1
|
Klimpert N, Kollo M, Brann DH, Tan C, Barry D, Ma Y, Schaefer AT, Fleischmann A. 3D spatial transcriptomics reveals the molecular structure of input and output pathways in the mouse olfactory bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639192. [PMID: 40060607 PMCID: PMC11888228 DOI: 10.1101/2025.02.19.639192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
A core organizing principle of the vertebrate brain is its symmetry along multiple axes. However, the precision with which neurons, circuit modules, and brain regions align to these axes remains poorly understood. Here, we used 3D spatial transcriptomics to reconstruct the anatomical and molecular organization of the mouse olfactory bulb. We mapped the positions of nearly one thousand molecularly distinct glomeruli, the structural and functional units of odor processing, revealing highly symmetric organization across hemispheres. Within each bulb, we delineated a curved axis of symmetry that divides pairs of sister glomeruli. Gene expression in the olfactory epithelium predicted glomerular position with near-glomerular resolution. However, glomerular symmetry did not extend to deeper layer mitral and granule cells, suggesting a reorganization from sensory input to cortical output pathways. Our findings provide the first comprehensive map of the olfactory bulb and reveal how its molecular structure is instructed by epithelial gene expression programs.
Collapse
|
2
|
Dasgupta A, Reagor CC, Paik SP, Snow LM, Jacobo A, Hudspeth AJ. Semaphorin7A patterns neural circuitry in the lateral line of the zebrafish. eLife 2024; 12:RP89926. [PMID: 39133541 PMCID: PMC11318972 DOI: 10.7554/elife.89926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
In a developing nervous system, axonal arbors often undergo complex rearrangements before neural circuits attain their final innervation topology. In the lateral line sensory system of the zebrafish, developing sensory axons reorganize their terminal arborization patterns to establish precise neural microcircuits around the mechanosensory hair cells. However, a quantitative understanding of the changes in the sensory arbor morphology and the regulators behind the microcircuit assembly remain enigmatic. Here, we report that Semaphorin7A (Sema7A) acts as an important mediator of these processes. Utilizing a semi-automated three-dimensional neurite tracing methodology and computational techniques, we have identified and quantitatively analyzed distinct topological features that shape the network in wild-type and Sema7A loss-of-function mutants. In contrast to those of wild-type animals, the sensory axons in Sema7A mutants display aberrant arborizations with disorganized network topology and diminished contacts to hair cells. Moreover, ectopic expression of a secreted form of Sema7A by non-hair cells induces chemotropic guidance of sensory axons. Our findings propose that Sema7A likely functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development.
Collapse
Affiliation(s)
- Agnik Dasgupta
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller UniversityNew York CityUnited States
| | - Caleb C Reagor
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller UniversityNew York CityUnited States
- Tri-Institutional PhD Program in Computational Biology and MedicineNew YorkUnited States
| | - Sang Peter Paik
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller UniversityNew York CityUnited States
| | - Lauren M Snow
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller UniversityNew York CityUnited States
| | - Adrian Jacobo
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller UniversityNew York CityUnited States
- Chan Zuckerberg Biohub San FranciscoSan FranciscoUnited States
| | - AJ Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller UniversityNew York CityUnited States
| |
Collapse
|
3
|
Dang P, Barnes DT, Cheng RP, Xu A, Moon YJ, Kodukula SS, Raper JA. Netrins and Netrin Receptors are Essential for Normal Targeting of Sensory Axons in the Zebrafish Olfactory Bulb. Neuroscience 2023; 508:19-29. [PMID: 35940453 PMCID: PMC9839495 DOI: 10.1016/j.neuroscience.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/17/2023]
Abstract
Olfactory sensory neurons that express related odorant receptors specifically target large identifiable neuropils called protoglomeruli when they first reach the olfactory bulb in the zebrafish. This crude odorant receptor-related mapping is further refined as odorant receptor-specific glomeruli segregate from protoglomeruli later in development. Netrins are a prominent class of axon guidance molecules whose contribution to olfactory circuit formation is poorly studied. Morpholino knock down experiments have suggested that Netrin/Dcc signaling is involved in normal protoglomerular targeting. Here we extend these findings with more detailed characterization and modeling of netrin expression, and by examining protoglomerular targeting in mutant lines fornetrin1a (ntn1a), netrin1b (ntn1b), and their receptorsunc5b,dcc, andneo1a. We confirm thatntn1a,ntn1b, anddccare required for normal protoglomerular guidance of a subset of olfactory sensory neurons that are labeled with the Tg(or111-7:IRES:Gal4) transgene. We also observe errors in the targeting of these axons inunc5bmutants, but not inneo1a mutants. Our findings are consistent with ntn1a andntn1bacting primarily as attractants for olfactory sensory neurons targeting the central zone protoglomerulus.
Collapse
Affiliation(s)
- Puneet Dang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel T Barnes
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan P Cheng
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Alison Xu
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Yoon Ji Moon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Sai Sripad Kodukula
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
5
|
Duittoz AH, Forni PE, Giacobini P, Golan M, Mollard P, Negrón AL, Radovick S, Wray S. Development of the gonadotropin-releasing hormone system. J Neuroendocrinol 2022; 34:e13087. [PMID: 35067985 PMCID: PMC9286803 DOI: 10.1111/jne.13087] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Abstract
This review summarizes the current understanding of the development of the neuroendocrine gonadotropin-releasing hormone (GnRH) system, including discussion on open questions regarding (1) transcriptional regulation of the Gnrh1 gene; (2) prenatal development of the GnRH1 system in rodents and humans; and (3) paracrine and synaptic communication during migration of the GnRH cells.
Collapse
Affiliation(s)
| | - Paolo E. Forni
- Department of Biological SciencesUniversity at AlbanyAlbanyNYUSA
- The RNA InstituteUniversity at AlbanyAlbanyNYUSA
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Postnatal BrainLille Neuroscience & Cognition, UMR‐S1172, Inserm, CHU LilleUniversity of LilleLilleFrance
| | - Matan Golan
- Institute of Animal SciencesAgricultural Research Organization – Volcani CenterRishon LetziyonIsrael
| | - Patrice Mollard
- Institute of Functional GenomicsCNRS, InsermMontpellier UniversityMontpellierFrance
| | - Ariel L. Negrón
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Sally Radovick
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Susan Wray
- Cellular and Developmental Neurobiology SectionNational Institute of Neurological Disorders and Stroke/National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
6
|
Wang A, Zhang H, Li G, Chen B, Li J, Zhang T, Liu B, Cao Z, Liu G, Jia P, Xu Y. Deciphering core proteins of osteoporosis with iron accumulation by proteomics in human bone. Front Endocrinol (Lausanne) 2022; 13:961903. [PMID: 36313751 PMCID: PMC9614156 DOI: 10.3389/fendo.2022.961903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Iron accumulation is an independent risk factor for postmenopausal osteoporosis, but mechanistic studies of this phenomenon are still focusing on molecular and genetic researches in model animal. Osteoporosis with iron accumulation is a distinct endocrine disease with complicated pathogenesis regulated by several proteins. However, the comprehensive proteome-wide analysis of human bone is lacking. Using multiplex quantitative tandem mass tag-based proteomics, we detected 2900 and quantified 1150 proteins from bone of 10 postmenopausal patients undergoing hip replacement. Comparing with non-osteoporosis patients, a total of 75 differentially expressed proteins were identified, comprising 53 downregulated proteins and 22 upregulated proteins. These proteins primarily affect oxidoreductase activity, GTPase activity, GTP binding, and neural nucleus development, were mainly enriched in neural, angiogenesis and energy-related pathways, and formed complex regulatory networks with strong interconnections. We ultimately identified 4 core proteins (GSTP1, LAMP2, COPB1, RAB5B) that were significantly differentially expressed in the bone of osteoporosis patients with iron accumulation, and validated the changed protein level in the serum of the medical examination population. Our systemic analysis uncovers molecular insights for revealing underlying mechanism and clinical therapeutics in osteoporosis with iron accumulation.
Collapse
Affiliation(s)
- Aifei Wang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Zhang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangfei Li
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Chen
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junjie Li
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Zhang
- Cambridge-Suda Genomic Resource Centre, Soochow University, Suzhou, China
| | - Baoshan Liu
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zihou Cao
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Gongwen Liu
- Department of Orthopedics, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Peng Jia
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Peng Jia, ; Youjia Xu,
| | - Youjia Xu
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
- Osteoporosis Institute, Soochow University, Suzhou, China
- *Correspondence: Peng Jia, ; Youjia Xu,
| |
Collapse
|
7
|
Ito A, Imamura F. Expression of Maf family proteins in glutamatergic neurons of the mouse olfactory bulb. Dev Neurobiol 2021; 82:77-87. [PMID: 34679244 DOI: 10.1002/dneu.22859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
The fate of neurons in the developing brain is largely determined by the combination of transcription factors they express. In particular, stem cells must follow different transcriptional cascades during differentiation in order to generate neurons with different neurotransmitter properties, such as glutamatergic and GABAergic neurons. In the mouse cerebral cortex, it has been shown that large Maf family proteins, MafA, MafB and c-Maf, regulate the development of specific types of GABAergic interneurons but are not expressed in glutamatergic neurons. In this study, we examined the expression of large Maf family proteins in the developing mouse olfactory bulb (OB) by immunohistochemistry and found that the cell populations expressing MafA and MafB are almost identical, and most of them express Tbr2. As Tbr2 is expressed in glutamatergic neurons in the OB, we further examined the expression of glutamatergic and GABAergic neuronal markers in MafA and MafB positive cells. The results showed that in the OB, MafA and MafB are expressed exclusively in glutamatergic neurons, but not in GABAergic neurons. We also found that few cells express c-Maf in the OB. These results indicate that, unlike the cerebral cortex, MafA and/or MafB may regulate the development of glutamatergic neurons in the developing OB. This study advances our knowledge about the development of glutamatergic neurons in the olfactory bulb, and also might suggest that mechanisms for the generation of projection neurons and interneurons differ between the cortex and the olfactory bulb, even though they both develop from the telencephalon.
Collapse
Affiliation(s)
- Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
8
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
9
|
Abstract
In mammals, odor information detected by olfactory sensory neurons is converted to a topographic map of activated glomeruli in the olfactory bulb. Mitral cells and tufted cells transmit signals sequentially to the olfactory cortex for behavioral outputs. To elicit innate behavioral responses, odor signals are directly transmitted by distinct subsets of mitral cells from particular functional domains in the olfactory bulb to specific amygdala nuclei. As for the learned decisions, input signals are conveyed by tufted cells as well as by mitral cells to the olfactory cortex. Behavioral scene cells link the odor information to the valence cells in the amygdala to elicit memory-based behavioral responses. Olfactory decision and perception take place in relation to the respiratory cycle. How is the sensory quality imposed on the olfactory inputs for behavioral outputs? How are the two types of odor signals, innate and learned, processed during respiration? Here, we review recent progress on the study of neural circuits involved in decision making in the mouse olfactory system.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan;
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1197, Japan;
| |
Collapse
|
10
|
Axonal Odorant Receptors Mediate Axon Targeting. Cell Rep 2020; 29:4334-4348.e7. [PMID: 31875544 PMCID: PMC6941231 DOI: 10.1016/j.celrep.2019.11.099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 12/05/2022] Open
Abstract
In mammals, odorant receptors not only detect odors but also define the target in the olfactory bulb, where sensory neurons project to give rise to the sensory map. The odorant receptor is expressed at the cilia, where it binds odorants, and at the axon terminal. The mechanism of activation and function of the odorant receptor at the axon terminal is, however, still unknown. Here, we identify phosphatidylethanolamine-binding protein 1 as a putative ligand that activates the odorant receptor at the axon terminal and affects the turning behavior of sensory axons. Genetic ablation of phosphatidylethanolamine-binding protein 1 in mice results in a strongly disturbed olfactory sensory map. Our data suggest that the odorant receptor at the axon terminal of olfactory neurons acts as an axon guidance cue that responds to molecules originating in the olfactory bulb. The dual function of the odorant receptor links specificity of odor perception and axon targeting. Axonal odorant receptors respond to cues elaborated in the olfactory bulb PEBP1, expressed in the olfactory bulb, is a putative ligand of axonal receptors Genetic ablation of PEBP1 results in disrupted olfactory map in vivo Axonal odorant receptors modulate axon targeting in the sensory map formation
Collapse
|
11
|
Sakano H. Developmental regulation of olfactory circuit formation in mice. Dev Growth Differ 2020; 62:199-213. [PMID: 32112394 PMCID: PMC7318115 DOI: 10.1111/dgd.12657] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
In mammals, odorants induce various behavioral responses that are critical to the survival of the individual and species. Binding signals of odorants to odorant receptors (ORs) expressed in the olfactory epithelia are converted to an odor map, a pattern of activated glomeruli, in the olfactory bulb (OB). This topographic map is used to identify odorants for memory‐based learned decisions. In the embryo, a coarse olfactory map is generated in the OB by a combination of dorsal‐ventral and anterior‐posterior targeting of olfactory sensory neurons (OSNs), using specific sets of axon‐guidance molecules. During the process of OSN projection, odor signals are sorted into distinct odor qualities in separate functional domains in the OB. Odor information is then conveyed by the projection neurons, mitral/tufted cells, to various regions in the olfactory cortex, particularly to the amygdala for innate olfactory decisions. Although the basic architecture of hard‐wired circuits is generated by a genetic program, innate olfactory responses are modified by neonatal odor experience in an activity‐dependent manner. Stimulus‐driven OR activity promotes post‐synaptic events and dendrite selection in the responding glomeruli making them larger. As a result, enhanced odor inputs in neonates establish imprinted olfactory memory that induces attractive responses in adults, even when the odor quality is innately aversive. In this paper, I will provide an overview of the recent progress made in the olfactory circuit formation in mice.
Collapse
Affiliation(s)
- Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
12
|
Zhu Z, Han X, Li Y, Han C, Deng M, Zhang Y, Shen Q, Cao Y, Li Z, Wang X, Gu J, Liu X, Yang Y, Zhang Q, Hu F. Identification of ROBO1/2 and SCEL as candidate genes in Kallmann syndrome with emerging bioinformatic analysis. Endocrine 2020; 67:224-232. [PMID: 31325086 DOI: 10.1007/s12020-019-02010-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022]
Abstract
Kallmann syndrome (KS) is a congenital hypogonadotropic hypogonadism that coincides with anosmia or hyposmia. Although this rare genetic disease has a very low incidence, it harbors a complicated genetic heterogeneity, which indicates X-linked, autosomal, and oligogenic inheritance of puberty, sexuality, reproductivity, and olfactory defects. There has been limited elucidation of molecular etiologies completed to date. Here, a chromosome reciprocal translocation (46, XX, t (3; 13) (p13; q22)) was identified in a 27-year-old Chinese female diagnosed with KS. Genome sequencing found an intronic breakpoint of SCEL in chromosome 13 and an intergenic breakpoint between ROBO1 and ROBO2 in chromosome 3. This translocation resulted in the reduced expression levels of these genes. An array-CGH test captured no abnormal genomic copy numbers of clinical significance. The basic features of all known KS-related genes were also reviewed and analyzed for their roles in KS onset with bioinformatic methods. Signal pathway and gene enrichment analysis of KS-related genes suggested that these genes have integrated functions in neuronal migration and differentiation. An interesting chromosome locational pattern of KS-related genes was also discovered. This study provided constructive clues for further investigations into the molecular etiology of KS.
Collapse
Affiliation(s)
- Zuobin Zhu
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxiao Han
- Center of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Li
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Mengqiong Deng
- Clinical College of Xuzhou Medical University, Xuzhou, China
| | - Yuhao Zhang
- School of Anesthesiology of Xuzhou Medical University, Xuzhou, China
| | - Qing Shen
- Clinical College of Xuzhou Medical University, Xuzhou, China
| | - Yijuan Cao
- Clinical College of Xuzhou Medical University, Xuzhou, China
- Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Zhenbei Li
- Clinical College of Xuzhou Medical University, Xuzhou, China
- Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Xitao Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Juan Gu
- Clinical College of Xuzhou Medical University, Xuzhou, China
- Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Xiaoyan Liu
- Clinical College of Xuzhou Medical University, Xuzhou, China
- Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Yaru Yang
- Clinical College of Xuzhou Medical University, Xuzhou, China
- Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Qiang Zhang
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China.
| | - Fangfang Hu
- Clinical College of Xuzhou Medical University, Xuzhou, China.
- Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China.
| |
Collapse
|
13
|
Vaddadi N, Iversen K, Raja R, Phen A, Brignall A, Dumontier E, Cloutier JF. Kirrel2 is differentially required in populations of olfactory sensory neurons for the targeting of axons in the olfactory bulb. Development 2019; 146:dev.173310. [PMID: 31142543 DOI: 10.1242/dev.173310] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/15/2019] [Indexed: 01/25/2023]
Abstract
The formation of olfactory maps in the olfactory bulb (OB) is crucial for the control of innate and learned mouse behaviors. Olfactory sensory neurons (OSNs) expressing a specific odorant receptor project axons into spatially conserved glomeruli within the OB and synapse onto mitral cell dendrites. Combinatorial expression of members of the Kirrel family of cell adhesion molecules has been proposed to regulate OSN axonal coalescence; however, loss-of-function experiments have yet to establish their requirement in this process. We examined projections of several OSN populations in mice that lacked either Kirrel2 alone, or both Kirrel2 and Kirrel3. Our results show that Kirrel2 and Kirrel3 are dispensable for the coalescence of MOR1-3-expressing OSN axons to the most dorsal region (DI) of the OB. In contrast, loss of Kirrel2 caused MOR174-9- and M72-expressing OSN axons, projecting to the DII region, to target ectopic glomeruli. Our loss-of-function approach demonstrates that Kirrel2 is required for axonal coalescence in subsets of OSNs that project axons to the DII region and reveals that Kirrel2/3-independent mechanisms also control OSN axonal coalescence in certain regions of the OB.
Collapse
Affiliation(s)
- Neelima Vaddadi
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Katrine Iversen
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Reesha Raja
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Alina Phen
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Alexandra Brignall
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Emilie Dumontier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada .,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| |
Collapse
|
14
|
Taroc EZM, Lin JM, Tulloch AJ, Jaworski A, Forni PE. GnRH-1 Neural Migration From the Nose to the Brain Is Independent From Slit2, Robo3 and NELL2 Signaling. Front Cell Neurosci 2019; 13:70. [PMID: 30881290 PMCID: PMC6406018 DOI: 10.3389/fncel.2019.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/12/2019] [Indexed: 11/28/2022] Open
Abstract
Gonadotropin releasing hormone-1 (GnRH-1) neurons play a pivotal role in controlling pubertal onset and fertility once they reach their hypothalamic location. During embryonic development, GnRH-1 neurons migrate from the nasal area to the hypothalamus where they modulate gonadotropin release from the pituitary gland. Defective migration of the GnRH-1 neurons to the brain, lack of GnRH-1 secretion or signaling cause hypogonadotropic hypogonadism (HH), a pathology characterized by delayed or absence of puberty. Binding of the guidance cue Slit2 to the receptor roundabout 3 (Robo3) has been proposed to modulate GnRH-1 cell motility and basal forebrain (bFB) access during migration. However, evidence suggests that Neural EGFL Like 2 (NELL2), not Slit2, binds to Robo3. To resolve this discrepancy, we analyzed GnRH-1 neuronal migration in NELL2, Robo3, and Slit2 knock-out mouse lines. Our data do not confirm a negative effect for monogenic Robo3 and Slit2 mutations on GnRH-1 neuronal migration from the nasal area to the brain. Moreover, we found no changes in GnRH-1 neuronal migration in the brain after NELL2 loss-of-function. However, we found that Slit2 loss-of-function alters the patterning of GnRH-1 cells in the brain, suggesting that Slit2 loss-of-function affects GnRH-1 cell positioning in the brain in a Robo3 independent fashion. Our results challenge previous theories on GnRH-1 neuronal migration mechanisms and provide a new impetus to identify and understand the complex genetic mechanisms causing disorders like Kallmann syndrome (KS) and HH.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Alastair J Tulloch
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Alexander Jaworski
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| |
Collapse
|
15
|
Cárdenas A, Villalba A, de Juan Romero C, Picó E, Kyrousi C, Tzika AC, Tessier-Lavigne M, Ma L, Drukker M, Cappello S, Borrell V. Evolution of Cortical Neurogenesis in Amniotes Controlled by Robo Signaling Levels. Cell 2018; 174:590-606.e21. [PMID: 29961574 PMCID: PMC6063992 DOI: 10.1016/j.cell.2018.06.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/24/2018] [Accepted: 06/01/2018] [Indexed: 11/29/2022]
Abstract
Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and sufficient to drive direct neurogenesis. Attenuating Robo signaling and enhancing Dll1 in snakes and birds recapitulates the formation of basal progenitors and promotes indirect neurogenesis. Our study identifies modulation in activity levels of conserved signaling pathways as a primary mechanism driving the expansion and increased complexity of the mammalian neocortex during amniote evolution.
Collapse
Affiliation(s)
- Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Camino de Juan Romero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Esther Picó
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Christina Kyrousi
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Athanasia C Tzika
- Department Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland; SIB Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | | | - Le Ma
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Micha Drukker
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Silvia Cappello
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain.
| |
Collapse
|
16
|
Taroc EZM, Prasad A, Lin JM, Forni PE. The terminal nerve plays a prominent role in GnRH-1 neuronal migration independent from proper olfactory and vomeronasal connections to the olfactory bulbs. Biol Open 2017; 6:1552-1568. [PMID: 28970231 PMCID: PMC5665474 DOI: 10.1242/bio.029074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gonadotropin-releasing hormone-1 (GnRH-1) neurons (GnRH-1 ns) migrate from the developing olfactory pit into the hypothalamus during embryonic development. Migration of the GnRH-1 neurons is required for mammalian reproduction as these cells control release of gonadotropins from the anterior pituitary gland. Disturbances in GnRH-1 ns migration, GnRH-1 synthesis, secretion or signaling lead to varying degrees of hypogonadotropic hypogonadism (HH), which impairs pubertal onset and fertility. HH associated with congenital olfactory defects is clinically defined as Kallmann Syndrome (KS). The association of olfactory defects with HH in KS suggested a potential direct relationship between defective olfactory axonal routing, lack of olfactory bulbs (OBs) and aberrant GnRH-1 ns migration. However, it has never been experimentally proven that the formation of axonal connections of the olfactory/vomeronasal neurons to their functional targets are necessary for the migration of GnRH-1 ns to the hypothalamus. Loss-of-function of the Arx-1 homeobox gene leads to the lack of proper formation of the OBs with abnormal axonal termination of olfactory sensory neurons (
Yoshihara et al., 2005). Our data prove that correct development of the OBs and axonal connection of the olfactory/vomeronasal sensory neurons to the forebrain are not required for GnRH-1 ns migration, and suggest that the terminal nerve, which forms the GnRH-1 migratory scaffold, follows different guidance cues and differs in gene expression from olfactory/vomeronasal sensory neurons. Summary: Our work reveals that correct olfactory bulb development is not required for GnRH-1 neuronal migration. This study challenges the idea that GnRH-1 neuronal migration to the hypothalamus relies on correct routing of the olfactory and vomeronasal neurons and supports the existence of the TN in mammals.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Aparna Prasad
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
17
|
Shao X, Lakhina V, Dang P, Cheng RP, Marcaccio CL, Raper JA. Olfactory sensory axons target specific protoglomeruli in the olfactory bulb of zebrafish. Neural Dev 2017; 12:18. [PMID: 29020985 PMCID: PMC5637265 DOI: 10.1186/s13064-017-0095-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023] Open
Abstract
Background The axons of Olfactory Sensory Neurons (OSNs) project to reproducible target locations within the Olfactory Bulb (OB), converting odorant experience into a spatial map of neural activity. We characterized the initial targeting of OSN axons in the zebrafish, a model system suitable for studying axonal targeting early in development. In this system the initial targets of OSN axons are a small number of distinct, individually identifiable neuropilar regions called protoglomeruli. Previously, Olfactory Marker Protein-expressing and TRPC2-expressing classes of OSNs were shown to project to specific, non-overlapping sets of protoglomeruli, indicating that particular subsets of OSNs project to specific protoglomerular targets. We set out to map the relationship between the classical Odorant Receptor (OR) an OSN chooses to express and the protoglomerulus its axon targets. Methods A panel of BACs were recombineered so that the axons of OSNs choosing to express modified ORs were fluorescently labeled. Axon projections were followed into the olfactory bulb to determine the protoglomeruli in which they terminated. Results RNA-seq demonstrates that OSNs express a surprisingly wide variety of ORs and Trace Amine Associated Receptors (TAARs) very early when sensory axons are arriving in the bulb. Only a single OR is expressed in any given OSN even at these early developmental times. We used a BAC expression technique to map the trajectories of OSNs expressing specific odorant receptors. ORs can be divided into three clades based upon their sequence similarities. OSNs expressing ORs from two of these clades project to the CZ protoglomerulus, while OSNs expressing ORs from the third clade project to the DZ protoglomerulus. In contrast, OSNs expressing a particular TAAR project to multiple protoglomeruli. Neither OR choice nor axonal targeting are related to the position an OSN occupies within the olfactory pit. Conclusions Our results demonstrate that it is not the choice of a particular OR, but of one from a category of ORs, that is related to initial OSN target location within the olfactory bulb. These choices are not related to OSN position within the olfactory epithelium.
Collapse
Affiliation(s)
- Xin Shao
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Vanisha Lakhina
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Puneet Dang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ryan P Cheng
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christina L Marcaccio
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA. .,, 105 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Ravi N, Sanchez-Guardado L, Lois C, Kelsch W. Determination of the connectivity of newborn neurons in mammalian olfactory circuits. Cell Mol Life Sci 2017; 74:849-867. [PMID: 27695873 PMCID: PMC11107630 DOI: 10.1007/s00018-016-2367-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022]
Abstract
The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.
Collapse
Affiliation(s)
- Namasivayam Ravi
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Luis Sanchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
19
|
Eerdunfu, Ihara N, Ligao B, Ikegaya Y, Takeuchi H. Differential timing of neurogenesis underlies dorsal-ventral topographic projection of olfactory sensory neurons. Neural Dev 2017; 12:2. [PMID: 28193234 PMCID: PMC5307877 DOI: 10.1186/s13064-017-0079-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Background The mammalian primary olfactory system has a spatially-ordered projection in which olfactory sensory neurons (OSNs) located in the dorsomedial (DM) and ventrolateral (VL) region of the olfactory epithelium (OE) send their axons to the dorsal and ventral region of the olfactory bulb (OB), respectively. We previously found that OSN axonal projections occur sequentially, from the DM to the VL region of the OE. The differential timing of axonal projections is important for olfactory map formation because early-arriving OSN axons secrete guidance cues at the OB to help navigate late-arriving OSN axons. We hypothesized that the differential timing of axonal projections is regulated by the timing of OSN neurogenesis. To test this idea, we investigated spatiotemporal patterns of OSN neurogenesis during olfactory development. Methods and results To determine the time of OSN origin, we used two thymidine analogs, BrdU and EdU, which can be incorporated into cells in the S-phase of the cell-cycle. We injected these two analogs at different developmental time points and analyzed distribution patterns of labeled OSNs. We found that OSNs with different dates of origin were differentially distributed in the OE. The majority of OSNs generated at the early stage of development were located in the DM region of the OE, whereas OSNs generated at the later stage of development were preferentially located in the VL region of the OE. Conclusions These results indicate that the number of OSNs is sequentially increased from the DM to the VL axis of the OE. Moreover, the temporal sequence of OSN proliferation correlates with that of axonal extension and emergence of glomerular structures in the OB. Thus, we propose that the timing of OSN neurogenesis regulates that of OSN axonal projection and thereby helps preserve the topographic order of the olfactory glomerular map along the dorsal–ventral axis of the OB. Electronic supplementary material The online version of this article (doi:10.1186/s13064-017-0079-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eerdunfu
- Division of Innate Immunity, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | - Naoki Ihara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Bao Ligao
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Haruki Takeuchi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, 113-0033, Japan. .,Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
20
|
Jaafar C, Omais S, Al Lafi S, El Jamal N, Noubani M, Skaf L, Ghanem N. Role of Rb during Neurogenesis and Axonal Guidance in the Developing Olfactory System. Front Mol Neurosci 2016; 9:81. [PMID: 27667971 PMCID: PMC5016521 DOI: 10.3389/fnmol.2016.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/24/2016] [Indexed: 11/19/2022] Open
Abstract
The Retinoblastoma protein, Rb, was shown to regulate distinct aspects of neurogenesis in the embryonic and adult brain besides its primary role in cell cycle control. It is still unknown, however, whether Rb is required for tissue morphogenesis and the establishment of synaptic connections between adjacent tissues during development. We have investigated here the role of Rb during development of the olfactory system (OS), which heavily relies on reciprocal interactions between the olfactory epithelium (OE) and the olfactory bulb (OB). We show that mice carrying a telencephalic-specific deletion of Rb display several neurogenic defects in the OS during late development. In the OE, loss of Rb leads to ectopic proliferation of late-born progenitors (Tuj-1+), abnormal radial migration and terminal maturation of olfactory sensory neurons (OSNs). In the OB, deletion of Rb causes severe lamination defects with loss of clear boundaries between distinct layers. Importantly, starting around E15.5 when OB glomerulogenesis is initiated, many OSNs axons that project along the olfactory nerve layer (ONL) fail to properly innervate the nascent bulb, thus resulting in partial loss of connectivity between OE-OB and gradual neuronal degeneration in both tissues peaking at birth. This deficiency correlates with deregulated expressions of two key chemo-repellant molecules, Robo2/Slit1 and Nrp2/Sema3F that control the formation of dorsal-ventral topographic map of OSNs connections with OB glomeruli. This study highlights a critical requirement for Rb during neurogenesis and the establishment of proper synaptic connections inside the OS during development.
Collapse
Affiliation(s)
- Carine Jaafar
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Saad Omais
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Sawsan Al Lafi
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Nadim El Jamal
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Mohammad Noubani
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Larissa Skaf
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut Beirut, Lebanon
| |
Collapse
|
21
|
Taku AA, Marcaccio CL, Ye W, Krause GJ, Raper JA. Attractant and repellent cues cooperate in guiding a subset of olfactory sensory axons to a well-defined protoglomerular target. Development 2016; 143:123-32. [PMID: 26732841 DOI: 10.1242/dev.127985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target.
Collapse
Affiliation(s)
- Alemji A Taku
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Christina L Marcaccio
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wenda Ye
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Gregory J Krause
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Nishizumi H, Sakano H. Developmental regulation of neural map formation in the mouse olfactory system. Dev Neurobiol 2015; 75:594-607. [PMID: 25649346 DOI: 10.1002/dneu.22268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 11/06/2022]
Abstract
In the mouse olfactory system, various odorants are detected by approximately 1000 different odorant receptors (ORs) expressed in the olfactory sensory neurons (OSNs). It is well established that each OSN expresses only one functional OR gene in a monoallelic manner. Furthermore, OSN axons expressing the same OR converge to a set of glomeruli in the olfactory bulb (OB). During embryonic development, a coarse map is formed by the combination of two genetically programmed processes. One is OR-independent axonal projection along the dorsal-ventral (D-V) axis, and the other is OR-dependent projection along the anterior-posterior (A-P) axis. D-V projection is regulated by the anatomical location of OSNs within the olfactory epithelium (OE), whereas A-P projection is instructed by expressed OR molecules using cyclic adenosine monophosphate (cAMP) signals. After birth, the map is further refined in an activity-dependent manner by its conversion from a continuous to a discrete map through segregation of glomerular structures. Here, we summarize recent progress from our laboratory in understanding neural map formation in the mouse olfactory system.
Collapse
Affiliation(s)
- Hirofumi Nishizumi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hitoshi Sakano
- Department of Brain Function, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| |
Collapse
|
23
|
Locatelli FF, Rela L. Mosaic activity patterns and their relation to perceptual similarity: open discussions on the molecular basis and circuitry of odor recognition. J Neurochem 2014; 131:546-53. [PMID: 25123415 DOI: 10.1111/jnc.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
Abstract
Enormous advances have been made in the recent years in regard to the mechanisms and neural circuits by which odors are sensed and perceived. Part of this understanding has been gained from parallel studies in insects and rodents that show striking similarity in the mechanisms they use to sense, encode, and perceive odors. In this review, we provide a short introduction to the functioning of olfactory systems from transduction of odorant stimuli into electrical signals in sensory neurons to the anatomical and functional organization of the networks involved in neural representation of odors in the central nervous system. We make emphasis on the functional and anatomical architecture of the first synaptic relay of the olfactory circuit, the olfactory bulb in vertebrates and the antennal lobe in insects. We discuss how the exquisite and conserved architecture of this structure is established and how different odors are encoded in mosaic activity patterns. Finally, we discuss the validity of methods used to compare activation patterns in relation to perceptual similarity.
Collapse
Affiliation(s)
- Fernando F Locatelli
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Argentina
| | | |
Collapse
|
24
|
Phenotyping the central nervous system of the embryonic mouse by magnetic resonance microscopy. Neuroimage 2014; 97:95-106. [PMID: 24769183 DOI: 10.1016/j.neuroimage.2014.04.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/07/2014] [Accepted: 04/13/2014] [Indexed: 11/20/2022] Open
Abstract
Genetic mouse models of neurodevelopmental disorders are being massively generated, but technologies for their high-throughput phenotyping are missing. The potential of high-resolution magnetic resonance imaging (MRI) for structural phenotyping has been demonstrated before. However, application to the embryonic mouse central nervous system has been limited by the insufficient anatomical detail. Here we present a method that combines staining of live embryos with a contrast agent together with MR microscopy after fixation, to provide unprecedented anatomical detail at relevant embryonic stages. By using this method we have phenotyped the embryonic forebrain of Robo1/2(-/-) double mutant mice enabling us to identify most of the well-known anatomical defects in these mutants, as well as novel more subtle alterations. We thus demonstrate the potential of this methodology for a fast and reliable screening of subtle structural abnormalities in the developing mouse brain, as those associated to defects in disease-susceptibility genes of neurologic and psychiatric relevance.
Collapse
|
25
|
Ma L, Wu Y, Qiu Q, Scheerer H, Moran A, Yu CR. A developmental switch of axon targeting in the continuously regenerating mouse olfactory system. Science 2014; 344:194-7. [PMID: 24723610 DOI: 10.1126/science.1248805] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mammalian olfactory system has the natural capacity to regenerate throughout the animal's life span. Despite constant neurogenesis, olfactory sensory neurons project to precise, stereotypical positions in the brain. Here, we identify a critical period of olfactory sensory axon targeting during postnatal development in mouse. Perturbing axon projection beyond postnatal day 7 permanently disrupts targeting specificity of the sensory neurons. In addition, we find that the establishment of the convergence map requires perinatal sensory neurons. Late-born neurons appear to connect with prospective glomeruli based on homotypic interactions among neurons expressing the same odorant receptor. Our results reveal a developmental switch in axon guidance and a mechanism of circuit integration of adult-born neurons.
Collapse
Affiliation(s)
- Limei Ma
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
26
|
Neural map formation in the mouse olfactory system. Cell Mol Life Sci 2014; 71:3049-57. [PMID: 24638094 PMCID: PMC4111858 DOI: 10.1007/s00018-014-1597-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/19/2023]
Abstract
In the mouse olfactory system, odorants are detected by ~1,000 different odorant receptors (ORs) produced by olfactory sensory neurons (OSNs). Each OSN expresses only one functional OR species, which is referred to as the “one neuron–one receptor” rule. Furthermore, OSN axons bearing the same OR converge to a specific projection site in the olfactory bulb (OB) forming a glomerular structure, i.e., the “one glomerulus–one receptor” rule. Based on these basic rules, binding signals of odorants detected by OSNs are converted to topographic information of activated glomeruli in the OB. During development, the glomerular map is formed by the combination of two genetically programmed processes: one is OR-independent projection along the dorsal–ventral axis, and the other is OR-dependent projection along the anterior-posterior axis. The map is further refined in an activity-dependent manner during the neonatal period. Here, we summarize recent progress of neural map formation in the mouse olfactory system.
Collapse
|
27
|
Aoki M, Takeuchi H, Nakashima A, Nishizumi H, Sakano H. Possible roles of Robo1+ ensheathing cells in guiding dorsal-zone olfactory sensory neurons in mouse. Dev Neurobiol 2013; 73:828-40. [PMID: 23821580 DOI: 10.1002/dneu.22103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/06/2022]
Abstract
In the mouse olfactory system, the anatomical locations of olfactory sensory neurons (OSNs) correlate with their axonal projection sites along the dorsoventral axis of the olfactory bulb (OB). We have previously reported that Neuropilin-2 expressed by ventral-zone OSNs contributes to the segregation of dorsal and ventral OSN axons, and that Slit is acting as a negative land mark to restrict the projection of Robo2+, early-arriving OSN axons to the embryonic OB. Here, we report that another guidance receptor, Robo1, also plays an important role in guiding OSN axons. Knockout mice for Robo1 demonstrated defects in targeting of OSN axons to the OB. Although Robo1 is colocalized with dorsal-zone OSN axons, it is not produced by OSNs, but instead by olfactory ensheathing cells. These findings indicate a novel strategy of axon guidance in the mouse olfactory system during development.
Collapse
Affiliation(s)
- Mari Aoki
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, 113-0032, Japan
| | | | | | | | | |
Collapse
|
28
|
James G, Foster SR, Key B, Beverdam A. The expression pattern of EVA1C, a novel Slit receptor, is consistent with an axon guidance role in the mouse nervous system. PLoS One 2013; 8:e74115. [PMID: 24040182 PMCID: PMC3767613 DOI: 10.1371/journal.pone.0074115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
The Slit/Robo axon guidance families play a vital role in the formation of neural circuitry within select regions of the developing mouse nervous system. Typically Slits signal through the Robo receptors, however they also have Robo-independent functions. The novel Slit receptor Eva-1, recently discovered in C. elegans, and the human orthologue of which is located in the Down syndrome critical region on chromosome 21, could account for some of these Robo independent functions as well as provide selectivity to Robo-mediated axon responses to Slit. Here we investigate the expression of the mammalian orthologue EVA1C in regions of the developing mouse nervous system which have been shown to exhibit Robo-dependent and -independent responses to Slit. We report that EVA1C is expressed by axons contributing to commissures, tracts and nerve pathways of the developing spinal cord and forebrain. Furthermore it is expressed by axons that display both Robo-dependent and -independent functions of Slit, supporting a role for EVA1C in Slit/Robo mediated neural circuit formation in the developing nervous system.
Collapse
Affiliation(s)
- Gregory James
- School of Biomedical Science, University of Queensland, Brisbane, Australia
| | - Simon R. Foster
- School of Biomedical Science, University of Queensland, Brisbane, Australia
| | - Brian Key
- School of Biomedical Science, University of Queensland, Brisbane, Australia
- * E-mail: (BK); (AB)
| | - Annemiek Beverdam
- School of Biomedical Science, University of Queensland, Brisbane, Australia
- * E-mail: (BK); (AB)
| |
Collapse
|
29
|
James G, Key B, Beverdam A. The E3 ubiquitin ligase Mycbp2 genetically interacts with Robo2 to modulate axon guidance in the mouse olfactory system. Brain Struct Funct 2013; 219:861-74. [PMID: 23525682 DOI: 10.1007/s00429-013-0540-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/09/2013] [Indexed: 11/24/2022]
Abstract
The E3 ubiquitin ligase Mycbp2 and it homologues play an important role in axon guidance and synaptogenesis in Drosophila, Caenorhabditis elegans, zebrafish and mouse. Despite this conserved function, the molecular and cellular basis of Mycbp2-dependent axon guidance remains largely unclear. We have examined here the effect of the loss-of-MYCBP2 function on the topography of the olfactory sensory neuron projection from the nasal cavity to the olfactory bulb in mice. A subpopulation of olfactory sensory axons failed to project to the dorsal surface of the olfactory bulb causing abnormal topography in this neural pathway. These defects were similar to the olfactory bulb phenotype in loss-of-ROBO2 function mice. While mice heterozygous for either Mycbp2 or Robo2 were normal, mice double heterozygous for these two genes produced severe defects in the olfactory system. Therefore, Mycbp2 and Robo2 were found to cooperate within a genetic network that has profound effects on axon guidance. The Mycbp2 phenotype could be partly explained by aberrant patterning of olfactory sensory neurons residing in the dorsal compartment of the nasal cavity. Some of these neurons fail to appropriately express Robo2 which is consistent with their aberrant projection to the ventral olfactory bulb. These results provide the first evidence linking an ubiquitin ligase to an axon guidance receptor during pathfinding in the developing mammalian nervous system.
Collapse
Affiliation(s)
- G James
- Brain Growth and Regeneration Lab, School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | | | | |
Collapse
|
30
|
Lodovichi C, Belluscio L. Odorant receptors in the formation of the olfactory bulb circuitry. Physiology (Bethesda) 2012; 27:200-12. [PMID: 22875451 DOI: 10.1152/physiol.00015.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In mammals, smell is mediated by odorant receptors expressed by sensory neurons in the nose. These specialized receptors are found both on olfactory sensory neurons' cilia and axon terminals. Although the primary function of ciliary odorant receptors is to detect odorants, their axonal role remains unclear but is thought to involve axon guidance. This review discusses findings that show axonal odorant receptors are indeed functional and capable of modulating neural connectivity.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Venetian Institute of Molecular Medicine, and Institute of Neuroscience-CNR, Padua, Italy
| | | |
Collapse
|
31
|
Cariboni A, Andrews WD, Memi F, Ypsilanti AR, Zelina P, Chedotal A, Parnavelas JG. Slit2 and Robo3 modulate the migration of GnRH-secreting neurons. Development 2012; 139:3326-31. [PMID: 22912413 PMCID: PMC3424043 DOI: 10.1242/dev.079418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are born in the nasal placode and migrate along olfactory and vomeronasal axons to reach the forebrain and settle in the hypothalamus, where they control reproduction. The molecular cues that guide their migration have not been fully identified, but are thought to control either cell movement directly or the patterning of their axonal substrates. Using genetically altered mouse models we show that the migration of GnRH neurons is directly modulated by Slit2 and Robo3, members of the axon guidance Slit ligand and Robo receptor families. Mice lacking Slit2 or Robo3 have a reduced number of GnRH neurons in the forebrain, but a normal complement of their supporting axons, pointing to a direct role for these molecules in GnRH neuron migration.
Collapse
Affiliation(s)
- Anna Cariboni
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Miyasaka N, Wanner AA, Li J, Mack-Bucher J, Genoud C, Yoshihara Y, Friedrich RW. Functional development of the olfactory system in zebrafish. Mech Dev 2012; 130:336-46. [PMID: 23010553 DOI: 10.1016/j.mod.2012.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 11/29/2022]
Abstract
The olfactory system has become a popular model to study the function of neuronal circuits and the molecular and cellular mechanisms underlying the development of neurons and their connections. An excellent model to combine studies of function and development is the zebrafish because it not only permits sophisticated molecular and genetic analyses of development, but also functional measurements of neuronal activity patterns in the intact brain. This article reviews insights into the functional development of the olfactory system that have been obtained in zebrafish. The focus is on the specification of olfactory sensory neurons (OSNs), the mechanisms controlling odorant receptor expression and OSN identity, the pathfinding of OSN axons towards target glomeruli in the olfactory bulb (OB), the development of glomeruli and functional topographic maps in the OB, and the development of inhibitory interneurons in the OB.
Collapse
Affiliation(s)
- Nobuhiko Miyasaka
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Cho JH, Kam JWK, Cloutier JF. Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb. Dev Biol 2012; 371:269-79. [PMID: 22981605 DOI: 10.1016/j.ydbio.2012.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/16/2022]
Abstract
Olfactory sensory neurons (OSNs) project their axons to second-order neurons in the olfactory bulb (OB) to form a precise glomerular map and these stereotypic connections are crucial for accurate odorant information processing by animals. To form these connections, olfactory sensory neuron (OSN) axons respond to axon guidance molecules that direct their growth and coalescence. We have previously implicated the axon guidance receptor Robo-2 in the accurate coalescence of OSN axons within the dorsal region of the OB (Cho et al., 2011). Herein, we have examined whether Robo-2 and its ligands, the Slits, contribute to the formation of an accurate glomerular map within more ventral regions of the OB. We have ablated expression of Robo-2 in OSNs and assessed the targeting accuracy of axons expressing either the P2 or MOR28 olfactory receptors, which innervate two different regions of the ventral OB. We show that P2-positive axons, which express Robo-2, coalesce into glomeruli more ventrally and form additional glomeruli in the OB of robo-2(lox/lox);OMP-Cre mice. We also demonstrate that Robo-2-mediated targeting of P2 axons along the dorsoventral axis of the OB is controlled by Slit-1 and Slit-3 expression. Interestingly, although MOR28-positive OSNs only express low levels of Robo-2, a reduced number of MOR28-positive glomeruli is observed in the OB of robo-2(lox/lox);OMP-Cre mice. Taken together, our results demonstrate that Slits and Robo-2 are required for the formation of an accurate glomerular map in the ventral region of the OB.
Collapse
Affiliation(s)
- Jin H Cho
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, Canada H3A 2B4
| | | | | |
Collapse
|
34
|
Morphological phenotypes of olfactory ensheathing cells display different migratory responses upon Slit-2. Exp Cell Res 2012; 318:1889-900. [DOI: 10.1016/j.yexcr.2012.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/11/2012] [Accepted: 05/24/2012] [Indexed: 11/18/2022]
|
35
|
Abstract
Semaphorins are key players in the control of neural circuit development. Recent studies have uncovered several exciting and novel aspects of neuronal semaphorin signalling in various cellular processes--including neuronal polarization, topographical mapping and axon sorting--that are crucial for the assembly of functional neuronal connections. This progress is important for further understanding the many neuronal and non-neuronal functions of semaphorins and for gaining insight into their emerging roles in the perturbed neural connectivity that is observed in some diseases. This Review discusses recent advances in semaphorin research, focusing on novel aspects of neuronal semaphorin receptor regulation and previously unexplored cellular functions of semaphorins in the nervous system.
Collapse
|
36
|
Sokolowski K, Corbin JG. Wired for behaviors: from development to function of innate limbic system circuitry. Front Mol Neurosci 2012; 5:55. [PMID: 22557946 PMCID: PMC3337482 DOI: 10.3389/fnmol.2012.00055] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/04/2012] [Indexed: 12/22/2022] Open
Abstract
The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional, or motivational salience, which includes innate behaviors such as mating, aggression, and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents), and is then processed in the brain by a set of delineated structures that primarily includes the amygdala and hypothalamus. While the basic neuroanatomy of these connections is well-established, much remains unknown about how information is processed within innate circuits and how genetic hierarchies regulate development and function of these circuits. Utilizing innovative technologies including channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent studies have begun to answer these central questions. In this article we review the current understanding of how limbic circuits regulate sexually dimorphic behaviors and how these circuits are established and shaped during pre- and post-natal development. We also discuss how understanding developmental processes of innate circuit formation may inform behavioral alterations observed in neurodevelopmental disorders, such as autism spectrum disorders, which are characterized by limbic system dysfunction.
Collapse
Affiliation(s)
- Katie Sokolowski
- Children's National Medical Center, Center for Neuroscience Research, Children's Research Institute, Washington DC, USA
| | | |
Collapse
|
37
|
Supernumerary formation of olfactory glomeruli induced by chronic odorant exposure: a constructivist expression of neural plasticity. PLoS One 2012; 7:e35358. [PMID: 22511987 PMCID: PMC3325210 DOI: 10.1371/journal.pone.0035358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/14/2012] [Indexed: 12/18/2022] Open
Abstract
It is accepted that sensory experience instructs the remodelling of neuronal circuits during postnatal development, after their specification has occurred. The story is less clear with regard to the role of experience during the initial formation of neuronal circuits, whether prenatal or postnatal, since this process is now supposed to be primarily influenced by genetic determinants and spontaneous neuronal firing. Here we evaluated this last issue by examining the effect that postnatal chronic exposure to cognate odorants has on the formation of I7 and M72 glomeruli, iterated olfactory circuits that are formed before and after birth, respectively. We took advantage of double knock-in mice whose I7 and M72 primary afferents express green fluorescent protein and β-galactosidase, correspondingly. Our results revealed that postnatal odorant chronic exposure led to the formation of permanent supernumerary I7 and M72 glomeruli in a dose and time dependent manner. Glomeruli in exposed mice were formed within the same regions of olfactory bulb and occupy small space volumes compared to the corresponding single circuits in non-exposed mice. We suggest that local reorganization of the primary afferents could participate in the process of formation of supernumerary glomeruli. Overall, our results support that sensory experience indeed instructs the permanent formation of specific glomeruli in the mouse olfactory bulb by means of constructivist processes.
Collapse
|
38
|
Imai T, Sakano H. Axon-axon interactions in neuronal circuit assembly: lessons from olfactory map formation. Eur J Neurosci 2012; 34:1647-54. [PMID: 22103421 DOI: 10.1111/j.1460-9568.2011.07817.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During the development of the nervous system, neurons often connect axons and dendrites over long distances, which are navigated by chemical cues. During the past few decades, studies on axon guidance have focused on chemical cues provided by the axonal target or intermediate target. However, recent studies have shed light on the roles and mechanisms underlying axon-axon interactions during neuronal circuit assembly. The roles of axon-axon interactions are best exemplified in recent studies on olfactory map formation in vertebrates. Pioneer-follower interaction is essential for the axonal pathfinding process. Pre-target axon sorting establishes the anterior-posterior map order. The temporal order of axonal projection is converted to dorsal-ventral topography with the aid of secreted molecules provided by early-arriving axons. An activity-dependent process to form a discrete map also depends on axon sorting. Thus, an emerging principle of olfactory map formation is the 'self-organisation' of axons rather than the 'lock and key' matching between axons and targets. In this review, we discuss how axon-axon interactions contribute to neuronal circuit assembly.
Collapse
Affiliation(s)
- Takeshi Imai
- Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|
39
|
Bielle F, Marcos-Mondéjar P, Leyva-Díaz E, Lokmane L, Mire E, Mailhes C, Keita M, García N, Tessier-Lavigne M, Garel S, López-Bendito G. Emergent growth cone responses to combinations of Slit1 and Netrin 1 in thalamocortical axon topography. Curr Biol 2011; 21:1748-55. [PMID: 22000108 DOI: 10.1016/j.cub.2011.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/12/2011] [Accepted: 09/01/2011] [Indexed: 02/04/2023]
Abstract
How guidance cues are integrated during the formation of complex axonal tracts remains largely unknown. Thalamocortical axons (TCAs), which convey sensory and motor information to the neocortex, have a rostrocaudal topographic organization initially established within the ventral telencephalon [1-3]. Here, we show that this topography is set in a small hub, the corridor, which contains matching rostrocaudal gradients of Slit1 and Netrin 1. Using in vitro and in vivo experiments, we show that Slit1 is a rostral repellent that positions intermediate axons. For rostral axons, although Slit1 is also repulsive and Netrin 1 has no chemotactic activity, the two factors combined generate attraction. These results show that Slit1 has a dual context-dependent role in TCA pathfinding and furthermore reveal that a combination of cues produces an emergent activity that neither of them has alone. Our study thus provides a novel framework to explain how a limited set of guidance cues can generate a vast diversity of axonal responses necessary for proper wiring of the nervous system.
Collapse
|
40
|
Abstract
Odor signals received by odorant receptors (ORs) expressed by olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) are represented as an odor map in the olfactory bulb (OB). In the mouse, there are ~1,000 different OR species, and each OSN expresses only one functional OR gene in a monoallelic manner. Furthermore, OSN axons expressing the same type of OR converge on a specific target site in the OB, forming a glomerular structure. Because each glomerulus represents a single OR species, and a single odorant can interact with multiple OR species, odor signals received in the OE are converted into a topographic map of multiple glomeruli activated with varying magnitudes. Here we review recent progress in the study of the mammalian olfactory system, focusing on the formation of the olfactory map and the transmission of topographical information in the OB to the olfactory cortex to elicit various behaviors.
Collapse
Affiliation(s)
- Kensaku Mori
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
41
|
Huang ZH, Wang Y, Su ZD, Geng JG, Chen YZ, Yuan XB, He C. Slit-2 repels the migration of olfactory ensheathing cells by triggering Ca2+-dependent cofilin activation and RhoA inhibition. J Cell Sci 2011; 124:186-97. [PMID: 21187345 DOI: 10.1242/jcs.071357] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Olfactory ensheathing cells (OECs) migrate from the olfactory epithelium towards the olfactory bulb during development. However, the guidance mechanism for OEC migration remains a mystery. Here we show that migrating OECs expressed the receptor of the repulsive guidance factor Slit-2. A gradient of Slit-2 in front of cultured OECs first caused the collapse of the leading front, then the reversal of cell migration. These Slit-2 effects depended on the Ca(2+) release from internal stores through inositol (1,4,5)-triphosphate receptor channels. Interestingly, in response to Slit-2 stimulation, collapse of the leading front required the activation of the F-actin severing protein cofilin in a Ca(2+)-dependent manner, whereas the subsequent reversal of the soma migration depended on the reversal of RhoA activity across the cell. Finally, the Slit-2-induced repulsion of cell migration was fully mimicked by co-application of inhibitors of F-actin polymerization and RhoA kinase. Our findings revealed Slit-2 as a repulsive guidance factor for OEC migration and an unexpected link between Ca(2+) and cofilin signaling during Slit-2-triggered repulsion.
Collapse
Affiliation(s)
- Zhi-Hui Huang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
AbstractThe olfactory system represents a perfect model to study the interactions between the central and peripheral nervous systems in order to establish a neural circuit during early embryonic development. In addition, another important feature of this system is the capability to integrate new cells generated in two neurogenic zones: the olfactory epithelium in the periphery and the wall of the lateral ventricles in the CNS, both during development and adulthood. In all these processes the combination and sequence of specific molecular signals plays a critical role in the wiring of the olfactory axons, as well as the precise location of the incoming cell populations to the olfactory bulb. The purpose of this review is to summarize recent insights into the cellular and molecular events that dictate cell settling position and axonal trajectories from their origin in the olfactory placode to the formation of synapses in the olfactory bulb to ensure rapid and reliable transmission of olfactory information from the nose to the brain.
Collapse
|
43
|
Abstract
The olfactory system detects and discriminates myriad chemical structures across a wide range of concentrations. To meet this task, the system utilizes a large family of G protein–coupled receptors—the odorant receptors—which are the chemical sensors underlying the perception of smell. Interestingly, the odorant receptors are also involved in a number of developmental decisions, including the regulation of their own expression and the patterning of the olfactory sensory neurons' synaptic connections in the brain. This review will focus on the diverse roles of the odorant receptor in the function and development of the olfactory system.
Collapse
Affiliation(s)
- Shannon DeMaria
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
44
|
Abstract
Odor signals received by odorant receptors (ORs) in the olfactory epithelium are represented as an odor map of activated glomeruli in the olfactory bulb. In the mouse olfactory system, it appears that much of axon pathfinding and sorting occurs autonomously by olfactory neuron axons. Here, we review the recent progress on the study of olfactory map formation in rodents. We will discuss how neuronal identity is represented at axon termini and how the OR-instructed axonal projection is regulated.
Collapse
Affiliation(s)
- Hitoshi Sakano
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
45
|
Takeuchi H, Inokuchi K, Aoki M, Suto F, Tsuboi A, Matsuda I, Suzuki M, Aiba A, Serizawa S, Yoshihara Y, Fujisawa H, Sakano H. Sequential arrival and graded secretion of Sema3F by olfactory neuron axons specify map topography at the bulb. Cell 2010; 141:1056-67. [PMID: 20550939 DOI: 10.1016/j.cell.2010.04.041] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/12/2010] [Accepted: 03/29/2010] [Indexed: 11/25/2022]
Abstract
In the mouse olfactory system, the anatomical locations of olfactory sensory neurons (OSNs) roughly correlate with their axonal projection sites along the dorsal-ventral (D-V) axis of the olfactory bulb (OB). Here we report that an axon guidance receptor, Neuropilin-2 (Nrp2), and its repulsive ligand, Semaphorin-3F (Sema3F), are expressed by OSNs in a complementary manner that is important for establishing olfactory map topography. Sema3F is secreted by early-arriving axons of OSNs and is deposited at the anterodorsal OB to repel Nrp2-positive axons that arrive later. Sequential arrival of OSN axons as well as the graded and complementary expression of Nrp2 and Sema3F by OSNs help to form the topographic order along the D-V axis.
Collapse
Affiliation(s)
- Haruki Takeuchi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Imai T, Sakano H, Vosshall LB. Topographic mapping--the olfactory system. Cold Spring Harb Perspect Biol 2010; 2:a001776. [PMID: 20554703 DOI: 10.1101/cshperspect.a001776] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sensory systems must map accurate representations of the external world in the brain. Although the physical senses of touch and vision build topographic representations of the spatial coordinates of the body and the field of view, the chemical sense of olfaction maps discontinuous features of chemical space, comprising an extremely large number of possible odor stimuli. In both mammals and insects, olfactory circuits are wired according to the convergence of axons from sensory neurons expressing the same odorant receptor. Synapses are organized into distinctive spherical neuropils--the olfactory glomeruli--that connect sensory input with output neurons and local modulatory interneurons. Although there is a strong conservation of form in the olfactory maps of mammals and insects, they arise using divergent mechanisms. Olfactory glomeruli provide a unique solution to the problem of mapping discontinuous chemical space onto the brain.
Collapse
Affiliation(s)
- Takeshi Imai
- The University of Tokyo, Graduate School of Science, Department of Biophysics and Biochemistry, Yayoi 2-11-16, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
47
|
Ypsilanti AR, Zagar Y, Chédotal A. Moving away from the midline: new developments for Slit and Robo. Development 2010; 137:1939-52. [DOI: 10.1242/dev.044511] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most tissues, the precise control of cell migration and cell-cell interaction is of paramount importance to the development of a functional structure. Several families of secreted molecules have been implicated in regulating these aspects of development, including the Slits and their Robo receptors. These proteins have well described roles in axon guidance but by influencing cell polarity and adhesion, they participate in many developmental processes in diverse cell types. We review recent progress in understanding both the molecular mechanisms that modulate Slit/Robo expression and their functions in neural and non-neural tissue.
Collapse
Affiliation(s)
- Athena R. Ypsilanti
- INSERM, U968, Paris F-75012, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 17 rue Moreau, Paris F-75012, France
- CNRS, UMR_7210, Paris F-75012, France
| | - Yvrick Zagar
- INSERM, U968, Paris F-75012, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 17 rue Moreau, Paris F-75012, France
- CNRS, UMR_7210, Paris F-75012, France
| | - Alain Chédotal
- INSERM, U968, Paris F-75012, France
- UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 17 rue Moreau, Paris F-75012, France
- CNRS, UMR_7210, Paris F-75012, France
| |
Collapse
|
48
|
Takahashi H, Yoshihara SI, Nishizumi H, Tsuboi A. Neuropilin-2 is required for the proper targeting of ventral glomeruli in the mouse olfactory bulb. Mol Cell Neurosci 2010; 44:233-45. [PMID: 20363325 DOI: 10.1016/j.mcn.2010.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/19/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022] Open
Abstract
Recent evidence shows that olfactory sensory neurons expressing a given odorant receptor (OR) are not necessarily confined to one of four zones, rather arranged in an overlapping manner in the olfactory epithelium (OE). In this study, in situ hybridization of OE sections with the OR probes indicated that the OR genes, the mRNAs of which were detected in an array of glomeruli on olfactory bulb (OB) along the anterodorsal/posteroventral (AD/PV) axis, are expressed in subareal zones within the most ventral zone, zone 4, along the dorsomedial/ventrolateral (DM/VL) axis. We also found that Neuropilin-2 (Nrp2) is expressed in a DM-low to VL-high gradient within zone 4 of OE. Furthermore, in Nrp2 mutant mice, we observed multiple glomeruli for zone 4 ORs in OB. These results suggest that the graded expression of Nrp2 in OE is required for the proper targeting of ventral glomeruli along the AD/PV axis in OB.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Laboratory for Molecular Biology of Neural System, Advanced Medical Research Center, Nara Medical University, Nara, Japan
| | | | | | | |
Collapse
|
49
|
de Castro F. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Front Neurosci 2009; 3:52. [PMID: 20582279 PMCID: PMC2858608 DOI: 10.3389/neuro.22.004.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022] Open
Abstract
Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc.) and secreted mechanisms (semaphorins, slits, growth factors, etc.) are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB) and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors) have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex) remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| |
Collapse
|
50
|
Segura I, De Smet F, Hohensinner PJ, Ruiz de Almodovar C, Carmeliet P. The neurovascular link in health and disease: an update. Trends Mol Med 2009; 15:439-51. [PMID: 19801203 DOI: 10.1016/j.molmed.2009.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 02/02/2023]
Abstract
Although the nervous and vascular systems are functionally different, they show a high degree of anatomic parallelism and cross-talk. They also share similar mechanisms and molecular cues that regulate their development and maintenance. Malfunctioning of this cross-talk can cause or influence several vascular and neuronal disorders. In this review, we first provide a brief overview of the molecular and cellular mechanisms that govern the neurovascular link. Second, we focus on two neurodegenerative diseases, Alzheimer's disease and amyotrophic lateral sclerosis, to illustrate how a defective neurovascular link might contribute to their pathogenesis. Finally, we briefly discuss some therapeutic implications of the neurovascular link for designing strategies to treat these diseases.
Collapse
|