1
|
Kinsky NR, Orlin DJ, Ruesch EA, Kim B, Coello S, Diba K, Ramirez S. Erasable hippocampal neural signatures predict memory discrimination. Cell Rep 2025; 44:115391. [PMID: 40057951 DOI: 10.1016/j.celrep.2025.115391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2024] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
Memories involving the hippocampus can take several days to consolidate, challenging efforts to uncover the neuronal signatures underlying this process. Here, we use calcium imaging in freely moving mice to track the hippocampal dynamics underlying memory consolidation across a 10-day contextual fear conditioning task. We find two neural signatures that emerge following learning and predict memory performance: context-specific place field remapping and coordinated neural activity prior to memory recall (freezing). To test whether these signatures support memory consolidation, we pharmacologically induced amnesia in separate mice by administering anisomycin, a protein synthesis inhibitor, immediately following learning. We find that anisomycin paradoxically accelerates cell turnover. Anisomycin also arrests learning-related remapping and blocks coordinated activity predictive of memory-related freezing behavior, effects that are likewise absent in untreated mice that exhibit poor memory expression. We conclude that context-specific place field remapping and the development of coordinated ensemble activity underlie contextual memory consolidation.
Collapse
Affiliation(s)
- Nathaniel R Kinsky
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Daniel J Orlin
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Evan A Ruesch
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Brian Kim
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siria Coello
- Center for Systems Neuroscience, Boston University, Boston, MA 02451, USA
| | - Kamran Diba
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steve Ramirez
- Center for Systems Neuroscience, Boston University, Boston, MA 02451, USA.
| |
Collapse
|
2
|
Pouget C, Morier F, Treiber N, García PF, Mazza N, Zhang R, Reeves I, Winston S, Brimble MA, Kim CK, Vetere G. Deconstruction of a Memory Engram Reveals Distinct Ensembles Recruited at Learning. RESEARCH SQUARE 2025:rs.3.rs-5633532. [PMID: 39975896 PMCID: PMC11838775 DOI: 10.21203/rs.3.rs-5633532/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
How are associative memories formed? Which cells represent a memory, and when are they engaged? By visualizing and tagging cells based on their calcium influx with unparalleled temporal precision, we identified non-overlapping dorsal CA1 neuronal ensembles that are differentially active during associative fear memory acquisition. We dissected the acquisition experience into periods during which salient stimuli were presented or certain mouse behaviors occurred and found that cells associated with specific acquisition periods are sufficient alone to drive memory expression and contribute to fear engram formation. This study delineated the different identities of the cell ensembles active during learning, and revealed, for the first time, which ones form the core engram and are essential for memory formation and recall.
Collapse
Affiliation(s)
- Clément Pouget
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Flora Morier
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Nadja Treiber
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Pablo Fernández García
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Nina Mazza
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Run Zhang
- Biomedical Engineering Graduate Group, University of California, Davis; Davis, CA, 95618, USA
| | - Isaiah Reeves
- Dept of Surgery, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Stephen Winston
- Dept of Surgery, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Mark A. Brimble
- Dept of Host-Microbe Interactions, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Christina K. Kim
- Center for Neuroscience, University of California, Davis; Davis, CA, 95618, USA
- Dept of Neurology, School of Medicine, University of California, Davis; Sacramento, CA, 95817, USA
| | - Gisella Vetere
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| |
Collapse
|
3
|
Lohnas LJ, Howard MW. The influence of emotion on temporal context models. Cogn Emot 2025; 39:18-46. [PMID: 39007902 PMCID: PMC11733071 DOI: 10.1080/02699931.2024.2371075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Temporal context models (TCMs) have been influential in understanding episodic memory and its neural underpinnings. Recently, TCMs have been extended to explain emotional memory effects, one of the most clinically important findings in the field of memory research. This review covers recent advances in hypotheses for the neural representation of spatiotemporal context through the lens of TCMs, including their ability to explain the influence of emotion on episodic and temporal memory. In recent years, simplifying assumptions of "classical" TCMs - with exponential trace decay and the mechanism by which temporal context is recovered - have become increasingly clear. The review also outlines how recent advances could be incorporated into a future TCM, beyond classical assumptions, to integrate emotional modulation.
Collapse
Affiliation(s)
- Lynn J Lohnas
- Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Marc W Howard
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Calvin OL, Erickson MT, Walters CJ, Redish AD. Dorsal hippocampus represents locations to avoid as well as locations to approach during approach-avoidance conflict. PLoS Biol 2025; 23:e3002954. [PMID: 39808614 PMCID: PMC11731767 DOI: 10.1371/journal.pbio.3002954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta cycles. Similarly, important information that is distant from the animal's position is represented during hippocampal high-synchrony events (HSEs), which coincide with sharp-wave ripples (SWRs). It is likely that potential future threats may be similarly represented. We examined how threats and rewards were represented within the hippocampus during approach-avoidance conflicts in rats faced with a predator-like robot guarding a food reward. We found decoding of the pseudo-predator's location during HSEs when hesitating in the nest and during theta prior to retreating as the rats approached the pseudo-predator. After the first attack, we observed new place fields appearing at the location of the robot (not the location the rat was when attacked). The anxiolytic diazepam reduced anxiety-like behavior and altered hippocampal local field potentials (LFPs), including reducing SWRs, suggesting that one potential mechanism of diazepam's actions may be through altered representations of imagined threat. These results suggest that hippocampal representation of potential threats could be an important mechanism that underlies worry and a potential target for anxiolytics.
Collapse
Affiliation(s)
- Olivia L. Calvin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Matthew T. Erickson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cody J. Walters
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - A. David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
5
|
Kinsky NR, Orlin DJ, Ruesch EA, Kim B, Coello S, Diba K, Ramirez S. Erasable Hippocampal Neural Signatures Predict Memory Discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.02.526824. [PMID: 36778486 PMCID: PMC9915633 DOI: 10.1101/2023.02.02.526824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Memories involving the hippocampus can take several days to consolidate, challenging efforts to uncover the neuronal signatures underlying this process. Using calcium imaging in freely moving mice, we tracked the hippocampal dynamics underlying memory formation across a ten-day contextual fear conditioning (CFC) task. Following learning, context-specific place field remapping correlated with memory performance. To causally test whether these hippocampal dynamics support memory consolidation, we induced amnesia in a group of mice by pharmacologically blocking protein synthesis immediately following learning. We found that halting protein synthesis following learning paradoxically accelerated cell turnover and also arrested learning-related remapping, paralleling the absence of remapping observed in untreated mice that exhibited poor memory expression. Finally, coordinated neural activity that emerged following learning was dependent on intact protein synthesis and predicted memory-related freezing behavior. We conclude that context-specific place field remapping and the development of coordinated ensemble activity require protein synthesis and underlie contextual fear memory consolidation.
Collapse
Affiliation(s)
- Nathaniel R. Kinsky
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02451, USA
- These authors contributed equally to this work
| | - Daniel J. Orlin
- Center for Systems Neuroscience, Boston University, Boston, MA 02451, USA
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
- These authors contributed equally to this work
| | - Evan A. Ruesch
- Center for Systems Neuroscience, Boston University, Boston, MA 02451, USA
| | - Brian Kim
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siria Coello
- Center for Systems Neuroscience, Boston University, Boston, MA 02451, USA
| | - Kamran Diba
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steve Ramirez
- Center for Systems Neuroscience, Boston University, Boston, MA 02451, USA
| |
Collapse
|
6
|
Pouget C, Morier F, Treiber N, García PF, Mazza N, Zhang R, Reeves I, Winston S, Brimble MA, Kim CK, Vetere G. Deconstruction of a memory engram reveals distinct ensembles recruited at learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627894. [PMID: 39713328 PMCID: PMC11661170 DOI: 10.1101/2024.12.11.627894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
How are associative memories formed? Which cells represent a memory, and when are they engaged? By visualizing and tagging cells based on their calcium influx with unparalleled temporal precision, we identified non-overlapping dorsal CA1 neuronal ensembles that are differentially active during associative fear memory acquisition. We dissected the acquisition experience into periods during which salient stimuli were presented or certain mouse behaviors occurred and found that cells associated with specific acquisition periods are sufficient alone to drive memory expression and contribute to fear engram formation. This study delineated the different identities of the cell ensembles active during learning, and revealed, for the first time, which ones form the core engram and are essential for memory formation and recall.
Collapse
Affiliation(s)
- Clément Pouget
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Flora Morier
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Nadja Treiber
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Pablo Fernández García
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Nina Mazza
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Run Zhang
- Biomedical Engineering Graduate Group, University of California, Davis; Davis, CA, 95618, USA
| | - Isaiah Reeves
- Dept of Surgery, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Stephen Winston
- Dept of Surgery, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Mark A. Brimble
- Dept of Host-Microbe Interactions, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Christina K. Kim
- Center for Neuroscience, University of California, Davis; Davis, CA, 95618, USA
- Dept of Neurology, School of Medicine, University of California, Davis; Sacramento, CA, 95817, USA
| | - Gisella Vetere
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| |
Collapse
|
7
|
Acosta G, Rico KT, Madden JT, LaCour A, Wang E, Sanchez LM, Davies S, Maestas-Olguin C, Cox KB, Reyna NC, Hogeveen J, Savage DD, Pentkowski NS, Clark BJ. The effects of moderate prenatal alcohol exposure on performance in hippocampal-sensitive spatial memory and anxiety tasks by adult male and female rat offspring. Alcohol 2024; 121:75-86. [PMID: 39122134 PMCID: PMC11637952 DOI: 10.1016/j.alcohol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Moderate prenatal alcohol exposure (mPAE) results in structural alterations to the hippocampus. Previous studies have reported impairments in hippocampal-sensitive tasks, but have not compared performance between male and female animals. In the present study, performance in hippocampal-sensitive spatial memory and anxiety behavior tests were compared across adult male and female saccharin (SACC) control mPAE Long-Evans rat offspring. Two tests of spatial memory were conducted that were aimed at assessing memory for recently acquired spatial information: A delayed spatial alternation task using an M-shaped maze and a delayed match-to-place task in the Morris water task. In both tasks, rats in SACC and mPAE groups showed similar learning and retention of a spatial location even after a 2-h interval between encoding and retention. A separate group of adult male and female SACC and mPAE rat offspring were tested for anxiety-like behaviors in the elevated plus-maze paradigm. In this test, both male and female mPAE rats exhibited a significantly greater amount of time and a greater number of head dips in the open arms, while locomotion and open arm entries did not differ between groups. The results suggest that mPAE produces a reduction in anxiety-like behaviors in both male and female rats in the elevated plus-maze.
Collapse
Affiliation(s)
- Gabriela Acosta
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Kehiry Trejo Rico
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - John T Madden
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Ariyana LaCour
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Enhui Wang
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Lilliana M Sanchez
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | | | - Kayla B Cox
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Nicole C Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | | | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
8
|
Krishnan S, Dong C, Ratigan H, Morales-Rodriguez D, Cherian C, Sheffield M. A contextual fear conditioning paradigm in head-fixed mice exploring virtual reality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625482. [PMID: 39651122 PMCID: PMC11623582 DOI: 10.1101/2024.11.26.625482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Contextual fear conditioning is a classical laboratory task that tests associative memory formation and recall. Techniques such as multi-photon microscopy and holographic stimulation offer tremendous opportunities to understand the neural underpinnings of these memories. However, these techniques generally require animals to be head-fixed. There are few paradigms that test contextual fear conditioning in head-fixed mice, and none where the behavioral outcome following fear conditioning is freezing, the most common measure of fear in freely moving animals. To address this gap, we developed a contextual fear conditioning paradigm in head-fixed mice using virtual reality (VR) environments. We designed an apparatus to deliver tail shocks (unconditioned stimulus, US) while mice navigated a VR environment (conditioned stimulus, CS). The acquisition of contextual fear was tested when the mice were reintroduced to the shock-paired VR environment the following day. We tested three different variations of this paradigm and, in all of them, observed an increased conditioned fear response characterized by increased freezing behavior. This was especially prominent during the first trial in the shock-paired VR environment, compared to a neutral environment where the mice received no shocks. Our results demonstrate that head-fixed mice can be fear conditioned in VR, discriminate between a feared and neutral VR context, and display freezing as a conditioned response, similar to freely behaving animals. Furthermore, using a two-photon microscope, we imaged from large populations of hippocampal CA1 neurons before, during, and following contextual fear conditioning. Our findings reconfirmed those from the literature on freely moving animals, showing that CA1 place cells undergo remapping and show narrower place fields following fear conditioning. Our approach offers new opportunities to study the neural mechanisms underlying the formation, recall, and extinction of contextual fear memories. As the head-fixed preparation is compatible with multi-photon microscopy and holographic stimulation, it enables long-term tracking and manipulation of cells throughout distinct memory stages and provides subcellular resolution for investigating axonal, dendritic, and synaptic dynamics in real-time.
Collapse
|
9
|
McKenzie S, Sommer AL, Donaldson TN, Pimentel I, Kakani M, Choi IJ, Newman EL, English DF. Event boundaries drive norepinephrine release and distinctive neural representations of space in the rodent hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605900. [PMID: 39131365 PMCID: PMC11312532 DOI: 10.1101/2024.07.30.605900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Episodic memories are temporally segmented around event boundaries that tend to coincide with moments of environmental change. During these times, the state of the brain should change rapidly, or reset, to ensure that the information encountered before and after an event boundary is encoded in different neuronal populations. Norepinephrine (NE) is thought to facilitate this network reorganization. However, it is unknown whether event boundaries drive NE release in the hippocampus and, if so, how NE release relates to changes in hippocampal firing patterns. The advent of the new GRABNE sensor now allows for the measurement of NE binding with sub-second resolution. Using this tool in mice, we tested whether NE is released into the dorsal hippocampus during event boundaries defined by unexpected transitions between spatial contexts and presentations of novel objections. We found that NE binding dynamics were well explained by the time elapsed after each of these environmental changes, and were not related to conditioned behaviors, exploratory bouts of movement, or reward. Familiarity with a spatial context accelerated the rate in which phasic NE binding decayed to baseline. Knowing when NE is elevated, we tested how hippocampal coding of space differs during these moments. Immediately after context transitions we observed relatively unique patterns of neural spiking which settled into a modal state at a similar rate in which NE returned to baseline. These results are consistent with a model wherein NE release drives hippocampal representations away from a steady-state attractor. We hypothesize that the distinctive neural codes observed after each event boundary may facilitate long-term memory and contribute to the neural basis for the primacy effect.
Collapse
Affiliation(s)
- Sam McKenzie
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Alexandra L. Sommer
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Tia N. Donaldson
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Infania Pimentel
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
- Department of Mechanical Engineering, Tufts School of Engineering, Medford MA 02155
| | - Meenakshi Kakani
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Irene Jungyeon Choi
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405
| | - Ehren L. Newman
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405
| | | |
Collapse
|
10
|
Jin SW, Ha HS, Lee I. Selective reactivation of value- and place-dependent information during sharp-wave ripples in the intermediate and dorsal hippocampus. SCIENCE ADVANCES 2024; 10:eadn0416. [PMID: 39110810 PMCID: PMC11305392 DOI: 10.1126/sciadv.adn0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/26/2024] [Indexed: 08/10/2024]
Abstract
Reactivating place cells during sharp-wave ripples in the hippocampus is important for memory consolidation. However, whether hippocampal reactivation is affected by the values of events experienced by the animal is largely unknown. Here, we investigated whether place cells in the dorsal (dHP) and intermediate hippocampus (iHP) of rats are differentially reactivated depending on the value associated with a place during the learning of places associated with higher-value rewards in a T-maze. Place cells in the iHP representing the high-value location were reactivated significantly more frequently than those representing the low-value location, characteristics not observed in the dHP. In contrast, the activities of place cells in the dHP coding the routes leading to high-value locations were replayed more than those in the iHP. Our findings suggest that value-based differential reactivation patterns along the septotemporal axis of the hippocampus may play essential roles in optimizing goal-directed spatial learning for maximal reward.
Collapse
Affiliation(s)
| | - Hee-Seung Ha
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
11
|
Chettih SN, Mackevicius EL, Hale S, Aronov D. Barcoding of episodic memories in the hippocampus of a food-caching bird. Cell 2024; 187:1922-1935.e20. [PMID: 38554707 PMCID: PMC11015962 DOI: 10.1016/j.cell.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/28/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
The hippocampus is critical for episodic memory. Although hippocampal activity represents place and other behaviorally relevant variables, it is unclear how it encodes numerous memories of specific events in life. To study episodic coding, we leveraged the specialized behavior of chickadees-food-caching birds that form memories at well-defined moments in time whenever they cache food for subsequent retrieval. Our recordings during caching revealed very sparse, transient barcode-like patterns of firing across hippocampal neurons. Each "barcode" uniquely represented a caching event and transiently reactivated during the retrieval of that specific cache. Barcodes co-occurred with the conventional activity of place cells but were uncorrelated even for nearby cache locations that had similar place codes. We propose that animals recall episodic memories by reactivating hippocampal barcodes. Similarly to computer hash codes, these patterns assign unique identifiers to different events and could be a mechanism for rapid formation and storage of many non-interfering memories.
Collapse
Affiliation(s)
- Selmaan N Chettih
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Emily L Mackevicius
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Basis Research Institute, New York, NY 10027, USA
| | - Stephanie Hale
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Dmitriy Aronov
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
12
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
13
|
Nikbakht N, Pofahl M, Miguel-López A, Kamali F, Tchumatchenko T, Beck H. Efficient encoding of aversive location by CA3 long-range projections. Cell Rep 2024; 43:113957. [PMID: 38489262 DOI: 10.1016/j.celrep.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Memorizing locations that are harmful or dangerous is a key capability of all organisms and requires an integration of affective and spatial information. In mammals, the dorsal hippocampus mainly processes spatial information, while the intermediate to ventral hippocampal divisions receive affective information via the amygdala. However, how spatial and aversive information is integrated is currently unknown. To address this question, we recorded the activity of hippocampal long-range CA3 axons at single-axon resolution in mice forming an aversive spatial memory. We show that intermediate CA3 to dorsal CA3 (i-dCA3) projections rapidly overrepresent areas preceding the location of an aversive stimulus due to a spatially selective addition of new place-coding axons followed by spatially non-specific stabilization. This sequence significantly improves the encoding of location by the i-dCA3 axon population. These results suggest that i-dCA3 axons transmit a precise, denoised, and stable signal indicating imminent danger to the dorsal hippocampus.
Collapse
Affiliation(s)
- Negar Nikbakht
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Pofahl
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Albert Miguel-López
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Fateme Kamali
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Tatjana Tchumatchenko
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany; University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heinz Beck
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany; University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany.
| |
Collapse
|
14
|
Calvin OL, Erickson MT, Walters CJ, Redish AD. Dorsal hippocampus represents locations to avoid as well as locations to approach during approach-avoidance conflict. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584295. [PMID: 38559154 PMCID: PMC10979882 DOI: 10.1101/2024.03.10.584295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta sweeps. Similarly, important non-local information is represented during hippocampal high synchrony events (HSEs), which are correlated with sharp-wave ripples (SWRs). It is likely that potential future threats may be similarly represented. We examined how threats and rewards were represented within the hippocampus during approach-avoidance conflicts in rats faced with a predator-like robot guarding a food reward. We found representations of the pseudo-predator during HSEs when hesitating in the nest, and during theta prior to retreating as the rats approached the pseudo-predator. After the first attack, we observed new place fields appearing at the location of the robot (not the location the rat was when attacked). The anxiolytic diazepam reduced anxiety-like behavior and altered hippocampal local field potentials, including reducing SWRs, suggesting that one potential mechanism of diazepam's actions may be through altered representations of imagined threat. These results suggest that hippocampal representation of potential threats could be an important mechanism that underlies worry and a potential target for anxiolytics.
Collapse
Affiliation(s)
- Olivia L. Calvin
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
| | | | | | - A. David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
| |
Collapse
|
15
|
Vasudevan K, Hassell JE, Maren S. Hippocampal Engrams and Contextual Memory. ADVANCES IN NEUROBIOLOGY 2024; 38:45-66. [PMID: 39008010 PMCID: PMC12006847 DOI: 10.1007/978-3-031-62983-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memories are not formed in a vacuum and often include rich details about the time and place in which events occur. Contextual stimuli promote the retrieval of events that have previously occurred in the encoding context and limit the retrieval of context-inappropriate information. Contexts that are associated with traumatic or harmful events both directly elicit fear and serve as reminders of aversive events associated with trauma. It has long been appreciated that the hippocampus is involved in contextual learning and memory and is central to contextual fear conditioning. However, little is known about the underlying neuronal mechanisms underlying the encoding and retrieval of contextual fear memories. Recent advancements in neuronal labeling methods, including activity-dependent tagging of cellular ensembles encoding memory ("engrams"), provide unique insight into the neural substrates of memory in the hippocampus. Moreover, these methods allow for the selective manipulation of memory ensembles. Attenuating or erasing fear memories may have considerable therapeutic value for patients with post-traumatic stress disorder or other trauma- or stressor-related conditions. In this chapter, we review the role of the hippocampus in contextual fear conditioning in rodents and explore recent work implicating hippocampal ensembles in the encoding and retrieval of aversive memories.
Collapse
Affiliation(s)
- Krithika Vasudevan
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - James E Hassell
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
16
|
Wilson LR, Plummer NW, Evsyukova IY, Patino D, Stewart CL, Smith KG, Konrad KS, Fry SA, Deal AL, Kilonzo VW, Panda S, Sciolino NR, Cushman JD, Jensen P. Partial or Complete Loss of Norepinephrine Differentially Alters Contextual Fear and Catecholamine Release Dynamics in Hippocampal CA1. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:51-60. [PMID: 38058990 PMCID: PMC10695841 DOI: 10.1016/j.bpsgos.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 12/08/2023] Open
Abstract
Background Contextual fear learning is heavily dependent on the hippocampus. Despite evidence that catecholamines contribute to contextual encoding and memory retrieval, the precise temporal dynamics of their release in the hippocampus during behavior is unknown. In addition, new animal models are required to probe the effects of altered catecholamine synthesis on release dynamics and contextual learning. Methods We generated 2 new mouse models of altered locus coeruleus-norepinephrine (NE) synthesis and utilized them together with GRABNE and GRABDA sensors and in vivo fiber photometry to investigate NE and dopamine (DA) release dynamics in the dorsal hippocampal CA1 during contextual fear conditioning. Results Aversive foot shock increased both NE and DA release in the dorsal CA1, while freezing behavior associated with recall of fear memory was accompanied by decreased release. Moreover, we found that freezing at the recent time point was sensitive to both partial and complete loss of locus coeruleus-NE synthesis throughout prenatal and postnatal development, similar to previous observations of mice with global loss of NE synthesis beginning postnatally. In contrast, freezing at the remote time point was compromised only by complete loss of locus coeruleus-NE synthesis beginning prenatally. Conclusions Overall, these findings provide novel insights into the role of NE in contextual fear and the precise temporal dynamics of both NE and DA during freezing behavior and highlight complex relationships between genotype, sex, and NE signaling.
Collapse
Affiliation(s)
- Leslie R. Wilson
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Nicholas W. Plummer
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Irina Y. Evsyukova
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Daniela Patino
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Casey L. Stewart
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Kathleen G. Smith
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Kathryn S. Konrad
- Social and Scientific Systems, Inc., a DLH Holdings Corp Company, Durham, North Carolina
| | - Sydney A. Fry
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Alex L. Deal
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Victor W. Kilonzo
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Sambit Panda
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Natale R. Sciolino
- Department of Physiology and Neurobiology, Department of Biomedical Engineering, Institute for System Genomics, Connecticut Institute for the Brain & Cognitive Sciences, University of Connecticut, Storrs, Connecticut
| | - Jesse D. Cushman
- Neurobehavioral Core Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Patricia Jensen
- Neurobiology Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| |
Collapse
|
17
|
Pronier É, Morici JF, Girardeau G. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci 2023; 46:912-925. [PMID: 37714808 DOI: 10.1016/j.tins.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/17/2023]
Abstract
Episodic memory relies on the hippocampus, a heterogeneous brain region with distinct functions. Spatial representations in the dorsal hippocampus (dHPC) are crucial for contextual memory, while the ventral hippocampus (vHPC) is more involved in emotional processing. Here, we review the literature in rodents highlighting the anatomical and functional properties of the hippocampus along its dorsoventral axis that underlie its role in contextual and emotional memory encoding, consolidation, and retrieval. We propose that the coordination between the dorsal and vHPC through theta oscillations during rapid eye movement (REM) sleep, and through sharp-wave ripples during non-REM (NREM) sleep, might facilitate the transfer of contextual information for integration with valence-related processing in other structures of the network. Further investigation into the physiology of the vHPC and its connections with other brain areas is needed to deepen the current understanding of emotional memory consolidation during sleep.
Collapse
Affiliation(s)
- Éléonore Pronier
- Institut du Fer à Moulin, Inserm U1270, Sorbonne Université, Paris, France
| | | | | |
Collapse
|
18
|
Brockway ET, Simon S, Drew MR. Ventral hippocampal projections to infralimbic cortex and basolateral amygdala are differentially activated by contextual fear and extinction recall. Neurobiol Learn Mem 2023; 205:107832. [PMID: 37757953 PMCID: PMC10919432 DOI: 10.1016/j.nlm.2023.107832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Fear and extinction learning are thought to generate distinct and competing memory representations in the hippocampus. How these memory representations modulate the expression of appropriate behavioral responses remains unclear. To investigate this question, we used cholera toxin B subunit to retrolabel ventral hippocampal (vHPC) neurons projecting to the infralimbic cortex (IL) and basolateral amygdala (BLA) and then quantified c-Fos immediate early gene activity within these populations following expression of either contextual fear recall or contextual fear extinction recall. Fear recall was associated with increased c-Fos expression in vHPC projections to the BLA, whereas extinction recall was associated with increased activity in vHPC projections to IL. A control experiment was performed to confirm that the apparent shift in projection neuron activity was associated with extinction learning rather than mere context exposure. Overall, results indicate that hippocampal contextual fear and extinction memory representations differentially activate vHPC projections to IL and BLA. These findings suggest that hippocampal memory representations orchestrate appropriate behavioral responses through selective activation of projection pathways.
Collapse
Affiliation(s)
- Emma T Brockway
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Sarah Simon
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
19
|
Levy ERJ, Carrillo-Segura S, Park EH, Redman WT, Hurtado JR, Chung S, Fenton AA. A manifold neural population code for space in hippocampal coactivity dynamics independent of place fields. Cell Rep 2023; 42:113142. [PMID: 37742193 PMCID: PMC10842170 DOI: 10.1016/j.celrep.2023.113142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Hippocampus place cell discharge is temporally unreliable across seconds and days, and place fields are multimodal, suggesting an "ensemble cofiring" spatial coding hypothesis with manifold dynamics that does not require reliable spatial tuning, in contrast to hypotheses based on place field (spatial tuning) stability. We imaged mouse CA1 (cornu ammonis 1) ensembles in two environments across three weeks to evaluate these coding hypotheses. While place fields "remap," being more distinct between than within environments, coactivity relationships generally change less. Decoding location and environment from 1-s ensemble location-specific activity is effective and improves with experience. Decoding environment from cell-pair coactivity relationships is also effective and improves with experience, even after removing place tuning. Discriminating environments from 1-s ensemble coactivity relies crucially on the cells with the most anti-coactive cell-pair relationships because activity is internally organized on a low-dimensional manifold of non-linear coactivity relationships that intermittently reregisters to environments according to the anti-cofiring subpopulation activity.
Collapse
Affiliation(s)
| | - Simón Carrillo-Segura
- Center for Neural Science, New York University, New York, NY 10003, USA; Graduate Program in Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Eun Hye Park
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - William Thomas Redman
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - SueYeon Chung
- Center for Neural Science, New York University, New York, NY 10003, USA; Flatiron Institute Center for Computational Neuroscience, New York, NY 10010, USA
| | - André Antonio Fenton
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute at the NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
20
|
Barth AM, Jelitai M, Vasarhelyi-Nagy MF, Varga V. Aversive stimulus-tuned responses in the CA1 of the dorsal hippocampus. Nat Commun 2023; 14:6841. [PMID: 37891171 PMCID: PMC10611787 DOI: 10.1038/s41467-023-42611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Throughout life animals inevitably encounter unforeseen threatening events. Activity of principal cells in the hippocampus is tuned for locations and for salient stimuli in the animals' environment thus forming a map known to be pivotal for guiding behavior. Here, we explored if a code of threatening stimuli exists in the CA1 region of the dorsal hippocampus of mice by recording neuronal response to aversive stimuli delivered at changing locations. We have discovered a rapidly emerging, location independent response to innoxious aversive stimuli composed of the coordinated activation of subgroups of pyramidal cells and connected interneurons. Activated pyramidal cells had higher basal firing rate, more probably participated in ripples, targeted more interneurons than place cells and many of them lacked place fields. We also detected aversive stimulus-coupled assemblies dominated by the activated neurons. Notably, these assemblies could be observed even before the delivery of the first aversive event. Finally, we uncovered the systematic shift of the spatial code from the aversive to, surprisingly, the reward location during the fearful stimulus. Our results uncovered components of the dorsal CA1 circuit possibly key for re-sculpting the spatial map in response to abrupt aversive events.
Collapse
Affiliation(s)
- Albert M Barth
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary.
- Cerebral Cortex Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| | - Marta Jelitai
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | | | - Viktor Varga
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| |
Collapse
|
21
|
Chettih SN, Mackevicius EL, Hale S, Aronov D. Barcoding of episodic memories in the hippocampus of a food-caching bird. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.27.542597. [PMID: 37461442 PMCID: PMC10349996 DOI: 10.1101/2023.05.27.542597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Episodic memory, or memory of experienced events, is a critical function of the hippocampus1-3. It is therefore important to understand how hippocampal activity represents specific events in an animal's life. We addressed this question in chickadees - specialist food-caching birds that hide food at scattered locations and use memory to find their caches later in time4,5. We performed high-density neural recordings in the hippocampus of chickadees as they cached and retrieved seeds in a laboratory arena. We found that each caching event was represented by a burst of firing in a unique set of hippocampal neurons. These 'barcode-like' patterns of activity were sparse (<10% of neurons active), uncorrelated even for immediately adjacent caches, and different even for separate caches at the same location. The barcode representing a specific caching event was transiently reactivated whenever a bird later interacted with the same cache - for example, to retrieve food. Barcodes co-occurred with conventional place cell activity6,7, as well as location-independent responses to cached seeds. We propose that barcodes are signatures of episodic memories evoked during memory recall. These patterns assign a unique identifier to each event and may be a mechanism for rapid formation and storage of many non-interfering memories.
Collapse
Affiliation(s)
| | | | - Stephanie Hale
- Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Dmitriy Aronov
- Zuckerman Mind Brain Behavior Institute, Columbia University
| |
Collapse
|
22
|
Ginosar G, Aljadeff J, Las L, Derdikman D, Ulanovsky N. Are grid cells used for navigation? On local metrics, subjective spaces, and black holes. Neuron 2023; 111:1858-1875. [PMID: 37044087 DOI: 10.1016/j.neuron.2023.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/18/2022] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
The symmetric, lattice-like spatial pattern of grid-cell activity is thought to provide a neuronal global metric for space. This view is compatible with grid cells recorded in empty boxes but inconsistent with data from more naturalistic settings. We review evidence arguing against the global-metric notion, including the distortion and disintegration of the grid pattern in complex and three-dimensional environments. We argue that deviations from lattice symmetry are key for understanding grid-cell function. We propose three possible functions for grid cells, which treat real-world grid distortions as a feature rather than a bug. First, grid cells may constitute a local metric for proximal space rather than a global metric for all space. Second, grid cells could form a metric for subjective action-relevant space rather than physical space. Third, distortions may represent salient locations. Finally, we discuss mechanisms that can underlie these functions. These ideas may transform our thinking about grid cells.
Collapse
Affiliation(s)
- Gily Ginosar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johnatan Aljadeff
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liora Las
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dori Derdikman
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel.
| | - Nachum Ulanovsky
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
23
|
Kong E, Lee KH, Do J, Kim P, Lee D. Dynamic and stable hippocampal representations of social identity and reward expectation support associative social memory in male mice. Nat Commun 2023; 14:2597. [PMID: 37147388 PMCID: PMC10163237 DOI: 10.1038/s41467-023-38338-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Recognizing an individual and retrieving and updating the value information assigned to the individual are fundamental abilities for establishing social relationships. To understand the neural mechanisms underlying the association between social identity and reward value, we developed Go-NoGo social discrimination paradigms that required male subject mice to distinguish between familiar mice based on their individually unique characteristics and associate them with reward availability. We found that mice could discriminate individual conspecifics through a brief nose-to-nose investigation, and this ability depended on the dorsal hippocampus. Two-photon calcium imaging revealed that dorsal CA1 hippocampal neurons represented reward expectation during social, but not non-social tasks, and these activities were maintained over days regardless of the identity of the associated mouse. Furthermore, a dynamically changing subset of hippocampal CA1 neurons discriminated between individual mice with high accuracy. Our findings suggest that the neuronal activities in CA1 provide possible neural substrates for associative social memory.
Collapse
Affiliation(s)
- Eunji Kong
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kyu-Hee Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Jongrok Do
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
24
|
Ormond J, Serka SA, Johansen JP. Enhanced Reactivation of Remapping Place Cells during Aversive Learning. J Neurosci 2023; 43:2153-2167. [PMID: 36596695 PMCID: PMC10039748 DOI: 10.1523/jneurosci.1450-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Study of the hippocampal place cell system has greatly enhanced our understanding of memory encoding for distinct places, but how episodic memories for distinct experiences occurring within familiar environments are encoded is less clear. We developed a spatial decision-making task in which male rats learned to navigate a multiarm maze to a goal location for food reward while avoiding maze arms in which aversive stimuli were delivered. Task learning induced partial remapping in CA1 place cells, allowing us to identify both remapping and stable cell populations. Remapping cells were recruited into sharp-wave ripples and associated replay events to a greater extent than stable cells, despite having similar firing rates during navigation of the maze. Our results suggest that recruitment into replay events may be a mechanism to incorporate new contextual information into a previously formed and stabilized spatial representation.SIGNIFICANCE STATEMENT Hippocampal place cells provide a map of space that animals use to navigate. This map can change to reflect changes in the physical properties of the environment in which the animal finds itself, and also in response to nonphysical contextual changes, such as changes in the valence of specific locations within that environment. We show here that cells which change their spatial tuning after a change in context are preferentially recruited into sharp-wave ripple-associated replay events compared with stable nonremapping cells. Thus, our data lend strong support to the hypothesis that replay is a mechanism for the storage of new spatial maps.
Collapse
Affiliation(s)
- Jake Ormond
- Laboratory for Neural Circuitry of Memory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Simon A Serka
- Laboratory for Neural Circuitry of Memory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Memory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
25
|
Kobayashi KS, Matsuo N. Persistent representation of the environment in the hippocampus. Cell Rep 2023; 42:111989. [PMID: 36640328 DOI: 10.1016/j.celrep.2022.111989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
In the hippocampus, environmental changes elicit rearrangement of active neuronal ensembles or remapping of place cells. However, it remains elusive how the brain ensures a consistent representation of a certain environment itself despite salient events occurring there. Here, we longitudinally tracked calcium dynamics of dorsal hippocampal CA1 neurons in mice subjected to contextual fear conditioning and extinction training. Overall population activities were significantly changed by fear conditioning and were responsive to footshocks and freezing. However, a small subset of neurons, termed environment cells, were consistently active in a specific environment irrespective of experiences. A decoder modeling study showed that these cells, but not place cells, were able to predict the environment to which the mouse was exposed. Environment cells might underlie the constancy of cognition for distinct environments across time and events. Additionally, our study highlights the functional heterogeneity of cells in the hippocampus.
Collapse
Affiliation(s)
- Kyogo S Kobayashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Naoki Matsuo
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
26
|
Activity Patterns of Individual Neurons and Ensembles Correlated with Retrieval of a Contextual Memory in the Dorsal CA1 of Mouse Hippocampus. J Neurosci 2023; 43:113-124. [PMID: 36332977 PMCID: PMC9838698 DOI: 10.1523/jneurosci.1407-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
The hippocampus is crucial for retrieval of contextual memories. The activation of a subpopulation of neurons in the dorsal CA1 (dCA1) of the hippocampus is required for memory retrieval. Given that hippocampal neurons exhibit distinct patterns of response during memory retrieval, the activity patterns of individual neurons or ensembles may be critically involved in memory retrieval. However, this relation has been unclear. To investigate this question, we used an in vivo microendoscope calcium imaging technique to optically record neuronal activity in the dCA1 of male and female mice. We observed that a portion of dCA1 neurons increased their responses to the learned context after contextual fear conditioning (FC), resulting in overall increase in response of neuronal population compared with simple context exposure. Such increased response was specific to the conditioned context as it disappeared in neutral context. The magnitude of increase in neuronal responses by FC was proportional to memory strength during retrieval. The increases in activity preferentially occurred during the putative sharp wave ripple events and were not simply because of animal's movement and immobility. At the ensemble level, synchronous cell activity patterns were associated with memory retrieval. Accordingly, when such patterns were more similar between conditioned and neutral context, animals displayed proportionally more similar level of freezing. Together, these results indicate that increase in responses of individual neurons and synchronous cell activity patterns in the dCA1 neuronal network are critically involved in representing a contextual memory recall.SIGNIFICANCE STATEMENT Neurons in the dorsal CA1 of the hippocampus are crucial for memory retrieval. By using in vivo calcium imaging methods for recording neuronal activity, we demonstrate that dCA1 neurons increased their responses to the learned context specifically by FC and such changes correlated with memory strength during retrieval. Moreover, distinct synchronous cell activity patterns were formed by FC and involved in representing contextual memory retrieval. These findings reveal dynamic activity features of dCA1 neurons that are involved in contextual memory retrieval.
Collapse
|
27
|
Abstract
This chapter will provide a review of research into human cognition through the lens of VR-based paradigms for studying memory. Emphasis is placed on why VR increases the ecological validity of memory research and the implications of such enhancements.
Collapse
Affiliation(s)
- Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA.
| |
Collapse
|
28
|
Forro T, Volitaki E, Malagon-Vina H, Klausberger T, Nevian T, Ciocchi S. Anxiety-related activity of ventral hippocampal interneurons. Prog Neurobiol 2022; 219:102368. [PMID: 36273721 DOI: 10.1016/j.pneurobio.2022.102368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022]
Abstract
Anxiety is an aversive mood reflecting the anticipation of potential threats. The ventral hippocampus (vH) is a key brain region involved in the genesis of anxiety responses. Recent studies have shown that anxiety is mediated by the activation of vH pyramidal neurons targeting various limbic structures. Throughout the cortex, the activity of pyramidal neurons is controlled by GABA-releasing inhibitory interneurons and the GABAergic system represents an important target of anxiolytic drugs. However, how the activity of vH inhibitory interneurons is related to different anxiety behaviours has not been investigated so far. Here, we integrated in vivo electrophysiology with behavioural phenotyping of distinct anxiety exploration behaviours in rats. We showed that pyramidal neurons and interneurons of the vH are selectively active when animals explore specific compartments of the elevated-plus-maze (EPM), an anxiety task for rodents. Moreover, rats with prior goal-related experience exhibited low-anxiety exploratory behaviour and showed a larger trajectory-related activity of vH interneurons during EPM exploration compared to high anxiety rats. Finally, in low anxiety rats, trajectory-related vH interneurons exhibited opposite activity to pyramidal neurons specifically in the open arms (i.e. more anxiogenic) of the EPM. Our results suggest that vH inhibitory micro-circuits could act as critical elements underlying different anxiety states.
Collapse
|
29
|
Igarashi KM, Lee JY, Jun H. Reconciling neuronal representations of schema, abstract task structure, and categorization under cognitive maps in the entorhinal-hippocampal-frontal circuits. Curr Opin Neurobiol 2022; 77:102641. [PMID: 36219950 DOI: 10.1016/j.conb.2022.102641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 01/11/2023]
Abstract
Learning leads to a neuronal representation of acquired knowledge. This idea of knowledge representation was traditionally developed as a "cognitive map" of spatial memory represented in the hippocampus. The framework of cognitive mapping has been extended in the past decade to include not only spatial memory, but also non-spatial factual and temporal memory. Following this conceptual advancement, a line of recent neurophysiological research discovered such knowledge representations not only in the hippocampus, but also in the entorhinal cortex and frontal cortex. Although the distinct terms "cognitive map," "schema," "abstract task structure" or "categorization" were used in these studies, it is likely that these terms can be reconciled as a common mechanism of learned knowledge representations. Future experimental work will be required to differentiate the parametric nature of knowledge representations across brain areas.
Collapse
Affiliation(s)
- Kei M Igarashi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine.
| | - Jason Y Lee
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine
| | - Heechul Jun
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine
| |
Collapse
|
30
|
Krishnan S, Heer C, Cherian C, Sheffield MEJ. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat Commun 2022; 13:6662. [PMID: 36333323 PMCID: PMC9636178 DOI: 10.1038/s41467-022-34465-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Hippocampal place cells support reward-related spatial memories by forming a cognitive map that over-represents reward locations. The strength of these memories is modulated by the extent of reward expectation during encoding. However, the circuit mechanisms underlying this modulation are unclear. Here we find that when reward expectation is extinguished in mice, they remain engaged with their environment, yet place cell over-representation of rewards vanishes, place field remapping throughout the environment increases, and place field trial-to-trial reliability decreases. Interestingly, Ventral Tegmental Area (VTA) dopaminergic axons in CA1 exhibit a ramping reward-proximity signal that depends on reward expectation and inhibiting VTA dopaminergic neurons largely replicates the effects of extinguishing reward expectation. We conclude that changing reward expectation restructures CA1 cognitive maps and determines map reliability by modulating the dopaminergic VTA-CA1 reward-proximity signal. Thus, internal states of high reward expectation enhance encoding of spatial memories by reinforcing hippocampal cognitive maps associated with reward.
Collapse
Affiliation(s)
- Seetha Krishnan
- Department of Neurobiology and Institute for Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Chad Heer
- Department of Neurobiology and Institute for Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Chery Cherian
- Department of Neurobiology and Institute for Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Mark E J Sheffield
- Department of Neurobiology and Institute for Neuroscience, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
31
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
32
|
Ojea Ramos S, Feld M, Fustiñana MS. Contributions of extracellular-signal regulated kinase 1/2 activity to the memory trace. Front Mol Neurosci 2022; 15:988790. [PMID: 36277495 PMCID: PMC9580372 DOI: 10.3389/fnmol.2022.988790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
The ability to learn from experience and consequently adapt our behavior is one of the most fundamental capacities enabled by complex and plastic nervous systems. Next to cellular and systems-level changes, learning and memory formation crucially depends on molecular signaling mechanisms. In particular, the extracellular-signal regulated kinase 1/2 (ERK), historically studied in the context of tumor growth and proliferation, has been shown to affect synaptic transmission, regulation of neuronal gene expression and protein synthesis leading to structural synaptic changes. However, to what extent the effects of ERK are specifically related to memory formation and stabilization, or merely the result of general neuronal activation, remains unknown. Here, we review the signals leading to ERK activation in the nervous system, the subcellular ERK targets associated with learning-related plasticity, and how neurons with activated ERK signaling may contribute to the formation of the memory trace.
Collapse
Affiliation(s)
- Santiago Ojea Ramos
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Feld
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | |
Collapse
|
33
|
Green L, Tingley D, Rinzel J, Buzsáki G. Action-driven remapping of hippocampal neuronal populations in jumping rats. Proc Natl Acad Sci U S A 2022; 119:e2122141119. [PMID: 35737843 PMCID: PMC9245695 DOI: 10.1073/pnas.2122141119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
The current dominant view of the hippocampus is that it is a navigation "device" guided by environmental inputs. Yet, a critical aspect of navigation is a sequence of planned, coordinated actions. We examined the role of action in the neuronal organization of the hippocampus by training rats to jump a gap on a linear track. Recording local field potentials and ensembles of single units in the hippocampus, we found that jumping produced a stereotypic behavior associated with consistent electrophysiological patterns, including phase reset of theta oscillations, predictable global firing-rate changes, and population vector shifts of hippocampal neurons. A subset of neurons ("jump cells") were systematically affected by the gap but only in one direction of travel. Novel place fields emerged and others were either boosted or attenuated by jumping, yet the theta spike phase versus animal position relationship remained unaltered. Thus, jumping involves an action plan for the animal to traverse the same route as without jumping, which is faithfully tracked by hippocampal neuronal activity.
Collapse
Affiliation(s)
- Laura Green
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
- Center for Neural Science, New York University, New York, NY 10003
| | - David Tingley
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
| | - John Rinzel
- Center for Neural Science, New York University, New York, NY 10003
- Courant Institute for Mathematical Sciences, New York University, New York, NY 10012
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
- Center for Neural Science, New York University, New York, NY 10003
- Department of Neurology, Langone Medical Center, New York University, New York, NY 10016
| |
Collapse
|
34
|
Lee H, Wang Z, Tillekeratne A, Lukish N, Puliyadi V, Zeger S, Gallagher M, Knierim JJ. Loss of functional heterogeneity along the CA3 transverse axis in aging. Curr Biol 2022; 32:2681-2693.e4. [PMID: 35597233 PMCID: PMC9233142 DOI: 10.1016/j.cub.2022.04.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 01/05/2023]
Abstract
Age-related deficits in pattern separation have been postulated to bias the output of hippocampal memory processing toward pattern completion, which can cause deficits in accurate memory retrieval. Although the CA3 region of the hippocampus is often conceptualized as a homogeneous network involved in pattern completion, growing evidence demonstrates a functional gradient in CA3 along the transverse axis, as pattern-separated outputs (dominant in the more proximal CA3) transition to pattern-completed outputs (dominant in the more distal CA3). We examined the neural representations along the CA3 transverse axis in young (Y), aged memory-unimpaired (AU), and aged memory-impaired (AI) rats when different changes were made to the environment. Functional heterogeneity in CA3 was observed in Y and AU rats when the environmental similarity was high (altered cues or altered environment shapes in the same room), with more orthogonalized representations in proximal CA3 than in distal CA3. In contrast, AI rats showed reduced orthogonalization in proximal CA3 but showed normal (i.e., generalized) representations in distal CA3, with little evidence of a functional gradient. Under experimental conditions when the environmental similarity was low (different rooms), representations in proximal and distal CA3 remapped in all rats, showing that CA3 of AI rats is able to encode distinctive representations for inputs with greater dissimilarity. These experiments support the hypotheses that the age-related bias toward hippocampal pattern completion is due to the loss in AI rats of the normal transition from pattern separation to pattern completion along the CA3 transverse axis.
Collapse
Affiliation(s)
- Heekyung Lee
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218,Correspondence: ;
| | - Zitong Wang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205
| | - Arjuna Tillekeratne
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218
| | - Nick Lukish
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218
| | - Vyash Puliyadi
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD
| | - Scott Zeger
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD,Kavli Neuroscience Discovery Institute, Johns Hopkins University
| | - James J. Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD,Kavli Neuroscience Discovery Institute, Johns Hopkins University,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205,Lead Contact,Correspondence: ;
| |
Collapse
|
35
|
Chen BW, Yang SH, Kuo CH, Chen JW, Lo YC, Kuo YT, Lin YC, Chang HC, Lin SH, Yu X, Qu B, Ro SCV, Lai HY, Chen YY. Neuro-Inspired Reinforcement Learning To Improve Trajectory Prediction In Reward-Guided Behavior. Int J Neural Syst 2022; 32:2250038. [DOI: 10.1142/s0129065722500381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Nambu MF, Lin YJ, Reuschenbach J, Tanaka KZ. What does engram encode?: Heterogeneous memory engrams for different aspects of experience. Curr Opin Neurobiol 2022; 75:102568. [PMID: 35660988 DOI: 10.1016/j.conb.2022.102568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 01/03/2023]
Abstract
Long-lasting synaptic changes within the neuronal network mediate memory. Neurons bearing such physical traces of memory (memory engram cells) are often equated with neurons expressing immediate early genes (IEGs) during a specific experience. However, past studies observed the expression of different IEGs in non-overlapping neurons or synaptic plasticity in neurons that do not express a particular IEG. Importantly, recent studies revealed that distinct subsets of neurons expressing different IEGs or even IEG negative-(yet active) neurons support different aspects of memory or computation, suggesting a more complex nature of memory engram cells than previously thought. In this short review, we introduce studies revealing such heterogeneous composition of the memory engram and discuss how the memory system benefits from it.
Collapse
Affiliation(s)
- Miyu F Nambu
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan. https://twitter.com/meowmiyu
| | - Yu-Ju Lin
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan. https://twitter.com/linyuru25199808
| | - Josefine Reuschenbach
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan. https://twitter.com/Jausefine
| | - Kazumasa Z Tanaka
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
37
|
Manohar S, Chen GD, Ding D, Liu L, Wang J, Chen YC, Chen L, Salvi R. Unexpected Consequences of Noise-Induced Hearing Loss: Impaired Hippocampal Neurogenesis, Memory, and Stress. Front Integr Neurosci 2022; 16:871223. [PMID: 35619926 PMCID: PMC9127992 DOI: 10.3389/fnint.2022.871223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Noise-induced hearing loss (NIHL), caused by direct damage to the cochlea, reduces the flow of auditory information to the central nervous system, depriving higher order structures, such as the hippocampus with vital sensory information needed to carry out complex, higher order functions. Although the hippocampus lies outside the classical auditory pathway, it nevertheless receives acoustic information that influence its activity. Here we review recent results that illustrate how NIHL and other types of cochlear hearing loss disrupt hippocampal function. The hippocampus, which continues to generate new neurons (neurogenesis) in adulthood, plays an important role in spatial navigation, memory, and emotion. The hippocampus, which contains place cells that respond when a subject enters a specific location in the environment, integrates information from multiple sensory systems, including the auditory system, to develop cognitive spatial maps to aid in navigation. Acute exposure to intense noise disrupts the place-specific firing patterns of hippocampal neurons, "spatially disorienting" the cells for days. More traumatic sound exposures that result in permanent NIHL chronically suppresses cell proliferation and neurogenesis in the hippocampus; these structural changes are associated with long-term spatial memory deficits. Hippocampal neurons, which contain numerous glucocorticoid hormone receptors, are part of a complex feedback network connected to the hypothalamic-pituitary (HPA) axis. Chronic exposure to intense intermittent noise results in prolonged stress which can cause a persistent increase in corticosterone, a rodent stress hormone known to suppress neurogenesis. In contrast, a single intense noise exposure sufficient to cause permanent hearing loss produces only a transient increase in corticosterone hormone. Although basal corticosterone levels return to normal after the noise exposure, glucocorticoid receptors (GRs) in the hippocampus remain chronically elevated. Thus, NIHL disrupts negative feedback from the hippocampus to the HPA axis which regulates the release of corticosterone. Preclinical studies suggest that the noise-induced changes in hippocampal place cells, neurogenesis, spatial memory, and glucocorticoid receptors may be ameliorated by therapeutic interventions that reduce oxidative stress and inflammation. These experimental results may provide new insights on why hearing loss is a risk factor for cognitive decline and suggest methods for preventing this decline.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Lijie Liu
- Department of Physiology, Medical College, Southeast University, Nanjing, China
| | - Jian Wang
- School of Communication Science and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Auditory Research Laboratory, University of Science and Technology of China, Hefei, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
38
|
Widloski J, Foster DJ. Flexible rerouting of hippocampal replay sequences around changing barriers in the absence of global place field remapping. Neuron 2022; 110:1547-1558.e8. [PMID: 35180390 PMCID: PMC9473153 DOI: 10.1016/j.neuron.2022.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/30/2021] [Accepted: 02/01/2022] [Indexed: 01/12/2023]
Abstract
Flexibility is a hallmark of memories that depend on the hippocampus. For navigating animals, flexibility is necessitated by environmental changes such as blocked paths and extinguished food sources. To better understand the neural basis of this flexibility, we recorded hippocampal replays in a spatial memory task where barriers as well as goals were moved between sessions to see whether replays could adapt to new spatial and reward contingencies. Strikingly, replays consistently depicted new goal-directed trajectories around each new barrier configuration and largely avoided barrier violations. Barrier-respecting replays were learned rapidly and did not rely on place cell remapping. These data distinguish sharply between place field responses, which were largely stable and remained tied to sensory cues, and replays, which changed flexibly to reflect the learned contingencies in the environment and suggest sequenced activations such as replay to be an important link between the hippocampus and flexible memory.
Collapse
Affiliation(s)
- John Widloski
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - David J Foster
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
39
|
Dixon-Melvin R, Shanazz K, Nalloor R, Bunting KM, Vazdarjanova A. Emotional state alters encoding of long-term spatial episodic memory. Neurobiol Learn Mem 2022; 187:107562. [PMID: 34848328 PMCID: PMC9413022 DOI: 10.1016/j.nlm.2021.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/19/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
The neurobiology of emotion and episodic memory are well-researched subjects, as is their intersection: memory of emotional events (i.e. emotional memory). We and others have previously demonstrated that the emotional valence of stimuli is encoded in the dorsal hippocampus, a structure integral to the acquisition, consolidation and retrieval of long-term episodic memories. Such findings are consistent with the idea that the emotional valence of stimuli contributes to the "what" component of episodic memories ("where" and "when" being the other components). We hypothesized that being in a heightened emotional state by itself does not contribute to the "what" component of episodic memories. We tested an inference of this hypothesis - that negative emotional state does not alter re-encoding of a spatial episodic event. Rats from the experimental group explored a novel place at their baseline emotional state (Event 1) and 20 min later re-explored the same place (Event 2) in a negative emotional state induced by a state-altering event prior to Event 2. We examined neuronal ensembles that induced expression of Arc and Homer1a, two immediate-early genes (IEGs) necessary for synaptic plasticity and consolidation of long-term memories, during both events. We found that in dorsal CA1 and dorsal CA3, Event 1 and Event 2 induced IEG expression in different neuronal ensembles. This finding was reflected in a low Fidelity score, which assesses the percentage of the Event 1 IEG-expressing ensemble re-activated during Event 2. The Fidelity score was significantly higher in a control group which was at a baseline emotional state during Event 2. Groups which were matched for non-specific disruptions from the state-altering event had intermediate Fidelity scores in dorsal CA1. The Fidelity scores of the dorsal CA3 in the latter groups were similar to those of the control group. Combined, the findings reject the tested hypothesis and suggest that a negative emotional state is encoded in the hippocampus as part of the long-term memory of episodic events that lack explicit emotion-inducing stimuli. These findings also suggest that individuals who often experience strong negative emotional states incorporate these states into ongoing non-emotional episodic memories.
Collapse
Affiliation(s)
- Rachael Dixon-Melvin
- Charlie Norwood VAMC, Augusta GA,Department of Pharmacology & Toxicology, MCG, Augusta University, Augusta GA
| | - Khadijah Shanazz
- Charlie Norwood VAMC, Augusta GA,Department of Pharmacology & Toxicology, MCG, Augusta University, Augusta GA
| | - Rebecca Nalloor
- Charlie Norwood VAMC, Augusta GA,Department of Pharmacology & Toxicology, MCG, Augusta University, Augusta GA
| | - Kristopher M. Bunting
- Charlie Norwood VAMC, Augusta GA,Department of Pharmacology & Toxicology, MCG, Augusta University, Augusta GA
| | - Almira Vazdarjanova
- Charlie Norwood VAMC, Augusta GA,Department of Pharmacology & Toxicology, MCG, Augusta University, Augusta GA,Corresponding Author: Almira Vazdarjanova, , Charlie Norwood VAMC and Augusta University, 1 Freedom Way, DD 6B110, Augusta GA 30904, USA
| |
Collapse
|
40
|
Surget A, Belzung C. Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Mol Psychiatry 2022; 27:403-421. [PMID: 33990771 PMCID: PMC8960391 DOI: 10.1038/s41380-021-01136-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Adult hippocampal neurogenesis (AHN) represents a remarkable form of neuroplasticity that has increasingly been linked to the stress response in recent years. However, the hippocampus does not itself support the expression of the different dimensions of the stress response. Moreover, the main hippocampal functions are essentially preserved under AHN depletion and adult-born immature neurons (abGNs) have no extrahippocampal projections, which questions the mechanisms by which abGNs influence functions supported by brain areas far from the hippocampus. Within this framework, we propose that through its computational influences AHN is pivotal in shaping adaption to environmental demands, underlying its role in stress response. The hippocampus with its high input convergence and output divergence represents a computational hub, ideally positioned in the brain (1) to detect cues and contexts linked to past, current and predicted stressful experiences, and (2) to supervise the expression of the stress response at the cognitive, affective, behavioral, and physiological levels. AHN appears to bias hippocampal computations toward enhanced conjunctive encoding and pattern separation, promoting contextual discrimination and cognitive flexibility, reducing proactive interference and generalization of stressful experiences to safe contexts. These effects result in gating downstream brain areas with more accurate and contextualized information, enabling the different dimensions of the stress response to be more appropriately set with specific contexts. Here, we first provide an integrative perspective of the functional involvement of AHN in the hippocampus and a phenomenological overview of the stress response. We then examine the mechanistic underpinning of the role of AHN in the stress response and describe its potential implications in the different dimensions accompanying this response.
Collapse
Affiliation(s)
- A Surget
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - C Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
41
|
Laha K, Zhu M, Gemperline E, Rau V, Li L, Fanselow MS, Lennertz R, Pearce RA. CPP impairs contextual learning at concentrations below those that block pyramidal neuron NMDARs and LTP in the CA1 region of the hippocampus. Neuropharmacology 2022; 202:108846. [PMID: 34687710 PMCID: PMC8627488 DOI: 10.1016/j.neuropharm.2021.108846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Drugs that block N-methyl-d-aspartate receptors (NMDARs) suppress hippocampus-dependent memory formation; they also block long-term potentiation (LTP), a cellular model of learning and memory. However, the fractional block that is required to achieve these effects is unknown. Here, we measured the dose-dependent suppression of contextual memory in vivo by systemic administration of the competitive antagonist (R,S)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP); in parallel, we measured the concentration-dependent block by CPP of NMDAR-mediated synapses and LTP of excitatory synapses in hippocampal brain slices in vitro. We found that the dose of CPP that suppresses contextual memory in vivo (EC50 = 2.3 mg/kg) corresponds to a free concentration of 53 nM. Surprisingly, applying this concentration of CPP to hippocampal brain slices had no effect on the NMDAR component of evoked field excitatory postsynaptic potentials (fEPSPNMDA), or on LTP. Rather, the IC50 for blocking the fEPSPNMDA was 434 nM, and for blocking LTP was 361 nM - both nearly an order of magnitude higher. We conclude that memory impairment produced by systemically administered CPP is not due primarily to its blockade of NMDARs on hippocampal pyramidal neurons. Rather, systemic CPP suppresses memory formation by actions elsewhere in the memory-encoding circuitry.
Collapse
Affiliation(s)
- Kurt Laha
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Mengwen Zhu
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Vinuta Rau
- Department of Anesthesiology, University of California-San Francisco, San Francisco, CA, USA.
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Michael S Fanselow
- Departments of Psychology and Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Richard Lennertz
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
42
|
Poo C, Agarwal G, Bonacchi N, Mainen ZF. Spatial maps in piriform cortex during olfactory navigation. Nature 2021; 601:595-599. [PMID: 34937941 DOI: 10.1038/s41586-021-04242-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/12/2021] [Indexed: 11/10/2022]
Abstract
Odours are a fundamental part of the sensory environment used by animals to guide behaviours such as foraging and navigation1,2. Primary olfactory (piriform) cortex is thought to be the main cortical region for encoding odour identity3-8. Here, using neural ensemble recordings in freely moving rats performing an odour-cued spatial choice task, we show that posterior piriform cortex neurons carry a robust spatial representation of the environment. Piriform spatial representations have features of a learned cognitive map, being most prominent near odour ports, stable across behavioural contexts and independent of olfactory drive or reward availability. The accuracy of spatial information carried by individual piriform neurons was predicted by the strength of their functional coupling to the hippocampal theta rhythm. Ensembles of piriform neurons concurrently represented odour identity as well as spatial locations of animals, forming an odour-place map. Our results reveal a function for piriform cortex in spatial cognition and suggest that it is well-suited to form odour-place associations and guide olfactory-cued spatial navigation.
Collapse
Affiliation(s)
- Cindy Poo
- Champalimaud Foundation, Lisbon, Portugal.
| | - Gautam Agarwal
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA, USA
| | | | | |
Collapse
|
43
|
Tomar A, McHugh TJ. The impact of stress on the hippocampal spatial code. Trends Neurosci 2021; 45:120-132. [PMID: 34916083 DOI: 10.1016/j.tins.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Hippocampal function is severely compromised by prolonged, uncontrollable stress. However, how stress alters neural representations of our surroundings and events that occur within them remains less clear. We review hippocampal place cell studies that examine how spatial coding is affected by acute and chronic stress, as well as by stress accompanying fear conditioning. Emerging data suggest that chronic stress disrupts the acuity and specificity of CA1 spatial coding, both in familiar and novel contexts, and alters hippocampal oscillations. By contrast, acute stress may have a facilitatory impact on spatial representations. These findings encourage a fresh look at the documented stress-induced changes in hippocampal anatomy and in vitro excitability, and offer a new perspective on the links between stress and memory.
Collapse
Affiliation(s)
- Anupratap Tomar
- Center for Synaptic Plasticity, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
44
|
Tian T, Qin X, Wang Y, Shi Y, Yang X. 40 Hz Light Flicker Promotes Learning and Memory via Long Term Depression in Wild-Type Mice. J Alzheimers Dis 2021; 84:983-993. [PMID: 34602491 DOI: 10.3233/jad-215212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND 40 Hz light flicker is a well-known non-invasive treatment that is thought to be effective in treating Alzheimer's disease. However, the effects of 40 Hz visual stimulation on neural networks, synaptic plasticity, and learning and memory in wild-type animals remain unclear. OBJECTIVE We aimed to explore the impact of 40 Hz visual stimulation on synaptic plasticity, place cell, and learning and memory in wild-type mice. METHODS c-Fos+ cell distribution and in vivo electrophysiology was used to explore the effects of 40 Hz chronic visual stimulation on neural networks and neuroplasticity in wild-type mice. The character of c-Fos+ distribution in the brain and the changes of corticosterone levels in the blood were used to investigate the state of animal. Place cell analysis and novel location test were utilized to examine the effects of 40 Hz chronic visual stimulation on learning and memory in wild-type mice. RESULTS We found that 40 Hz light flicker significantly affected many brain regions that are related to stress. Also, 40 Hz induced gamma enrichment within 15 min after light flickers and impaired the expression of long-term potentiation (LTP), while facilitated the expression of long-term depression (LTD) in the hippocampal CA1. Furthermore, 40 Hz light flicker enhanced the expression of corticosterone, rendered well-formed place cells unstable and improved animal's learning and memory in novel local recognition test, which could be blocked by pre-treatment with the LTD specific blocker Glu2A-3Y. CONCLUSION These finding suggested that 40 Hz chronic light flicker contains stress effects, promoting learning and memory in wild-type mice via LTD.
Collapse
Affiliation(s)
- Tian Tian
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xin Qin
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yali Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Yan Shi
- Faculty of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Xin Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
45
|
Kong MS, Kim EJ, Park S, Zweifel LS, Huh Y, Cho J, Kim JJ. 'Fearful-place' coding in the amygdala-hippocampal network. eLife 2021; 10:e72040. [PMID: 34533133 PMCID: PMC8500711 DOI: 10.7554/elife.72040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
Animals seeking survival needs must be able to assess different locations of threats in their habitat. However, the neural integration of spatial and risk information essential for guiding goal-directed behavior remains poorly understood. Thus, we investigated simultaneous activities of fear-responsive basal amygdala (BA) and place-responsive dorsal hippocampus (dHPC) neurons as rats left the safe nest to search for food in an exposed space and encountered a simulated 'predator.' In this realistic situation, BA cells increased their firing rates and dHPC place cells decreased their spatial stability near the threat. Importantly, only those dHPC cells synchronized with the predator-responsive BA cells remapped significantly as a function of escalating risk location. Moreover, optogenetic stimulation of BA neurons was sufficient to cause spatial avoidance behavior and disrupt place fields. These results suggest a dynamic interaction of BA's fear signalling cells and dHPC's spatial coding cells as animals traverse safe-danger areas of their environment.
Collapse
Affiliation(s)
- Mi-Seon Kong
- Department of Psychology, University of WashingtonSeattleUnited States
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Eun Joo Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| | - Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Yeowool Huh
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
- Department of Medical Science, College of Medicine, Catholic Kwandong UniversityGangneungRepublic of Korea
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| |
Collapse
|
46
|
Subramaniyan M, Manivannan S, Chelur V, Tsetsenis T, Jiang E, Dani JA. Fear conditioning potentiates the hippocampal CA1 commissural pathway in vivo and increases awake phase sleep. Hippocampus 2021; 31:1154-1175. [PMID: 34418215 PMCID: PMC9290090 DOI: 10.1002/hipo.23381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2021] [Accepted: 07/24/2021] [Indexed: 11/24/2022]
Abstract
The hippocampus is essential for spatial learning and memory. To assess learning we used contextual fear conditioning (cFC), where animals learn to associate a place with aversive events like foot‐shocks. Candidate memory mechanisms for cFC are long‐term potentiation (LTP) and long‐term depression (LTD), but there is little direct evidence of them operating in the hippocampus in vivo following cFC. Also, little is known about the behavioral state changes induced by cFC. To address these issues, we recorded local field potentials in freely behaving mice by stimulating in the left dorsal CA1 region and recording in the right dorsal CA1 region. Synaptic strength in the commissural pathway was monitored by measuring field excitatory postsynaptic potentials (fEPSPs) before and after cFC. After cFC, the commissural pathway's synaptic strength was potentiated. Although recordings occurred during the wake phase of the light/dark cycle, the mice slept more in the post‐conditioning period than in the pre‐conditioning period. Relative to awake periods, in non‐rapid eye movement (NREM) sleep the fEPSPs were larger in both pre‐ and post‐conditioning periods. We also found a significant negative correlation between the animal's speed and fEPSP size. Therefore, to avoid confounds in the fEFSP potentiation estimates, we controlled for speed‐related and sleep‐related fEPSP changes and still found that cFC induced long‐term potentiation, but no significant long‐term depression. Synaptic strength changes were not found in the control group that simply explored the fear‐conditioning chamber, indicating that exploration of the novel place did not produce the measurable effects caused by cFC. These results show that following cFC, the CA1 commissural pathway is potentiated, likely contributing to the functional integration of the left and right hippocampi in fear memory consolidation. In addition, the cFC paradigm produces significant changes in an animal's behavioral state, which are observable as proximal changes in sleep patterns.
Collapse
Affiliation(s)
- Manivannan Subramaniyan
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sumithrra Manivannan
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vikas Chelur
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theodoros Tsetsenis
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Evan Jiang
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Low IIC, Williams AH, Campbell MG, Linderman SW, Giocomo LM. Dynamic and reversible remapping of network representations in an unchanging environment. Neuron 2021; 109:2967-2980.e11. [PMID: 34363753 DOI: 10.1016/j.neuron.2021.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/26/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
Neurons in the medial entorhinal cortex alter their firing properties in response to environmental changes. This flexibility in neural coding is hypothesized to support navigation and memory by dividing sensory experience into unique episodes. However, it is unknown how the entorhinal circuit as a whole transitions between different representations when sensory information is not delineated into discrete contexts. Here we describe rapid and reversible transitions between multiple spatial maps of an unchanging task and environment. These remapping events were synchronized across hundreds of neurons, differentially affected navigational cell types, and correlated with changes in running speed. Despite widespread changes in spatial coding, remapping comprised a translation along a single dimension in population-level activity space, enabling simple decoding strategies. These findings provoke reconsideration of how the medial entorhinal cortex dynamically represents space and suggest a remarkable capacity of cortical circuits to rapidly and substantially reorganize their neural representations.
Collapse
Affiliation(s)
- Isabel I C Low
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Alex H Williams
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Statistics, Stanford University, Stanford, CA, USA
| | - Malcolm G Campbell
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott W Linderman
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Statistics, Stanford University, Stanford, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
48
|
Olevska A, Spanagel R, Bernardi RE. Impaired contextual fear conditioning in RasGRF2 mutant mice is likely Ras-ERK-dependent. Neurobiol Learn Mem 2021; 181:107435. [PMID: 33831510 DOI: 10.1016/j.nlm.2021.107435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Ras/Raf/MEK/ERK (Ras-ERK) signaling has been shown to play an important role in fear acquisition. However, little information is known regarding the mechanisms that contribute to the regulation of this pathway in terms of the learning of conditioned fears. Ras Guanine Nucleotide Releasing Factor 2 (RasGRF2) is one of two guanine nucleotide exchange factors (GEF) that regulates the Ras-ERK signaling pathway in a Ca2+-dependent manner via control of the cycling of Ras isoforms between an inactive and active state. Here we sought to determine the role of RasGRF2 on contextual fear conditioning in RasGRF2 knockout (KO) and their wild type (WT) counterparts. Male KO and WT mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by either daily 12-min retention trials or the molecular analysis of Ras activation and pERK1/2 activity. KO mice showed an impaired acquisition of contextual fear, as demonstrated by reduced freezing during fear conditioning and 24-hr retention tests relative to WT mice. Ras analysis following fear conditioning demonstrated a reduction in Ras activation in the hippocampus as well as a reduction in pERK1/2 in the CA1 region of the hippocampus in KO mice, suggesting that the decrease in fear conditioning in KO mice is at least in part due to the impairment of Ras-ERK signaling in the hippocampus during learning. These data indicate a role for RasGRF2 in contextual fear conditioning in mice that may be Ras-ERK-dependent.
Collapse
Affiliation(s)
- Anastasia Olevska
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.
| |
Collapse
|
49
|
Iordanova MD, Yau JOY, McDannald MA, Corbit LH. Neural substrates of appetitive and aversive prediction error. Neurosci Biobehav Rev 2021; 123:337-351. [PMID: 33453307 PMCID: PMC7933120 DOI: 10.1016/j.neubiorev.2020.10.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Prediction error, defined by the discrepancy between real and expected outcomes, lies at the core of associative learning. Behavioural investigations have provided evidence that prediction error up- and down-regulates associative relationships, and allocates attention to stimuli to enable learning. These behavioural advances have recently been followed by investigations into the neurobiological substrates of prediction error. In the present paper, we review neuroscience data obtained using causal and recording neural methods from a variety of key behavioural designs. We explore the neurobiology of both appetitive (reward) and aversive (fear) prediction error with a focus on the mesolimbic dopamine system, the amygdala, ventrolateral periaqueductal gray, hippocampus, cortex and locus coeruleus noradrenaline. New questions and avenues for research are considered.
Collapse
Affiliation(s)
- Mihaela D Iordanova
- Department of Psychology/Centre for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke St, Montreal, QC, H4B 1R6, Canada.
| | - Joanna Oi-Yue Yau
- School of Psychology, The University of New South Wales, UNSW Sydney, NSW, 2052, Australia.
| | - Michael A McDannald
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Avenue, 514 McGuinn Hall, Chestnut Hill, MA, 02467, USA.
| | - Laura H Corbit
- Departments of Psychology and Cell and Systems Biology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
50
|
Kramar CP, Castillo-Díaz F, Gigante ED, Medina JH, Barbano MF. The late consolidation of an aversive memory is promoted by VTA dopamine release in the dorsal hippocampus. Eur J Neurosci 2021; 53:841-851. [PMID: 33617053 DOI: 10.1111/ejn.15076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
The hippocampus has been implicated in the processing and storage of aversive memories but the precise mechanisms by which these memories persist in time remain elusive. We have demonstrated that dopaminergic neurotransmission in the dorsal hippocampus regulates the long-term storage of both appetitive and aversive memories at a critical time point known as "late consolidation" (12 hr after the learning experience). This modulation appears to have opposite effects depending on the valence of the stimuli, with hippocampal dopamine release peaking immediately and 13-17 hr after a rewarding experience. Here, we determined the release pattern of hippocampal dopamine following an aversive experience, in order to better understand this opposite modulation process. We observed significant increases in dopamine levels at several times (6-8, 11-12, and 15 hr) after subjecting rats to a conditioned place aversion (CPA) task with the aversive agent lithium chloride (LiCl). Early pharmacological blockade of hippocampal DA receptors impaired CPA memory consolidation. In addition and consistent with previous findings showing that late post-training infusions of dopaminergic agents into the hippocampus modulate the long-term storage of aversive memories, we found that the photostimulation of dopaminergic VTA fibers in the dorsal hippocampus 11-12 hr after CPA training was enough to transform a short-lasting long-term memory into a long-lasting one. The fact that the persistence of an aversive memory can still be affected several hours after the learning experience opens new avenues to develop behavioral and pharmacological strategies for the treatment of a variety of mental disorders.
Collapse
Affiliation(s)
- Cecilia P Kramar
- Instituto de Biología Celular y Neurociencias (CONICET-UBA), Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Fernando Castillo-Díaz
- Instituto de Biología Celular y Neurociencias (CONICET-UBA), Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Eduardo D Gigante
- National Institute on Drug Abuse (NIDA/NIH), Neuronal Networks Section, Baltimore, MD, USA
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencias (CONICET-UBA), Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - M Flavia Barbano
- Instituto de Biología Celular y Neurociencias (CONICET-UBA), Facultad de Medicina, UBA, Buenos Aires, Argentina.,National Institute on Drug Abuse (NIDA/NIH), Neuronal Networks Section, Baltimore, MD, USA
| |
Collapse
|