1
|
Barnes M, Burton D, Marsden K, Kullman S. Early disruptions in vitamin D receptor signaling induces persistent developmental behavior deficits in zebrafish larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645997. [PMID: 40235984 PMCID: PMC11996324 DOI: 10.1101/2025.03.28.645997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A critical function of the nervous system is to rapidly process sensory information and initiate appropriate behavioral responses. Defects in sensory processing and behavior selection are commonly observed in neuro-psychiatric conditions including anxiety, autism (ASD), and schizophrenia. The etiology of sensory processing disorders remains equivocal; however, it is hypothesized that extrinsic environmental factors can play fundamental roles. In this study we examine the importance of vitamin D (1α, 25-dihydroxyvitamin D3) receptor signaling during early life stage development on sensory processing and neurobehavioral health outcomes. While vitamin D has traditionally been associated with mineral ion homeostasis, accumulating evidence suggests non-calcemic roles for vitamin D including early neurodevelopment. Here we demonstrate that systemic disruption of vitamin D receptor (VDR) signaling with a conditional dominant negative (dnVDR) transgenic zebrafish line results in specific visual and acoustic sensorimotor behavior defects. Induction of dnVDR between 24-72 hours post fertilization (hpf) results in modulation of visual motor response with demonstrate attenuation in acute activity and hypolocomotion across multiple swimming metrics when assayed at 6- and 28-days post fertilization (dpf). Disruption in VDR signaling additionally resulted in a strong and specific attenuation of the Long-Latency C-bends (LLC) within the acoustic startle response at 6 dpf while Short-Latency C-bends (SLC) were moderately impacted. Pre-pulse inhibition (PPI) was not impacted in young larvae however exhibited a significantly attenuated response at 28 dpf suggesting an inability to properly modulate their startle responses later in development and persistent effects of VDR modulation during early development. Overall, our data demonstrate that modulation of vitamin D signaling during critical windows of development irreversibly disrupts the development of neuronal circuitry associated with sensory processing behaviors which may have significant implications to neurobehavioral health outcomes.
Collapse
|
2
|
Serrano-López J, Llorente-Sáez C, Pérez-Sen R, Delicado EG, Ortega F, Gómez-Villafuertes R. Intracellular Calcium Recording and Immunostaining of Single Neural Populations In Vitro. Methods Mol Biol 2025; 2899:275-287. [PMID: 40067631 DOI: 10.1007/978-1-0716-4386-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Calcium plays a pivotal role as an intracellular messenger, eliciting a diverse array of cellular responses. One of the most common calcium-sensitive fluorescent indicators is the ratiometric dye Fura-2. The primary advantage of using ratiometric dyes lies in their independence from factors, such as illumination intensity, photobleaching, dye concentration, and focal alterations, among others. This independence allows for the determination of intracellular calcium concentration free from these interfering variables. In this protocol, we describe the utilization of Fura-2 to assess intracellular calcium elevations in cultures of neural stem cells using video-microscopy equipment. We have previously applied this methodology, commonly referred to as calcium imaging, to investigate intracellular calcium dynamics triggered by the activation of purinergic receptors in a variety of neural populations (Gomez-Villafuertes et al., Cell Transplant 24(8):1493-1509, 2015; Hervas et al., J Neurosci Res 73(3):384-399, 2003; Diaz-Hernandez et al., J Cell Sci 121(Pt 22):3717-3728, 2008; Carrasquero et al., J Neurochem 110(3):879-889, 2009; Gomez-Villafuertes et al., FEBS J 276(18):5307-5325, 2009).
Collapse
Affiliation(s)
- Julia Serrano-López
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Celia Llorente-Sáez
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain
| | - Raquel Pérez-Sen
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esmerilda G Delicado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain.
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain.
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
3
|
Kim DH, Loke H, Thompson J, Hill R, Sundram S, Lee J. The dopamine D2-like receptor and the Y-chromosome gene, SRY, are reciprocally regulated in the human male neuroblastoma M17 cell line. Neuropharmacology 2024; 251:109928. [PMID: 38552780 DOI: 10.1016/j.neuropharm.2024.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Dong-Hyun Kim
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Hannah Loke
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | - James Thompson
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Rachel Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia; Mental Health Program, Monash Health, Clayton, Victoria, 3168, Australia
| | - Joohyung Lee
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia; Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
4
|
Liu H, Acharya S, Sudan SK, Hu L, Wu C, Cao Y, Li H, Zhang X. Comparative study of the molecular mechanisms underlying the G protein and β-arrestin-dependent pathways that lead to ERKs activation upon stimulation by dopamine D 2 receptor. FEBS J 2023; 290:5204-5233. [PMID: 37531324 DOI: 10.1111/febs.16921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Dopamine D2 receptor (D2 R) has been shown to activate extracellular signal-regulated kinases (ERKs) via distinct pathways dependent on either G-protein or β-arrestin. However, there has not been a systematic study of the regulatory process of D2 R-mediated ERKs activation by G protein- versus β-arrestin-dependent signaling since D2 R stimulation of ERKs reflects the simultaneous action of both pathways. Here, we investigated that differential regulation of D2 R-mediated ERKs activation via these two pathways. Our results showed that G protein-dependent ERKs activation was transient, rapid, reached maximum level at around 2 min, and importantly, the activated ERKs were entirely confined to the cytoplasm. In contrast, β-arrestin-dependent ERKs activation was more sustained, slower, reached maximum level at around 10 min, and phosphorylated ERKs translocated into the nucleus. Src was found to be commonly involved in both the G protein- and β-arrestin-dependent pathway-mediated ERKs activation. Pertussis toxin Gi/o inhibitor, GRK2-CT, AG1478 epidermal growth factor receptor inhibitor, and wortmannin phosphoinositide 3-kinase inhibitor all blocked G protein-dependent ERKs activation. In contrast, GRK2 and β-Arr2 played a main role in β-arrestin-dependent ERKs activation. Receptor endocytosis showed minimal effect on the activation of ERKs mediated by both pathways. Furthermore, we found that the formation of a complex composed of phospho-ERKs, β-Arr2, and importinβ1 promoted the nuclear translocation of activated ERKs. The differential regulation of various cellular components, as well as temporal and spatial patterns of ERKs activation via these two pathways, suggest the existence of distinct physiological outcomes.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Srijan Acharya
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Sarabjeet Kour Sudan
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
D'Ambrosio E, Pergola G, Pardiñas AF, Dahoun T, Veronese M, Sportelli L, Taurisano P, Griffiths K, Jauhar S, Rogdaki M, Bloomfield MAP, Froudist-Walsh S, Bonoldi I, Walters JTR, Blasi G, Bertolino A, Howes OD. A polygenic score indexing a DRD2-related co-expression network is associated with striatal dopamine function. Sci Rep 2022; 12:12610. [PMID: 35871219 PMCID: PMC9308811 DOI: 10.1038/s41598-022-16442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
The D2 dopamine receptor (D2R) is the primary site of the therapeutic action of antipsychotics and is involved in essential brain functions relevant to schizophrenia, such as attention, memory, motivation, and emotion processing. Moreover, the gene coding for D2R (DRD2) has been associated with schizophrenia at a genome-wide level. Recent studies have shown that a polygenic co-expression index (PCI) predicting the brain-specific expression of a network of genes co-expressed with DRD2 was associated with response to antipsychotics, brain function during working memory in patients with schizophrenia, and with the modulation of prefrontal cortex activity after pharmacological stimulation of D2 receptors. We aimed to investigate the relationship between the DRD2 gene network and in vivo striatal dopaminergic function, which is a phenotype robustly associated with psychosis and schizophrenia. To this aim, a sample of 92 healthy subjects underwent 18F-DOPA PET and was genotyped for genetic variations indexing the co-expression of the DRD2-related genetic network in order to calculate the PCI for each subject. The PCI was significantly associated with whole striatal dopamine synthesis capacity (p = 0.038). Exploratory analyses on the striatal subdivisions revealed a numerically larger effect size of the PCI on dopamine function for the associative striatum, although this was not significantly different than effects in other sub-divisions. These results are in line with a possible relationship between the DRD2-related co-expression network and schizophrenia and extend it by identifying a potential mechanism involving the regulation of dopamine synthesis. Future studies are needed to clarify the molecular mechanisms implicated in this relationship.
Collapse
Affiliation(s)
- Enrico D'Ambrosio
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Tarik Dahoun
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Leonardo Sportelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Sameer Jauhar
- Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Michael A P Bloomfield
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, W1T 7NF, UK
| | | | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Giuseppe Blasi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK.
- H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.
| |
Collapse
|
6
|
Alsanie WF, Abdelrahman S, Alhomrani M, Gaber A, Habeeballah H, Alkhatabi HA, Felimban RI, Hauser CAE, Tayeb HH, Alamri AS, Raafat BM, Anwar S, Alswat KA, Althobaiti YS, Asiri YA. Prenatal Exposure to Gabapentin Alters the Development of Ventral Midbrain Dopaminergic Neurons. Front Pharmacol 2022; 13:923113. [PMID: 35942222 PMCID: PMC9356305 DOI: 10.3389/fphar.2022.923113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Gabapentin is widely prescribed as an off-label drug for the treatment of various diseases, including drug and alcohol addiction. Approximately 83–95% of the usage of gabapentin is off-label, accounting for more than 90% of its sales in the market, which indicates an alarming situation of drug abuse. Such misuse of gabapentin has serious negative consequences. The safety of the use of gabapentin in pregnant women has always been a serious issue, as gabapentin can cross placental barriers. The impact of gabapentin on brain development in the fetus is not sufficiently investigated, which poses difficulties in clinical decisions regarding prescriptions.Methods: The consequences effect of prenatal gabapentin exposure on the development of ventral midbrain dopaminergic neurons were investigated using three-dimensional neuronal cell cultures. Time-mated Swiss mice were used to isolate embryos. The ventral third of the midbrain was removed and used to enrich the dopaminergic population in 3D cell cultures that were subsequently exposed to gabapentin. The effects of gabapentin on the viability, ATP release, morphogenesis and genes expression of ventral midbrain dopaminergic neurons were investigated.Results: Gabapentin treatment at the therapeutic level interfered with the neurogenesis and morphogenesis of vmDA neurons in the fetal brain by causing changes in morphology and alterations in the expression of key developmental genes, such as Nurr1, Chl1, En1, Bdnf, Drd2, and Pitx3. The TH + total neurite length and dominant neurite length were significantly altered. We also found that gabapentin could halt the metabolic state of these neuronal cells by blocking the generation of ATP.Conclusion: Our findings clearly indicate that gabapentin hampers the morphogenesis and development of dopaminergic neurons. This implies that the use of gabapentin could lead to serious complications in child-bearing women. Therefore, caution must be exercised in clinical decisions regarding the prescription of gabapentin in pregnant women.
Collapse
Affiliation(s)
- Walaa F. Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
- *Correspondence: Walaa F. Alsanie,
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, (KAUST), Jeddah, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Ahmed Gaber
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hamza Habeeballah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Centre, Hematology Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed I. Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University (KAUST), Jeddah, Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, (KAUST), Jeddah, Saudi Arabia
| | - Hossam H. Tayeb
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), Nanomedicine Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Bassem M. Raafat
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Khaled A. Alswat
- Department of Internal Medicine, School of Medicine, Taif University, Taif, Saudi Arabia
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif, Saudi Arabia
| | - Yousif A. Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
7
|
Wang Y, Jin YK, Guo TC, Li ZR, Feng BY, Han JH, Vreugdenhil M, Lu CB. Activation of Dopamine 4 Receptor Subtype Enhances Gamma Oscillations in Hippocampal Slices of Aged Mice. Front Aging Neurosci 2022; 14:838803. [PMID: 35370600 PMCID: PMC8966726 DOI: 10.3389/fnagi.2022.838803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/17/2022] [Indexed: 11/26/2022] Open
Abstract
Aim Neural network oscillation at gamma frequency band (γ oscillation, 30–80 Hz) is synchronized synaptic potentials important for higher brain processes and altered in normal aging. Recent studies indicate that activation of dopamine 4 receptor (DR4) enhanced hippocampal γ oscillation of young mice and fully recovered the impaired hippocampal synaptic plasticity of aged mice, we determined whether this receptor is involved in aging-related modulation of hippocampal γ oscillation. Methods We recorded γ oscillations in the hippocampal CA3 region from young and aged C57bl6 mice and investigated the effects of dopamine and the selective dopamine receptor (DR) agonists on γ oscillation. Results We first found that γ oscillation power (γ power) was reduced in aged mice compared to young mice, which was restored by exogenous application of dopamine (DA). Second, the selective agonists for different D1- and D2-type dopamine receptors increased γ power in young mice but had little or small effect in aged mice. Third, the D4 receptor (D4R) agonist PD168077 caused a large increase of γ power in aged mice but a small increase in young mice, and its effect is blocked by the highly specific D4R antagonist L-745,870 or largely reduced by a NMDAR antagonist. Fourth, D3R agonist had no effect on γ power of either young or aged mice. Conclusion This study reveals DR subtype-mediated hippocampal γ oscillations is aging-related and DR4 activation restores the impaired γ oscillations in aged brain, and suggests that D4R is the potential target for the improvement of cognitive deficits related to the aging and aging-related diseases.
Collapse
Affiliation(s)
- Yuan Wang
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Yi-Kai Jin
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Tie-Cheng Guo
- Department of Rehabilitation Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Rong Li
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Bing-Yan Feng
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Jin-Hong Han
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Martin Vreugdenhil
- Department of Health Sciences, Birmingham City University, Birmingham, United Kingdom
- *Correspondence: Martin Vreugdenhil,
| | - Cheng-Biao Lu
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
- Cheng-Biao Lu,
| |
Collapse
|
8
|
The Effects of Prenatal Exposure to Pregabalin on the Development of Ventral Midbrain Dopaminergic Neurons. Cells 2022; 11:cells11050852. [PMID: 35269474 PMCID: PMC8909856 DOI: 10.3390/cells11050852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/04/2022] Open
Abstract
Pregabalin is widely used as a treatment for multiple neurological disorders; however, it has been reported to have the potential for misuse. Due to a lack of safety studies in pregnancy, pregabalin is considered the last treatment option for various neurological diseases, such as neuropathic pain. Therefore, pregabalin abuse in pregnant women, even at therapeutic doses, may impair fetal development. We used primary mouse embryonic neurons to investigate whether exposure to pregabalin can impair the morphogenesis and differentiation of ventral midbrain neurons. This study focused on ventral midbrain dopaminergic neurons, as they are responsible for cognition, movement, and behavior. The results showed that pregabalin exposure during early brain development induced upregulation of the dopaminergic progenitor genes Lmx1a and Nurr1 and the mature dopaminergic gene Pitx3. Interestingly, pregabalin had different effects on the morphogenesis of non-dopaminergic ventral midbrain neurons. Importantly, our findings illustrated that a therapeutic dose of pregabalin (10 μM) did not affect the viability of neurons. However, it caused a decrease in ATP release in ventral midbrain neurons. We demonstrated that exposure to pregabalin during early brain development could interfere with the neurogenesis and morphogenesis of ventral midbrain dopaminergic neurons. These findings are crucial for clinical consideration of the use of pregabalin during pregnancy.
Collapse
|
9
|
Sharma R, Parikh M, Mishra V, Sahota P, Thakkar M. Activation of dopamine D2 receptors in the medial shell region of the nucleus accumbens increases Per1 expression to enhance alcohol consumption. Addict Biol 2022; 27:e13133. [PMID: 35032086 DOI: 10.1111/adb.13133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
Circadian genes, including Per1, in the medial shell region of nucleus accumbens (mNAcSh), regulate binge alcohol consumption. However, the upstream mechanism regulating circadian genes-induced alcohol consumption is not known. Since activation of dopamine D2 receptors (D2R) increases Per1 gene expression, we hypothesised that local infusion of quinpirole, a D2R agonist, by increasing Per1 gene expression in the mNAcSh, will increase binge alcohol consumption in mice. We performed two experiments on male C57BL/6J mice, instrumented with bilateral guide cannulas above the mNAcSh, and exposed to a 4-day drinking-in-dark (DID) paradigm. The first experiment determined the effects of bilateral infusion of quinpirole (100 ng/300 nl/site) or DMSO (Vehicle group) in the mNAcSh on Per1 gene expression and alcohol consumption. The second experiment determined the effect of antisense-induced downregulation of Per1 in the mNAcSh on the quinpirole-induced increase in alcohol consumption. Control experiments were performed by exposing the animals to sucrose (10% w/v). After the experiment, animals were euthanised, brains removed and processed for localisation of injection sites and analysis of Per1 gene expression in the mNAcSh. As compared with the DMSO, local bilateral infusion of quinpirole significantly increased the expression of Per1 in the mNAcSh along with an increase in the amount of alcohol consumed in mice exposed to DID paradigm. In addition, local antisense-induced downregulation of Per1 significantly attenuated the effects of intro-accumbal infusion of quinpirole on alcohol consumption. Our results suggest that Per1 in the mNAcSh mediates D2R activation-induced increase in alcohol consumption.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Vaibhav Mishra
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
10
|
Dagra A, Miller DR, Lin M, Gopinath A, Shaerzadeh F, Harris S, Sorrentino ZA, Støier JF, Velasco S, Azar J, Alonge AR, Lebowitz JJ, Ulm B, Bu M, Hansen CA, Urs N, Giasson BI, Khoshbouei H. α-Synuclein-induced dysregulation of neuronal activity contributes to murine dopamine neuron vulnerability. NPJ Parkinsons Dis 2021; 7:76. [PMID: 34408150 PMCID: PMC8373893 DOI: 10.1038/s41531-021-00210-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pathophysiological damages and loss of function of dopamine neurons precede their demise and contribute to the early phases of Parkinson's disease. The presence of aberrant intracellular pathological inclusions of the protein α-synuclein within ventral midbrain dopaminergic neurons is one of the cardinal features of Parkinson's disease. We employed molecular biology, electrophysiology, and live-cell imaging to investigate how excessive α-synuclein expression alters multiple characteristics of dopaminergic neuronal dynamics and dopamine transmission in cultured dopamine neurons conditionally expressing GCaMP6f. We found that overexpression of α-synuclein in mouse (male and female) dopaminergic neurons altered neuronal firing properties, calcium dynamics, dopamine release, protein expression, and morphology. Moreover, prolonged exposure to the D2 receptor agonist, quinpirole, rescues many of the alterations induced by α-synuclein overexpression. These studies demonstrate that α-synuclein dysregulation of neuronal activity contributes to the vulnerability of dopaminergic neurons and that modulation of D2 receptor activity can ameliorate the pathophysiology. These findings provide mechanistic insights into the insidious changes in dopaminergic neuronal activity and neuronal loss that characterize Parkinson's disease progression with significant therapeutic implications.
Collapse
Affiliation(s)
- Abeer Dagra
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Douglas R. Miller
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Min Lin
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Adithya Gopinath
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Fatemeh Shaerzadeh
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Sharonda Harris
- grid.15276.370000 0004 1936 8091Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL USA
| | - Zachary A. Sorrentino
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Jonatan Fullerton Støier
- grid.5254.60000 0001 0674 042XMolecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Velasco
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Janelle Azar
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Adetola R. Alonge
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Joseph J. Lebowitz
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Brittany Ulm
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Mengfei Bu
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Carissa A. Hansen
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Nikhil Urs
- grid.15276.370000 0004 1936 8091Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL USA
| | - Benoit I. Giasson
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| | - Habibeh Khoshbouei
- grid.15276.370000 0004 1936 8091Department of Neuroscience, University of Florida, Gainesville, FL USA
| |
Collapse
|
11
|
Roles for α-Synuclein in Gene Expression. Genes (Basel) 2021; 12:genes12081166. [PMID: 34440340 PMCID: PMC8393936 DOI: 10.3390/genes12081166] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
α-Synuclein (α-Syn) is a small cytosolic protein associated with a range of cellular compartments, including synaptic vesicles, the nucleus, mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. In addition to its physiological role in regulating presynaptic function, the protein plays a central role in both sporadic and familial Parkinson’s disease (PD) via a gain-of-function mechanism. Because of this, several recent strategies propose to decrease α-Syn levels in PD patients. While these therapies may offer breakthroughs in PD management, the normal functions of α-Syn and potential side effects of its depletion require careful evaluation. Here, we review recent evidence on physiological and pathological roles of α-Syn in regulating activity-dependent signal transduction and gene expression pathways that play fundamental role in synaptic plasticity.
Collapse
|
12
|
Huang F, Wang Q, Yan T, Tang J, Hou X, Shu Z, Wan F, Yang Y, Qu J, Zhou X. The Role of the Dopamine D2 Receptor in Form-Deprivation Myopia in Mice: Studies With Full and Partial D2 Receptor Agonists and Knockouts. Invest Ophthalmol Vis Sci 2021; 61:47. [PMID: 32572456 PMCID: PMC7415310 DOI: 10.1167/iovs.61.6.47] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose The purpose of this study was to explore the role and mechanism of D2 receptor (D2R) involvement in myopia development and the effects of the full D2R agonist quinpirole and partial D2R agonist aripiprazole on postnatal refractive development and form-deprivation myopia (FDM). Methods C57BL/6 (“B6”) mice, raised either in a visually normal or unilateral form-deprivation environment, were divided into three subgroups, including an intraperitoneally injected (IP) vehicle group and two quinpirole (1 and 10 µg/g body weight) treatment groups. The effects of quinpirole on FDM were further verified in D2R-knockout (KO) mice and corresponding wild-type littermates. Then, the modulation of normal vision development and FDM by aripiprazole (1 and 10 µg/g body weight, IP) was assessed in C57BL/6 mice. All biometric parameters were measured before and after treatments, and retinal cyclic adenosine phosphate (cAMP) and phosphorylated ERK (pERK) levels were analyzed to assess D2R-mediated signal transduction. Results Neither quinpirole nor aripiprazole affected normal refractive development. FDM development was inhibited by quinpirole at low dose but enhanced at high dose, and these bidirectional effects were validated by D2R-specificity. FDM development was attenuated by the partial D2R agonist aripiprazole, at high dose but not at low dose. Quinpirole caused a dose-dependent reduction in cAMP levels, but had no effect on pERK. Aripiprazole reduced cAMP levels at both doses, but caused a dose-dependent increase of pERK in the form-deprived eyes. Conclusions Reduction of D2R-mediated signaling contributes to myopia development, which can be selectively attenuated by partial D2R agonists that activate D2Rs under the low dopamine levels that occur with FDM.
Collapse
|
13
|
Coviello S, Gramuntell Y, Castillo-Gomez E, Nacher J. Effects of Dopamine on the Immature Neurons of the Adult Rat Piriform Cortex. Front Neurosci 2020; 14:574234. [PMID: 33122993 PMCID: PMC7573248 DOI: 10.3389/fnins.2020.574234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022] Open
Abstract
The layer II of the adult piriform cortex (PCX) contains a numerous population of immature neurons. Interestingly, in both mice and rats, most, if not all, these cells have an embryonic origin. Moreover, recent studies from our laboratory have shown that they progressively mature into typical excitatory neurons of the PCX layer II. Therefore, the adult PCX is considered a “non-canonical” neurogenic niche. These immature neurons express the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule critical for different neurodevelopmental processes. Dopamine (DA) is a relevant neurotransmitter in the adult CNS, which also plays important roles in neural development and adult plasticity, including the regulation of PSA-NCAM expression. In order to evaluate the hypothetical effects of pharmacological modulation of dopaminergic neurotransmission on the differentiation of immature neurons of the adult PCX, we studied dopamine D2 receptor (D2r) expression in this region and the relationship between dopaminergic fibers and immature neurons (defined by PSA-NCAM expression). In addition, we analyzed the density of immature neurons after chronic treatments with an antagonist and an agonist of D2r: haloperidol and PPHT, respectively. Many dopaminergic fibers were observed in close apposition to PSA-NCAM-expressing neurons, which also coexpressed D2r. Chronic treatment with haloperidol significantly increased the number of PSA-NCAM immunoreactive cells, while PPHT treatment decreased it. These results indicate a prominent role of dopamine, through D2r and PSA-NCAM, on the regulation of the final steps of development of immature neurons in the adult PCX.
Collapse
Affiliation(s)
- Simona Coviello
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Esther Castillo-Gomez
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castellón de la Plana, Spain.,Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| |
Collapse
|
14
|
Belkacemi L, Darmani NA. Dopamine receptors in emesis: Molecular mechanisms and potential therapeutic function. Pharmacol Res 2020; 161:105124. [PMID: 32814171 DOI: 10.1016/j.phrs.2020.105124] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Dopamine is a member of the catecholamine family and is associated with multiple physiological functions. Together with its five receptor subtypes, dopamine is closely linked to neurological disorders such as schizophrenia, Parkinson's disease, depression, attention deficit-hyperactivity, and restless leg syndrome. Unfortunately, several dopamine receptor-based agonists used to treat some of these diseases cause nausea and vomiting as impending side-effects. The high degree of cross interactions of dopamine receptor ligands with many other targets including G-protein coupled receptors, transporters, enzymes, and ion-channels, add to the complexity of discovering new targets for the treatment of nausea and vomiting. Using activation status of signaling cascades as mechanism-based biomarkers to foresee drug sensitivity combined with the development of dopamine receptor-based biased agonists may hold great promise and seems as the next step in drug development for the treatment of such multifactorial diseases. In this review, we update the present knowledge on dopamine and dopamine receptors and their potential roles in nausea and vomiting. The pre- and clinical evidence provided in this review supports the implication of both dopamine and dopamine receptor agonists in the incidence of emesis. Besides the conventional dopaminergic antiemetic drugs, potential novel antiemetic targeting emetic protein signaling cascades may offer superior selectivity profile and potency.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
15
|
Bono F, Mutti V, Fiorentini C, Missale C. Dopamine D3 Receptor Heteromerization: Implications for Neuroplasticity and Neuroprotection. Biomolecules 2020; 10:biom10071016. [PMID: 32659920 PMCID: PMC7407647 DOI: 10.3390/biom10071016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
The dopamine (DA) D3 receptor (D3R) plays a pivotal role in the control of several functions, including motor activity, rewarding and motivating behavior and several aspects of cognitive functions. Recently, it has been reported that the D3R is also involved in the regulation of neuronal development, in promoting structural plasticity and in triggering key intracellular events with neuroprotective potential. A new role for D3R-dependent neurotransmission has thus been proposed both in preserving DA neuron homeostasis in physiological conditions and in preventing pathological alterations that may lead to neurodegeneration. Interestingly, there is evidence that nicotinic acetylcholine receptors (nAChR) located on DA neurons also provide neurotrophic support to DA neurons, an effect requiring functional D3R and suggesting the existence of a positive cross-talk between these receptor systems. Increasing evidence suggests that, as with the majority of G protein-coupled receptors (GPCR), the D3R directly interacts with other receptors to form new receptor heteromers with unique functional and pharmacological properties. Among them, we recently identified a receptor heteromer containing the nAChR and the D3R as the molecular effector of nicotine-mediated neurotrophic effects. This review summarizes the functional and pharmacological characteristics of D3R, including the capability to form active heteromers as pharmacological targets for specific neurodegenerative disorders. In particular, the molecular and functional features of the D3R-nAChR heteromer will be especially discussed since it may represent a possible key etiologic effector for DA-related pathologies, such as Parkinson’s disease (PD), and a target for drug design.
Collapse
Affiliation(s)
- Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.M.); (C.F.); (C.M.)
- Correspondence: ; Tel.: +39-0303717506
| | - Veronica Mutti
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.M.); (C.F.); (C.M.)
| | - Chiara Fiorentini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.M.); (C.F.); (C.M.)
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.M.); (C.F.); (C.M.)
- “C. Golgi” Women Health Center, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
16
|
Cardoso T, Lévesque M. Toward Generating Subtype-Specific Mesencephalic Dopaminergic Neurons in vitro. Front Cell Dev Biol 2020; 8:443. [PMID: 32626706 PMCID: PMC7311634 DOI: 10.3389/fcell.2020.00443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Mesencephalic dopaminergic (mDA) neurons derived from pluripotent stem cells (PSCs) have proven to be pivotal for disease modeling studies and as a source of transplantable tissue for regenerative therapies in Parkinson's disease (PD). Current differentiation protocols can generate standardized and reproducible cell products of dopaminergic neurons that elicit the characteristic transcriptional profile of ventral midbrain. Nonetheless, dopamine neurons residing in the mesencephalon comprise distinct groups of cells within diffusely defined anatomical boundaries and with distinct functional, electrophysiological, and molecular properties. Here we review recent single cell sequencing studies that are shedding light on the neuronal heterogeneity within the mesencephalon and discuss how resolving the complex molecular profile of distinct sub-populations within this region could help refine patterning and quality control assessment of PSC-derived mDA neurons to subtype-specificity in vitro. In turn, such advances would have important impact in improving cell replacement therapy, disease mechanistic studies and drug screening in PD.
Collapse
Affiliation(s)
- Tiago Cardoso
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Center, Université Laval, Québec, QC, Canada
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
17
|
Gondré-Lewis MC, Bassey R, Blum K. Pre-clinical models of reward deficiency syndrome: A behavioral octopus. Neurosci Biobehav Rev 2020; 115:164-188. [PMID: 32360413 DOI: 10.1016/j.neubiorev.2020.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Individuals with mood disorders or with addiction, impulsivity and some personality disorders can share in common a dysfunction in how the brain perceives reward, where processing of natural endorphins or the response to exogenous dopamine stimulants is impaired. Reward Deficiency Syndrome (RDS) is a polygenic trait with implications that suggest cross-talk between different neurological systems that include the known reward pathway, neuroendocrine systems, and motivational systems. In this review we evaluate well-characterized animal models for their construct validity and as potential models for RDS. Animal models used to study substance use disorder, major depressive disorder (MDD), early life stress, immune dysregulation, attention deficit hyperactivity disorder (ADHD), post traumatic stress disorder (PTSD), compulsive gambling and compulsive eating disorders are discussed. These disorders recruit underlying reward deficiency mechanisms in multiple brain centers. Because of the widespread and remarkable array of associated/overlapping behavioral manifestations with a common root of hypodopaminergia, the basic endophenotype recognized as RDS is indeed likened to a behavioral octopus. We conclude this review with a look ahead on how these models can be used to investigate potential therapeutics that target the underlying common deficiency.
Collapse
Affiliation(s)
- Marjorie C Gondré-Lewis
- Department of Anatomy, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States.
| | - Rosemary Bassey
- Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, 500 Hofstra University, Hempstead, NY 11549, United States
| | - Kenneth Blum
- Western University Health Sciences, Graduate College of Biomedical Sciences, Pomona, California, United States
| |
Collapse
|
18
|
Torretta S, Rampino A, Basso M, Pergola G, Di Carlo P, Shin JH, Kleinman JE, Hyde TM, Weinberger DR, Masellis R, Blasi G, Pennuto M, Bertolino A. NURR1 and ERR1 Modulate the Expression of Genes of a DRD2 Coexpression Network Enriched for Schizophrenia Risk. J Neurosci 2020; 40:932-941. [PMID: 31811028 PMCID: PMC6975285 DOI: 10.1523/jneurosci.0786-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple schizophrenia (SCZ) risk loci may be involved in gene co-regulation mechanisms, and analysis of coexpressed gene networks may help to clarify SCZ molecular basis. We have previously identified a dopamine D2 receptor (DRD2) coexpression module enriched for SCZ risk genes and associated with cognitive and neuroimaging phenotypes of SCZ, as well as with response to treatment with antipsychotics. Here we aimed to identify regulatory factors modulating this coexpression module and their relevance to SCZ. We performed motif enrichment analysis to identify transcription factor (TF) binding sites in human promoters of genes coexpressed with DRD2. Then, we measured transcript levels of a group of these genes in primary mouse cortical neurons in basal conditions and upon overexpression and knockdown of predicted TFs. Finally, we analyzed expression levels of these TFs in dorsolateral prefrontal cortex (DLPFC) of SCZ patients. Our in silico analysis revealed enrichment for NURR1 and ERR1 binding sites. In neuronal cultures, the expression of genes either relevant to SCZ risk (Drd2, Gatad2a, Slc28a1, Cnr1) or indexing coexpression in our module (Btg4, Chit1, Osr1, Gpld1) was significantly modified by gain and loss of Nurr1 and Err1. Postmortem DLPFC expression data analysis showed decreased expression levels of NURR1 and ERR1 in patients with SCZ. For NURR1 such decreased expression is associated with treatment with antipsychotics. Our results show that NURR1 and ERR1 modulate the transcription of DRD2 coexpression partners and support the hypothesis that NURR1 is involved in the response to SCZ treatment.SIGNIFICANCE STATEMENT In the present study, we provide in silico and experimental evidence for a role of the TFs NURR1 and ERR1 in modulating the expression pattern of genes coexpressed with DRD2 in human DLPFC. Notably, genetic variations in these genes is associated with SCZ risk and behavioral and neuroimaging phenotypes of the disease, as well as with response to treatment. Furthermore, this study presents novel findings on a possible interplay between D2 receptor-mediated dopamine signaling involved in treatment with antipsychotics and the transcriptional regulation mechanisms exerted by NURR1. Our results suggest that coexpression and co-regulation mechanisms may help to explain some of the complex biology of genetic associations with SCZ.
Collapse
Affiliation(s)
- Silvia Torretta
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, 70124, Italy
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento 38123, Italy
| | - Giulio Pergola
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
| | - Pasquale Di Carlo
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
| | - Joo H Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Departments of Neurology
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Neuroscience
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Rita Masellis
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, 70124, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, 70124, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova 35129, Italy
- Dulbecco Telethon Institute, CIBIO, University of Trento, 38123, Italy
- Padova Neuroscience Center, 35131 Padova, Italy, and
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy,
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, 70124, Italy
| |
Collapse
|
19
|
Syambani Ulhaq Z. Dopamine D2 receptor influences eye development and function in Zebrafish. ACTA ACUST UNITED AC 2020; 95:84-89. [PMID: 31955999 DOI: 10.1016/j.oftal.2019.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Dopamine is synthesized by tyrosine hydroxylase and is considered as a major catecholamine in the vertebrate retina, including zebrafish. However, little is known about the role of dopamine D2 receptor (DRD2) in retinal physiology. Therefore, to elucidate the role of DRD2 in the eye development and function in zebrafish, fish were exposed to fluphenazine, quinpirole, or combination of both. Subsequently, the eye size, optic nerve diameter (ONd), and visual background adaptation were evaluated. The results showed that fluphenazine (fluphenazine, DRD2 antagonist) decreased eye size and optic nerve diameter followed by disruption of visual function. The addition of Quinpirole (quinpirole, DRD2 agonist) reversed the effects caused by fluphenazine, implying that DRD2 is necessary for normal eye development and function in zebrafish. Considering the role of dopaminergic neurons in retinal development and function, dysfunction of dopaminergic neuron signaling pathways in the retina may cause visual abnormalities, particularly in the involvement of dopamine in regulating light response.
Collapse
Affiliation(s)
- Z Syambani Ulhaq
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University, Batu, East Java, Indonesia.
| |
Collapse
|
20
|
Moon H, Jeon SG, Kim JI, Kim HS, Lee S, Kim D, Park S, Moon M, Chung H. Pharmacological Stimulation of Nurr1 Promotes Cell Cycle Progression in Adult Hippocampal Neural Stem Cells. Int J Mol Sci 2019; 21:E4. [PMID: 31861329 PMCID: PMC6982043 DOI: 10.3390/ijms21010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Nuclear receptor related-1 (Nurr1) protein performs a crucial role in hippocampal neural stem cell (hNSC) development as well as cognitive functions. We previously demonstrated that the pharmacological stimulation of Nurr1 by amodiaquine (AQ) promotes spatial memory by enhancing adult hippocampal neurogenesis. However, the role of Nurr1 in the cell cycle regulation of the adult hippocampus has not been investigated. This study aimed to examine changes in the cell cycle-related molecules involved in adult hippocampal neurogenesis induced by Nurr1 pharmacological stimulation. Fluorescence-activated cell sorting (FACS) analysis showed that AQ improved the progression of cell cycle from G0/G1 to S phase in a dose-dependent manner, and MEK1 or PI3K inhibitors attenuated this progression. In addition, AQ treatment increased the expression of cell proliferation markers MCM5 and PCNA, and transcription factor E2F1. Furthermore, pharmacological stimulation of Nurr1 by AQ increased the expression levels of positive cell cycle regulators such as cyclin A and cyclin-dependent kinases (CDK) 2. In contrast, levels of CDK inhibitors p27KIP1 and p57KIP2 were reduced upon treatment with AQ. Similar to the in vitro results, RT-qPCR analysis of AQ-administered mice brains revealed an increase in the levels of markers of cell cycle progression, PCNA, MCM5, and Cdc25a. Finally, AQ administration resulted in decreased p27KIP1 and increased CDK2 levels in the dentate gyrus of the mouse hippocampus, as quantified immunohistochemically. Our results demonstrate that the pharmacological stimulation of Nurr1 in adult hNSCs by AQ promotes the cell cycle by modulating cell cycle-related molecules.
Collapse
Affiliation(s)
- Haena Moon
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju 63243, Korea;
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Sangho Lee
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Dongok Kim
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seungjoon Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Hyunju Chung
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| |
Collapse
|
21
|
Blanco-Lezcano L, Alberti-Amador E, González-Fraguela ME, Zaldívar-Lelo de Larrea G, Pérez-Serrano RM, Jiménez-Luna NA, Serrano-Sánchez T, Francis-Turner L, Camejo-Rodriguez D, Vega-Hurtado Y. Nurr1, Pitx3, and α7 nAChRs mRNA Expression in Nigral Tissue of Rats with Pedunculopontine Neurotoxic Lesion. ACTA ACUST UNITED AC 2019; 55:medicina55100616. [PMID: 31547185 PMCID: PMC6843810 DOI: 10.3390/medicina55100616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
Background and Objectives: The knowledge that the cholinergic neurons from pedunculopontine nucleus (PPN) are vulnerable to the degeneration in early stages of the Parkinson disease progression has opened new perspectives to the development of experimental model focused in pontine lesions that could increase the risk of nigral degeneration. In this context it is known that PPN lesioned rats exhibit early changes in the gene expression of proteins responsible for dopaminergic homeostasis. At the same time, it is known that nicotinic cholinergic receptors (nAChRs) mediate the excitatory influence of pontine-nigral projection. However, the effect of PPN injury on the expression of transcription factors that modulate dopaminergic neurotransmission in the adult brain as well as the α7 nAChRs gene expression has not been studied. The main objective of the present work was the study of the effects of the unilateral neurotoxic lesion of PPN in nuclear receptor-related factor 1 (Nurr1), paired-like homeodomain transcription factor 3 (Pitx3), and α7 nAChRs mRNA expression in nigral tissue. Materials and Methods: The molecular biology studies were performed by means of RT-PCR. The following experimental groups were organized: Non-treated rats, N-methyl-D-aspartate (NMDA)-lesioned rats, and Sham operated rats. Experimental subjects were sacrificed 24 h, 48 h and seven days after PPN lesion. Results: Nurr1 mRNA expression, showed a significant increase both 24 h (p < 0.001) and 48 h (p < 0.01) after PPN injury. Pitx3 mRNA expression evidenced a significant increase 24 h (p < 0.001) followed by a significant decrease 48 h and seven days after PPN lesion (p < 0.01). Finally, the α7 nAChRs nigral mRNA expression remained significantly diminished 24 h, 48 h (p < 0.001), and 7 days (p < 0.01) after PPN neurotoxic injury. Conclusion: Taking together these modifications could represent early warning signals and could be the preamble to nigral neurodegeneration events.
Collapse
Affiliation(s)
- Lisette Blanco-Lezcano
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
- Correspondence: ; Tel.: +53-7-271-6385 (ext. 219)
| | - Esteban Alberti-Amador
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
| | - María Elena González-Fraguela
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
| | | | - Rosa Martha Pérez-Serrano
- Faculty of Medicine, Autonomous University of Queretaro, Querétaro 76176, Mexico; (G.Z.-L.d.L.); (R.M.P.-S.); (N.A.J.-L.)
| | - Nadia Angélica Jiménez-Luna
- Faculty of Medicine, Autonomous University of Queretaro, Querétaro 76176, Mexico; (G.Z.-L.d.L.); (R.M.P.-S.); (N.A.J.-L.)
| | - Teresa Serrano-Sánchez
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
| | - Liliana Francis-Turner
- Experimental Group: “Experimental Models for Zoo-Human Sciences”, Faculty of Sciences, Tolima University, Ibagué 730001, Colombia;
| | - Dianet Camejo-Rodriguez
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
| | - Yamilé Vega-Hurtado
- International Center of Neurological Restoration (CIREN), Playa, Havana 10300, Cuba; (E.A.-A.); (M.E.G.-F.); (T.S.-S.); (D.C.-R.); (Y.V.-H.)
| |
Collapse
|
22
|
Liu Z, Jiang X, Gao L, Liu X, Li J, Huang X, Zeng T. Synergistic Suppression of Glioblastoma Cell Growth by Combined Application of Temozolomide and Dopamine D2 Receptor Antagonists. World Neurosurg 2019; 128:e468-e477. [PMID: 31048057 DOI: 10.1016/j.wneu.2019.04.180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The current standard treatment of malignant glioma is maximal resection followed by chemotherapy and radiotherapy. Temozolomide (TMZ) has been the first-line chemotherapeutic agent used, although to achieve a satisfactory clinical effect. TMZ chemoresistance could result from glioblastoma stem cells, which are critical for tumor initiation, recurrence, and therapeutic resistance and are potential targets. Moreover, signals mediated by the dopamine D2 receptor (DRD2) can positively regulate proliferation and tumorigenesis of glioma cells. RESULTS To enhance TMZ's antitumor effect, we treated glioma cells with combinations of TMZ and DRD2 antagonists (DDRAs). The combined application of TMZ and DDRAs (haloperidol or risperidone) had synergistic effects and inhibited proliferation of glioma cells more significantly than did monotherapy. The combined treatment increased the levels of γH2AX (a marker of DNA damage) more significantly than did TMZ alone, although DDRAs alone had no effect on γH2AX levels. Moreover, the expression of DRD2 transcripts in U251 glioma cells and glioblastoma stem cells were significantly elevated after TMZ treatment, suggesting crosstalk between TMZ- and DRD2-mediated signaling. To explore the underlying mechanisms, we measured the expression of prosurvival proteins after treatment with either TMZ or DDRAs alone or combined. The results showed that DDRAs could inhibit the extracellular signal-related kinase signaling pathway and block TMZ-induced protective autophagy, which could explain why DDRAs increased the cytotoxicity of TMZ. CONCLUSIONS We have provided evidence showing the synergistic effects of TMZ and DDRAs on suppressing glioma cell growth. Our study has provided novel insights on enhancing the effectiveness of chemotherapy against malignant glioma and eventually improving the clinical outcomes of patients with glioblastoma multiforme.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Gao
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai, China
| | - Xuan Liu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiali Li
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xing Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zeng
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
23
|
Pietak A, Bischof J, LaPalme J, Morokuma J, Levin M. Neural control of body-plan axis in regenerating planaria. PLoS Comput Biol 2019; 15:e1006904. [PMID: 30990801 PMCID: PMC6485777 DOI: 10.1371/journal.pcbi.1006904] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/26/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
Control of axial polarity during regeneration is a crucial open question. We developed a quantitative model of regenerating planaria, which elucidates self-assembly mechanisms of morphogen gradients required for robust body-plan control. The computational model has been developed to predict the fraction of heteromorphoses expected in a population of regenerating planaria fragments subjected to different treatments, and for fragments originating from different regions along the anterior-posterior and medio-lateral axis. This allows for a direct comparison between computational and experimental regeneration outcomes. Vector transport of morphogens was identified as a fundamental requirement to account for virtually scale-free self-assembly of the morphogen gradients observed in planarian homeostasis and regeneration. The model correctly describes altered body-plans following many known experimental manipulations, and accurately predicts outcomes of novel cutting scenarios, which we tested. We show that the vector transport field coincides with the alignment of nerve axons distributed throughout the planarian tissue, and demonstrate that the head-tail axis is controlled by the net polarity of neurons in a regenerating fragment. This model provides a comprehensive framework for mechanistically understanding fundamental aspects of body-plan regulation, and sheds new light on the role of the nervous system in directing growth and form.
Collapse
Affiliation(s)
- Alexis Pietak
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
| | - Johanna Bischof
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Joshua LaPalme
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Junji Morokuma
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
24
|
Genetic Deletion of Soluble Epoxide Hydroxylase Causes Anxiety-Like Behaviors in Mice. Mol Neurobiol 2018; 56:2495-2507. [PMID: 30033504 DOI: 10.1007/s12035-018-1261-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/17/2018] [Indexed: 01/02/2023]
Abstract
Soluble epoxide hydrolase (sEH), an enzyme with COOH-terminal hydrolase and NH2-terminal lipid phosphatase activities, is expressed in regions of the brain such as the cortex, white matter, hippocampus, substantia nigra, and striatum. sEH is involved in the regulation of cerebrovascular and neuronal function upon pathological insults. However, the physiological significance of sEH and its underlying mechanism in modulating brain function are not fully understood. In this study, we investigated the role of sEH in anxiety and potential underlying mechanisms in mice. Western blot for protein phosphorylation and expression was performed. Immunohistochemical analyses and Nissl and Golgi staining were performed for histological examination. Mouse behaviors were evaluated by open field activity, elevated plus maze, classical fear conditioning, social preference test, and Morris water maze. Our results demonstrated that the expression of sEH was upregulated during postnatal development in wild-type (WT) mice. Genetic deletion of sEH (sEH-/-) in mice resulted in anxiety-like behavior and disrupted social preference. Increased olfactory bulb (OB) size and altered integrity of neurites were observed in sEH-/- mice. In addition, ablation of sEH in mice decreased protein expression of tyrosine hydroxylase and reduced dopamine production in the brain. Moreover, the level of phosphorylated calmodulin kinase II (CaMKII) and glycogen synthase kinase 3 α/β (GSK3α/β) was higher in sEH-/- mice than in WT mice. Collectively, these findings suggest that sEH is a key player in neurite outgrowth of neurons, OB development in the brain, and the development of anxiety-like behavior, by regulating the CaMKII-GSK3α/β signaling pathway.
Collapse
|
25
|
Weber MA, Graack ET, Scholl JL, Renner KJ, Forster GL, Watt MJ. Enhanced dopamine D2 autoreceptor function in the adult prefrontal cortex contributes to dopamine hypoactivity following adolescent social stress. Eur J Neurosci 2018; 48:1833-1850. [PMID: 29904960 PMCID: PMC6105450 DOI: 10.1111/ejn.14019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/22/2018] [Accepted: 06/06/2018] [Indexed: 11/28/2022]
Abstract
Adult psychiatric disorders characterized by cognitive deficits reliant on prefrontal cortex (PFC) dopamine are promoted by teenage bullying. Similarly, male Sprague-Dawley rats exposed to social defeat in mid-adolescence (P35-39) show impaired working memory in adulthood (P56-70), along with decreased medial PFC (mPFC) dopamine activity that results in part from increased dopamine transporter-mediated clearance. Here, we determined if dopamine synthesis and D2 autoreceptor-mediated inhibition of dopamine release in the adult mPFC are also enhanced by adolescent defeat to contribute to later dopamine hypofunction. Control and previously defeated rats did not differ in either DOPA accumulation following amino acid decarboxylase inhibition (NSD-1015 100 mg/kg ip.) or total/phosphorylated tyrosine hydroxylase protein expression, suggesting dopamine synthesis in the adult mPFC is not altered by adolescent defeat. However, exposure to adolescent defeat caused greater decreases in extracellular dopamine release (measured using in vivo chronoamperometry) in the adult mPFC upon local infusion of the D2 receptor agonist quinpirole (3 nM), implying greater D2 autoreceptor function. Equally enhanced D2 autoreceptor-mediated inhibition of dopamine release is seen in the adolescent (P40 or P49) mPFC, which declines in control rats by adulthood. However, this developmental decrease in autoreceptor function is absent following adolescent defeat, suggesting retention of an adolescent-like phenotype into adulthood. Current and previous findings indicate adolescent defeat decreases extracellular dopamine availability in the adult mPFC via both enhanced inhibition of dopamine release and increased dopamine clearance, which may be viable targets for improving treatment of cognitive deficits seen in neuropsychiatric disorders promoted by adolescent stress.
Collapse
Affiliation(s)
- Matthew A Weber
- Center for Brain and Behavior Research, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Eric T Graack
- Center for Brain and Behavior Research, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Jamie L Scholl
- Center for Brain and Behavior Research, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Kenneth J Renner
- Center for Brain and Behavior Research, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
- Department of Biology, University of South Dakota, Vermillion, South Dakota
| | - Gina L Forster
- Center for Brain and Behavior Research, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Michael J Watt
- Center for Brain and Behavior Research, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
26
|
Ethanolic extract Ocimum sanctum. Enhances cognitive ability from young adulthood to middle aged mediated by increasing choline acetyl transferase activity in rat model. Res Vet Sci 2018; 118:431-438. [DOI: 10.1016/j.rvsc.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/31/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023]
|
27
|
Mishra A, Singh S, Shukla S. Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease. J Exp Neurosci 2018; 12:1179069518779829. [PMID: 29899667 PMCID: PMC5985548 DOI: 10.1177/1179069518779829] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023] Open
Abstract
Dopamine controls various physiological functions in the brain and periphery by acting on its receptors D1, D2, D3, D4, and D5. Dopamine receptors are G protein–coupled receptors involved in the regulation of motor activity and several neurological disorders such as schizophrenia, bipolar disorder, Parkinson’s disease (PD), Alzheimer’s disease, and attention-deficit/hyperactivity disorder. Reduction in dopamine content in the nigrostriatal pathway is associated with the development of PD, along with the degeneration of dopaminergic neurons in the substantia nigra region. Dopamine receptors directly regulate neurotransmission of other neurotransmitters, release of cyclic adenosine monophosphate, cell proliferation, and differentiation. Here, we provide an update on recent knowledge about the signalling mechanism, mode of action, and the evidence for the physiological and functional basis of dopamine receptors. We also highlight the pivotal role of these receptors in the modulation of neurogenesis, a possible therapeutic target that might help to slow down the process of neurodegeneration.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
- Shubha Shukla, Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
28
|
Li Y, Wang W, Wang F, Wu Q, Li W, Zhong X, Tian K, Zeng T, Gao L, Liu Y, Li S, Jiang X, Du G, Zhou Y. Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells. J Mol Cell Biol 2018; 9:302-314. [PMID: 28486630 DOI: 10.1093/jmcb/mjx017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain tumor with limited therapeutic means and poor prognosis. Recent studies indicate that glioma-initiating cells/glioma stem cells (GICs/GSCs) may be responsible for tumor initiation, infiltration, and recurrence. GICs could aberrantly employ molecular machinery balancing self-renewal and differentiation of embryonic neural precursors. Here, we find that paired related homeobox 1 (PRRX1), a homeodomain transcription factor that was previously reported to control skeletal development, is expressed in cortical neural progenitors and is required for their self-renewal and proper differentiation. Further, PRRX1 is overrepresented in glioma samples and labels GICs. Glioma cells and GICs depleted with PRRX1 could not propagate in vitro or form tumors in the xenograft mouse model. The GIC self-renewal function regulated by PRRX1 is mediated by dopamine D2 receptor (DRD2). PRRX1 directly binds to the DRD2 promoter and transactivates its expression in GICs. Blockage of the DRD2 signaling hampers GIC self-renewal, whereas its overexpression restores the propagating and tumorigenic potential of PRRX1-depleted GICs. Finally, PRRX1 potentiates GICs via DRD2-mediated extracellular signal-related kinase (ERK) and AKT activation. Thus, our study suggests that therapeutic targeting the PRRX1-DRD2-ERK/AKT axis in GICs is a promising strategy for treating GBMs.
Collapse
Affiliation(s)
- Yamu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Wen Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Fangyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Qiushuang Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Wei Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Xiaoling Zhong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Kuan Tian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Tao Zeng
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China.,Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Liang Gao
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China
| | - Ying Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Yan Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| |
Collapse
|
29
|
Lv C, Mo C, Liu H, Wu C, Li Z, Li J, Wang Y. Dopamine D2-like receptors (DRD2 and DRD4) in chickens: Tissue distribution, functional analysis, and their involvement in dopamine inhibition of pituitary prolactin expression. Gene 2018; 651:33-43. [PMID: 29382572 DOI: 10.1016/j.gene.2018.01.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) D2-like (and D1-like) receptors are suggested to mediate the dopamine actions in the anterior pituitary and/or CNS of birds. However, the information regarding the structure, functionality, and expression of avian D2-like receptors have not been fully characterized. In this study, we cloned two D2-like receptors (cDRD2, cDRD4) from chicken brain using RACE PCR. The cloned cDRD4 is a 378-amino acid receptor, which shows 57% amino acid (a.a.) identity with mouse DRD4. As in mammals, two cDRD2 isoforms, cDRD2L (long isoform, 437 a.a.) and cDRD2S (short isoform, 408 a.a.), which differ in their third intracellular loop, were identified in chickens. Using cell-based luciferase reporter assays or Western blot, we demonstrated that cDRD4, cDRD2L and cDRD2S could be activated by dopamine and quinpirole (a D2-like receptor agonist) dose-dependently, and their activation inhibits cAMP signaling pathway and stimulates MAPK/ERK signaling cascade, indicating that they are functional receptors capable of mediating dopamine actions. Quantitative real-time PCR revealed that cDRD2 and cDRD4 are widely expressed in chicken tissues with abundant expression noted in anterior pituitary, and their expressions are likely controlled by their promoters near exon 1, as demonstrated by dual-luciferase reporter assays in DF-1 cells. In accordance with cDRD2/cDRD4 expression in the pituitary, DA or quinpirole could partially inhibit vasoactive intestinal peptide-induced prolactin expression in cultured chick pituitary cells. Together, our data proves the functionality of DRD2 and DRD4 in birds and aids to uncover the conserved roles of DA/D2-like receptor system in vertebrates, such as its action on the pituitary.
Collapse
Affiliation(s)
- Can Lv
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Chunheng Mo
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Haikun Liu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Chao Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Zhengyang Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
30
|
Zunke F, Rose-John S. The shedding protease ADAM17: Physiology and pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2059-2070. [DOI: 10.1016/j.bbamcr.2017.07.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/08/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023]
|
31
|
Lee Y, Kim H, Kim JE, Park JY, Choi J, Lee JE, Lee EH, Han PL. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors. Mol Neurobiol 2017; 55:5658-5671. [PMID: 29027111 DOI: 10.1007/s12035-017-0770-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022]
Abstract
The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea
| | - Hannah Kim
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea
| | - Ji-Eun Kim
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea
| | - Juli Choi
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea
| | - Jung-Eun Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea. .,Brain Disease Research Institute, Ewha Womans University, Seoul, Republic of Korea. .,Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Rassu M, Del Giudice MG, Sanna S, Taymans JM, Morari M, Brugnoli A, Frassineti M, Masala A, Esposito S, Galioto M, Valle C, Carri MT, Biosa A, Greggio E, Crosio C, Iaccarino C. Role of LRRK2 in the regulation of dopamine receptor trafficking. PLoS One 2017; 12:e0179082. [PMID: 28582422 PMCID: PMC5459500 DOI: 10.1371/journal.pone.0179082] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
Mutations in LRRK2 play a critical role in both familial and sporadic Parkinson’s disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking that in turn may regulate different aspects of neuronal physiology. We have analyzed the role of LRRK2 in regulating dopamine receptor D1 (DRD1) and D2 (DRD2) trafficking. DRD1 and DRD2 are the most abundant dopamine receptors in the brain. They differ in structural, pharmacological and biochemical properties, as well as in localization and internalization mechanisms. Our results indicate that disease-associated mutant G2019S LRRK2 impairs DRD1 internalization, leading to an alteration in signal transduction. Moreover, the mutant forms of LRRK2 affect receptor turnover by decreasing the rate of DRD2 trafficking from the Golgi complex to the cell membrane. Collectively, our findings are consistent with the conclusion that LRRK2 influences the motility of neuronal vesicles and the neuronal receptor trafficking. These findings have important implications for the complex role that LRRK2 plays in neuronal physiology and the possible pathological mechanisms that may lead to neuronal death in PD.
Collapse
Affiliation(s)
- Mauro Rassu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Simona Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Jean Marc Taymans
- UMR-S1172, Jean-Pierre Aubert Research Center (Inserm – Université de Lille – CHRU de Lille), Lille, France
| | - Michele Morari
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy and National Institute for Neuroscience, Ferrara, Italy
| | - Alberto Brugnoli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy and National Institute for Neuroscience, Ferrara, Italy
| | - Martina Frassineti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy and National Institute for Neuroscience, Ferrara, Italy
| | - Alessandra Masala
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sonia Esposito
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Manuela Galioto
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia, IRCCS, Rome, Italy
- Institute of Cell Biology and Neurobiology, IBCN, CNR, Rome, Italy
| | - Maria Teresa Carri
- Fondazione Santa Lucia, IRCCS, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Alice Biosa
- Department of Biology, University of Padova, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
33
|
Role of Dopamine D2/D3 Receptors in Development, Plasticity, and Neuroprotection in Human iPSC-Derived Midbrain Dopaminergic Neurons. Mol Neurobiol 2017; 55:1054-1067. [DOI: 10.1007/s12035-016-0376-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/28/2016] [Indexed: 01/11/2023]
|
34
|
Yang Y, Ma T, Ge J, Quan X, Yang L, Zhu S, Huang L, Liu Z, Liu L, Geng D, Huang J, Luo Z. Facilitated Neural Differentiation of Adipose Tissue–Derived Stem Cells by Electrical Stimulation and Nurr-1 Gene Transduction. Cell Transplant 2016. [DOI: 10.3727/096368915x688957a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuron-like cells derived from adipose tissue-derived stem cells (ADSCs) have been considered one of the most promising cells for the treatment of neurodegenerative diseases and neurotrauma in the central nervous system (CNS). Thus far, extensive efforts have been made to facilitate neuronal differentiation of ADSCs, but limited progress has been achieved. In the present study, we tested the possibility of using a combination of electrical stimulation (ES) with Nurr-1 gene transduction to promote neuronal differentiation of ADSCs. The tolerance of ADSCs to ES was first examined by a cell apoptosis assay. The proliferation of cells was characterized using a CCK-8 assay. The morphology of cells was examined by scanning electron microscopy (SEM). The differentiation of ADSCs into neuron-like cells was examined by immunocytochemistry (ICC)–immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme linked immunosorbent assay (ELISA). The gene expression of microtubule-associated protein 2 (MAP-2), β-tubulin, neurofilament 200 (NF-200), octamer binding transcription factor 4 (OCT-4), and glial fibrillary acidic protein (GFAP) after stimulation was examined by qRT-PCR. We found that the optimal intensity of ES for neuronal differentiation of ADSCs was 1 V/cm. In addition, ES combined with Nurr-1 gene transduction increased the neuronal differentiation rate of ADSCs, the length of neurite-like processes, and the secretion of dopamine. Further studies showed that a combination of ES with Nurr-1 gene transduction was capable of promoting the expression of MAP-2, β-tubulin, and NF-200 but decreased the expression of OCT-4 and GFAP. All of these findings indicate that a combination of ES with Nurr-1 gene transduction could facilitate neuronal differentiation of ADSCs, which raises the possibility of its application in the treatment of neurodegenerative diseases and neurotrauma in the CNS.
Collapse
Affiliation(s)
- Yafeng Yang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Teng Ma
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Jun Ge
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Xin Quan
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Le Yang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, PR China
| | - Shu Zhu
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Liangliang Huang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Zhongyang Liu
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Liang Liu
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Dan Geng
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Jinghui Huang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Zhuojing Luo
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| |
Collapse
|
35
|
Zhang LM, Sun CC, Mo MS, Cen L, Wei L, Luo FF, Li Y, Li GF, Zhang SY, Yi L, Huang W, Liu ZL, Le WD, Xu PY. Dopamine Agonists Exert Nurr1-inducing Effect in Peripheral Blood Mononuclear Cells of Patients with Parkinson's Disease. Chin Med J (Engl) 2016; 128:1755-60. [PMID: 26112716 PMCID: PMC4733729 DOI: 10.4103/0366-6999.159349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Nurr1 plays an essential role in the development, survival, and function maintenance of midbrain dopaminergic (DA) neurons, and it is a potential target for Parkinson's disease (PD). Nurr1 mRNA can be detected in peripheral blood mononuclear cells (PBMCs), but whether there is any association of altered Nurr1 expression in PBMC with the disease and DA drug treatments remains elusive. This study aimed to measure the Nurr1 mRNA level in PBMC and evaluate the effect of Nurr1 expression by DA agents in vivo and in vitro. Methods: The mRNA levels of Nurr1 in PBMC of four subgroups of 362 PD patients and 193 healthy controls (HCs) using real-time polymerase chain reaction were measured. The nonparametric Mann-Whitney U-test and Kruskal-Wallis test were performed to evaluate the differences between PD and HC, as well as the subgroups of PD. Multivariate linear regression analysis was used to evaluate the independent association of Nurr1 expression with Hoehn and Yahr scale, age, and drug treatments. Besides, the Nurr1 expression in cultured PBMC was measured to determine whether DA agonist pramipexole affects its mRNA level. Results: The relative Nurr1 mRNA levels in DA agonists treated subgroup were significant higher than those in recent-onset cases without any anti-PD treatments (de novo) (P < 0.001) and HC groups (P < 0.010), respectively. Furthermore, the increase in Nurr1 mRNA expression was seen in DA agonist and L-dopa group. Multivariate linear regression showed DA agonists, L-dopa, and DA agonists were independent predictors correlated with Nurr1 mRNA expression level in PBMC. In vitro, in the cultured PBMC treated with 10 μmol/L pramipexole, the Nurr1 mRNA levels were significantly increased by 99.61%, 71.75%, 73.16% in 2, 4, and 8 h, respectively (P < 0.001). Conclusions: DA agonists can induce Nurr1 expression in PBMC, and such effect may contribute to DA agonists-mediated neuroprotection on DA neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ping-Yi Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080; Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China
| |
Collapse
|
36
|
Tallafuss A, Kelly M, Gay L, Gibson D, Batzel P, Karfilis KV, Eisen J, Stankunas K, Postlethwait JH, Washbourne P. Transcriptomes of post-mitotic neurons identify the usage of alternative pathways during adult and embryonic neuronal differentiation. BMC Genomics 2015; 16:1100. [PMID: 26699284 PMCID: PMC4690400 DOI: 10.1186/s12864-015-2215-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/16/2015] [Indexed: 05/14/2023] Open
Abstract
Background Understanding the mechanisms by which neurons are generated and specified, and how they integrate into functional circuits is key to being able to treat disorders of the nervous system and acute brain trauma. Much of what we know about neuronal differentiation has been studied in developing embryos, but differentiation steps may be very different during adult neurogenesis. For this reason, we compared the transcriptomes of newly differentiated neurons in zebrafish embryos and adults. Results Using a 4tU RNA labeling method, we isolated and sequenced mRNA specifically from cells of one day old embryos and adults expressing the transgene HA-uprt-mcherry under control of the neuronal marker elavl3. By categorizing transcript products into different protein classes, we identified similarities and differences of gene usage between adult and embryonic neuronal differentiation. We found that neurons in the adult brain and in the nervous system of one day old embryos commonly use transcription factors - some of them identical - during the differentiation process. When we directly compared adult differentiating neurons to embryonic differentiating neurons, however, we found that during adult neuronal differentiation, the expression of neuropeptides and neurotransmitter pathway genes is more common, whereas classical developmental signaling through secreted molecules like Hedgehog or Wnt are less enriched, as compared to embryonic stages. Conclusions We conclude that both adult and embryonic differentiating neurons show enriched use of transcription factors compared to surrounding cells. However, adult and embryonic developing neurons use alternative pathways to differentiate. Our study provides evidence that adult neuronal differentiation is distinct from the better characterized embryonic neuronal differentiation process. This important insight and the lists of enriched genes we have identified will now help pave the way to a better understanding of the mechanisms of embryonic and adult neuronal differentiation and how to manipulate these processes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2215-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Meghan Kelly
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| | - Leslie Gay
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| | - Dan Gibson
- Current address: Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| | - Kate V Karfilis
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| | - Judith Eisen
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| | | | | |
Collapse
|
37
|
Intergenerational Effect of Early Life Exposure to Permethrin: Changes in Global DNA Methylation and in Nurr1 Gene Expression. TOXICS 2015; 3:451-461. [PMID: 29051472 PMCID: PMC5606645 DOI: 10.3390/toxics3040451] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/11/2015] [Indexed: 11/17/2022]
Abstract
Environmental exposure to pesticides during the early stages of development represents an important risk factor for the onset of neurodegenerative diseases in adult age. Neonatal exposure to Permethrin (PERM), a member of the family of synthetic pyrethroids, can induce a Parkinson-like disease and cause some alterations in striatum of rats, involving both genetic and epigenetic pathways. Through gene expression analysis and global DNA methylation assessment in both PERM-treated parents and their untreated offspring, we investigated on the prospective intergenerational effect of this pesticide. Thirty-three percent of progeny presents the same Nurr1 alteration as rats exposed to permethrin in early life. A decrease in global genome-wide DNA methylation was measured in mothers exposed in early life to permethrin as well as in their offspring, whereas untreated rats have a hypermethylated genomic DNA. Further studies are however needed to elucidate the molecular mechanisms, but, despite this, an intergenerational PERM-induced damage on progenies has been identified for the first time.
Collapse
|
38
|
Fiorentini C, Savoia P, Bono F, Tallarico P, Missale C. The D3 dopamine receptor: From structural interactions to function. Eur Neuropsychopharmacol 2015; 25:1462-9. [PMID: 25532864 DOI: 10.1016/j.euroneuro.2014.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 01/17/2023]
Abstract
Novel structural and functional aspects of the dopamine (DA) D3 receptors (D3R) have been recently described. D3R expressed in dopaminergic neurons have been classically considered to play the role of autoreceptors inhibiting, as the D2R, DA release. However, evidence for D3R-mediated neurotrophic and neuroprotective effects on DA neurons suggests their involvement in preventing pathological alterations leading to neurodegeneration. On the other hand, given its localization and functional role at postsynaptic striatal levels, the D3R may also be involved in the pathogenesis of movement disorders and psychiatric diseases. Functional interactions of D3R with other receptor systems are crucial for the modulation of several physiological events. On this line, the discovery that the D3R can form heteromers with other receptors has opened the possibility of uncover novel molecular mechanisms of brain functions and dysfunctions. This paper summarizes the functional and physical interactions of D3R with other receptors both at pre-synaptic sites, where it is co-expressed with the D2R and nicotinic receptors, and at post-synaptic sites where it interacts with the DA D1 receptors (D1R). The biochemical and functional properties of the D1R-D3R heteromer will be especially discussed. Both D1R and D3R have been in fact implicated in several disorders, including schizophrenia and motor dysfunctions. Therefore, the D1R-D3R heteromer may represent a potential drug target for the treatment of these diseases.
Collapse
Affiliation(s)
- Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Paola Savoia
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Federica Bono
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paola Tallarico
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Missale
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
39
|
ERK1, 2, and 5 expression and activation in dopaminergic brain regions during postnatal development. Int J Dev Neurosci 2015; 46:44-50. [PMID: 26363522 DOI: 10.1016/j.ijdevneu.2015.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/23/2022] Open
Abstract
Degeneration and dysfunctioning of dopaminergic neurons in the midbrain have been associated with serious neurodegenerative and neuropsychiatric disorders. Elucidating the underlying neurobiology of these neurons during early postnatal development may provide important information regarding the etiology of these disorders. Cellular signaling pathways have been shown to regulate postnatal neuronal development. Among several signaling pathways, extracellular-regulated mitogen kinases (ERK) 1, 2, and 5 have been shown to be crucial for the survival and function of dopaminergic neurons. In this study, the basal expression and activation of ERK1, 2, and 5 were studied during postnatal development in regions rich in DA cells and terminals. In the striatum (STR) and ventral mesencephalon regions of the substantia nigra (SN) and ventral tegmental area (VTA), ERK5 expression and activation were high during early postnatal days and declined with aging. Interestingly, sharp increases in phosphorylated or activated ERK1 and ERK2 were observed at postnatal day (PND) 7 in the SN and VTA. In contrast, in the STR, the levels of phosphorylated ERK1 and 2 were significantly higher at PND0 than at any other PND examined. Overall, the understanding of alterations in ERK signaling in regions rich in DA cells and DA terminals during postnatal neuronal development may provide information about their role in regulation of dopamine neuronal development which may ultimately provide insight into the underlying mechanisms of dopamine neurodegeneration.
Collapse
|
40
|
Novick AM, Forster GL, Hassell JE, Davies DR, Scholl JL, Renner KJ, Watt MJ. Increased dopamine transporter function as a mechanism for dopamine hypoactivity in the adult infralimbic medial prefrontal cortex following adolescent social stress. Neuropharmacology 2015; 97:194-200. [PMID: 26056032 DOI: 10.1016/j.neuropharm.2015.05.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 01/11/2023]
Abstract
Being bullied during adolescence is associated with later mental illnesses characterized by deficits in cognitive tasks mediated by prefrontal cortex (PFC) dopamine (DA). Social defeat of adolescent male rats, as a model of teenage bullying victimization, results in medial PFC (mPFC) dopamine (DA) hypofunction in adulthood that is associated with increased drug seeking and working memory deficits. Increased expression of the DA transporter (DAT) is also seen in the adult infralimbic mPFC following adolescent defeat. We propose the functional consequence of this increased DAT expression is enhanced DA clearance and subsequently decreased infralimbic mPFC DA availability. To test this, in vivo chronoamperometry was used to measure changes in accumulation of the DA signal following DAT blockade, with increased DAT-mediated clearance being reflected by lower DA signal accumulation. Previously defeated rats and controls were pre-treated with the norepinephrine transporter (NET) inhibitor desipramine (20 mg/kg, ip.) to isolate infralimbic mPFC DA clearance to DAT, then administered the selective DAT inhibitor GBR-12909 (20 or 40 mg/kg, sc.). Sole NET inhibition with desipramine produced no differences in DA signal accumulation between defeated rats and controls. However, rats exposed to adolescent social defeat demonstrated decreased DA signal accumulation compared to controls in response to both doses of GBR-12909, indicating greater DAT-mediated clearance of infralimbic mPFC DA. These results suggest that protracted increases in infralimbic mPFC DAT function represent a mechanism by which adolescent social defeat stress produces deficits in adult mPFC DA activity and corresponding behavioral and cognitive dysfunction.
Collapse
Affiliation(s)
- Andrew M Novick
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - James E Hassell
- Center for Brain and Behavior Research, Biology Department, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Daniel R Davies
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Jamie L Scholl
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Kenneth J Renner
- Center for Brain and Behavior Research, Biology Department, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Michael J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA.
| |
Collapse
|
41
|
Watmuff B, Hartley BJ, Hunt CPJ, Fabb SA, Pouton CW, Haynes JM. Human pluripotent stem cell derived midbrain PITX3(eGFP/w) neurons: a versatile tool for pharmacological screening and neurodegenerative modeling. Front Cell Neurosci 2015; 9:104. [PMID: 25873861 PMCID: PMC4379917 DOI: 10.3389/fncel.2015.00104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/09/2015] [Indexed: 11/21/2022] Open
Abstract
PITX3 expression is confined to adult midbrain dopaminergic (mDA) neurons. In this study we describe the generation and basic functional characteristics of mDA neurons derived from a human pluripotent stem cell (hPSC) line expressing eGFP under the control of the PITX3 promoter. Flow cytometry showed that eGFP was evident in 15% of the neuron population at day 12 of differentiation and this level was maintained until at least day 80. From days 20 to 80 of differentiation intracellular chloride decreased and throughout this period around ∼20% of PITX3eGFP/w neurons exhibited spontaneous Ca2+ transients (from 3.3 ± 0.3 to 5.0 ± 0.1 min-1, respectively). These neurons also responded to any of ATP, glutamate, acetylcholine, or noradrenaline with elevations of intracellular calcium. As neuronal cultures matured more dopamine was released and single PITX3eGFP/w neurons began to respond to more than one neurotransmitter. MPP+ and tumor necrosis factor (TNF), but not prostaglandin E2, caused death of the ∼50% of PITX3eGFP/w neurons (day 80). Tracking eGFP using time lapse confocal microscopy over 24 h demonstrated significant TNF-mediated neurite retraction over time. This work now shows that these PITX3eGFP/w neurons are amenable to flow cytometry, release dopamine and respond to multiple neurotransmitters with elevations of intracellular calcium, we believe that they represent a versatile system for neuropharmacological and neurotoxicological studies.
Collapse
Affiliation(s)
- Bradley Watmuff
- Stem Cell Biology Group, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville, VIC, Australia
| | - Brigham J Hartley
- Stem Cell Biology Group, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville, VIC, Australia
| | - Cameron P J Hunt
- Stem Cell Biology Group, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville, VIC, Australia
| | - Stewart A Fabb
- Stem Cell Biology Group, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville, VIC, Australia
| | - Colin W Pouton
- Stem Cell Biology Group, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville, VIC, Australia
| | - John M Haynes
- Stem Cell Biology Group, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville, VIC, Australia
| |
Collapse
|
42
|
Han F, Konkalmatt P, Chen J, Gildea J, Felder RA, Jose PA, Armando I. MiR-217 mediates the protective effects of the dopamine D2 receptor on fibrosis in human renal proximal tubule cells. Hypertension 2015; 65:1118-25. [PMID: 25801876 DOI: 10.1161/hypertensionaha.114.05096] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/01/2015] [Indexed: 01/11/2023]
Abstract
Lack or downregulation of the dopamine D2 receptor (D2R) increases the vulnerability to renal inflammation independent of blood pressure in mice. Common single nucleotide polymorphisms (SNPs) rs6276, 6277, and 1800497 in the human D2R gene are associated with decreased receptor expression/function and hypertension. Human renal proximal tubule cells from subjects carrying these SNPs have decreased D2R expression and increased expression of profibrotic factors and production of extracellular matrix proteins. We tested the hypothesis that the D2R mediates these effects by regulating micro-RNA expression. In cells carrying D2R SNPs, micro-RNAs (miRs)-217, miR-224, miR-335, and miR-1265 were downregulated, whereas miR-1290 was upregulated >4-fold compared with those carrying D2R wild-type alleles. However, only miR-217 was directly regulated by D2R expression. In cells carrying D2R wild-type, miR-217 inhibitor increased the expression of transforming growth factor (TGF)-β1, matrix metalloproteinase 3, fibronectin 1, and collagen 1a, whereas miR-217 mimic had the opposite effect. In cells carrying D2R SNPs, miR-217 mimic also decreased the expression of TGFβ1 and its targets. Wnt5a, a miR-217 target, was increased in cells carrying D2R SNPs and decreased by miR-217 mimic but increased by miR-217 inhibitor in both cell types. In cells carrying D2R wild-type, Wnt5a treatment increased TGFβ1 while silencing Ror2, a Wnt5a receptor, decreased TGFβ1 and blunted the Wnt5a-induced increase in cells carrying D2R wild-type. Our results show that renal proximal tubule cells from subjects carrying D2R SNPs resulting in D2R downregulation have increased TGFβ1 that is mediated by decreased regulation of the miR-217-Wnt5a-Ror2 pathway.
Collapse
Affiliation(s)
- Fei Han
- From the Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (F.H., J.C.); Division of Nephrology, Department of Medicine (P.K., P.A.J., I.A.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore; and Department of Pathology, University of Virginia School of Medicine, Charlottesville (J.G., R.A.F.)
| | - Prasad Konkalmatt
- From the Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (F.H., J.C.); Division of Nephrology, Department of Medicine (P.K., P.A.J., I.A.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore; and Department of Pathology, University of Virginia School of Medicine, Charlottesville (J.G., R.A.F.)
| | - Jianghua Chen
- From the Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (F.H., J.C.); Division of Nephrology, Department of Medicine (P.K., P.A.J., I.A.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore; and Department of Pathology, University of Virginia School of Medicine, Charlottesville (J.G., R.A.F.)
| | - John Gildea
- From the Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (F.H., J.C.); Division of Nephrology, Department of Medicine (P.K., P.A.J., I.A.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore; and Department of Pathology, University of Virginia School of Medicine, Charlottesville (J.G., R.A.F.)
| | - Robin A Felder
- From the Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (F.H., J.C.); Division of Nephrology, Department of Medicine (P.K., P.A.J., I.A.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore; and Department of Pathology, University of Virginia School of Medicine, Charlottesville (J.G., R.A.F.)
| | - Pedro A Jose
- From the Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (F.H., J.C.); Division of Nephrology, Department of Medicine (P.K., P.A.J., I.A.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore; and Department of Pathology, University of Virginia School of Medicine, Charlottesville (J.G., R.A.F.)
| | - Ines Armando
- From the Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (F.H., J.C.); Division of Nephrology, Department of Medicine (P.K., P.A.J., I.A.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore; and Department of Pathology, University of Virginia School of Medicine, Charlottesville (J.G., R.A.F.)
| |
Collapse
|
43
|
Graham DL, Durai HH, Garden JD, Cohen EL, Echevarria FD, Stanwood GD. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex. ACS Chem Neurosci 2015; 6:297-305. [PMID: 25393953 PMCID: PMC4372074 DOI: 10.1021/cn500235m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
![]()
Disruption
to dopamine homeostasis during brain development has been implicated
in a variety of neuropsychiatric disorders, including depression and
schizophrenia. Inappropriate expression or activity of GABAergic interneurons
are common features of many of these disorders. We discovered a persistent
upregulation of GAD67+ and parvalbumin+ neurons within the anterior
cingulate cortex of dopamine D2 receptor knockout mice, while other
GABAergic interneuron markers were unaffected. Interneuron distribution
and number were not altered in the striatum or in the dopamine-poor
somatosensory cortex. The changes were already present by postnatal
day 14, indicating a developmental etiology. D2eGFP BAC transgenic
mice demonstrated the presence of D2 receptor expression within a
subset of parvalbumin-expressing cortical interneurons, suggesting
the possibility of a direct cellular mechanism through which D2 receptor
stimulation regulates interneuron differentiation or survival. D2
receptor knockout mice also exhibited decreased depressive-like behavior
compared with wild-type controls in the tail suspension test. These
data indicate that dopamine signaling modulates interneuron number
and emotional behavior and that developmental D2 receptor loss or
blockade could reveal a potential mechanism for the prodromal basis
of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Devon L. Graham
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Heather H. Durai
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Jamie D. Garden
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Evan L. Cohen
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Franklin D. Echevarria
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Gregg D. Stanwood
- Department of Pharmacology, ‡Vanderbilt Brain Institute, §Vanderbilt Kennedy
Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
44
|
Yoon DH, Yoon S, Kim D, Kim H, Baik JH. Regulation of dopamine D2 receptor-mediated extracellular signal-regulated kinase signaling and spine formation by GABAA receptors in hippocampal neurons. Neurosci Lett 2014; 586:24-30. [PMID: 25483619 DOI: 10.1016/j.neulet.2014.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/12/2014] [Accepted: 12/02/2014] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) signaling via DA receptors is known to control hippocampal activity that contributes to learning, memory, and synaptic plasticity. In primary hippocampal neuronal culture, we observed that dopamine D2 receptors (D2R) co-localized with certain subtypes of GABAA receptors, namely α1, β3, and γ2 subunits, as revealed by double immunofluorocytochemical analysis. Treatment with the D2R agonist, quinpirole, was shown to elicit an increase in phosphorylation of extracellular signal-regulated kinase (ERK) in hippocampal neurons. This phosphorylation was inhibited by pretreatment with the GABAA receptor agonist, muscimol. Furthermore, treatment of hippocampal neurons with quinpirole increased the dendritic spine density and this regulation was totally blocked by pretreatment with a MAP kinase kinase (MEK) inhibitor (PD98059), D2R antagonist (haloperidol), or by the GABAA receptor agonist, muscimol. These results suggest that D2R-mediated ERK phosphorylation can control spine formation and that the GABAA receptor negatively regulates the D2R-induced spine formation through ERK signaling in hippocampal neurons, thus indicating a potential role of D2R in the control of hippocampal neuronal excitability.
Collapse
Affiliation(s)
- Dong-Hoon Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Sehyoun Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Donghoon Kim
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, South Korea
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea.
| |
Collapse
|
45
|
Pistillo F, Clementi F, Zoli M, Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol 2014; 124:1-27. [PMID: 25447802 DOI: 10.1016/j.pneurobio.2014.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 01/11/2023]
Abstract
Cigarette smoking is currently the leading cause of preventable deaths and disability throughout the world, being responsible for about five million premature deaths/year. Unfortunately, fewer than 10% of tobacco users who try to stop smoking actually manage to do so. The main addictive agent delivered by cigarette smoke is nicotine, which induces psychostimulation and reward, and reduces stress and anxiety. The use of new technologies (including optogenetics) and the development of mouse models characterised by cell-specific deletions of receptor subtype genes or the expression of gain-of-function nAChR subunits has greatly increased our understanding of the molecular mechanisms and neural substrates of nicotine addiction first revealed by classic electrophysiological, neurochemical and behavioural approaches. It is now becoming clear that various aspects of nicotine dependence are mediated by close interactions of the glutamatergic, dopaminergic and γ-aminobutyric acidergic systems in the mesocorticolimbic system. This review is divided into two parts. The first provides an updated overview of the circuitry of the ventral tegmental area, ventral striatum and prefrontal cortex, the neurotransmitter receptor subtypes expressed in these areas, and their physiological role in the mesocorticolimbic system. The second will focus on the molecular, functional and behavioural mechanisms involved in the acute and chronic effects of nicotine on the mesocorticolimbic system.
Collapse
Affiliation(s)
- Francesco Pistillo
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Francesco Clementi
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Section of Physiology and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy.
| |
Collapse
|
46
|
Abstract
Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA signaling in mesolimbic neurotransmission are widely believed to modify reward-related behaviors and are therefore closely associated with drug addiction. Recent evidence now suggests that as with drug addiction, obesity with compulsive eating behaviors involves reward circuitry of the brain, particularly the circuitry involving dopaminergic neural substrates. Increasing amounts of data from human imaging studies, together with genetic analysis, have demonstrated that obese people and drug addicts tend to show altered expression of DA D2 receptors in specific brain areas, and that similar brain areas are activated by food-related and drug-related cues. This review focuses on the functions of the DA system, with specific focus on the physiological interpretation and the role of DA D2 receptor signaling in food addiction. [BMB Reports 2013; 46(11): 519-526]
Collapse
Affiliation(s)
- Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul 136-701, Korea
| |
Collapse
|
47
|
Watt MJ, Roberts CL, Scholl JL, Meyer DL, Miiller LC, Barr JL, Novick AM, Renner KJ, Forster GL. Decreased prefrontal cortex dopamine activity following adolescent social defeat in male rats: role of dopamine D2 receptors. Psychopharmacology (Berl) 2014; 231:1627-36. [PMID: 24271009 PMCID: PMC3969403 DOI: 10.1007/s00213-013-3353-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Adverse social experience in adolescence causes reduced medial prefrontal cortex (mPFC) dopamine (DA) and associated behavioral deficits in early adulthood. OBJECTIVE This study aims to determine whether mPFC DA hypofunction following social stress is specific to adolescent experience and if this results from stress-induced DA D2 receptor activation. MATERIALS AND METHODS Male rats exposed to repeated social defeat during adolescence or adulthood had mPFC DA activity sampled 17 days later. Separate experiments used freely moving microdialysis to measure mPFC DA release in response to adolescent defeat exposure. At P40, 49 and 56 mPFC DA turnover was assessed to identify when DA activity decreased in relation to the adolescent defeat experience. Finally, nondefeated adolescent rats received repeated intra-mPFC infusions of the D2 receptor agonist quinpirole, while another adolescent group received intra-mPFC infusions of the D2 antagonist amisulpride before defeat exposure. RESULTS Long-term decreases or increases in mPFC DA turnover were observed following adolescent or adult defeat, respectively. Adolescent defeat exposure elicits sustained increases in mPFC DA release, and DA turnover remains elevated beyond the stress experience before declining to levels below normal at P56. Activation of mPFC D2 receptors in nondefeated adolescents decreases DA activity in a similar manner to that caused by adolescent defeat, while defeat-induced reductions in mPFC DA activity are prevented by D2 receptor blockade. CONCLUSIONS Both the developing and mature PFC DA systems are vulnerable to social stress, but only adolescent defeat causes DA hypofunction. This appears to result in part from stress-induced activation of mPFC D2 autoreceptors.
Collapse
Affiliation(s)
- Michael J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E Clark St, Vermillion, SD, 57069, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits 2013; 7:152. [PMID: 24130517 PMCID: PMC3795306 DOI: 10.3389/fncir.2013.00152] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.
Collapse
Affiliation(s)
- Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University Seoul, South Korea
| |
Collapse
|
49
|
Jung ES, Lee HJ, Sim HR, Baik JH. Cocaine-induced behavioral sensitization in mice: effects of microinjection of dopamine d2 receptor antagonist into the nucleus accumbens. Exp Neurobiol 2013; 22:224-31. [PMID: 24167417 PMCID: PMC3807009 DOI: 10.5607/en.2013.22.3.224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/25/2022] Open
Abstract
To determine the role of dopamine D2 receptor (D2R) in the nucleus accumbens (NAc) core in cocaine-induced behavioral sensitization, D2R antagonist, raclopride was bilaterally microinjected (2.5 or 5 nmol) into the NAc core of WT and D2R-/- mice and the initiation and expression phase of cocaine-mediated locomotor sensitization were analyzed. WT and D2R knockout (D2R-/-) mice received bilateral injections of either saline, or raclopride at the NAc core 30 min before each of five daily repeated injections of saline or cocaine (15 mg/kg i.p.). Following 2 weeks of withdrawal after repeated exposure to cocaine, the animals were pre-treated with an intra-accumbal injection of vehicle or raclopride before receiving a systemic cocaine challenge for the expression of sensitization. Animals which had been microinjected raclopride into NAc core displayed the enhancement of cocaine-induced behavioral response for the initiation but also for the expression of sensitization in WT as well as in D2R-/- mice, which was thus unaltered as compared to vehicle-injected control group. These results suggest that D2R in NAc core is not involved in cocaine-induced behavioral sensitization.
Collapse
Affiliation(s)
- Eun-Sol Jung
- Molecular Neurobiology Laboratory, College of Life Sciences and Biotechnology, Department of Life Sciences, Korea University, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
50
|
Yoon S, Baik JH. Dopamine D2 receptor-mediated epidermal growth factor receptor transactivation through a disintegrin and metalloprotease regulates dopaminergic neuron development via extracellular signal-related kinase activation. J Biol Chem 2013; 288:28435-46. [PMID: 23955337 DOI: 10.1074/jbc.m113.461202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dopamine D2 receptor (D2R)-mediated extracellular signal-regulated kinase (ERK) activation plays an important role in the development of dopaminergic mesencephalic neurons. Here, we demonstrate that D2R induces the shedding of heparin-binding epidermal growth factor (EGF) through the activation of a disintegrin and metalloprotease (ADAM) 10 or 17, leading to EGF receptor transactivation, downstream ERK activation, and ultimately an increase in the number of dopaminergic neurons and their neurite length in primary mesencephalic cultures from wild-type mice. These outcomes, however, were not observed in cultures from D2R knock-out mice. Our findings show that D2R-mediated ERK activation regulates mesencephalic dopaminergic neuron development via EGF receptor transactivation through ADAM10/17.
Collapse
Affiliation(s)
- Sehyoun Yoon
- From the Molecular Neurobiology Laboratory, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | | |
Collapse
|