1
|
Wu N, Li W, Chen Q, Chen M, Chen S, Cheng C, Xie Y. Research Advances in Neuroblast Migration in Traumatic Brain Injury. Mol Neurobiol 2024; 61:1-13. [PMID: 38507029 DOI: 10.1007/s12035-024-04117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Neuroblasts were first derived from the adult mammalian brains in the 1990s by Reynolds et al. Since then, persistent neurogenesis in the subgranular zone (SGZ) of the hippocampus and subventricular zone (SVZ) has gradually been recognized. To date, reviews on neuroblast migration have largely investigated glial cells and molecular signaling mechanisms, while the relationship between vasculature and cell migration remains a mystery. Thus, this paper underlines the partial biological features of neuroblast migration and unravels the significance and mechanisms of the vasculature in the process to further clarify theoretically the neural repair mechanism after brain injury. Neuroblast migration presents three modes according to the characteristics of cells that act as scaffolds during the migration process: gliophilic migration, neurophilic migration, and vasophilic migration. Many signaling molecules, including brain-derived neurotrophic factor (BDNF), stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and angiopoietin-1 (Ang-1), affect vasophilic migration, synergistically regulating the migration of neuroblasts to target areas along blood vessels. However, the precise role of blood vessels in the migration of neuroblasts needs to be further explored. The in-depth study of neuroblast migration will most probably provide theoretical basis and breakthrough for the clinical treatment of brain injury diseases.
Collapse
Affiliation(s)
- Na Wu
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Wenlang Li
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Qiang Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Meng Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Siyuan Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Yimin Xie
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China.
| |
Collapse
|
2
|
Yılmaz E, Baltaci SB, Mogulkoc R, Baltaci AK. The impact of flavonoids and BDNF on neurogenic process in various physiological/pathological conditions including ischemic insults: a narrative review. Nutr Neurosci 2024; 27:1025-1041. [PMID: 38151886 DOI: 10.1080/1028415x.2023.2296165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae thus, it has recently attracted considerable attention in the field of medical research. Neurogenesis is the process of formation of new neurons in the brain, including the human brain, from neural stem/progenitor cells [NS/PCs] which reside in neurogenic niches that contain the necessary substances for NS/PC proliferation, differentiation, migration, and maturation into functioning neurons which can integrate into a pre-existing neural network.Neurogenesis can be modulated by many exogenous and endogenous factors, pathological conditions. Both brain-derived neurotrophic factor, and flavonoids can modulate the neurogenic process in physiological conditions and after various pathological conditions including ischemic insults. AIM This review aims to discuss neurogenesis after ischemic insults and to determine the role of flavonoids and BDNF on neurogenesis under physiological and pathological conditions with a concentration on ischemic insults to the brain in particular. METHOD Relevant articles assessing the impact of flavonoids and BDNF on neurogenic processes in various physiological/pathological conditions including ischemic insults within the timeline of 1965 until 2023 were searched using the PubMed database. CONCLUSIONS The selected studies have shown that ischemic insults to the brain induce NS/PC proliferation, differentiation, migration, and maturation into functioning neurons integrating into a pre-existing neural network. Flavonoids and BDNF can modulate neurogenesis in the brain in various physiological/pathological conditions including ischemic insults. In conclusion, flavonoids and BDNF may be involved in post-ischemic brain repair processes through enhancing endogenous neurogenesis.
Collapse
Affiliation(s)
- Esen Yılmaz
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | | - Rasim Mogulkoc
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | |
Collapse
|
3
|
Moradikhah F, Farahani M, Shafiee A. Towards the development of sensation-enabled skin substitutes. Biomater Sci 2024; 12:4024-4044. [PMID: 38990154 DOI: 10.1039/d4bm00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Recent advances in cell and biofabrication technologies have contributed to the development of complex human organs. In particular, several skin substitutes are being generated using tissue engineering and regenerative medicine (TERM) technologies. However, recent studies mainly focus on the restoration of the dermis and epidermis layers rather than the regeneration of a fully functional innervated skin organ. Innervation is a critical step in functional tissue repair which has been overlooked in the current TERM studies. In the current study, we highlight the importance of sensation in the skin as the largest sensory organ in the human body. In large non-healing skin wounds, the skin sensation is severely diminished or completely lost and ultimately lead to chronic pain and wound healing process interruption. Current therapeutics for restoring skin sensation after trauma are limited. Recent regenerative medicine-based studies could successfully induce neural networks in skin substitutes, but the effectiveness of these technologies in enhancing sensory capability needs further investigation.
Collapse
Affiliation(s)
- Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mojtaba Farahani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Abbas Shafiee
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
4
|
Wang G, Li Z, Wang G, Sun Q, Lin P, Wang Q, Zhang H, Wang Y, Zhang T, Cui F, Zhong Z. Advances in Engineered Nanoparticles for the Treatment of Ischemic Stroke by Enhancing Angiogenesis. Int J Nanomedicine 2024; 19:4377-4409. [PMID: 38774029 PMCID: PMC11108071 DOI: 10.2147/ijn.s463333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Gongchen Wang
- Department of Vascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Qixu Sun
- Department of Gastroenterology, Penglai People’s Hospital, Yantai, Shandong, 265600, People’s Republic of China
| | - Peng Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Feiyun Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
5
|
Song J. BDNF Signaling in Vascular Dementia and Its Effects on Cerebrovascular Dysfunction, Synaptic Plasticity, and Cholinergic System Abnormality. J Lipid Atheroscler 2024; 13:122-138. [PMID: 38826183 PMCID: PMC11140249 DOI: 10.12997/jla.2024.13.2.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 06/04/2024] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia and is characterized by memory impairment, blood-brain barrier disruption, neuronal cell loss, glia activation, impaired synaptic plasticity, and cholinergic system abnormalities. To effectively prevent and treat VaD a good understanding of the mechanisms underlying its neuropathology is needed. Brain-derived neurotrophic factor (BDNF) is an important neurotrophic factor with multiple functions in the systemic circulation and the central nervous system and is known to regulate neuronal cell survival, synaptic formation, glia activation, and cognitive decline. Recent studies indicate that when compared with normal subjects, patients with VaD have low serum BDNF levels and that BDNF deficiency in the serum and cerebrospinal fluid is an important indicator of VaD. Here, we review current knowledge on the role of BDNF signaling in the pathology of VaD, such as cerebrovascular dysfunction, synaptic dysfunction, and cholinergic system impairment.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
6
|
Mazio C, Mavaro I, Palladino A, Casale C, Urciuolo F, Banfi A, D'Angelo L, Netti PA, de Girolamo P, Imparato G, Attanasio C. Rapid innervation and physiological epidermal regeneration by bioengineered dermis implanted in mouse. Mater Today Bio 2024; 25:100949. [PMID: 38298559 PMCID: PMC10827562 DOI: 10.1016/j.mtbio.2024.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 02/02/2024] Open
Abstract
Tissue-engineered skin substitutes are promising tools to cover large and deep skin defects. However, the lack of a synergic and fast regeneration of the vascular network, nerves, and skin appendages limits complete skin healing and impairs functional recovery. It has been highlighted that an ideal skin substitute should mimic the structure of the native tissue to enhance clinical effectiveness. Here, we produced a pre-vascularized dermis (PVD) comprised of fibroblasts embedded in their own extracellular matrix (ECM) and a capillary-like network. Upon implantation in a mouse full-thickness skin defect model, we observed a very early innervation of the graft in 2 weeks. In addition, mouse capillaries and complete epithelialization were detectable as early as 1 week after implantation and, skin appendages developed in 2 weeks. These anatomical features underlie the interaction with the skin nerves, thus providing a further cue for reinnervation guidance. Further, the graft displays mechanical properties, collagen density, and assembly features very similar to the host tissue. Taken together our data show that the pre-existing ECM components of the PVD, physiologically organized and assembled similarly to the native tissue, support a rapid regeneration of dermal tissue. Therefore, our results suggest a promising potential for PVD in skin regeneration.
Collapse
Affiliation(s)
- Claudia Mazio
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Italy
| | - Isabella Mavaro
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Italy
- University of Naples Federico II, Department of Veterinary Medicine and Animal Production, Italy
| | - Antonio Palladino
- University of Naples Federico II, Department of Agricultural Sciences, Italy
| | - Costantino Casale
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Italy
| | - Francesco Urciuolo
- University of Naples Federico II, Department of Chemical, Materials and Industrial Production Engineering, Italy
| | - Andrea Banfi
- Basel University Hospital and University of Basel, Department of Biomedicine, Switzerland
| | - Livia D'Angelo
- University of Naples Federico II, Department of Veterinary Medicine and Animal Production, Italy
| | - Paolo A. Netti
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Italy
- University of Naples Federico II, Interdisciplinary Research Centre on Biomaterials (CRIB), Italy
- University of Naples Federico II, Department of Chemical, Materials and Industrial Production Engineering, Italy
| | - Paolo de Girolamo
- University of Naples Federico II, Department of Veterinary Medicine and Animal Production, Italy
| | - Giorgia Imparato
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for HealthCare@CRIB, Italy
| | - Chiara Attanasio
- University of Naples Federico II, Department of Veterinary Medicine and Animal Production, Italy
| |
Collapse
|
7
|
Shvedov NR, Analoui S, Dafalias T, Bedell BL, Gardner TJ, Scott BB. In vivo imaging in transgenic songbirds reveals superdiffusive neuron migration in the adult brain. Cell Rep 2024; 43:113759. [PMID: 38345898 DOI: 10.1016/j.celrep.2024.113759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Neuron migration is a key phase of neurogenesis, critical for the assembly and function of neuronal circuits. In songbirds, this process continues throughout life, but how these newborn neurons disperse through the adult brain is unclear. We address this question using in vivo two-photon imaging in transgenic zebra finches that express GFP in young neurons and other cell types. In juvenile and adult birds, migratory cells are present at a high density, travel in all directions, and make frequent course changes. Notably, these dynamic migration patterns are well fit by a superdiffusive model. Simulations reveal that these superdiffusive dynamics are sufficient to disperse new neurons throughout the song nucleus HVC. These results suggest that superdiffusive migration may underlie the formation and maintenance of nuclear brain structures in the postnatal brain and indicate that transgenic songbirds are a useful resource for future studies into the mechanisms of adult neurogenesis.
Collapse
Affiliation(s)
- Naomi R Shvedov
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA
| | - Sina Analoui
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Theresia Dafalias
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA
| | - Brooke L Bedell
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Timothy J Gardner
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Benjamin B Scott
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA; Neurophotonics Center, Photonics Center, and Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Engert J, Spahn B, Sommerer S, Ehret Kasemo T, Hackenberg S, Rak K, Voelker J. Adult Neurogenesis of the Medial Geniculate Body: In Vitro and Molecular Genetic Analyses Reflect the Neural Stem Cell Capacity of the Rat Auditory Thalamus over Time. Int J Mol Sci 2024; 25:2623. [PMID: 38473870 DOI: 10.3390/ijms25052623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Neural stem cells (NSCs) have been recently identified in the neonatal rat medial geniculate body (MGB). NSCs are characterized by three cardinal features: mitotic self-renewal, formation of progenitors, and differentiation into all neuroectodermal cell lineages. NSCs and the molecular factors affecting them are particularly interesting, as they present a potential target for treating neurologically based hearing disorders. It is unclear whether an NSC niche exists in the rat MGB up to the adult stage and which neurogenic factors are essential during maturation. The rat MGB was examined on postnatal days 8, 12, and 16, and at the adult stadium. The cardinal features of NSCs were detected in MGB cells of all age groups examined by neurosphere, passage, and differentiation assays. In addition, real-time quantitative polymerase chain reaction arrays were used to compare the mRNA levels of 84 genes relevant to NSCs and neurogenesis. In summary, cells of the MGB display the cardinal features of NSCs up to the adult stage with a decreasing NSC potential over time. Neurogenic factors with high importance for MGB neurogenesis were identified on the mRNA level. These findings should contribute to a better understanding of MGB neurogenesis and its regenerative capacity.
Collapse
Affiliation(s)
- Jonas Engert
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Bjoern Spahn
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Sabine Sommerer
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Totta Ehret Kasemo
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Kristen Rak
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| | - Johannes Voelker
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany
| |
Collapse
|
9
|
Lozano-Ureña A, Frade JM. Differential contribution of TrkB and p75 NTR to BDNF-dependent self-renewal, proliferation, and differentiation of adult neural stem cells. Front Mol Neurosci 2023; 16:1271820. [PMID: 38188197 PMCID: PMC10770873 DOI: 10.3389/fnmol.2023.1271820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Alterations in adult neurogenesis are a common hallmark of neurodegenerative diseases. Therefore, understanding the molecular mechanisms that control this process is an indispensable requirement for designing therapeutic interventions addressing neurodegeneration. Neurotrophins have been implicated in multiple functions including proliferation, survival, and differentiation of the neural stem cells (NSCs), thereby being good candidates for therapeutic intervention. Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family and has been proven to promote neurogenesis in the subgranular zone. However, the effects of BDNF in the adult subventricular zone (SVZ) still remain unclear due to contradictory results. Using in vitro cultures of adult NSCs isolated from the mouse SVZ, we show that low concentrations of BDNF are able to promote self-renewal and proliferation in these cells by activating the tropomyosin-related kinase B (TrkB) receptor. However, higher concentrations of BDNF that can bind the p75 neurotrophin receptor (p75NTR) potentiate TrkB-dependent self-renewal and proliferation and promote differentiation of the adult NSCs, suggesting different molecular mechanisms in BDNF-promoting proliferation and differentiation. The use of an antagonist for p75NTR reduces the increment in NSC proliferation and commitment to the oligodendrocyte lineage. Our data support a fundamental role for both receptors, TrkB and p75NTR, in the regulation of NSC behavior.
Collapse
Affiliation(s)
| | - José M. Frade
- Laboratory of Neuronal Generation and Degeneration in Vertebrates, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| |
Collapse
|
10
|
Zhang F, Chen J, Li Y, Ye J, Wang C. Neuronal Scaffold Protein ARMS Interacts with Synaptotagmin-4 C2AB through the Ankyrin Repeat Domain with an Unexpected Mode. Int J Mol Sci 2023; 24:16993. [PMID: 38069318 PMCID: PMC10707181 DOI: 10.3390/ijms242316993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
The ankyrin repeat-rich membrane spanning (ARMS), a transmembrane neuronal scaffold protein, plays a fundamental role in neuronal physiology, including neuronal development, polarity, differentiation, survival and angiogenesis, through interactions with diverse partners. Previous studies have shown that the ARMS negatively regulates brain-derived neurotrophic factor (BDNF) secretion by interacting with Synaptotagmin-4 (Syt4), thereby affecting neurogenesis and the development and function of the nervous system. However, the molecular mechanisms of the ARMS/Syt4 complex assembly remain unclear. Here, we confirmed that the ARMS directly interacts with Syt4 through its N-terminal ankyrin repeats 1-8. Unexpectedly, both the C2A and C2B domains of Syt4 are necessary for binding with the ARMS. We then combined the predicted complex structural models from AlphaFold2 with systematic biochemical analyses using point mutagenesis to underline the molecular basis of ARMS/Syt4 complex formation and to identify two conserved residues, E15 and W72, of the ARMS, as essential residues mediating the assembly of the complex. Furthermore, we showed that ARMS proteins are unable to interact with Syt1 or Syt3, indicating that the interaction between ARMS and Syt4 is specific. Taken together, the findings from this study provide biochemical details on the interaction between the ARMS and Syt4, thereby offering a biochemical basis for the further understanding of the potential mechanisms and functional implications of the ARMS/Syt4 complex formation, especially with regard to the modulation of BDNF secretion and associated neuropathies.
Collapse
Affiliation(s)
- Fa Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiasheng Chen
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yahong Li
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jin Ye
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
11
|
Sato Y, Asahi T, Kataoka K. Integrative single-cell RNA-seq analysis of vascularized cerebral organoids. BMC Biol 2023; 21:245. [PMID: 37940920 PMCID: PMC10634128 DOI: 10.1186/s12915-023-01711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Cerebral organoids are three-dimensional in vitro cultured brains that mimic the function and structure of the human brain. One of the major challenges for cerebral organoids is the lack of functional vasculature. Without perfusable vessels, oxygen and nutrient supplies may be insufficient for long-term culture, hindering the investigation of the neurovascular interactions. Recently, several strategies for the vascularization of human cerebral organoids have been reported. However, the generalizable trends and variability among different strategies are unclear due to the lack of a comprehensive characterization and comparison of these vascularization strategies. In this study, we aimed to explore the effect of different vascularization strategies on the nervous system and vasculature in human cerebral organoids. RESULTS We integrated single-cell RNA sequencing data of multiple vascularized and vascular organoids and fetal brains from publicly available datasets and assessed the protocol-dependent and culture-day-dependent effects on the cell composition and transcriptomic profiles in neuronal and vascular cells. We revealed the similarities and uniqueness of multiple vascularization strategies and demonstrated the transcriptomic effects of vascular induction on neuronal and mesodermal-like cell populations. Moreover, our data suggested that the interaction between neurons and mesodermal-like cell populations is important for the cerebrovascular-specific profile of endothelial-like cells. CONCLUSIONS This study highlights the current challenges to vascularization strategies in human cerebral organoids and offers a benchmark for the future fabrication of vascularized organoids.
Collapse
Affiliation(s)
- Yuya Sato
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan.
| | - Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
| |
Collapse
|
12
|
Engert J, Doll J, Vona B, Ehret Kasemo T, Spahn B, Hagen R, Rak K, Voelker J. mRNA Abundance of Neurogenic Factors Correlates with Hearing Capacity in Auditory Brainstem Nuclei of the Rat. Life (Basel) 2023; 13:1858. [PMID: 37763262 PMCID: PMC10532994 DOI: 10.3390/life13091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Neural stem cells (NSCs) have previously been described up to the adult stage in the rat cochlear nucleus (CN). A decreasing neurogenic potential was observed with critical changes around hearing onset. A better understanding of molecular factors affecting NSCs and neurogenesis is of interest as they represent potential targets to treat the cause of neurologically based hearing disorders. The role of genes affecting NSC development and neurogenesis in CN over time on hearing capacity has remained unclear. This study investigated the mRNA abundance of genes influencing NSCs and neurogenesis in rats' CN over time. The CN of rats on postnatal days 6, 12, and 24 were examined. Real-time quantitative polymerase chain reaction arrays were used to compare mRNA levels of 84 genes relevant to NSCs and neurogenesis. Age- and hearing-specific patterns of changes in mRNA abundance of neurogenically relevant genes were detected in the rat CN. Additionally, crucial neurogenic factors with significant and relevant influence on neurogenesis were identified. The results of this work should contribute to a better understanding of the molecular mechanisms underlying the neurogenesis of the auditory pathway.
Collapse
Affiliation(s)
- Jonas Engert
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Julia Doll
- Institute of Pathology, University of Wuerzburg, Josef-Schneider-Strasse 2, 97080 Wuerzburg, Germany;
| | - Barbara Vona
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany;
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Totta Ehret Kasemo
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Bjoern Spahn
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Rudolf Hagen
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Kristen Rak
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Johannes Voelker
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| |
Collapse
|
13
|
Winkelman MA, Dai G. Bioengineered perfused human brain microvascular networks enhance neural progenitor cell survival, neurogenesis, and maturation. SCIENCE ADVANCES 2023; 9:eaaz9499. [PMID: 37163593 PMCID: PMC10171804 DOI: 10.1126/sciadv.aaz9499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Neural progenitor cells (NPCs) have the capability to self-renew and differentiate into neurons and glial cells. In the adult brain, NPCs are found near brain microvascular networks (BMVNs) in specialized microenvironments called the neurovascular niche (NVN). Although several in vitro NVN models have been previously reported, most do not properly recapitulate the intimate cellular interactions between NPCs and perfused brain microvessels. Here, we developed perfused BMVNs composed of primary human brain endothelial cells, pericytes, and astrocytes within microfluidic devices. When induced pluripotent stem cell-derived NPCs were introduced into BMVNs, we found that NPC survival, neurogenesis, and maturation were enhanced. The application of flow during BMVN coculture was also beneficial for neuron differentiation. Collectively, our work highlighted the important role of BMVNs and flow in NPC self-renewal and neurogenesis, as well as demonstrated our model's potential to study the biological and physical interactions of human NVN in vitro.
Collapse
Affiliation(s)
- Max A. Winkelman
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
14
|
Coelho-Santos V, Cruz AJN, Shih AY. Does Perinatal Intermittent Hypoxia Affect Cerebrovascular Network Development? Dev Neurosci 2023; 46:44-54. [PMID: 37231864 DOI: 10.1159/000530957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Perinatal hypoxia is an inadequate delivery of oxygen to the fetus in the period immediately before, during, or after the birth process. The most frequent form of hypoxia occurring in human development is chronic intermittent hypoxia (CIH) due to sleep-disordered breathing (apnea) or bradycardia events. CIH incidence is particularly high with premature infants. During CIH, repetitive cycles of hypoxia and reoxygenation initiate oxidative stress and inflammatory cascades in the brain. A dense microvascular network of arterioles, capillaries, and venules is required to support the constant metabolic demands of the adult brain. The development and refinement of this microvasculature is orchestrated throughout gestation and in the initial weeks after birth, at a critical juncture when CIH can occur. There is little knowledge on how CIH affects the development of the cerebrovasculature. However, since CIH (and its treatments) can cause profound abnormalities in tissue oxygen content and neural activity, there is reason to believe that it can induce lasting abnormalities in vascular structure and function at the microvascular level contributing to neurodevelopmental disorders. This mini-review discusses the hypothesis that CIH induces a positive feedback loop to perpetuate metabolic insufficiency through derailment of normal cerebrovascular development, leading to long-term deficiencies in cerebrovascular function.
Collapse
Affiliation(s)
- Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Anne-Jolene N Cruz
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Genet N, Genet G, Chavkin NW, Paila U, Fang JS, Vasavada HH, Goldberg JS, Acharya BR, Bhatt NS, Baker K, McDonnell SP, Huba M, Sankaranarayanan D, Ma GZM, Eichmann A, Thomas JL, Ffrench-Constant C, Hirschi KK. Connexin 43-mediated neurovascular interactions regulate neurogenesis in the adult brain subventricular zone. Cell Rep 2023; 42:112371. [PMID: 37043357 PMCID: PMC10564973 DOI: 10.1016/j.celrep.2023.112371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
The subventricular zone (SVZ) is the largest neural stem cell (NSC) niche in the adult brain; herein, the blood-brain barrier is leaky, allowing direct interactions between NSCs and endothelial cells (ECs). Mechanisms by which direct NSC-EC interactions in the adult SVZ control NSC behavior are unclear. We found that Cx43 is highly expressed by SVZ NSCs and ECs, and its deletion in either leads to increased NSC proliferation and neuroblast generation, suggesting that Cx43-mediated NSC-EC interactions maintain NSC quiescence. This is further supported by single-cell RNA sequencing and in vitro studies showing that ECs control NSC proliferation by regulating expression of genes associated with NSC quiescence and/or activation in a Cx43-dependent manner. Cx43 mediates these effects in a channel-independent manner involving its cytoplasmic tail and ERK activation. Such insights inform adult NSC regulation and maintenance aimed at stem cell therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Gael Genet
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Nicholas W Chavkin
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Umadevi Paila
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jennifer S Fang
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hema H Vasavada
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joshua S Goldberg
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Bipul R Acharya
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Neha S Bhatt
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kasey Baker
- Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA; Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Stephanie P McDonnell
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mahalia Huba
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Danya Sankaranarayanan
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Gerry Z M Ma
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jean-Leon Thomas
- Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Karen K Hirschi
- Department of Cell Biology, Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
16
|
Lopez-Virgen V, Gonzalez-Morales O, Gonzalez-Perez O. The ventricular-subventricular, subgranular and subcallosal zones: three niches of neural stem cells in the postnatal brain. Exp Brain Res 2023; 241:1463-1470. [PMID: 37083843 DOI: 10.1007/s00221-023-06621-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
In the postnatal brain, three regions show high mitotic activity. These brain areas are neurogenic niches, and each niche harbors a microenvironment favorable for the proliferation and differentiation of neural stem cells. These multipotential cells maintain the capacity to self-renew and generate intermediate precursors that will differentiate into neuronal and glial lineages (astrocytes and oligodendrocytes). The most well-studied niches are the ventricular-subventricular zone (V-SVZ) of the lateral ventricles, the subgranular zone (SGZ) of the dentate gyrus in the hippocampus, and the subcallosal zone (SCZ), located in the limit between the corpus callosum and the hippocampal formation. The discovery of these three neurogenic niches has gained much interest in the field because they may be a therapeutic alternative in neural regeneration and neurodegenerative disorders. In this review, we describe in brief all these regions and explain their potential impact on solving some neurological conditions.
Collapse
Affiliation(s)
- Verónica Lopez-Virgen
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Av. Universidad 333, 28040, Colima, COL, México
| | - Oscar Gonzalez-Morales
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, 45201, Zapopan, JAL, Mexico
| | - Oscar Gonzalez-Perez
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Av. Universidad 333, 28040, Colima, COL, México.
| |
Collapse
|
17
|
Karakatsani A, Álvarez-Vergara MI, de Almodóvar CR. The vasculature of neurogenic niches: Properties and function. Cells Dev 2023; 174:203841. [PMID: 37060947 DOI: 10.1016/j.cdev.2023.203841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
In the adult rodent brain, neural stem cells (NSCs) reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. In these areas, NSCs and their progeny integrate intrinsic signals and extrinsic cues provided by their microenvironment that control their behavior. The vasculature in the SVZ and SGZ, and the choroid plexus (ChP) in the SVZ, have emerged as critical compartments of the neurogenic niches as they provide a rich repertoire of cues to regulate NSC quiescence, proliferation, self-renewal and differentiation. Physical contact between NSCs and blood vessels is also a feature within the niches and supports different processes such as quiescence, migration and vesicle transport. In this review, we provide a description of the brain and choroid plexus vasculature in both stem cell niches, highlighting the main properties and role of the vasculature in each niche. We also summarize the current understanding of how blood vessel- and ChP-derived signals influence the behavior of NSCs in physiological adulthood, as well as upon aging.
Collapse
Affiliation(s)
- Andromachi Karakatsani
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - María I Álvarez-Vergara
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany; Schlegel Chair for Neurovascular Cell Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
18
|
Geribaldi-Doldán N, Carrascal L, Pérez-García P, Oliva-Montero JM, Pardillo-Díaz R, Domínguez-García S, Bernal-Utrera C, Gómez-Oliva R, Martínez-Ortega S, Verástegui C, Nunez-Abades P, Castro C. Migratory Response of Cells in Neurogenic Niches to Neuronal Death: The Onset of Harmonic Repair? Int J Mol Sci 2023; 24:6587. [PMID: 37047560 PMCID: PMC10095545 DOI: 10.3390/ijms24076587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Harmonic mechanisms orchestrate neurogenesis in the healthy brain within specific neurogenic niches, which generate neurons from neural stem cells as a homeostatic mechanism. These newly generated neurons integrate into existing neuronal circuits to participate in different brain tasks. Despite the mechanisms that protect the mammalian brain, this organ is susceptible to many different types of damage that result in the loss of neuronal tissue and therefore in alterations in the functionality of the affected regions. Nevertheless, the mammalian brain has developed mechanisms to respond to these injuries, potentiating its capacity to generate new neurons from neural stem cells and altering the homeostatic processes that occur in neurogenic niches. These alterations may lead to the generation of new neurons within the damaged brain regions. Notwithstanding, the activation of these repair mechanisms, regeneration of neuronal tissue within brain injuries does not naturally occur. In this review, we discuss how the different neurogenic niches respond to different types of brain injuries, focusing on the capacity of the progenitors generated in these niches to migrate to the injured regions and activate repair mechanisms. We conclude that the search for pharmacological drugs that stimulate the migration of newly generated neurons to brain injuries may result in the development of therapies to repair the damaged brain tissue.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Pérez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - José M. Oliva-Montero
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Samuel Domínguez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Carlos Bernal-Utrera
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Ricardo Gómez-Oliva
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Sergio Martínez-Ortega
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Cristina Verástegui
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| |
Collapse
|
19
|
Ohno Y, Nakajima C, Ajioka I, Muraoka T, Yaguchi A, Fujioka T, Akimoto S, Matsuo M, Lotfy A, Nakamura S, Herranz-Pérez V, García-Verdugo JM, Matsukawa N, Kaneko N, Sawamoto K. Amphiphilic peptide-tagged N-cadherin forms radial glial-like fibers that enhance neuronal migration in injured brain and promote sensorimotor recovery. Biomaterials 2023; 294:122003. [PMID: 36736095 DOI: 10.1016/j.biomaterials.2023.122003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/05/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
The mammalian brain has very limited ability to regenerate lost neurons and recover function after injury. Promoting the migration of young neurons (neuroblasts) derived from endogenous neural stem cells using biomaterials is a new and promising approach to aid recovery of the brain after injury. However, the delivery of sufficient neuroblasts to distant injured sites is a major challenge because of the limited number of scaffold cells that are available to guide neuroblast migration. To address this issue, we have developed an amphiphilic peptide [(RADA)3-(RADG)] (mRADA)-tagged N-cadherin extracellular domain (Ncad-mRADA), which can remain in mRADA hydrogels and be injected into deep brain tissue to facilitate neuroblast migration. Migrating neuroblasts directly contacted the fiber-like Ncad-mRADA hydrogel and efficiently migrated toward an injured site in the striatum, a deep brain area. Furthermore, application of Ncad-mRADA to neonatal cortical brain injury efficiently promoted neuronal regeneration and functional recovery. These results demonstrate that self-assembling Ncad-mRADA peptides mimic both the function and structure of endogenous scaffold cells and provide a novel strategy for regenerative therapy.
Collapse
Affiliation(s)
- Yuya Ohno
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan
| | - Takahiro Muraoka
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan; Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Atsuya Yaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Teppei Fujioka
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Saori Akimoto
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan
| | - Misaki Matsuo
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Sayuri Nakamura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Laboratory of Neuronal Regeneration, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan.
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
20
|
Role of Running-Activated Neural Stem Cells in the Anatomical and Functional Recovery after Traumatic Brain Injury in p21 Knock-Out Mice. Int J Mol Sci 2023; 24:ijms24032911. [PMID: 36769236 PMCID: PMC9918280 DOI: 10.3390/ijms24032911] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) represents one of the most common worldwide causes of death and disability. Clinical and animal model studies have evidenced that TBI is characterized by the loss of both gray and white matter, resulting in brain atrophy and in a decrease in neurological function. Nowadays, no effective treatments to counteract TBI-induced neurological damage are available. Due to its complex and multifactorial pathophysiology (neuro-inflammation, cytotoxicity and astroglial scar formation), cell regeneration and survival in injured brain areas are strongly hampered. Recently, it has been proposed that adult neurogenesis may represent a new approach to counteract the post-traumatic neurodegeneration. In our laboratory, we have recently shown that physical exercise induces the long-lasting enhancement of subventricular (SVZ) adult neurogenesis in a p21 (negative regulator of neural progenitor proliferation)-null mice model, with a concomitant improvement of olfactory behavioral paradigms that are strictly dependent on SVZ neurogenesis. On the basis of this evidence, we have investigated the effect of running on SVZ neurogenesis and neurorepair processes in p21 knock-out mice that were subject to TBI at the end of a 12-day session of running. Our data indicate that runner p21 ko mice show an improvement in numerous post-trauma neuro-regenerative processes, including the following: (i) an increase in neuroblasts in the SVZ; (ii) an increase in the migration stream of new neurons from the SVZ to the damaged cortical region; (iii) an enhancement of new differentiating neurons in the peri-lesioned area; (iv) an improvement in functional recovery at various times following TBI. All together, these results suggest that a running-dependent increase in subventricular neural stem cells could represent a promising tool to improve the endogenous neuro-regenerative responses following brain trauma.
Collapse
|
21
|
Meller SJ, Hernandez L, Martin-Lopez E, Kloos ZA, Liberia T, Greer CA. Microglia Maintain Homeostatic Conditions in the Developing Rostral Migratory Stream. eNeuro 2023; 10:ENEURO.0197-22.2023. [PMID: 36697258 PMCID: PMC9910579 DOI: 10.1523/eneuro.0197-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/27/2023] Open
Abstract
Microglia invade the neuroblast migratory corridor of the rostral migratory stream (RMS) early in development. The early postnatal RMS does not yet have the dense astrocyte and vascular scaffold that helps propel forward migrating neuroblasts, which led us to consider whether microglia help regulate conditions permissive to neuroblast migration in the RMS. GFP-labeled microglia in CX3CR-1GFP/+ mice assemble primarily along the outer borders of the RMS during the first postnatal week, where they exhibit predominantly an ameboid morphology and associate with migrating neuroblasts. Microglia ablation for 3 d postnatally does not impact the density of pulse labeled BrdU+ neuroblasts nor the distance migrated by tdTomato electroporated neuroblasts in the RMS. However, microglia wrap DsRed-labeled neuroblasts in the RMS of P7 CX3CR-1GFP/+;DCXDsRed/+ mice and express the markers CD68, CLEC7A, MERTK, and IGF-1, suggesting active regulation in the developing RMS. Microglia depletion for 14 d postnatally further induced an accumulation of CC3+ DCX+ apoptotic neuroblasts in the RMS, a wider RMS and extended patency of the lateral ventricle extension in the olfactory bulb. These findings illustrate the importance of microglia in maintaining a healthy neuroblast population and an environment permissive to neuroblast migration in the early postnatal RMS.
Collapse
Affiliation(s)
- Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, CT 06520
| | - Lexie Hernandez
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Zachary A Kloos
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Teresa Liberia
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
22
|
Adiponectin Promotes Neurogenesis After Transient Cerebral Ischemia Through STAT3 Mediated BDNF Upregulation in Astrocytes. Neurochem Res 2023; 48:641-657. [PMID: 36315369 DOI: 10.1007/s11064-022-03790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 02/02/2023]
Abstract
Newborn neurons from the subventricular zone (SVZ) are essential to functional recovery following ischemic stroke. However, the number of newly generated neurons after stroke is far from enough to support a potent recovery. Adiponectin could increase neurogenesis in the dentate gyrus of hippocampus in neurodegenerative diseases. However, the effect of adiponectin on the neurogenesis from SVZ and the functional recovery after ischemic stroke was unknown, and the underlying mechanism was not specified either. The middle cerebral artery occlusion model of mice was adopted and adiponectin was administrated once a day from day 3 to 7 of reperfusion. The levels of BDNF and p-STAT3 were detected by western blotting on day 7 of reperfusion. The virus-encoded BDNF shRNA with GFAP promoter and a STAT3 inhibitor Stattic were used, respectively. Neurogenesis was evidenced by the expression of doublecortin and 5-bromo-2'-deoxyuridine (BrdU) labelling and brain atrophy was revealed by Nissl staining on day 28 of reperfusion. Neurological functional recovery was assessed by the adhesive removal test and the forepaw grip strength. We found that adiponectin increased both the doublecortin-positive cells and NeuN/BrdU double-positive cells around the injured area on day 28 of reperfusion, along with the improved long-term neurological recovery. Mechanistically, adiponectin increased the protein levels of p-STAT3 and BDNF in astrocytes on day 7 of reperfusion, while silencing BDNF diminished the adiponectin-induced neurogenesis and functional recovery. Moreover, inhibition of STAT3 not only prevented the increase of BDNF but also the improved neurogenesis and functional recovery after stroke. In conclusion, adiponectin enhances neurogenesis and functional recovery after ischemic stroke via STAT3/BDNF pathway in astrocytes.
Collapse
|
23
|
Vascular and Neuronal Network Formation Regulated by Growth Factors and Guidance Cues. Life (Basel) 2023; 13:life13020283. [PMID: 36836641 PMCID: PMC9965086 DOI: 10.3390/life13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Blood vessels and nerves are distributed throughout the body and show a high degree of anatomical parallelism and functional crosstalk. These networks transport oxygen, nutrients, and information to maintain homeostasis. Thus, disruption of network formation can cause diseases. Nervous system development requires the navigation of the axons of neurons to their correct destination. Blood vessel formation occurs via vasculogenesis and angiogenesis. Vasculogenesis is the process of de novo blood vessel formation, and angiogenesis is the process whereby endothelial cells sprout from pre-existing vessels. Both developmental processes require guidance molecules to establish precise branching patterns of these systems in the vertebrate body. These network formations are regulated by growth factors, such as vascular endothelial growth factor; and guidance cues, such as ephrin, netrin, semaphorin, and slit. Neuronal and vascular structures extend lamellipodia and filopodia, which sense guidance cues that are mediated by the Rho family and actin cytosol rearrangement, to migrate to the goal during development. Furthermore, endothelial cells regulate neuronal development and vice versa. In this review, we describe the guidance molecules that regulate neuronal and vascular network formation.
Collapse
|
24
|
Neuroblasts migration under control of reactive astrocyte-derived BDNF: a promising therapy in late neurogenesis after traumatic brain injury. Stem Cell Res Ther 2023; 14:2. [PMID: 36600294 DOI: 10.1186/s13287-022-03232-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a disease with high mortality and morbidity, which leads to severe neurological dysfunction. Neurogenesis has provided therapeutic options for treating TBI. Brain derived neurotrophic factor (BDNF) plays a key role in neuroblasts migration. We aimed to investigate to the key regulating principle of BDNF in endogenous neuroblasts migration in a mouse TBI model. METHODS In this study, controlled cortical impact (CCI) mice (C57BL/6J) model was established to mimic TBI. The sham mice served as control. Immunofluorescence staining and enzyme-linked immunosorbent assay were performed on the CCI groups (day 1, 3, 7, 14 and 21 after CCI) and the sham group. All the data were analyzed with Student's t-test or one-way or two-way analysis of variance followed by Tukey's post hoc test. RESULTS Our results revealed that neuroblasts migration initiated as early as day 1, peaking at day 7, and persisted till day 21. The spatiotemporal profile of BDNF expression was similar to that of neuroblasts migration, and BDNF level following CCI was consistently higher in injured cortex than in subventricular zone (SVZ). Reactive astrocytes account for the major resource of BDNF along the migrating path, localized with neuroblasts in proximity. Moreover, injection of exogenous CC chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1, at random sites promoted neuroblasts migration and astrocytic BDNF expression in both normal and CCI mice (day 28). These provoked neuroblasts can also differentiate into mature neurons. CC chemokine ligand receptor 2 antagonist can restrain the neuroblasts migration after TBI. CONCLUSIONS Neuroblasts migrated along the activated astrocytic tunnel, directed by BDNF gradient between SVZ and injured cortex after TBI. CCL2 might be a key regulator in the above endogenous neuroblasts migration. Moreover, delayed CCL2 administration may provide a promising therapeutic strategy for late neurogenesis post-trauma.
Collapse
|
25
|
Pathogenesis of Dementia. Int J Mol Sci 2022; 24:ijms24010543. [PMID: 36613988 PMCID: PMC9820433 DOI: 10.3390/ijms24010543] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
According to Alzheimer's Disease International, 55 million people worldwide are living with dementia. Dementia is a disorder that manifests as a set of related symptoms, which usually result from the brain being damaged by injury or disease. The symptoms involve progressive impairments in memory, thinking, and behavior, usually accompanied by emotional problems, difficulties with language, and decreased motivation. The most common variant of dementia is Alzheimer's disease with symptoms dominated by cognitive disorders, particularly memory loss, impaired personality, and judgmental disorders. So far, all attempts to treat dementias by removing their symptoms rather than their causes have failed. Therefore, in the presented narrative review, I will attempt to explain the etiology of dementia and Alzheimer's disease from the perspective of energy and cognitive metabolism dysfunction in an aging brain. I hope that this perspective, though perhaps too simplified, will bring us closer to the essence of aging-related neurodegenerative disorders and will soon allow us to develop new preventive/therapeutic strategies in our struggle with dementia, Alzheimer's disease, and Parkinson's disease.
Collapse
|
26
|
Yamaguchi S, Yoshida M, Horie N, Satoh K, Fukuda Y, Ishizaka S, Ogawa K, Morofuji Y, Hiu T, Izumo T, Kawakami S, Nishida N, Matsuo T. Stem Cell Therapy for Acute/Subacute Ischemic Stroke with a Focus on Intraarterial Stem Cell Transplantation: From Basic Research to Clinical Trials. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010033. [PMID: 36671605 PMCID: PMC9854681 DOI: 10.3390/bioengineering10010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Stem cell therapy for ischemic stroke holds great promise for the treatment of neurological impairment and has moved from the laboratory into early clinical trials. The mechanism of action of stem cell therapy includes the bystander effect and cell replacement. The bystander effect plays an important role in the acute to subacute phase, and cell replacement plays an important role in the subacute to chronic phase. Intraarterial (IA) transplantation is less invasive than intraparenchymal transplantation and can provide more cells in the affected brain region than intravenous transplantation. However, transplanted cell migration was reported to be insufficient, and few transplanted cells were retained in the brain for an extended period. Therefore, the bystander effect was considered the main mechanism of action of IA stem cell transplantation. In most clinical trials, IA transplantation was performed during the acute and subacute phases. Although clinical trials of IA transplantation demonstrated safety, they did not demonstrate satisfactory efficacy in improving patient outcomes. To increase efficacy, increased migration of transplanted cells and production of long surviving and effective stem cells would be crucial. Given the lack of knowledge on this subject, we review and summarize the mechanisms of action of transplanted stem cells and recent advancements in preclinical and clinical studies to provide information and guidance for further advancement of acute/subacute phase IA stem cell transplantation therapy for ischemic stroke.
Collapse
Affiliation(s)
- Susumu Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Department of Neurosurgery, Sasebo General Hospital, Nagasaki 857-8511, Japan
- Correspondence: ; Tel.: +81-095-819-7375
| | - Michiharu Yoshida
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Department of Neurosurgery, Sasebo General Hospital, Nagasaki 857-8511, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Hiroshima University, Hiroshima 734-8551, Japan
| | - Katsuya Satoh
- Department of Occupational Therapy Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Yuutaka Fukuda
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shunsuke Ishizaka
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Takeshi Hiu
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| |
Collapse
|
27
|
Zanin JP, Friedman WJ. p75NTR prevents the onset of cerebellar granule cell migration via RhoA activation. eLife 2022; 11:e79934. [PMID: 36040414 PMCID: PMC9427104 DOI: 10.7554/elife.79934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/07/2022] [Indexed: 12/20/2022] Open
Abstract
Neuronal migration is one of the fundamental processes during brain development. Several neurodevelopmental disorders can be traced back to dysregulated migration. Although substantial efforts have been placed in identifying molecular signals that stimulate migration, little is known about potential mechanisms that restrict migration. These restrictive mechanisms are essential for proper development since it helps coordinate the timing for each neuronal population to arrive and establish proper connections. Moreover, preventing migration away from a proliferative niche is necessary in maintaining a pool of proliferating cells until the proper number of neuronal progenitors is attained. Here, using mice and rats, we identify an anti-migratory role for the p75 neurotrophin receptor (p75NTR) in cerebellar development. Our results show that granule cell precursors (GCPs) robustly express p75NTR in the external granule layer (EGL) when they are proliferating during postnatal development, however, they do not express p75NTR when they migrate either from the rhombic lip during embryonic development or from the EGL during postnatal development. We show that p75NTR prevented GCP migration by maintaining elevated levels of active RhoA. The expression of p75NTR was sufficient to prevent the migration of the granule cells even in the presence of BDNF (brain-derived neurotrophic factor), a well-established chemotactic signal for this cell population. Our findings suggest that the expression of p75NTR might be a critical signal that stops and maintains the GCPs in the proliferative niche of the EGL, by promoting the clonal expansion of cerebellar granule neurons.
Collapse
Affiliation(s)
- Juan P Zanin
- Department of Biological Sciences, Rutgers UniversityNewarkUnited States
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers UniversityNewarkUnited States
| |
Collapse
|
28
|
Yu W, Li Y, Hu J, Wu J, Huang Y. A Study on the Pathogenesis of Vascular Cognitive Impairment and Dementia: The Chronic Cerebral Hypoperfusion Hypothesis. J Clin Med 2022; 11:jcm11164742. [PMID: 36012981 PMCID: PMC9409771 DOI: 10.3390/jcm11164742] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
The pathogenic mechanisms underlying vascular cognitive impairment and dementia (VCID) remain controversial due to the heterogeneity of vascular causes and complexity of disease neuropathology. However, one common feature shared among all these vascular causes is cerebral blood flow (CBF) dysregulation, and chronic cerebral hypoperfusion (CCH) is the universal consequence of CBF dysregulation, which subsequently results in an insufficient blood supply to the brain, ultimately contributing to VCID. The purpose of this comprehensive review is to emphasize the important contributions of CCH to VCID and illustrate the current findings about the mechanisms involved in CCH-induced VCID pathological changes. Specifically, evidence is mainly provided to support the molecular mechanisms, including Aβ accumulation, inflammation, oxidative stress, blood-brain barrier (BBB) disruption, trophic uncoupling and white matter lesions (WMLs). Notably, there are close interactions among these multiple mechanisms, and further research is necessary to elucidate the hitherto unsolved questions regarding these interactions. An enhanced understanding of the pathological features in preclinical models could provide a theoretical basis, ultimately achieving the shift from treatment to prevention.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
| | - Yao Li
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
- Correspondence: (J.W.); (Y.H.); Tel.: +86-0755-8392-2833 (J.W.); +86-010-83572857 (Y.H.)
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street Xicheng District, Beijing 100034, China
- Correspondence: (J.W.); (Y.H.); Tel.: +86-0755-8392-2833 (J.W.); +86-010-83572857 (Y.H.)
| |
Collapse
|
29
|
Porter DDL, Henry SN, Ahmed S, Rizzo AL, Makhlouf R, Gregg C, Morton PD. Neuroblast migration along cellular substrates in the developing porcine brain. Stem Cell Reports 2022; 17:2097-2110. [PMID: 35985331 PMCID: PMC9481921 DOI: 10.1016/j.stemcr.2022.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
In the past decade it has become evident that neuroblasts continue to supply the human cortex with interneurons via unique migratory streams shortly following birth. Owing to the size of the human brain, these newborn neurons must migrate long distances through complex cellular landscapes to reach their final locations. This process is poorly understood, largely because of technical difficulties in acquiring and studying neurotypical postmortem human samples along with diverging developmental features of well-studied mouse models. We reasoned that migratory streams of neuroblasts utilize cellular substrates, such as blood vessels, to guide their trek from the subventricular zone to distant cortical targets. Here, we evaluate the association between young interneuronal migratory streams and their preferred cellular substrates in gyrencephalic piglets during the developmental equivalent of human birth, infancy, and toddlerhood. Migratory streams of neuroblasts are preserved through postnatal swine development Evidence of young neocortical interneurons within migratory streams Neuroblasts are tightly associated with vascular and astrocytic cellular substrates Harm to migratory interneurons or their substrates may have lifelong consequences
Collapse
Affiliation(s)
- Demisha D L Porter
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sara N Henry
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sadia Ahmed
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Amy L Rizzo
- Office of the University Veterinarian & Animal Resources, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rita Makhlouf
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Collin Gregg
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Paul D Morton
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
30
|
Chapman AD, Selhorst S, LaComb J, LeDantec-Boswell A, Wohl TR, Adhicary S, Nielsen CM. Endothelial Rbpj Is Required for Cerebellar Morphogenesis and Motor Control in the Early Postnatal Mouse Brain. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01429-w. [PMID: 35716334 DOI: 10.1007/s12311-022-01429-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Intercellular influences are necessary for coordinated development and function of vascular and neural components in the brain. In the early postnatal period after birth, the mammalian cerebellum undergoes extensive morphogenesis - developing its characteristic lobules, organizing its diverse cell types into defined cellular layers, and establishing neural circuits that support cerebellar function, such as coordinated movement. In parallel, the cerebellar vasculature undergoes extensive postnatal growth and maturation, keeping pace with the expanding neural compartment. Endothelial deletion of Rbpj leads to neurovascular abnormalities in mice, including arteriovenous (AV) shunts that supplant capillaries and instead direct high-pressure/high-flow arterial blood directly to veins. Gross and histopathological cerebellar abnormalities, associated with these Rbpj-mediated brain AV malformations (AVMs), led to our hypothesis that early postnatal morphogenesis and lamination of cerebellum was perturbed in mice harboring endothelial Rbpj deficiency from birth. Here, we show that endothelial Rbpj-mutant mice developed enlarged vascular malformations on the cerebellar surface, by 2-week post-Rbpj deletion. In addition, outgrowth of cerebellar lobules was impaired through decreased cell proliferation, but not increased apoptosis, in the external granule layer. Molecular layer thickness was reduced, and the Purkinje layer was affected, by decreased Purkinje cell number, primary dendrite length, and dendritic arbor density. Endothelial deletion of Rbpj also led to impaired motor behaviors, consistent with abnormal cerebellar morphogenesis and lamination. Thus, our data suggest that Rbpj is required, in early postnatal vascular endothelium, to ensure proper cerebellar outgrowth, morphogenesis, and function in mice.
Collapse
Affiliation(s)
- Amelia D Chapman
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
- Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Samantha Selhorst
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
- Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Julia LaComb
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
| | - Alexis LeDantec-Boswell
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
| | - Timothy R Wohl
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
- Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Subhodip Adhicary
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Corinne M Nielsen
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
- Neuroscience Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
31
|
Øverberg LT, Lugg EF, Gaarder M, Langhammer B, Thommessen B, Rønning OM, Morland C. Plasma levels of BDNF and EGF are reduced in acute stroke patients. Heliyon 2022; 8:e09661. [PMID: 35756121 PMCID: PMC9218156 DOI: 10.1016/j.heliyon.2022.e09661] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022] Open
Abstract
Stroke affects almost 14 million people worldwide each year. It is the second leading cause of death and a major cause of acquired disability. The degree of initial impairment in cognitive and motor functions greatly affects the recovery, but idiosyncratic factors also contribute. These are largely unidentified, which contributes to making accurate prediction of recovery challenging. Release of soluble regulators of neurotoxicity, neuroprotection and repair are presumably essential. Here we measured plasma levels of known regulators of neuroprotection and repair in patients with mild acute ischemic stroke and compared them to the plasma levels in healthy age and gender matched controls. We found that the levels of BDNF and EGF were substantially lower in stroke patients than in healthy controls, while the levels of bFGF and irisin did not differ between the groups. The lower levels of growth factors highlight that during the acute phase of stroke, there is a mismatch between the need for neuroprotection and repair, and the brain's ability to induce these processes. Large individual differences in growth factor levels were seen among the stroke patients, but whether these can be used as predictors of long-term prognosis remains to be investigated.
Collapse
Affiliation(s)
- Linda Thøring Øverberg
- Department of Behavioral Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway.,Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Elise Fritsch Lugg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Mona Gaarder
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Birgitta Langhammer
- Department of Physiotherapy, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway.,Research Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
| | - Bente Thommessen
- Department of Neurology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Ole Morten Rønning
- Department of Neurology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cecilie Morland
- Department of Behavioral Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway.,Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Yamagishi A, Nakajima H, Kokubo Y, Yamamoto Y, Matsumine A. Polarization of infiltrating macrophages in the outer annulus fibrosus layer associated with the process of intervertebral disc degeneration and neural ingrowth in the human cervical spine. Spine J 2022; 22:877-886. [PMID: 34902589 DOI: 10.1016/j.spinee.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT As no infiltrating macrophages exist in healthy discs, understanding the role of infiltrating macrophages including their polarity (M1 and M2 phenotypes) in intervertebral discs (IVDs) is important in the assessment of the pathomechanisms of disc degeneration. PURPOSE To determine the relationship between infiltrating macrophage polarization and the progression of human cervical IVD degeneration. STUDY DESIGN Histopathological study using harvested human cervical IVDs. METHODS IVDs collected during anterior cervical decompression from 60 patients were subjected to immunostaining and immunoblotting. The samples were classified as type 0-3 according to the percentage of CD16- and CD206-positive cells to CD68-positive cells in the outer annulus fibrosus layer. The number of vessels and nerve fibers and the severity of chronic inflammation with a focus on inflammatory cell infiltration, fibrosis, and capillary proliferation were also assessed. RESULTS The number of CD16-positive cells was the highest in type 2 IVDs, and was suppressed following the infiltration of CD206-positive cells. The degree of chronic inflammation was significantly higher in type 2 and type 3 IVDs, and the number of nerve fibers was significantly higher in type 3 IVDs. The endothelial cells of small vessels were positive for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 expression. Staining for tropomyosin receptor kinase (Trk)-A, Trk-B, and Trk-C was positive in aberrant fibers. In immunoblot analysis, the expression levels of these neurotrophic factors and receptors were significantly higher in type 2 and 3 IVDs. CONCLUSIONS The polarity of macrophages around newly developed microvasculature might be altered with cervical IVD degeneration. A higher number of infiltrating M1 macrophages around the vessels was associated with chronic inflammation; however, their number got suppressed following the infiltration of M2 macrophages. The expression of neurotrophins in the capillaries of small vessels might contribute to neural ingrowth into degenerated IVDs. CLINICAL SIGNIFICANCE Clarifying macrophages polarity change around new microvasculature associated with progression of IVD degeneration could enhance our understanding of the underlying mechanisms of neural ingrowth into degenerated IVDs and lead to development of a novel therapeutic target for prevention of IVD.
Collapse
Affiliation(s)
- Atsushi Yamagishi
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.
| | - Yasuo Kokubo
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Yusuke Yamamoto
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| |
Collapse
|
33
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
34
|
Deciphering heterogeneous populations of migrating cells based on the computational assessment of their dynamic properties. Stem Cell Reports 2022; 17:911-923. [PMID: 35303437 PMCID: PMC9023771 DOI: 10.1016/j.stemcr.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Neuronal migration is a highly dynamic process, and multiple cell movement metrics can be extracted from time-lapse imaging datasets. However, these parameters alone are often insufficient to evaluate the heterogeneity of neuroblast populations. We developed an analytical pipeline based on reducing the dimensions of the dataset by principal component analysis (PCA) and determining sub-populations using k-means, supported by the elbow criterion method and validated by a decision tree algorithm. We showed that neuroblasts derived from the same adult neural stem cell (NSC) lineage as well as across different lineages are heterogeneous and can be sub-divided into different clusters based on their dynamic properties. Interestingly, we also observed overlapping clusters for neuroblasts derived from different NSC lineages. We further showed that genetic perturbations or environmental stimuli affect the migratory properties of neuroblasts in a sub-cluster-specific manner. Our data thus provide a framework for assessing the heterogeneity of migrating neuroblasts. Pipeline to study the heterogeneity of migrating cells based on their dynamic properties Neuroblasts derived from the same neural stem cell (NSC) lineage are heterogeneous Neuroblasts derived from different NSC lineages have overlapping and distinct clusters These clusters are differently affected by genetic factors or environmental stimuli
Collapse
|
35
|
Gliovascular Mechanisms and White Matter Injury in Vascular Cognitive Impairment and Dementia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Elorza Ridaura I, Sorrentino S, Moroni L. Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101837. [PMID: 34693660 PMCID: PMC8655224 DOI: 10.1002/advs.202101837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Indexed: 05/10/2023]
Abstract
Neurovascular disorders, which involve the vascular and nervous systems, are common. Research on such disorders usually focuses on either vascular or nervous components, without looking at how they interact. Adopting a neurovascular perspective is essential to improve current treatments. Therefore, comparing molecular processes known to be involved in both systems separately can provide insight into promising areas of future research. Since development and regeneration share many mechanisms, comparing signaling molecules involved in both the developing vascular and nervous systems and shedding light to those that they have in common can reveal processes, which have not yet been studied from a regenerative perspective, yet hold great potential. Hence, this review discusses and compares processes involved in the development of the vascular and nervous systems, in order to provide an overview of the molecular mechanisms, which are most promising with regards to treatment for neurovascular disorders. Vascular endothelial growth factor, semaphorins, and ephrins are found to hold the most potential, while fibroblast growth factor, bone morphogenic protein, slits, and sonic hedgehog are shown to participate in both the developing vascular and nervous systems, yet have not been studied at the neurovascular level, therefore being of special interest for future research.
Collapse
Affiliation(s)
- Idoia Elorza Ridaura
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefano Sorrentino
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| |
Collapse
|
37
|
Shin N, Kim Y, Ko J, Choi SW, Hyung S, Lee SE, Park S, Song J, Jeon NL, Kang KS. Vascularization of iNSC spheroid in a 3D spheroid-on-a-chip platform enhances neural maturation. Biotechnol Bioeng 2021; 119:566-574. [PMID: 34716703 PMCID: PMC9298365 DOI: 10.1002/bit.27978] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022]
Abstract
In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three-dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using an injection-molded microfluidic chip. We cocultured spheroids derived from induced neural stem cells (iNSCs) with perfusable blood vessels. Gene expression analysis and immunostaining revealed that the vascular network greatly enhanced spheroid differentiation and reduced apoptosis. This platform can be used to further study the functional and structural interactions between blood vessels and neural spheroids, and ultimately to simulate brain development and disease.
Collapse
Affiliation(s)
- Nari Shin
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Youngtaek Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Jihoon Ko
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Sujin Hyung
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Seung-Eun Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seunghyuk Park
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Jiyoung Song
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea.,Institute of Bioengineering, Seoul National University, Seoul, South Korea.,Institute of Advanced Machinery and Design, Seoul National University, Seoul, South Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
38
|
P75 neurotrophin receptor controls subventricular zone neural stem cell migration after stroke. Cell Tissue Res 2021; 387:415-431. [PMID: 34698916 PMCID: PMC8975773 DOI: 10.1007/s00441-021-03539-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
Stroke is the leading cause of adult disability. Endogenous neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to the brain repair process. However, molecular mechanisms underlying CNS disease-induced SVZ NSPC-redirected migration to the lesion area are poorly understood. Here, we show that genetic depletion of the p75 neurotrophin receptor (p75NTR−/−) in mice reduced SVZ NSPC migration towards the lesion area after cortical injury and that p75NTR−/− NSPCs failed to migrate upon BDNF stimulation in vitro. Cortical injury rapidly increased p75NTR abundance in SVZ NSPCs via bone morphogenetic protein (BMP) receptor signaling. SVZ-derived p75NTR−/− NSPCs revealed an altered cytoskeletal network- and small GTPase family-related gene and protein expression. In accordance, BMP-treated non-migrating p75NTR−/− NSPCs revealed an altered morphology and α-tubulin expression compared to BMP-treated migrating wild-type NSPCs. We propose that BMP-induced p75NTR abundance in NSPCs is a regulator of SVZ NSPC migration to the lesion area via regulation of the cytoskeleton following cortical injury.
Collapse
|
39
|
Martončíková M, Alexovič Matiašová A, Ševc J, Račeková E. Relationship between Blood Vessels and Migration of Neuroblasts in the Olfactory Neurogenic Region of the Rodent Brain. Int J Mol Sci 2021; 22:11506. [PMID: 34768936 PMCID: PMC8583928 DOI: 10.3390/ijms222111506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Neural precursors originating in the subventricular zone (SVZ), the largest neurogenic region of the adult brain, migrate several millimeters along a restricted migratory pathway, the rostral migratory stream (RMS), toward the olfactory bulb (OB), where they differentiate into interneurons and integrate into the local neuronal circuits. Migration of SVZ-derived neuroblasts in the adult brain differs in many aspects from that in the embryonic period. Unlike in that period, postnatally-generated neuroblasts in the SVZ are able to divide during migration along the RMS, as well as they migrate independently of radial glia. The homophilic mode of migration, i.e., using each other to move, is typical for neuroblast movement in the RMS. In addition, it has recently been demonstrated that specifically-arranged blood vessels navigate SVZ-derived neuroblasts to the OB and provide signals which promote migration. Here we review the development of vasculature in the presumptive neurogenic region of the rodent brain during the embryonic period as well as the development of the vascular scaffold guiding neuroblast migration in the postnatal period, and the significance of blood vessel reorganization during the early postnatal period for proper migration of RMS neuroblasts in adulthood.
Collapse
Affiliation(s)
- Marcela Martončíková
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia;
| | - Anna Alexovič Matiašová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (A.A.M.); (J.Š.)
| | - Juraj Ševc
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (A.A.M.); (J.Š.)
| | - Enikő Račeková
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia;
| |
Collapse
|
40
|
Lloret A, Esteve D, Lloret MA, Monllor P, López B, León JL, Cervera-Ferri A. Is Oxidative Stress the Link Between Cerebral Small Vessel Disease, Sleep Disruption, and Oligodendrocyte Dysfunction in the Onset of Alzheimer's Disease? Front Physiol 2021; 12:708061. [PMID: 34512381 PMCID: PMC8424010 DOI: 10.3389/fphys.2021.708061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is an early occurrence in the development of Alzheimer’s disease (AD) and one of its proposed etiologic hypotheses. There is sufficient experimental evidence supporting the theory that impaired antioxidant enzymatic activity and increased formation of reactive oxygen species (ROS) take place in this disease. However, the antioxidant treatments fail to stop its advancement. Its multifactorial condition and the diverse toxicological cascades that can be initiated by ROS could possibly explain this failure. Recently, it has been suggested that cerebral small vessel disease (CSVD) contributes to the onset of AD. Oxidative stress is a central hallmark of CSVD and is depicted as an early causative factor. Moreover, data from various epidemiological and clinicopathological studies have indicated a relationship between CSVD and AD where endothelial cells are a source of oxidative stress. These cells are also closely related to oligodendrocytes, which are, in particular, sensitive to oxidation and lead to myelination being compromised. The sleep/wake cycle is another important control in the proliferation, migration, and differentiation of oligodendrocytes, and sleep loss reduces myelin thickness. Moreover, sleep plays a crucial role in resistance against CSVD, and poor sleep quality increases the silent markers of this vascular disease. Sleep disruption is another early occurrence in AD and is related to an increase in oxidative stress. In this study, the relationship between CSVD, oligodendrocyte dysfunction, and sleep disorders is discussed while focusing on oxidative stress as a common occurrence and its possible role in the onset of AD.
Collapse
Affiliation(s)
- Ana Lloret
- INCLIVA, CIBERFES, Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Daniel Esteve
- INCLIVA, CIBERFES, Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Maria Angeles Lloret
- Department of Clinical Neurophysiology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Paloma Monllor
- INCLIVA, CIBERFES, Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Begoña López
- Department of Neurology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - José Luis León
- Departament of Neuroradiology, Ascires Biomedical Group, Hospital Clinico Universitario, Valencia, Spain
| | - Ana Cervera-Ferri
- Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| |
Collapse
|
41
|
Zhang Y, Xie B, Yuan Y, Zhou T, Xiao P, Wu Y, Shang Y, Yuan S, Zhang J. (R,S)-Ketamine Promotes Striatal Neurogenesis and Sensorimotor Recovery Through Improving Poststroke Depression–Mediated Decrease in Atrial Natriuretic Peptide. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:90-100. [PMID: 36324997 PMCID: PMC9616367 DOI: 10.1016/j.bpsgos.2021.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Background Poststroke social isolation could worsen poststroke depression and dampen neurogenesis. (R,S)-ketamine has antidepressant and neuroprotective effects; however, its roles and mechanisms in social isolation–mediated depressive-like behaviors and sensorimotor recovery remain unclear. Methods Mice were subjected to transient middle cerebral artery occlusion, and then were pair-housed with ovariectomized female mice or were housed isolated (ISO) starting at 3 days postischemia. ISO mice received 2 weeks of (R,S)-ketamine treatment starting at 14 days postischemia. Primary ependymal epithelial cells and choroid plexus epithelial cells were cultured and treated with recombinant human atrial natriuretic peptide (ANP) protein. Results The poststroke social isolation model was successfully established using middle cerebral artery occlusion combined with poststroke isolation, as demonstrated by a more prominent depression-like phenotype in ISO mice compared with pair-housed mice. (R,S)-ketamine reversed ISO-mediated depressive-like behaviors and increased ANP levels in the atrium. The depression-like phenotype was negatively correlated with ANP levels in both the atrium and plasma. Atrial GLP-1 and GLP-1 receptor signaling was essential to the promoting effects of (R,S)-ketamine on the synthesis and secretion of ANP from the atrium in ISO mice. (R,S)-ketamine also increased ANP and TGF-β1 levels in the choroid plexus of ISO mice. Recombinant human ANP increased TGF-β1 levels in both the primarily cultured ependymal epithelial cells and choroid plexus epithelial cells. Furthermore, (R,S)-ketamine increased TGF-β1 levels in the ischemic hemisphere and promoted striatal neurogenesis and sensorimotor recovery via ANP in ISO mice. Conclusions (R,S)-ketamine alleviated poststroke ISO-mediated depressive-like behaviors and thus promoted striatal neurogenesis and sensorimotor recovery via ANP.
Collapse
|
42
|
Stackhouse TL, Mishra A. Neurovascular Coupling in Development and Disease: Focus on Astrocytes. Front Cell Dev Biol 2021; 9:702832. [PMID: 34327206 PMCID: PMC8313501 DOI: 10.3389/fcell.2021.702832] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Neurovascular coupling is a crucial mechanism that matches the high energy demand of the brain with a supply of energy substrates from the blood. Signaling within the neurovascular unit is responsible for activity-dependent changes in cerebral blood flow. The strength and reliability of neurovascular coupling form the basis of non-invasive human neuroimaging techniques, including blood oxygen level dependent (BOLD) functional magnetic resonance imaging. Interestingly, BOLD signals are negative in infants, indicating a mismatch between metabolism and blood flow upon neural activation; this response is the opposite of that observed in healthy adults where activity evokes a large oversupply of blood flow. Negative neurovascular coupling has also been observed in rodents at early postnatal stages, further implying that this is a process that matures during development. This rationale is consistent with the morphological maturation of the neurovascular unit, which occurs over a similar time frame. While neurons differentiate before birth, astrocytes differentiate postnatally in rodents and the maturation of their complex morphology during the first few weeks of life links them with synapses and the vasculature. The vascular network is also incomplete in neonates and matures in parallel with astrocytes. Here, we review the timeline of the structural maturation of the neurovascular unit with special emphasis on astrocytes and the vascular tree and what it implies for functional maturation of neurovascular coupling. We also discuss similarities between immature astrocytes during development and reactive astrocytes in disease, which are relevant to neurovascular coupling. Finally, we close by pointing out current gaps in knowledge that must be addressed to fully elucidate the mechanisms underlying neurovascular coupling maturation, with the expectation that this may also clarify astrocyte-dependent mechanisms of cerebrovascular impairment in neurodegenerative conditions in which reduced or negative neurovascular coupling is noted, such as stroke and Alzheimer’s disease.
Collapse
Affiliation(s)
- Teresa L Stackhouse
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, United States
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, United States.,Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, OR, United States
| |
Collapse
|
43
|
Lin MS, Chiu IH, Lin CC. Ultrarapid Inflammation of the Olfactory Bulb After Spinal Cord Injury: Protective Effects of the Granulocyte Colony-Stimulating Factor on Early Neurodegeneration in the Brain. Front Aging Neurosci 2021; 13:701702. [PMID: 34248610 PMCID: PMC8267925 DOI: 10.3389/fnagi.2021.701702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The correlation among olfactory dysfunction, spinal cord injury (SCI), subjective cognitive decline, and neurodegenerative dementia has been established. Impaired olfaction is considered a marker for neurodegeneration. Hence, there is a need to examine if SCI leads to olfactory dysfunction. In this study, the brain tissue of mice with spinal cord hemisection injury was subjected to microarray analysis. The mRNA expression levels of olfactory receptors in the brain began to decline at 8 h post-SCI. SCI promoted neuroinflammation, downregulated the expression of olfactory receptors, decreased the number of neural stem cells (NSCs), and inhibited the production of neurotrophic factors in the olfactory bulbs at 8 h post-SCI. In particular, the SCI group had upregulated mRNA and protein expression levels of glial fibrillary acidic protein (GFAP; a marker of astrocyte reactivation) and pro-inflammatory mediators [IL-1β, IL-6, and Nestin (marker of NSCs)] in the olfactory bulb compared to levels in the sham control group. The mRNA expression levels of olfactory receptors (Olfr1494, Olfr1324, Olfr1241, and Olfr979) and neurotrophic factors [brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and nerve growth factor (NGF)] were downregulated in the olfactory bulb of the SCI group mice at 8 h post-SCI. The administration of granulocyte colony-stimulating factor (G-CSF) mitigated these SCI-induced pathological changes in the olfactory bulb at 8 h post-SCI. These results indicate that the olfactory bulb is vulnerable to environmental damage even if the lesion is located at sites distant from the brain, such as the spinal cord. Additionally, SCI initiated pathological processes, including inflammatory response, and impaired neurogenesis, at an early stage. The findings of this study will provide a basis for future studies on pathological mechanisms of early neurodegenerative diseases involving the olfactory bulb and enable early clinical drug intervention.
Collapse
Affiliation(s)
- Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung, Taiwan.,Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan.,Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan.,Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan
| | - I-Hsiang Chiu
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan
| | - Chai-Ching Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan
| |
Collapse
|
44
|
Mizutani KI. [Spatiotemporally Dependent Vascularization Regulates Neural Stem and Progenitor Cells]. YAKUGAKU ZASSHI 2021; 141:335-341. [PMID: 33642501 DOI: 10.1248/yakushi.20-00198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood vessels including arteries, veins, and capillaries, are densely spread throughout the body. One round of systemic blood circulation through these blood vessels occurs approximately every minute, and blood sent by the heart transports oxygen, nutrients, and fluid to cells throughout the body. This nourishes cells, tissues, and organs and maintains homeostasis. The relatively simple structure of blood vessels consists of endothelial cells surrounded by a basal lamina and pericytes covering the outer layer. However, blood vessels patterning markedly varies among tissues. The diversity and plasticity of vascular networks are considered vital for this system to facilitate distinct functions for each tissue. Recent studies revealed that blood vessels create a tissue-specific niche, thus attracting attention as biologically active sites for tissue development. This vascular niche establishes specialized microenvironments through both direct physical contact and secreted-soluble factors. Here, we review advances in our understanding of how the vascular niche is utilized by neural stem and progenitor cells during neocortical development, and describe future perspectives regarding new treatment strategies for neural diseases utilizing this vascular niche.
Collapse
Affiliation(s)
- Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
45
|
Reconstruction of circRNA-miRNA-mRNA associated ceRNA networks reveal functional circRNAs in intracerebral hemorrhage. Sci Rep 2021; 11:11584. [PMID: 34078991 PMCID: PMC8172571 DOI: 10.1038/s41598-021-91059-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Abstract
Circular RNA (circRNA), a novel class of noncoding RNAs, has been used extensively to complement transcriptome remodeling in the central nervous system, although the genomic coverage provided has rarely been studied in intracerebral hemorrhage (ICH) and is limited and fails to provide a detailed picture of the cerebral transcriptome landscape. Here, we described sequencing-based transcriptome profiling, providing comprehensive analysis of cerebral circRNA, messenger RNA (mRNA) and microRNA (miRNA) expression in ICH rats. In the study, male Sprague-Dawley rats were subjected to ICH, and next-generation sequencing of RNAs isolated from non-hemorrhagic (Sham) and hemorrhagic (ICH) rat brain samples collected 7 (early phase) and 28 (chronic phase) days after insults, was conducted. Bioinformatics analysis was performed to determine miRNA binding sites and gene ontology of circRNAs, target genes of miRNAs, as well as biological functions of mRNAs, altered after ICH. These analyses revealed different expression profiles of circRNAs, mRNAs and miRNAs in day-7 and day-28 ICH groups, respectively, compared with the Sham. In addition, the expression signature of circRNAs was more sensitive to disease progression than that of mRNAs or miRNAs. Further analysis suggested two temporally specific circRNA-miRNA-mRNA networks based on the competitive endogenous RNA theory, which had profound impacts on brain activities after ICH. In summary, these results suggested an important role for circRNAs in the pathogenesis of ICH and in reverse remodeling based on self-protection support, providing deep insights into diverse possibilities for ICH therapy through targeting circRNAs.
Collapse
|
46
|
Zhu HY, Hong FF, Yang SL. The Roles of Nitric Oxide Synthase/Nitric Oxide Pathway in the Pathology of Vascular Dementia and Related Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22094540. [PMID: 33926146 PMCID: PMC8123648 DOI: 10.3390/ijms22094540] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Vascular dementia (VaD) is the second most common form of dementia worldwide. It is caused by cerebrovascular disease, and patients often show severe impairments of advanced cognitive abilities. Nitric oxide synthase (NOS) and nitric oxide (NO) play vital roles in the pathogenesis of VaD. The functions of NO are determined by its concentration and bioavailability, which are regulated by NOS activity. The activities of different NOS subtypes in the brain are partitioned. Pathologically, endothelial NOS is inactivated, which causes insufficient NO production and aggravates oxidative stress before inducing cerebrovascular endothelial dysfunction, while neuronal NOS is overactive and can produce excessive NO to cause neurotoxicity. Meanwhile, inflammation stimulates the massive expression of inducible NOS, which also produces excessive NO and then induces neuroinflammation. The vicious circle of these kinds of damage having impacts on each other finally leads to VaD. This review summarizes the roles of the NOS/NO pathway in the pathology of VaD and also proposes some potential therapeutic methods that target this pathway in the hope of inspiring novel ideas for VaD therapeutic approaches.
Collapse
Affiliation(s)
- Han-Yan Zhu
- Department of Physiology, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China;
- Queen Marry College, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China
| | - Fen-Fang Hong
- Teaching Center, Department of Experimental, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China
- Correspondence: (F.-F.H.); (S.-L.Y.)
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China;
- Correspondence: (F.-F.H.); (S.-L.Y.)
| |
Collapse
|
47
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
48
|
Winkelman MA, Koppes AN, Koppes RA, Dai G. Bioengineering the neurovascular niche to study the interaction of neural stem cells and endothelial cells. APL Bioeng 2021; 5:011507. [PMID: 33688617 PMCID: PMC7932757 DOI: 10.1063/5.0027211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
The ability of mammalian neural stem cells (NSCs) to self-renew and differentiate throughout adulthood has made them ideal to study neurogenesis and attractive candidates for neurodegenerative disease therapies. In the adult mammalian brain, NSCs are maintained in the neurovascular niche (NVN) where they are found near the specialized blood vessels, suggesting that brain endothelial cells (BECs) are prominent orchestrators of NSC fate. However, most of the current knowledge of the mammalian NVN has been deduced from nonhuman studies. To circumvent the challenges of in vivo studies, in vitro models have been developed to better understand the reciprocal cellular mechanisms of human NSCs and BECs. This review will cover the current understanding of mammalian NVN biology, the effects of endothelial cell-derived signals on NSC fate, and the in vitro models developed to study the interactions between NSCs and BECs.
Collapse
Affiliation(s)
- Max A Winkelman
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
49
|
Phua QH, Han HA, Soh BS. Translational stem cell therapy: vascularized skin grafts in skin repair and regeneration. J Transl Med 2021; 19:83. [PMID: 33602284 PMCID: PMC7891016 DOI: 10.1186/s12967-021-02752-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
The skin is made up of a plethora of cells arranged in multiple layers with complex and intricate vascular networks, creating a dynamic microenvironment of cells-to-matrix interactions. With limited donor sites, engineered skin substitute has been in high demand for many therapeutic purposes. Over the years, remarkable progress has occurred in the skin tissue-engineering field to develop skin grafts highly similar to native tissue. However, the major hurdle to successful engraftment is the incorporation of functional vasculature to provide essential nutrients and oxygen supply to the embedded cells. Limitations of traditional tissue engineering have driven the rapid development of vascularized skin tissue production, leading to new technologies such as 3D bioprinting, nano-fabrication and micro-patterning using hydrogel based-scaffold. In particular, the key hope to bioprinting would be the generation of interconnected functional vessels, coupled with the addition of specific cell types to mimic the biological and architectural complexity of the native skin environment. Additionally, stem cells have been gaining interest due to their highly regenerative potential and participation in wound healing. This review briefly summarizes the current cell therapies used in skin regeneration with a focus on the importance of vascularization and recent progress in 3D fabrication approaches to generate vascularized network in the skin tissue graft.
Collapse
Affiliation(s)
- Qian Hua Phua
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Hua Alexander Han
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
50
|
Bressan C, Saghatelyan A. Intrinsic Mechanisms Regulating Neuronal Migration in the Postnatal Brain. Front Cell Neurosci 2021; 14:620379. [PMID: 33519385 PMCID: PMC7838331 DOI: 10.3389/fncel.2020.620379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental brain development process that allows cells to move from their birthplaces to their sites of integration. Although neuronal migration largely ceases during embryonic and early postnatal development, neuroblasts continue to be produced and to migrate to a few regions of the adult brain such as the dentate gyrus and the subventricular zone (SVZ). In the SVZ, a large number of neuroblasts migrate into the olfactory bulb (OB) along the rostral migratory stream (RMS). Neuroblasts migrate in chains in a tightly organized micro-environment composed of astrocytes that ensheath the chains of neuroblasts and regulate their migration; the blood vessels that are used by neuroblasts as a physical scaffold and a source of molecular factors; and axons that modulate neuronal migration. In addition to diverse sets of extrinsic micro-environmental cues, long-distance neuronal migration involves a number of intrinsic mechanisms, including membrane and cytoskeleton remodeling, Ca2+ signaling, mitochondria dynamics, energy consumption, and autophagy. All these mechanisms are required to cope with the different micro-environment signals and maintain cellular homeostasis in order to sustain the proper dynamics of migrating neuroblasts and their faithful arrival in the target regions. Neuroblasts in the postnatal brain not only migrate into the OB but may also deviate from their normal path to migrate to a site of injury induced by a stroke or by certain neurodegenerative disorders. In this review, we will focus on the intrinsic mechanisms that regulate long-distance neuroblast migration in the adult brain and on how these pathways may be modulated to control the recruitment of neuroblasts to damaged/diseased brain areas.
Collapse
Affiliation(s)
- Cedric Bressan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| |
Collapse
|