Garvert
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Nora Cecilie Ebbesen
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Sondre Valentin Jordbræk
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway.
| |
Collapse
|
9
|
Liaw YS, Augustine GJ. The claustrum and consciousness: An update. Int J Clin Health Psychol 2023; 23:100405. [PMID: 37701759 PMCID: PMC10493512 DOI: 10.1016/j.ijchp.2023.100405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
The seminal paper of Crick and Koch (2005) proposed that the claustrum, an enigmatic and thin grey matter structure that lies beside the insular cortex, may be involved in the processing of consciousness. As a result, this otherwise obscure structure has received ever-increasing interest in the search for neural correlates of consciousness. Here we review theories of consciousness and discuss the possible relationship between the claustrum and consciousness. We review relevant experimental evidence collected since the Crick and Koch (2005) paper and consider whether these findings support or contradict their hypothesis. We also explore how future experimental work can be designed to clarify how consciousness emerges from neural activity and to understand the role of the claustrum in consciousness.
Collapse
Affiliation(s)
- Yin Siang Liaw
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - George J. Augustine
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
10
|
Kou ZQ, Chen CY, Abdurahman M, Weng XC, Hu C, Geng HY. The Claustrum Controls Motor Activity Through Anterior Cingulate Cortex Input and Local Circuit Synchronization in a Preparatory Manner. Neurosci Bull 2023; 39:1591-1594. [PMID: 37310577 PMCID: PMC10533431 DOI: 10.1007/s12264-023-01079-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/19/2023] [Indexed: 06/14/2023] Open
Affiliation(s)
- Zi-Qi Kou
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Chun-Yan Chen
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Mamatsali Abdurahman
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xu-Chu Weng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Hong-Yan Geng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, 510631, China.
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
11
|
Szalak R, Matysek M, Mozel S, Arciszewski MB. Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Is Co-Expressed with Parvalbumin, Neuropeptide Y and Somatostatin in the Claustrum of the Chinchilla. Animals (Basel) 2023; 13:2177. [PMID: 37443975 DOI: 10.3390/ani13132177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Although for many years, researchers have been working on understanding the function of the cocaine- and amphetamine-regulated transcript (CART) peptide at the central- and peripheral-nervous-system level, data describing the presence of CART in the claustrum are still missing. Therefore, the aim of the present study was to immunohistochemically investigate the CART expression in the claustrum neurons in chinchillas as well as the CART co-localization with somatostatin (SOM), parvalbumin (PV), and neuropeptide Y (NPY) using double-immunohistochemical staining. The claustrum is divided into two main parts: the dorsal segment (CL), which is located above the rhinal fissure, and the ventral segment (EN), located below the rhinal fissure. The presence of HU C/D-IR CART-IR-positive neurons was detected in both the insular claustrum (CL) and the endopiriform nucleus (EN). The vast majority of CART-IR neurons were predominantly small and medium in size and were evenly scattered throughout the claustrum. CART co-localization with selected neurotransmitters/neuromodulators (SOM, NPY, and PV) showed the presence of a CART-IR reaction only in the neurons, while the nerve fibers were, in all cases, devoid of the CART-IR response. Our research supplements missing knowledge about the distribution and co-localization pattern of CART with SOM, NPY, and PV in the chinchilla claustrum, and also provides a better understanding of the similarities and differences compared to other species of rodents and other mammals.
Collapse
Affiliation(s)
- Radosław Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Małgorzata Matysek
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Sylwia Mozel
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Marcin B Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| |
Collapse
|
12
|
Takahashi M, Kobayashi T, Mizuma H, Yamauchi K, Okamoto S, Okamoto K, Ishida Y, Koike M, Watanabe M, Isa T, Hioki H. Preferential arborization of dendrites and axons of parvalbumin- and somatostatin-positive GABAergic neurons within subregions of the mouse claustrum. Neurosci Res 2023; 190:92-106. [PMID: 36574563 DOI: 10.1016/j.neures.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The claustrum coordinates the activities of individual cortical areas through abundant reciprocal connections with the cerebral cortex. Although these excitatory connections have been extensively investigated in three subregions of the claustrum-core region and dorsal and ventral shell regions-the contribution of GABAergic neurons to the circuitry in each subregion remains unclear. Here, we examined the distribution of GABAergic neurons and their dendritic and axonal arborizations in each subregion. Combining in situ hybridization with immunofluorescence histochemistry showed that approximately 10% of neuronal nuclei-positive cells expressed glutamic acid decarboxylase 67 mRNA across the claustral subregions. Approximately 20%, 30%, and 10% of GABAergic neurons were immunoreactive for parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal polypeptide, respectively, in each subregion, and these neurochemical markers showed little overlap with each other. We then reconstructed PV and SOM neurons labeled with adeno-associated virus vectors. The dendrites and axons of PV and SOM neurons were preferentially localized to their respective subregions where their cell bodies were located. Furthermore, the axons were preferentially extended in a rostrocaudal direction, whereas the dendrites were relatively isotropic. The present findings suggest that claustral PV and SOM neurons might execute information processing separately within the core and shell regions.
Collapse
Affiliation(s)
- Megumu Takahashi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomoyo Kobayashi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Haruhi Mizuma
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kenta Yamauchi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Shinichiro Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kazuki Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yoko Ishida
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Multi-Scale Brain Structure Imaging, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan.
| |
Collapse
|
13
|
Hoerder-Suabedissen A, Ocana-Santero G, Draper TH, Scott SA, Kimani JG, Shelton AM, Butt SJB, Molnár Z, Packer AM. Temporal origin of mouse claustrum and development of its cortical projections. Cereb Cortex 2023; 33:3944-3959. [PMID: 36104852 PMCID: PMC10068282 DOI: 10.1093/cercor/bhac318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022] Open
Abstract
The claustrum is known for its extensive connectivity with many other forebrain regions, but its elongated shape and deep location have made further study difficult. We have sought to understand when mouse claustrum neurons are born, where they are located in developing brains, and when they develop their widespread connections to the cortex. We established that a well-characterized parvalbumin plexus, which identifies the claustrum in adults, is only present from postnatal day (P) 21. A myeloarchitectonic outline of the claustrum can be derived from a triangular fiber arrangement from P15. A dense patch of Nurr1+ cells is present at its core and is already evident at birth. Bromodeoxyuridine birth dating of forebrain progenitors reveals that the majority of claustrum neurons are born during a narrow time window centered on embryonic day 12.5, which is later than the adjacent subplate and endopiriform nucleus. Retrograde tracing revealed that claustrum projections to anterior cingulate (ACA) and retrosplenial cortex (RSP) follow distinct developmental trajectories. Claustrum-ACA connectivity matures rapidly and reaches adult-like innervation density by P10, whereas claustrum-RSP innervation emerges later over a protracted time window. This work establishes the timeline of claustrum development and provides a framework for understanding how the claustrum is built and develops its unique connectivity.
Collapse
Affiliation(s)
- Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Gabriel Ocana-Santero
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Thomas H Draper
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Sophie A Scott
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Jesse G Kimani
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Andrew M Shelton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Simon J B Butt
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Adam M Packer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
14
|
Madden MB, Stewart BW, White MG, Krimmel SR, Qadir H, Barrett FS, Seminowicz DA, Mathur BN. A role for the claustrum in cognitive control. Trends Cogn Sci 2022; 26:1133-1152. [PMID: 36192309 PMCID: PMC9669149 DOI: 10.1016/j.tics.2022.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
Early hypotheses of claustrum function were fueled by neuroanatomical data and yielded suggestions that the claustrum is involved in processes ranging from salience detection to multisensory integration for perceptual binding. While these hypotheses spurred useful investigations, incompatibilities inherent in these views must be reconciled to further conceptualize claustrum function amid a wealth of new data. Here, we review the varied models of claustrum function and synthesize them with developments in the field to produce a novel functional model: network instantiation in cognitive control (NICC). This model proposes that frontal cortices direct the claustrum to flexibly instantiate cortical networks to subserve cognitive control. We present literature support for this model and provide testable predictions arising from this conceptual framework.
Collapse
Affiliation(s)
- Maxwell B Madden
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Brent W Stewart
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Michael G White
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Samuel R Krimmel
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Houman Qadir
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21224, USA
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA; Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian N Mathur
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Luo T, Li L, Li J, Cai S, Wang Y, Zhang L, Yu S, Yu T. Claustrum modulates behavioral sensitivity and EEG activity of propofol anesthesia. CNS Neurosci Ther 2022; 29:378-389. [PMID: 36353753 PMCID: PMC9804072 DOI: 10.1111/cns.14012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AIMS The claustrum has long been regarded as a vital center for conscious control. Electrical stimulation or damage to the claustrum can result in decreased awareness or loss of consciousness, suggesting that the claustrum may be a target for the action of general anesthetics. This study aimed to determine the role of the claustrum in propofol anesthesia. METHODS We first applied a fiber photometry calcium signal recording system to record the claustral neuronal activity during the entire process of propofol anesthesia. Chemogenetic activation of claustral neurones was then performed to verify their role in anesthesia. Finally, muscimol (GABAa receptor agonist) and gabazine (GABAa receptor antagonist) were microinjected into the claustrum to determine whether their GABAa receptors were involved in modulating propofol anesthesia. EEG and behavioral indicators, such as anesthetic sensitivity and efficacy, were recorded and analyzed. RESULTS An evident anesthesia-related change in claustrum neuronal activity was suppressed during propofol-induced unconsciousness and restored following recovery from anesthesia. Chemogenetic activation of claustrum neurons results in attenuated propofol sensitivity, a shorter anesthesia duration, and an EEG shift toward wakefulness. Manipulation of GABAa receptors in the claustrum showed bidirectional control of propofol sensitivity, as activation decreases anesthesia efficiency while inactivation augments it. Additionally, inhibiting claustrum GABAa receptors increases cortical EEG slow waves. CONCLUSIONS Claustrum neurones and their GABAa receptors are implicated in the modulation of propofol anesthesia in both behavioral and EEG assessments. Our findings create scope to reveal the brain targets of anesthetic action further and add to the existing evidence on the consciousness-modulating role of the claustrum.
Collapse
Affiliation(s)
- Tian‐Yuan Luo
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina,Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyiChina
| | - Long‐Yu Li
- Department of AnesthesiologyChongqing City Hospital of Traditional Chinese MedicineChongqingChina
| | - Jia Li
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina,Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyiChina
| | - Shuang Cai
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina,Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
| | - Yuan Wang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyiChina
| | - Shou‐Yang Yu
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
| | - Tian Yu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina,Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyiChina,Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
| |
Collapse
|
16
|
Doss MK, Madden MB, Gaddis A, Nebel MB, Griffiths RR, Mathur BN, Barrett FS. Models of psychedelic drug action: modulation of cortical-subcortical circuits. Brain 2022; 145:441-456. [PMID: 34897383 PMCID: PMC9014750 DOI: 10.1093/brain/awab406] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Classic psychedelic drugs such as psilocybin and lysergic acid diethylamide (LSD) have recaptured the imagination of both science and popular culture, and may have efficacy in treating a wide range of psychiatric disorders. Human and animal studies of psychedelic drug action in the brain have demonstrated the involvement of the serotonin 2A (5-HT2A) receptor and the cerebral cortex in acute psychedelic drug action, but different models have evolved to try to explain the impact of 5-HT2A activation on neural systems. Two prominent models of psychedelic drug action (the cortico-striatal thalamo-cortical, or CSTC, model and relaxed beliefs under psychedelics, or REBUS, model) have emphasized the role of different subcortical structures as crucial in mediating psychedelic drug effects. We describe these models and discuss gaps in knowledge, inconsistencies in the literature and extensions of both models. We then introduce a third circuit-level model involving the claustrum, a thin strip of grey matter between the insula and the external capsule that densely expresses 5-HT2A receptors (the cortico-claustro-cortical, or CCC, model). In this model, we propose that the claustrum entrains canonical cortical network states, and that psychedelic drugs disrupt 5-HT2A-mediated network coupling between the claustrum and the cortex, leading to attenuation of canonical cortical networks during psychedelic drug effects. Together, these three models may explain many phenomena of the psychedelic experience, and using this framework, future research may help to delineate the functional specificity of each circuit to the action of both serotonergic and non-serotonergic hallucinogens.
Collapse
Affiliation(s)
- Manoj K Doss
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Maxwell B Madden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Andrew Gaddis
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Roland R Griffiths
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Frederick S Barrett
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
17
|
Chevée M, Finkel EA, Kim SJ, O’Connor DH, Brown SP. Neural activity in the mouse claustrum in a cross-modal sensory selection task. Neuron 2022; 110:486-501.e7. [PMID: 34863367 PMCID: PMC8829966 DOI: 10.1016/j.neuron.2021.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 02/04/2023]
Abstract
The claustrum, a subcortical nucleus forming extensive connections with the neocortex, has been implicated in sensory selection. Sensory-evoked claustrum activity is thought to modulate the neocortex's context-dependent response to sensory input. Recording from claustrum neurons while mice performed a tactile-visual sensory-selection task, we found that neurons in the anterior claustrum, including putative optotagged claustrocortical neurons projecting to the primary somatosensory cortex (S1), were rarely modulated by sensory input. Rather, they exhibited different types of direction-tuned motor responses. Furthermore, we found that claustrum neurons encoded upcoming movement during intertrial intervals and that pairs of claustrum neurons exhibiting synchronous firing were enriched for pairs preferring contralateral lick directions, suggesting that the activity of specific ensembles of similarly tuned claustrum neurons may modulate cortical activity. Chemogenetic inhibition of claustrocortical neurons decreased lick responses to inappropriate sensory stimuli. Altogether, our data indicate that the claustrum is integrated into higher-order premotor circuits recently implicated in decision-making.
Collapse
Affiliation(s)
- Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Eric A. Finkel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Su-Jeong Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Daniel H. O’Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Lead contact,Correspondence:
| |
Collapse
|
18
|
Fang C, Wang H, Naumann RK. Developmental Patterning and Neurogenetic Gradients of Nurr1 Positive Neurons in the Rat Claustrum and Lateral Cortex. Front Neuroanat 2021; 15:786329. [PMID: 34924965 PMCID: PMC8675902 DOI: 10.3389/fnana.2021.786329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
The claustrum is an enigmatic brain structure thought to be important for conscious sensations. Recent studies have focused on gene expression patterns, connectivity, and function of the claustrum, but relatively little is known about its development. Interestingly, claustrum-enriched genes, including the previously identified marker Nurr1, are not only expressed in the classical claustrum complex, but also embedded within lateral neocortical regions in rodents. Recent studies suggest that Nurr1 positive neurons in the lateral cortex share a highly conserved genetic expression pattern with claustrum neurons. Thus, we focus on the developmental progression and birth dating pattern of the claustrum and Nurr1 positive neurons in the lateral cortex. We comprehensively investigate the expression of Nurr1 at various stages of development in the rat and find that Nurr1 expression first appears as an elongated line along the anterior-posterior axis on embryonic day 13.5 (E13.5) and then gradually differentiates into multiple sub-regions during prenatal development. Previous birth dating studies of the claustrum have led to conflicting results, therefore, we combine 5-ethynyl-2'-deoxyuridine (EdU) labeling with in situ hybridization for Nurr1 to study birth dating patterns. We find that most dorsal endopiriform (DEn) neurons are born on E13.5 to E14.5. Ventral claustrum (vCL) and dorsal claustrum (dCL) are mainly born on E14.5 to E15.5. Nurr1 positive cortical deep layer neurons (dLn) and superficial layer neurons (sLn) are mainly born on E14.5 to E15.5 and E15.5 to E17.5, respectively. Finally, we identify ventral to dorsal and posterior to anterior neurogenetic gradients within vCL and DEn. Thus, our findings suggest that claustrum and Nurr1 positive neurons in the lateral cortex are born sequentially over several days of embryonic development and contribute toward charting the complex developmental pattern of the claustrum in rodents.
Collapse
Affiliation(s)
| | | | - Robert Konrad Naumann
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
19
|
Convergence of forepaw somatosensory and motor cortical projections in the striatum, claustrum, thalamus, and pontine nuclei of cats. Brain Struct Funct 2021; 227:361-379. [PMID: 34665323 DOI: 10.1007/s00429-021-02405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The basal ganglia and pontocerebellar systems regulate somesthetic-guided motor behaviors and receive prominent inputs from sensorimotor cortex. In addition, the claustrum and thalamus are forebrain subcortical structures that have connections with somatosensory and motor cortices. Our previous studies in rats have shown that primary and secondary somatosensory cortex (S1 and S2) send overlapping projections to the neostriatum and pontine nuclei, whereas, overlap of primary motor cortex (M1) and S1 was much weaker. In addition, we have shown that M1, but not S1, projects to the claustrum in rats. The goal of the current study was to compare these rodent projection patterns with connections in cats, a mammalian species that evolved in a separate phylogenetic superorder. Three different anterograde tracers were injected into the physiologically identified forepaw representations of M1, S1, and S2 in cats. Labeled fibers terminated throughout the ipsilateral striatum (caudate and putamen), claustrum, thalamus, and pontine nuclei. Digital reconstructions of tracer labeling allowed us to quantify both the normalized distribution of labeling in each subcortical area from each tracer injection, as well as the amount of tracer overlap. Surprisingly, in contrast to our previous findings in rodents, we observed M1 and S1 projections converging prominently in striatum and pons, whereas, S1 and S2 overlap was much weaker. Furthermore, whereas, rat S1 does not project to claustrum, we confirmed dense claustral inputs from S1 in cats. These findings suggest that the basal ganglia, claustrum, and pontocerebellar systems in rat and cat have evolved distinct patterns of sensorimotor cortical convergence.
Collapse
|
20
|
Nikolenko VN, Rizaeva NA, Beeraka NM, Oganesyan MV, Kudryashova VA, Dubovets AA, Borminskaya ID, Bulygin KV, Sinelnikov MY, Aliev G. The mystery of claustral neural circuits and recent updates on its role in neurodegenerative pathology. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2021; 17:8. [PMID: 34233707 PMCID: PMC8261917 DOI: 10.1186/s12993-021-00181-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The claustrum is a structure involved in formation of several cortical and subcortical neural microcircuits which may be involved in such functions as conscious sensations and rewarding behavior. The claustrum is regarded as a multi-modal information processing network. Pathology of the claustrum is seen in certain neurological disorders. To date, there are not enough comprehensive studies that contain accurate information regarding involvement of the claustrum in development of neurological disorders. OBJECTIVE Our review aims to provide an update on claustrum anatomy, ontogenesis, cytoarchitecture, neural networks and their functional relation to the incidence of neurological diseases. MATERIALS AND METHODS A literature review was conducted using the Google Scholar, PubMed, NCBI MedLine, and eLibrary databases. RESULTS Despite new methods that have made it possible to study the claustrum at the molecular, genetic and epigenetic levels, its functions and connectivity are still poorly understood. The anatomical location, relatively uniform cytoarchitecture, and vast network of connections suggest a divergent role of the claustrum in integration and processing of input information and formation of coherent perceptions. Several studies have shown changes in the appearance, structure and volume of the claustrum in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), autism, schizophrenia, and depressive disorders. Taking into account the structure, ontogenesis, and functions of the claustrum, this literature review offers insight into understanding the crucial role of this structure in brain function and behavior.
Collapse
Affiliation(s)
- Vladimir N Nikolenko
- Sechenov University, 11/10 Mokhovaya St, Moscow, 125009, Russia
- Moscow State University, Vrorbyebi Gori, Moscow, Russian Federation
| | | | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | | | | | | | | | - Kirill V Bulygin
- Sechenov University, 11/10 Mokhovaya St, Moscow, 125009, Russia
- Moscow State University, Vrorbyebi Gori, Moscow, Russian Federation
| | - Mikhail Y Sinelnikov
- Sechenov University, 11/10 Mokhovaya St, Moscow, 125009, Russia.
- Research Institute of Human Morphology, Moscow, 117418, Russia.
| | - Gjumrakch Aliev
- Sechenov University, 11/10 Mokhovaya St, Moscow, 125009, Russia
- Research Institute of Human Morphology, Moscow, 117418, Russia
| |
Collapse
|
21
|
Interference of commissural connections through the genu of the corpus callosum specifically impairs sensorimotor gating. Behav Brain Res 2021; 411:113383. [PMID: 34048871 DOI: 10.1016/j.bbr.2021.113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 11/20/2022]
Abstract
White matter abnormalities in schizophrenic patients are characterized as regional tract-specific. Myelin loss at the genu of the corpus callosum (GCC) is one of the most consistent findings in schizophrenic patients across the different populations. We characterized the axons that pass through the GCC by stereotactically injecting an anterograde axonal tracing viral vector into the forceps minor of the corpus callosum in one hemisphere, and identified the homotopic brain structures that have commissural connections in the two hemispheres of the prefrontal cortex, including the anterior cingulate area, the prelimbic area, the secondary motor area, and the dorsal part of the agranular insular area, along with commissural connections with the primary motor area, caudoputamen, and claustrum. To investigate whether dysmyelination in these commissural connections is critical for the development of schizophrenia symptoms, we generated a mouse model with focal demyelination at the GCC by stereotactically injecting demyelinating agent lysolecithin into this site, and tested these mice in a battery of behavioral tasks that are used to model the schizophrenia-like symptom domains. We found that demyelination at the GCC influenced neither the social interest or mood state, nor the locomotive activity or motor coordination. Nevertheless, it specifically reduced the prepulse inhibition of acoustic startle that is a well-known measure of sensorimotor gating. This study advances our understanding of the pathophysiological contributions of the GCC-specific white matter lesion to the related disease, and demonstrates an indispensable role of interhemispheric communication between the frontal cortices for the top-down regulation of the sensorimotor gating.
Collapse
|
22
|
Zhang L, Hernandez VS, Gerfen CR, Jiang SZ, Zavala L, Barrio RA, Eiden LE. Behavioral role of PACAP signaling reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations. eLife 2021; 10:61718. [PMID: 33463524 PMCID: PMC7875564 DOI: 10.7554/elife.61718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/18/2021] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide PACAP, acting as a co-transmitter, increases neuronal excitability, which may enhance anxiety and arousal associated with threat conveyed by multiple sensory modalities. The distribution of neurons expressing PACAP and its receptor, PAC1, throughout the mouse nervous system was determined, in register with expression of glutamatergic and GABAergic neuronal markers, to develop a coherent chemoanatomical picture of PACAP role in brain motor responses to sensory input. A circuit role for PACAP was tested by observing Fos activation of brain neurons after olfactory threat cue in wild-type and PACAP knockout mice. Neuronal activation and behavioral response, were blunted in PACAP knock-out mice, accompanied by sharply downregulated vesicular transporter expression in both GABAergic and glutamatergic neurons expressing PACAP and its receptor. This report signals a new perspective on the role of neuropeptide signaling in supporting excitatory and inhibitory neurotransmission in the nervous system within functionally coherent polysynaptic circuits.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.,Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Vito S Hernandez
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Sunny Z Jiang
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Lilian Zavala
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rafael A Barrio
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States.,Department of Complex Systems, Institute of Physics, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| |
Collapse
|
23
|
The Mouse Claustrum Is Required for Optimal Behavioral Performance Under High Cognitive Demand. Biol Psychiatry 2020; 88:719-726. [PMID: 32456782 PMCID: PMC7554117 DOI: 10.1016/j.biopsych.2020.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/10/2020] [Accepted: 03/28/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND To achieve goals, organisms are often faced with complex tasks that require enhanced control of cognitive faculties for optimal performance. However, the neural circuit mechanisms underlying this ability are unclear. The claustrum is proposed to mediate a variety of functions ranging from sensory binding to cognitive control of action, but direct functional assessments of this telencephalic nucleus are lacking. METHODS Here, we employed the Gnb4 (guanine nucleotide-binding subunit beta-4) cre driver line in mice to selectively monitor and manipulate claustrum projection neurons during 1-choice versus 5-choice serial reaction time task performance. RESULTS Using fiber photometry, we found elevated claustrum activity prior to an expected cue during correct performance on the cognitively demanding 5-choice response assay relative to the less demanding 1-choice version of the task. Claustrum activity during reward acquisition was also enhanced when task demand was higher. Furthermore, optogenetically inhibiting the claustrum prior to the onset of the cue reduced choice accuracy on the 5-choice task but not on the 1-choice task. CONCLUSIONS These results suggest that the claustrum supports a cognitive control function necessary for optimal behavioral performance under cognitively demanding conditions.
Collapse
|
24
|
Anastasiades PG, Boada C, Carter AG. Cell-Type-Specific D1 Dopamine Receptor Modulation of Projection Neurons and Interneurons in the Prefrontal Cortex. Cereb Cortex 2020; 29:3224-3242. [PMID: 30566584 DOI: 10.1093/cercor/bhy299] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 11/14/2022] Open
Abstract
Dopamine modulation in the prefrontal cortex (PFC) mediates diverse effects on neuronal physiology and function, but the expression of dopamine receptors at subpopulations of projection neurons and interneurons remains unresolved. Here, we examine D1 receptor expression and modulation at specific cell types and layers in the mouse prelimbic PFC. We first show that D1 receptors are enriched in pyramidal cells in both layers 5 and 6, and that these cells project to intratelencephalic targets including contralateral cortex, striatum, and claustrum rather than to extratelencephalic structures. We then find that D1 receptors are also present in interneurons and enriched in superficial layer VIP-positive (VIP+) interneurons that coexpresses calretinin but absent from parvalbumin-positive (PV+) and somatostatin-positive (SOM+) interneurons. Finally, we determine that D1 receptors strongly and selectively enhance action potential firing in only a subset of these corticocortical neurons and VIP+ interneurons. Our findings define several novel subpopulations of D1+ neurons, highlighting how modulation via D1 receptors can influence both excitatory and disinhibitory microcircuits in the PFC.
Collapse
Affiliation(s)
- Paul G Anastasiades
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| | - Christina Boada
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| | - Adam G Carter
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| |
Collapse
|
25
|
Reus-García MM, Sánchez-Campusano R, Ledderose J, Dogbevia GK, Treviño M, Hasan MT, Gruart A, Delgado-García JM. The Claustrum is Involved in Cognitive Processes Related to the Classical Conditioning of Eyelid Responses in Behaving Rabbits. Cereb Cortex 2020; 31:281-300. [PMID: 32885230 PMCID: PMC7727357 DOI: 10.1093/cercor/bhaa225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
It is assumed that the claustrum (CL) is involved in sensorimotor integration and cognitive processes. We recorded the firing activity of identified CL neurons during classical eyeblink conditioning in rabbits, using a delay paradigm in which a tone was presented as conditioned stimulus (CS), followed by a corneal air puff as unconditioned stimulus (US). Neurons were identified by their activation from motor (MC), cingulate (CC), and medial prefrontal (mPFC) cortices. CL neurons were rarely activated by single stimuli of any modality. In contrast, their firing was significantly modulated during the first sessions of paired CS/US presentations, but not in well-trained animals. Neuron firing rates did not correlate with the kinematics of conditioned responses (CRs). CL local field potentials (LFPs) changed their spectral power across learning and presented well-differentiated CL–mPFC/CL–MC network dynamics, as shown by crossfrequency spectral measurements. CL electrical stimulation did not evoke eyelid responses, even in trained animals. Silencing of synaptic transmission of CL neurons by the vINSIST method delayed the acquisition of CRs but did not affect their presentation rate. The CL plays an important role in the acquisition of associative learning, mostly in relation to the novelty of CS/US association, but not in the expression of CRs.
Collapse
Affiliation(s)
- M Mar Reus-García
- Division of Neurosciences, Pablo de Olavide University, Seville 4103, Spain
| | | | - Julia Ledderose
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.,Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Godwin K Dogbevia
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa K1Y 4W7, Canada
| | - Mario Treviño
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara 44130, México
| | - Mazahir T Hasan
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Laboratory of Memory Circuits, Achucarro Basque Center for Neuroscience, Leioa 48940, Spain.,Ikerbasque-Basque Foundation for Science, Bilbao 48013, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 4103, Spain
| | | |
Collapse
|
26
|
Potential Role of the Amygdala and Posterior Claustrum in Exercise Intensity-dependent Cardiovascular Regulation in Rats. Neuroscience 2020; 432:150-159. [PMID: 32109531 DOI: 10.1016/j.neuroscience.2020.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/21/2022]
Abstract
Tuning of the cardiovascular response is crucial to maintain performance during high-intensity exercise. It is well known that the nucleus of the solitary tract (NTS) in the brainstem medulla plays a central role in cardiovascular regulation; however, where and how upper brain regions form circuits with NTS and coordinately control cardiovascular responses during high-intensity exercise remain unclear. Here focusing on the amygdala and claustrum, we investigated part of the mechanism for regulation of the cardiovascular system during exercise. In rats, c-Fos immunostaining was used to examine whether the amygdala and claustrum were activated during treadmill exercise. Further, we examined arterial pressure responses to electrical and chemical stimulation of the claustrum region. We also confirmed the anatomical connections between the amygdala, claustrum, and NTS by retrograde tracer injections. Finally, we performed simultaneous electrical stimulation of the claustrum and amygdala to examine their functional connectivity. c-Fos expression was observed in the amygdala and the posterior part of the claustrum (pCL), but not in the anterior part, in an exercise intensity-dependent manner. pCL stimulation induced a depressor response. Using a retrograde tracer, we confirmed direct projections from the amygdala to the pCL and NTS. Simultaneous stimulation of the central nucleus of the amygdala and pCL showed a greater pressor response compared with the stimulation of the amygdala alone. These results suggest the amygdala and pCL are involved in different phases of exercise. More speculatively, these areas might coordinately tune cardiovascular responses that help maintain performance during high-intensity exercise.
Collapse
|
27
|
Zhu J, Hafycz J, Keenan BT, Guo X, Pack A, Naidoo N. Acute Sleep Loss Upregulates the Synaptic Scaffolding Protein, Homer1a, in Non-canonical Sleep/Wake Brain Regions, Claustrum, Piriform and Cingulate Cortices. Front Neurosci 2020; 14:188. [PMID: 32231514 PMCID: PMC7083128 DOI: 10.3389/fnins.2020.00188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/20/2020] [Indexed: 01/18/2023] Open
Abstract
Homer proteins are a component of the post-synaptic density of neurons that are necessary for the maintenance and consolidation of behavioral state. The dominant negative protein homer1a is rapidly increased by neuronal activity and sleep loss. Homer1a knockout mice with globally absent homer1a have reduced ability to sustain wakefulness during the active period. It is not known whether homer1a is required globally or in very specific brain regions or neurons for its role in maintaining wake. In this study, we examined the expression of homer1a, an immediate early gene involved in intracellular signaling cascades, in mice subjected to extended wakefulness. We found that mice displayed increased expression of homer1a in the claustrum, a brain region thought to be involved in consciousness, as well as the cingulate and piriform cortices compared to non-sleep deprived mice. In situ hybridization (ISH) studies also indicate that homer1a is not induced in the known wake promoting regions with sleep deprivation, but is instead upregulated primarily in the claustrum and piriform cortex. Examination of homer1a expression levels with recovery sleep after sleep deprivation indicate that baseline homer1a expression levels were restored. Further, we have identified that homer1a is upregulated in excitatory neurons of the claustrum suggesting that homer1a promotes wakefulness through activating excitatory neurons. This work identifies regions previously unknown to be involved in sleep regulation that respond to acute sleep deprivation or enhanced waking.
Collapse
Affiliation(s)
| | | | | | | | | | - Nirinjini Naidoo
- Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
28
|
Pham X, Wright DK, Atapour N, Chan JMH, Watkins KJ, Worthy KH, Rosa M, Reichelt A, Reser DH. Internal Subdivisions of the Marmoset Claustrum Complex: Identification by Myeloarchitectural Features and High Field Strength Imaging. Front Neuroanat 2019; 13:96. [PMID: 31827427 PMCID: PMC6890826 DOI: 10.3389/fnana.2019.00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022] Open
Abstract
There has been a surge of interest in the structure and function of the mammalian claustrum in recent years. However, most anatomical and physiological studies treat the claustrum as a relatively homogenous structure. Relatively little attention has been directed toward possible compartmentalization of the claustrum complex into anatomical subdivisions, and how this compartmentalization is reflected in claustrum connections with other brain structures. In this study, we examined the cyto- and myelo-architecture of the claustrum of the common marmoset (Callithrix jacchus), to determine whether the claustrum contains internal anatomical structures or compartments, which could facilitate studies focused on understanding its role in brain function. NeuN, Nissl, calbindin, parvalbumin, and myelin-stained sections from eight adult marmosets were studied using light microscopy and serial reconstruction to identify potential internal compartments. Ultra high resolution (9.4T) post-mortem magnetic resonance imaging was employed to identify tractographic differences between identified claustrum subcompartments by diffusion-weighted tractography. Our results indicate that the classically defined marmoset claustrum includes at least two major subdivisions, which correspond to the dorsal endopiriform and insular claustrum nuclei, as described in other species, and that the dorsal endopiriform nucleus (DEnD) contains architecturally distinct compartments. Furthermore, the dorsal subdivision of the DEnD is tractographically distinguishable from the insular claustrum with respect to cortical connections.
Collapse
Affiliation(s)
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Nafiseh Atapour
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Jonathan M-H Chan
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Kirsty J Watkins
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Katrina H Worthy
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marcello Rosa
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Amy Reichelt
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Robarts Research Institute, Western University, London, ON, Canada
| | - David H Reser
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Graduate Entry Medicine Program, Monash Rural Health, Churchill, VIC, Australia
| |
Collapse
|
29
|
The Claustrum-Prefrontal Cortex Pathway Regulates Impulsive-Like Behavior. J Neurosci 2019; 39:10071-10080. [PMID: 31704786 DOI: 10.1523/jneurosci.1005-19.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
The claustrum connects with a broad range of cortical areas including the prefrontal cortex (PFC). However, the function of the claustrum (CLA) and its neural projections remains largely unknown. Here, we elucidated the role of the neural projections from the CLA to the PFC in regulating impulsivity in male rats. We first identified the CLA-PFC pathway by retrograde tracer and virus expression. By using immunofluorescent staining of the c-Fos-positive neurons, we showed that chemogenetic activation and inhibition of the CLA-PFC pathway reduced and increased overall activity of the PFC, respectively. In the 5-choice serial reaction time task (5-CSRTT), we found that chemogenetic activation and inhibition of the CLA-PFC pathway increased and reduced the impulsive-like behavior (i.e., premature responses), respectively. Furthermore, chemogenetic inhibition of the CLA-PFC pathway prevented methamphetamine-induced impulsivity, without affecting methamphetamine-induced hyperactivity. In contrast to the role of CLA-PFC pathway in selectively regulating impulsivity, activation of the claustrum disrupted attention in the 5-CSRTT. These results indicate that the CLA-PFC pathway is essential for impulsivity. This study may shed light on the understanding of impulsivity-related disorders such as drug addiction.SIGNIFICANCE STATEMENT The claustrum is one of the most mysterious brain regions. Although extensive anatomical studies demonstrated that the claustrum connects with many cortical areas, the function of the neural projections between the claustrum and cortical areas remain largely unknown. Here, we showed that the neural projections from the claustrum to the prefrontal cortex regulates impulsivity by using the designer drugs (DREADDs)-based chemogenetic tools. Interestingly, the claustrum-prefrontal cortex pathway also regulates methamphetamine-induced impulsivity, suggesting a critical role of this neural pathway in regulating impulsivity-related disorders such as drug addiction. Our results provided preclinical evidence that the claustrum-prefrontal cortex regulates impulsivity. The claustrum-prefrontal cortex pathway may be a novel target for the treatment of impulsivity-related brain disorders.
Collapse
|
30
|
Baizer JS, Webster CJ, Baker JF. The Claustrum in the Squirrel Monkey. Anat Rec (Hoboken) 2019; 303:1439-1454. [DOI: 10.1002/ar.24253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/21/2019] [Accepted: 06/29/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and BiophysicsJacobs School of Medicine and Biomedical Sciences, University at Buffalo Buffalo New York
| | - Charles J. Webster
- Department of Physiology and BiophysicsJacobs School of Medicine and Biomedical Sciences, University at Buffalo Buffalo New York
| | - James F. Baker
- Department of PhysiologyNorthwestern University Medical School Chicago Illinois
| |
Collapse
|
31
|
Smith JB, Watson GDR, Liang Z, Liu Y, Zhang N, Alloway KD. A Role for the Claustrum in Salience Processing? Front Neuroanat 2019; 13:64. [PMID: 31275119 PMCID: PMC6594418 DOI: 10.3389/fnana.2019.00064] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
The claustrum (CLA) is a subcortical structure, present only in mammals, whose function remains uncertain. Previously, using resting-state functional magnetic resonance imaging (rs-fMRI) in awake head-fixed rats, we found evidence that the CLA is part of the rodent homolog of the default mode network (DMN; Smith et al., 2017). This network emerged as strong functional connections between the medial prefrontal cortex (mPFC), mediodorsal (MD) thalamus, and CLA in the awake state, which was not present following administration of isoflurane anesthesia. In the present report, we review evidence indicating that the rodent CLA also has connections with structures identified in the rodent homolog of the salience network (SN), a circuit that directs attention towards the most relevant stimuli among a multitude of sensory inputs (Seeley et al., 2007; Menon and Uddin, 2010). In humans, this circuit consists of functional connections between the anterior cingulate cortex (ACC) and a region that encompasses both the CLA and insular cortex. We further go on to review the similarities and differences between the functional and anatomical connections of the CLA and insula in rodents using both rs-fMRI and neuroanatomical tracing, respectively. We analyze in detail the connectivity of the CLA with the cingulate cortex, which is a major node in the SN and has been shown to modulate attention. When considered with other recent behavior and physiology studies, the data reveal a role for the CLA in salience-guided orienting. More specifically, we hypothesize that limbic information from mPFC, MD thalamus, and the basolateral amygdala (BLA) are integrated by the CLA to guide modality-related regions of motor and sensory cortex in directing attention towards relevant (i.e., salient) sensory events.
Collapse
Affiliation(s)
- Jared B Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Glenn D R Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Zhifeng Liang
- Laboratory for Comparative Neuroimaging, Institute for Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yikang Liu
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Department of Biomedical Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States
| | - Nanyin Zhang
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Department of Biomedical Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Huck Institute of Life Sciences, Penn State University, Millennium Science Complex, University Park, PA, United States
| | - Kevin D Alloway
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Huck Institute of Life Sciences, Penn State University, Millennium Science Complex, University Park, PA, United States.,Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
32
|
Dillingham CM, Mathiasen ML, Frost BE, Lambert MAC, Bubb EJ, Jankowski MM, Aggleton JP, O’Mara SM. The Anatomical Boundary of the Rat Claustrum. Front Neuroanat 2019; 13:53. [PMID: 31213993 PMCID: PMC6555083 DOI: 10.3389/fnana.2019.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022] Open
Abstract
The claustrum is a subcortical nucleus that exhibits dense connectivity across the neocortex. Considerable recent progress has been made in establishing its genetic and anatomical characteristics, however, a core, contentious issue that regularly presents in the literature pertains to the rostral extent of its anatomical boundary. The present study addresses this issue in the rat brain. Using a combination of immunohistochemistry and neuroanatomical tract tracing, we have examined the expression profiles of several genes that have previously been identified as exhibiting a differential expression profile in the claustrum relative to the surrounding cortex. The expression profiles of parvalbumin (PV), crystallin mu (Crym), and guanine nucleotide binding protein (G protein), gamma 2 (Gng2) were assessed immunohistochemically alongside, or in combination with cortical anterograde, or retrograde tracer injections. Retrograde tracer injections into various thalamic nuclei were used to further establish the rostral border of the claustrum. Expression of all three markers delineated a nuclear boundary that extended considerably (∼500 μm) beyond the anterior horn of the neostriatum. Cortical retrograde and anterograde tracer injections, respectively, revealed distributions of cortically-projecting claustral neurons and cortical efferent inputs to the claustrum that overlapped with the gene marker-derived claustrum boundary. Finally, retrograde tracer injections into the thalamus revealed insular cortico-thalamic projections encapsulating a claustral area with strongly diminished cell label, that extended rostral to the striatum.
Collapse
Affiliation(s)
- Christopher M. Dillingham
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Bethany E. Frost
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Marie A. C. Lambert
- Faculty of Basic and Applied Sciences, University of Poitiers, Poitiers, France
| | - Emma J. Bubb
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Maciej M. Jankowski
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - John P. Aggleton
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Shane M. O’Mara
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Ultrastructure of the dorsal claustrum in cat. II. Synaptic organization. Acta Histochem 2019; 121:383-391. [PMID: 30846200 DOI: 10.1016/j.acthis.2019.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023]
Abstract
The claustrum is a bilateral subcortical nucleus situated between the insular cortex and the striatum in the brain of all mammals. It consists of two embryologically distinct subdivisions - dorsal and ventral claustrum. The claustrum has high connectivity with various areas of the cortex, subcortical and allocortical structures. It has long been suggested that the various claustral connections have different types of synaptic contacts at the claustral neurons. However, to the best of our knowledge, the literature data on the ultrastructural organization of the different types of synaptic contacts in the dorsal claustrum are very few. Therefore, the aim of our study was to observe and describe the synaptic organization of the dorsal claustrum in the cat. We used a total of 10 adult male cats and conducted an ultrastructural study under a transmission electron microscope as per established protocol. We described a multitude of dendritic spines, which were subdivided into two types - with and without foot processes. Based on the size and shape of the terminal boutons, the quantity and distribution of vesicles and the characteristic features of the active synaptic zone, we described six types of synaptic boutons, most of which formed asymmetrical synaptic contacts. Furthermore, we reported the presence of axo-dendritic, axo-somatic, dendro-dendritic and axo-axonal synapses. The former two likely represent the morphological substrate of the corticoclaustral pathway, while the remaining two types have the ultrastructural features of inhibitory synapses, likely forming a local inhibitory circuit in the claustrum. In conclusion, the present study shares new information about the neuropil of the claustrum and proposes a systematic classification of the types of synaptic boutons and contacts observed in the dorsal claustrum of the cat, thus supporting its key and complex role as a structure integrating various information within the brain.
Collapse
|
34
|
Krimmel SR, White MG, Panicker MH, Barrett FS, Mathur BN, Seminowicz DA. Resting state functional connectivity and cognitive task-related activation of the human claustrum. Neuroimage 2019; 196:59-67. [PMID: 30954711 DOI: 10.1016/j.neuroimage.2019.03.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/07/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022] Open
Abstract
Structural and functional analyses of the human claustrum, a poorly understood telencephalic gray matter structure, are hampered by its sheet-like anatomical arrangement. Here, we first describe a functional magnetic resonance imaging (fMRI) method to reveal claustrum signal with no linear relationship with adjacent regions in human subjects. We applied this approach to resting state functional connectivity (RSFC) analysis of the claustrum at high resolution (1.5 mm isotropic voxels) using a 7T dataset (n = 20) and a separate 3T dataset for replication (n = 35). We then assessed claustrum activation during performance of a cognitive task, the multi-source interference task, at 3T (n = 33). Extensive functional connectivity was observed between claustrum and cortical regions associated with cognitive control, including anterior cingulate, prefrontal and parietal cortices. Cognitive task performance was associated with widespread activation and deactivation that overlapped with the cortical areas showing functional connectivity to the claustrum. Furthermore, during high cognitive conflict conditions of the task, the claustrum was significantly activated at the onset of the task, but not during the remainder of the difficult condition. Both of these findings suggest that the human claustrum can be functionally isolated with fMRI, and that it may play a role in cognitive control, and specifically task switching, independent of sensorimotor processing.
Collapse
Affiliation(s)
- Samuel R Krimmel
- Department of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, 21201, USA
| | - Michael G White
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Matthew H Panicker
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Brian N Mathur
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
35
|
White MG, Panicker M, Mu C, Carter AM, Roberts BM, Dharmasri PA, Mathur BN. Anterior Cingulate Cortex Input to the Claustrum Is Required for Top-Down Action Control. Cell Rep 2019; 22:84-95. [PMID: 29298436 DOI: 10.1016/j.celrep.2017.12.023] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/30/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023] Open
Abstract
Cognitive abilities, such as volitional attention, operate under top-down, executive frontal cortical control of hierarchically lower structures. The circuit mechanisms underlying this process are unresolved. The claustrum possesses interconnectivity with many cortical areas and, thus, is hypothesized to orchestrate the cortical mantle for top-down control. Whether the claustrum receives top-down input and how this input may be processed by the claustrum have yet to be formally tested, however. We reveal that a rich anterior cingulate cortex (ACC) input to the claustrum encodes a preparatory top-down information signal on a five-choice response assay that is necessary for optimal task performance. We further show that ACC input monosynaptically targets claustrum inhibitory interneurons and spiny glutamatergic projection neurons, the latter of which amplify ACC input in a manner that is powerfully constrained by claustrum inhibitory microcircuitry. These results demonstrate ACC input to the claustrum is critical for top-down control guiding action.
Collapse
Affiliation(s)
- Michael G White
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew Panicker
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chaoqi Mu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ashley M Carter
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bradley M Roberts
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Poorna A Dharmasri
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
36
|
Hinova-Palova D, Iliev A, Landzhov B, Kotov G, Stanchev S, Georgiev GP, Kirkov V, Edelstein L, Paloff A. Ultrastructure of the dorsal claustrum in cat. I. Types of neurons. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/20023294.2019.1578636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dimka Hinova-Palova
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Kotov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi P. Georgiev
- Department of Orthopedics and Traumatology, University Hospital St. Giovanna-ISUL, Medical University of Sofia, Sofia, Bulgaria
| | - Vidin Kirkov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | | | - Adrian Paloff
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
37
|
Krimmel SR, Qadir H, Hesselgrave N, White MG, Reser DH, Mathur BN, Seminowicz DA. Resting State Functional Connectivity of the Rat Claustrum. Front Neuroanat 2019; 13:22. [PMID: 30853902 PMCID: PMC6395398 DOI: 10.3389/fnana.2019.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
The claustrum is structurally connected with many cortical areas.A major hurdle standing in the way of understanding claustrum function is the difficulty in assessing the global functional connectivity (FC) of this structure. The primary issues lie in the inability to isolate claustrum signal from the adjacent insular cortex (Ins), caudate/putamen (CPu), and endopiriform nucleus (Endo). To address this issue, we used (7T) fMRI in the rat and describe a novel analytic method to study claustrum without signal contamination from the surrounding structures. Using this approach, we acquired claustrum signal distinct from Ins, CPu, and Endo, and used this claustrum signal to determine whole brain resting state functional connectivity (RSFC). Claustrum RSFC was distinct from the adjacent structures and displayed extensive connections with sensory cortices and the cingulate cortex, consistent with known structural connectivity of the claustrum. These results suggest fMRI and improved analysis can be combined to accurately assay claustrum function.
Collapse
Affiliation(s)
- Samuel R. Krimmel
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Houman Qadir
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Natalie Hesselgrave
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Michael G. White
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - David H. Reser
- Graduate Entry Medicine Program, Monash Rural Health-Churchill, Churchill, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Brian N. Mathur
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - David A. Seminowicz
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
38
|
Kurada L, Bayat A, Joshi S, Koubeissi MZ. The Claustrum in Relation to Seizures and Electrical Stimulation. Front Neuroanat 2019; 13:8. [PMID: 30809132 PMCID: PMC6379271 DOI: 10.3389/fnana.2019.00008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
The neural mechanisms of altered consciousness that accompanies most epileptic seizures are not known. We have reported alteration of consciousness resulting from electrical stimulation of the claustrum via a depth electrode in a woman with refractory focal epilepsy. Additionally, there are reports that suggest possible claustral involvement in focal epilepsy, including MRI findings of bilaterally increased T2 signal intensity in patients with status epilepticus (SE). Although its cytoarchitecture and connectivity have been studied extensively, the precise role of the claustrum in consciousness processing, and, thus, its contribution to the semiology of dyscognitive seizures are still elusive. To investigate the role of the claustrum in rats, we studied the effect of high-frequency stimulation (HFS) of the claustrum on performance in the operant chamber. We also studied the inter-claustral and the claustro-hippocampal connectivity through cerebro-cerebral evoked potentials (CCEPs), and investigated the involvement of the claustrum in kainate (KA)-induced seizures. We found that HFS of the claustrum decreased the performance in the operant task in a manner that was proportional to the current intensity used. In this article, we present previously unpublished data about the effect of stimulating extra-claustral regions in the operant chamber task as a control experiment. In these animals, stimulation of the corpus callosum, the largest interhemispheric commissure, as well as the orbitofrontal cortex in the vicinity of the claustrum did not produce that same effect as with claustral stimulation. Additionally, CCEPs established the presence of effective connectivity between both claustra, as well as between the claustrum and bilateral hippocampi indicating that these connections may be part of the circuitry involved in alteration of consciousness in limbic seizures. Lastly, some seizures induced by KA injections showed an early involvement of the claustrum with later propagation to the hippocampi. Further work is needed to clarify the exact role of the claustrum in mediating alteration of consciousness during epileptic seizures.
Collapse
Affiliation(s)
- Lalitha Kurada
- Department of Neurology, The George Washington University, Washington, DC, United States
| | - Arezou Bayat
- Department of Neurology, The George Washington University, Washington, DC, United States
| | - Sweta Joshi
- Department of Neurology, The George Washington University, Washington, DC, United States
| | - Mohamad Z Koubeissi
- Department of Neurology, The George Washington University, Washington, DC, United States
| |
Collapse
|
39
|
Smith JB, Alloway KD, Hof PR, Orman R, Reser DH, Watakabe A, Watson GDR. The relationship between the claustrum and endopiriform nucleus: A perspective towards consensus on cross-species homology. J Comp Neurol 2019; 527:476-499. [PMID: 30225888 PMCID: PMC6421118 DOI: 10.1002/cne.24537] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
With the emergence of interest in studying the claustrum, a recent special issue of the Journal of Comparative Neurology dedicated to the claustrum (Volume 525, Issue 6, pp. 1313-1513) brought to light questions concerning the relationship between the claustrum (CLA) and a region immediately ventral known as the endopiriform nucleus (En). These structures have been identified as separate entities in rodents but appear as a single continuous structure in primates. During the recent Society for Claustrum Research meeting, a panel of experts presented data pertaining to the relationship of these regions and held a discussion on whether the CLA and En should be considered (a) separate unrelated structures, (b) separate nuclei within the same formation, or (c) subregions of a continuous structure. This review article summarizes that discussion, presenting comparisons of the cytoarchitecture, neurochemical profiles, genetic markers, and anatomical connectivity of the CLA and En across several mammalian species. In rodents, we conclude that the CLA and the dorsal endopiriform nucleus (DEn) are subregions of a larger complex, which likely performs analogous computations and exert similar effects on their respective cortical targets (e.g., sensorimotor versus limbic). Moving forward, we recommend that the field retain the nomenclature currently employed for this region but should continue to examine the delineation of these structures across different species. Using thorough descriptions of a variety of anatomical features, this review offers a clear definition of the CLA and En in rodents, which provides a framework for identifying homologous structures in primates.
Collapse
Affiliation(s)
- Jared B. Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kevin D. Alloway
- Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rena Orman
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, 11203 USA
| | - David H. Reser
- Graduate Entry Medicine Program, Monash Rural Health Churchill, Monash University, Churchill, Victoria 3842, Australia
- Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | | | - Glenn D. R. Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
40
|
White MG, Mathur BN. Claustrum circuit components for top-down input processing and cortical broadcast. Brain Struct Funct 2018; 223:3945-3958. [PMID: 30109490 PMCID: PMC6252134 DOI: 10.1007/s00429-018-1731-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/04/2018] [Indexed: 11/24/2022]
Abstract
Anterior cingulate cortex (ACC) input to the claustrum is required for top-down cognitive control of action. By virtue of its widespread cortical connectivity, the claustrum is anatomically situated to process and broadcast top-down signals from ACC to downstream cortices. To gain a deeper understanding of claustrum processing mechanisms, it is first critical to identify the projection neuron subtypes within claustrum, the intrinsic and extrinsic components regulating their firing, and the differential innervation of cortex by projection neuron subtypes. To this end, we used whole-cell patch-clamp electrophysiology in adult mouse brain slices to distinguish two spiny projection neuron subtypes in claustrum, referred to as type I and II neurons, and three aspiny interneuron subtypes, referred to as type III, IV, and V neurons. In response to optogenetic ACC afferent stimulation, type II neurons preferentially burst fire relative to type I neurons. This burst firing is calcium-dependent and is optimized by voltage-gated potassium channels. Finally, we find that visual cortices, parietal association cortex, and ACC receive input from type I and II neurons in differing proportions. These data reveal the diversity of claustrum neurons and mechanisms by which claustrum processes ACC command for spatiotemporal coordination of the cerebral cortex.
Collapse
Affiliation(s)
- Michael G White
- Department of Pharmacology, University of Maryland, School of Medicine, HSF III, RM 9179, 670 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland, School of Medicine, HSF III, RM 9179, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
41
|
Qadir H, Krimmel SR, Mu C, Poulopoulos A, Seminowicz DA, Mathur BN. Structural Connectivity of the Anterior Cingulate Cortex, Claustrum, and the Anterior Insula of the Mouse. Front Neuroanat 2018; 12:100. [PMID: 30534060 PMCID: PMC6276828 DOI: 10.3389/fnana.2018.00100] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023] Open
Abstract
The claustrum is a narrow subcortical brain structure that resides between the striatum and insular cortex. The function of the claustrum is not fully described, and while our previous work supports a role for the claustrum in top-down cognitive control of action, other evidence suggests the claustrum may be involved in detecting salient changes in the external environment. The anterior cingulate cortex (ACC) and the anterior insular (aINS) are the two major participants in the salience network of human brain regions that activate in response to salient stimuli. While bidirectional connections between the ACC and the claustrum exist from mouse to non-human primate, the aINS connectivity with claustrum remains unclear, particularly in mouse. Here, we explored structural connections of the aINS with the claustrum and ACC through adeno-associated virus neuronal tract tracer injections into the ACC and aINS of the mouse. We detected sparse projections from the claustrum to the aINS and diffuse projections from the aINS to the borders of the claustrum were observed in some cases. In contrast, the insular cortex and endopiriform nucleus surrounding the claustrum had rich interconnectivity with aINS. Additionally, we observed a modest interconnectivity between ACC and the aINS. These data support the idea that claustrum neuron responses to salient stimuli may be driven by the ACC rather than the aINS.
Collapse
Affiliation(s)
- Houman Qadir
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Samuel R Krimmel
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, United States
| | - Chaoqi Mu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alexandros Poulopoulos
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, United States
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
42
|
Hinova-Palova D, Iliev A, Edelstein L, Landzhov B, Kotov G, Paloff A. Electron microscopic study of Golgi-impregnated and gold-toned neurons and fibers in the claustrum of the cat. J Mol Histol 2018; 49:615-630. [DOI: 10.1007/s10735-018-9799-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022]
|
43
|
Zingg B, Dong HW, Tao HW, Zhang LI. Input-output organization of the mouse claustrum. J Comp Neurol 2018; 526:2428-2443. [PMID: 30252130 DOI: 10.1002/cne.24502] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/04/2023]
Abstract
Progress in determining the precise organization and function of the claustrum (CLA) has been hindered by the difficulty in reliably targeting these neurons. To overcome this, we used a projection-based targeting strategy to selectively label CLA principal neurons. Combined with adeno-associated virus (AAV) and monosynaptic rabies tracing techniques, we systematically examined the pre-synaptic input and axonal output of this structure. We found that CLA neurons projecting to retrosplenial cortex (RSP) collateralize extensively to innervate a variety of higher-order cortical regions. No subcortical labeling was found, with the exception of sparse terminals in the basolateral amygdala (BLA). This pattern of output was similar to cingulate- and visual cortex-projecting CLA neurons, suggesting a common targeting scheme among these projection-defined populations. Rabies virus tracing directly demonstrated widespread synaptic inputs to RSP-projecting CLA neurons from both cortical and subcortical areas. The strongest inputs arose from classically defined limbic regions, including medial prefrontal cortex, anterior cingulate, BLA, ventral hippocampus, and neuromodulatory systems such as the dorsal raphe and cholinergic basal forebrain. These results suggest that the CLA may integrate information related to the emotional salience of stimuli and may globally modulate cortical state by broadcasting its output uniformly across a variety of higher cognitive centers.
Collapse
Affiliation(s)
- Brian Zingg
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Hong-Wei Dong
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li I Zhang
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
44
|
Atlan G, Terem A, Peretz-Rivlin N, Sehrawat K, Gonzales BJ, Pozner G, Tasaka GI, Goll Y, Refaeli R, Zviran O, Lim BK, Groysman M, Goshen I, Mizrahi A, Nelken I, Citri A. The Claustrum Supports Resilience to Distraction. Curr Biol 2018; 28:2752-2762.e7. [PMID: 30122531 PMCID: PMC6485402 DOI: 10.1016/j.cub.2018.06.068] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 11/30/2022]
Abstract
A barrage of information constantly assaults our senses, of which only a fraction is relevant at any given point in time. However, the neural circuitry supporting the suppression of irrelevant sensory distractors is not completely understood. The claustrum, a circuit hub with vast cortical connectivity, is an intriguing brain structure, whose restrictive anatomy, thin and elongated, has precluded functional investigation. Here, we describe the use of Egr2-CRE mice to access genetically defined claustral neurons. Utilizing conditional viruses for anterograde axonal labeling and retrograde trans-synaptic tracing, we validated this transgenic model for accessing the claustrum and extended the known repertoire of claustral input/output connectivity. Addressing the function of the claustrum, we inactivated CLEgr2+ neurons, chronically as well as acutely, in mice performing an automated two-alternative forced-choice behavioral task. Strikingly, inhibition of CLEgr2+ neurons did not significantly impact task performance under varying delay times and cue durations, but revealed a selective role for the claustrum in supporting performance in the presence of an irrelevant auditory distractor. Further investigation of behavior, in the naturalistic maternal pup-retrieval task, replicated the result of sensitization to an auditory distractor following inhibition of CLEgr2+ neurons. Initiating investigation into the underlying mechanism, we found that activation of CLEgr2+ neurons modulated cortical sensory processing, suppressing tone representation in the auditory cortex. This functional study, utilizing selective genetic access, implicates the claustrum in supporting resilience to distraction, a fundamental aspect of attention.
Collapse
Affiliation(s)
- Gal Atlan
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Anna Terem
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | - Kamini Sehrawat
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ben Jerry Gonzales
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Guy Pozner
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Gen-Ichi Tasaka
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Yael Goll
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ron Refaeli
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ori Zviran
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maya Groysman
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Adi Mizrahi
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Israel Nelken
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel; Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
45
|
Claustral structural connectivity and cognitive impairment in drug naïve Parkinson’s disease. Brain Imaging Behav 2018; 13:933-944. [DOI: 10.1007/s11682-018-9907-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
46
|
D5 dopamine receptors control glutamatergic AMPA transmission between the motor cortex and subthalamic nucleus. Sci Rep 2018; 8:8858. [PMID: 29891970 PMCID: PMC5995923 DOI: 10.1038/s41598-018-27195-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/25/2018] [Indexed: 12/23/2022] Open
Abstract
Corticofugal fibers target the subthalamic nucleus (STN), a component nucleus of the basal ganglia, in addition to the striatum, their main input. The cortico-subthalamic, or hyperdirect, pathway, is thought to supplement the cortico-striatal pathways in order to interrupt/change planned actions. To explore the previously unknown properties of the neurons that project to the STN, retrograde and anterograde tools were used to specifically identify them in the motor cortex and selectively stimulate their synapses in the STN. The cortico-subthalamic neurons exhibited very little sag and fired an initial doublet followed by non-adapting action potentials. In the STN, AMPA/kainate synaptic currents had a voltage-dependent conductance, indicative of GluA2-lacking receptors and were partly inhibited by Naspm. AMPA transmission displayed short-term depression, with the exception of a limited bandpass in the 5 to 15 Hz range. AMPA synaptic currents were negatively controlled by dopamine D5 receptors. The reduction in synaptic strength was due to postsynaptic D5 receptors, mediated by a PKA-dependent pathway, but did not involve a modified rectification index. Our data indicated that dopamine, through post-synaptic D5 receptors, limited the cortical drive onto STN neurons in the normal brain.
Collapse
|
47
|
White MG, Mathur BN. Frontal cortical control of posterior sensory and association cortices through the claustrum. Brain Struct Funct 2018; 223:2999-3006. [PMID: 29623428 PMCID: PMC5995986 DOI: 10.1007/s00429-018-1661-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/29/2018] [Indexed: 01/21/2023]
Abstract
The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.
Collapse
Affiliation(s)
- Michael G White
- Department of Pharmacology, University of Maryland School of Medicine, BRB 4-011, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, BRB 4-011, 655 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
48
|
Geier DA, Kern JK, Homme KG, Geier MR. A Cross-Sectional Study of the Association between Infant Hepatitis B Vaccine Exposure in Boys and the Risk of Adverse Effects as Measured by Receipt of Special Education Services. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15010123. [PMID: 29329213 PMCID: PMC5800222 DOI: 10.3390/ijerph15010123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
Abstract
The National Center for Education Statistics reported that between 1990–2005 the number of children receiving special education services (SES) rose significantly, and then, from 2004–2012, the number declined significantly. This coincided with the introduction of Thimerosal-containing hepatitis B vaccine in 1991, and the subsequent introduction of Thimerosal-reduced hepatitis B vaccine in the early 2000s. This study examined the potential relationship between infant exposure to mercury from three doses of Thimerosal-containing hepatitis B vaccine and the risk of boys being adversely affected (as measured by receipt of SES). This cross-sectional study examined 1192 boys (weighted n = 24,537,123) 7–8 years of age (born: 1994–2007) from the combined 2001–2014 National Health and Nutritional Examination Survey (NHANES). Survey logistic regression modeling revealed that an exposed population receiving three doses of infant Thimerosal-containing hepatitis B vaccine (weighted n = 11,186,579), in comparison to an unexposed population (weighted n = 704,254), were at an increased risk of receipt of SES. This association was robust (crude odds ratio = 10.143, p = 0.0232), even when considering covariates, such as race and socioeconomic status (adjusted odds ratio = 9.234, p = 0.0259). Survey frequency modeling revealed that receipt of SES for the population that was exposed to three doses of Thimerosal-containing hepatitis B vaccine in infancy (12.91%) was significantly higher than the unexposed population (1.44%) (prevalence ratio = 8.96, p = 0.006, prevalence attributable rate = 0.1147). Despite the limitation of this cross-sectional study not being able to ascribe a direct cause-and-effect relationship between exposure and outcome, it is estimated that an additional 1.2 million boys received SES with excess education costs of about United States (US) $180 billion associated with exposure to Thimerosal-containing hepatitis B vaccine. By contrast, exposure to Thimerosal-reduced hepatitis B vaccine was not associated with an increased risk of receiving SES. Therefore, routine childhood vaccination is important to reduce the morbidity and mortality of infectious diseases, but every effort should be made to eliminate Thimerosal from all vaccines.
Collapse
Affiliation(s)
- David A Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD 20905, USA.
- CoMeD, Inc., Silver Spring, MD 20905, USA.
| | - Janet K Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, MD 20905, USA.
- CoMeD, Inc., Silver Spring, MD 20905, USA.
- Council for Nutritional and Environmental Medicine (CONEM), US Autism Research Group, Allen, TX 75013, USA.
| | - Kristin G Homme
- International Academy of Oral Medicine and Toxicology, Champions Gate, FL 33896, USA.
| | - Mark R Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD 20905, USA.
- CoMeD, Inc., Silver Spring, MD 20905, USA.
| |
Collapse
|
49
|
Randerath J, Finkel L, Shigaki C, Burris J, Nanda A, Hwang P, Frey SH. Does it fit? - Impaired affordance perception after stroke. Neuropsychologia 2017; 108:92-102. [PMID: 29203202 DOI: 10.1016/j.neuropsychologia.2017.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
Affordance perception comprises the evaluation of whether our given bodily capabilities and properties of the environment allow particular actions. Typical impairments after left brain damage in motor cognition as well as after right brain damage in visuo-spatial abilities may affect the evaluation of whether interactions with objects are possible. Further it is unclear whether deficient motor function is accounted for when deciding upon action opportunities. For these purposes we developed a paradigm with two tasks that differ in their type of demands on affordance perception and tested it in healthy young adults (Randerath and Frey, 2016). Here, we applied one of these two tasks in stroke patients and age matched healthy participants. A sample of 34 stroke patients with either left (LBD) or right brain damage (RBD) and 29 healthy controls made decisions about whether their hands would fit through a defined horizontal aperture presented in various sizes, while they remained still. Data was analyzed using a detection theory approach and included criterion, perceptual sensitivity and diagnostic accuracy as dependent variables. In addition we applied modern voxel based lesion analyses to explore neural correlates. Compared to controls, both patient groups demonstrated lower perceptual sensitivity. As predicted, increased motor cognitive deficiencies after left brain damage and visuo-spatial deficits after right brain damage were associated with worse performance. Preliminary lesion analyses demonstrated that next to lesions in ventro-dorsal regions, damage in the cortex-claustrum-cingulate pathway may affect perceptual sensitivity. Results were similar for left and right brain damage suggesting a bilateral network. Accordingly, we propose that perceptual sensitivity for affordance based judgments is a capability depending on motor-cognitive and visuo-spatial processing, which frequently is deficient after left or right brain damage, respectively. Further research on diagnostics and training in affordance perception after brain damage is needed.
Collapse
Affiliation(s)
- Jennifer Randerath
- Department of Psychology, University of Konstanz, Germany; Lurija Institute for Rehabilitation and Health Sciences at the University of Konstanz, Schmieder Foundation for Sciences and Research, Allensbach, Germany; Department of Psychological Sciences, University of Missouri, MO, USA.
| | - Lisa Finkel
- Department of Psychology, University of Konstanz, Germany; Lurija Institute for Rehabilitation and Health Sciences at the University of Konstanz, Schmieder Foundation for Sciences and Research, Allensbach, Germany
| | | | - Joe Burris
- Rusk Rehabilitation Center, Columbia, MO, USA
| | - Ashish Nanda
- Department of Neurology, University Hospital, Columbia, MO, USA; Neurology, SSM Health Medical Group, Fenton, MO, USA
| | - Peter Hwang
- Rusk Rehabilitation Center, Columbia, MO, USA
| | - Scott H Frey
- Department of Psychological Sciences, University of Missouri, MO, USA
| |
Collapse
|
50
|
Jankowski MM, Islam MN, O'Mara SM. Dynamics of spontaneous local field potentials in the anterior claustrum of freely moving rats. Brain Res 2017; 1677:101-117. [DOI: 10.1016/j.brainres.2017.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022]
|