1
|
Jung-Kc K, Tristán-Noguero A, Altankhuyag A, Piñol Belenguer D, Prestegård KS, Fernandez-Carasa I, Colini Baldeschi A, Sigatulina Bondarenko M, García-Cazorla A, Consiglio A, Martinez A. Tetrahydrobiopterin (BH 4) treatment stabilizes tyrosine hydroxylase: Rescue of tyrosine hydroxylase deficiency phenotypes in human neurons and in a knock-in mouse model. J Inherit Metab Dis 2024; 47:494-508. [PMID: 38196161 DOI: 10.1002/jimd.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Proteostatic regulation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis, is crucial for maintaining proper brain neurotransmitter homeostasis. Variants of the TH gene are associated with tyrosine hydroxylase deficiency (THD), a rare disorder with a wide phenotypic spectrum and variable response to treatment, which affects protein stability and may lead to accelerated degradation, loss of TH function and catecholamine deficiency. In this study, we investigated the effects of the TH cofactor tetrahydrobiopterin (BH4) on the stability of TH in isolated protein and in DAn- differentiated from iPSCs from a human healthy subject, as well as from THD patients with the R233H variant in homozygosity (THDA) and R328W and T399M variants in heterozygosity (THDB). We report an increase in TH and dopamine levels, and an increase in the number of TH+ cells in control and THDA cells. To translate this in vitro effect, we treated with BH4 a knock-in THD mouse model with Th variant corresponding to R233H in patients. Importantly, treatment with BH4 significantly improved motor function in these mice, as demonstrated by increased latency on the rotarod test and improved horizontal activity (catalepsy). In conclusion, our study demonstrates the stabilizing effects of BH4 on TH protein levels and function in THD neurons and mice, rescuing disease phenotypes and improving motor outcomes. These findings highlight the therapeutic potential of BH4 as a treatment option for THDA patients with specific variants and provide insights into the modulation of TH stability and its implications for THD management.
Collapse
Affiliation(s)
- Kunwar Jung-Kc
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Alba Tristán-Noguero
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Molecular Physiology of the Synapse, Institut de Recerca Sant Pau (IR Sant Pau), Universitat Autònoma Barcelona, Barcelona, Spain
| | | | - David Piñol Belenguer
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | | | - Irene Fernandez-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Arianna Colini Baldeschi
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Maria Sigatulina Bondarenko
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Angeles García-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica En Red Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Sikiric P, Boban Blagaic A, Strbe S, Beketic Oreskovic L, Oreskovic I, Sikiric S, Staresinic M, Sever M, Kokot A, Jurjevic I, Matek D, Coric L, Krezic I, Tvrdeic A, Luetic K, Batelja Vuletic L, Pavic P, Mestrovic T, Sjekavica I, Skrtic A, Seiwerth S. The Stable Gastric Pentadecapeptide BPC 157 Pleiotropic Beneficial Activity and Its Possible Relations with Neurotransmitter Activity. Pharmaceuticals (Basel) 2024; 17:461. [PMID: 38675421 PMCID: PMC11053547 DOI: 10.3390/ph17040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as such) and its possible relations with neurotransmitter activity. We attempt to resolve the shortage of the pleiotropic beneficial effects of BPC 157, given the general standard neurotransmitter criteria, in classic terms. We substitute the lack of direct conclusive evidence (i.e., production within the neuron or present in it as a precursor molecule, released eliciting a response on the receptor on the target cells on neurons and being removed from the site of action once its signaling role is complete). This can be a network of interconnected evidence, previously envisaged in the implementation of the cytoprotection effects, consistent beneficial particular evidence that BPC 157 therapy counteracts dopamine, serotonin, glutamate, GABA, adrenalin/noradrenalin, acetylcholine, and NO-system disturbances. This specifically includes counteraction of those disturbances related to their receptors, both blockade and over-activity, destruction, depletion, tolerance, sensitization, and channel disturbances counteraction. Likewise, BPC 157 activates particular receptors (i.e., VGEF and growth hormone). Furthermore, close BPC 157/NO-system relations with the gasotransmitters crossing the cell membrane and acting directly on molecules inside the cell may envisage particular interactions with receptors on the plasma membrane of their target cells. Finally, there is nerve-muscle relation in various muscle disturbance counteractions, and nerve-nerve relation in various encephalopathies counteraction, which is also exemplified specifically by the BPC 157 therapy application.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Danijel Matek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Kresimir Luetic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Pavic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Mestrovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivica Sjekavica
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Ike KGO, Lamers SJC, Kaim S, de Boer SF, Buwalda B, Billeter JC, Kas MJH. The human neuropsychiatric risk gene Drd2 is necessary for social functioning across evolutionary distant species. Mol Psychiatry 2024; 29:518-528. [PMID: 38114631 PMCID: PMC11116113 DOI: 10.1038/s41380-023-02345-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
The Drd2 gene, encoding the dopamine D2 receptor (D2R), was recently indicated as a potential target in the etiology of lowered sociability (i.e., social withdrawal), a symptom of several neuropsychiatric disorders such as Schizophrenia and Major Depression. Many animal species show social withdrawal in response to stimuli, including the vinegar fly Drosophila melanogaster and mice, which also share most human disease-related genes. Here we will test for causality between Drd2 and sociability and for its evolutionary conserved function in these two distant species, as well as assess its mechanism as a potential therapeutic target. During behavioral observations in groups of freely interacting D. melanogaster, Drd2 homologue mutant showed decreased social interactions and locomotor activity. After confirming Drd2's social effects in flies, conditional transgenic mice lacking Drd2 in dopaminergic cells (autoreceptor KO) or in serotonergic cells (heteroreceptor KO) were studied in semi-natural environments, where they could freely interact. Autoreceptor KOs showed increased sociability, but reduced activity, while no overall effect of Drd2 deletion was observed in heteroreceptor KOs. To determine acute effects of D2R signaling on sociability, we also showed that a direct intervention with the D2R agonist Sumanirole decreased sociability in wild type mice, while the antagonist showed no effects. Using a computational ethological approach, this study demonstrates that Drd2 regulates sociability across evolutionary distant species, and that activation of the mammalian D2R autoreceptor, in particular, is necessary for social functioning.
Collapse
Affiliation(s)
- Kevin G O Ike
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Sanne J C Lamers
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Soumya Kaim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Sietse F de Boer
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Bauke Buwalda
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Brie B, Sarmento-Cabral A, Pascual F, Cordoba-Chacon J, Kineman RD, Becu-Villalobos D. Modifications of the GH Axis Reveal Unique Sexually Dimorphic Liver Signatures for Lcn13, Asns, Hamp2, Hao2, and Pgc1a. J Endocr Soc 2024; 8:bvae015. [PMID: 38370444 PMCID: PMC10872697 DOI: 10.1210/jendso/bvae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 02/20/2024] Open
Abstract
Growth hormone (GH) modifies liver gene transcription in a sexually dimorphic manner to meet liver metabolic demands related to sex; thus, GH dysregulation leads to sex-biased hepatic disease. We dissected the steps of the GH regulatory cascade modifying GH-dependent genes involved in metabolism, focusing on the male-predominant genes Lcn13, Asns, and Cyp7b1, and the female-predominant genes Hao2, Pgc1a, Hamp2, Cyp2a4, and Cyp2b9. We explored mRNA expression in 2 settings: (i) intact liver GH receptor (GHR) but altered GH and insulin-like growth factor 1 (IGF1) levels (NeuroDrd2KO, HiGH, aHepIGF1kd, and STAT5bCA mouse lines); and (ii) liver loss of GHR, with or without STAT5b reconstitution (aHepGHRkd, and aHepGHRkd + STAT5bCA). Lcn13 was downregulated in males in most models, while Asns and Cyp7b1 were decreased in males by low GH levels or action, or constant GH levels, but unexpectedly upregulated in both sexes by the loss of liver Igf1 or constitutive Stat5b expression. Hao, Cyp2a4, and Cyp2b9 were generally decreased in female mice with low GH levels or action (NeuroDrd2KO and/or aHepGHRkd mice) and increased in HiGH females, while in contrast, Pgc1a was increased in female NeuroDrd2KO but decreased in STAT5bCA and aHepIGF1kd females. Bioinformatic analysis of RNAseq from aHepGHRkd livers stressed the greater impact of GHR loss on wide gene expression in males and highlighted that GH modifies almost completely different gene signatures in each sex. Concordantly, we show that altering different steps of the GH cascade in the liver modified liver expression of Lcn13, Asns, Cyp7b1, Hao2, Hamp2, Pgc1a, Cyp2a4, and Cyp2b9 in a sex- and gene-specific manner.
Collapse
Affiliation(s)
- Belen Brie
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Andre Sarmento-Cabral
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Florencia Pascual
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Jose Cordoba-Chacon
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rhonda Denise Kineman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| |
Collapse
|
5
|
Mallien AS, Brandwein C, Vasilescu AN, Leenaars C, Bleich A, Inta D, Hirjak D, Gass P. A systematic scoping review of rodent models of catatonia: Clinical correlations, translation and future approaches. Schizophr Res 2024; 263:109-121. [PMID: 37524635 DOI: 10.1016/j.schres.2023.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Catatonia is a psychiatric disorder, which subsumes a plethora of affective, motor and behavioral symptoms. In the last two decades, the number of behavioral and neuroimaging studies on catatonia has steadily increased. The majority of behavioral and neuroimaging studies in psychiatric patients suggested aberrant higher-order frontoparietal networks which, on the biochemical level, are insufficiently modulated by gamma-aminobutyric acid (GABA)-ergic and glutamatergic transmission. However, the pathomechanisms of catatonic symptoms have rarely been studied using rodent models. Here, we performed a scoping review of literature available on PubMed for studies on rodent models of catatonia. We sought to identify what we could learn from pre-clinical animal models of catatonia-like symptoms, their underlying neuronal correlates, and the complex molecular (i.e. genes and neurotransmitter) mechanisms by which its modulation exerts its effects. What becomes evident is that although many transgenic models present catatonia-like symptoms, they have not been used to better understand the pathophysiological mechanisms underlying catatonia so far. However, the identified neuronal correlates of catatonia-like symptoms correlate to a great extent with findings from neuroscience research in psychiatric patients. This points us towards fundamental cortical-striatal-thalamocortical and associated networks modulated by white matter inflammation as well as aberrant dopaminergic, GABAergic, and glutamatergic neurotransmission that is involved in catatonia. Therefore, this scoping review opens up the possibility of finally using transgenic models to help with identifying novel target mechanisms for the development of new drugs for the treatment of catatonia.
Collapse
Affiliation(s)
- Anne S Mallien
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Christiane Brandwein
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andrei-Nicolae Vasilescu
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany; Department for Health Evidence, Radboud University Medical Centre, 6600 Nijmegen, The Netherlands
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Dragos Inta
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Li Y, Tan Y, Ren L, Li Q, Sui J, Liu S. Structural and expression analysis of the dopamine receptors reveals their crucial roles in regulating the insulin signaling pathway in oysters. Int J Biol Macromol 2023; 247:125703. [PMID: 37414315 DOI: 10.1016/j.ijbiomac.2023.125703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Dopamine performs its critical role upon binding to receptors. Since dopamine receptors are numerous and versatile, understanding their protein structures and evolution status, and identifying the key receptors involved in the modulation of insulin signaling will provide essential clues to investigate the molecular mechanism of neuroendocrine regulating the growth in invertebrates. In this study, seven dopamine receptors were identified in the Pacific oysters (Crassostrea gigas) and were classified into four subtypes according to their protein secondary and tertiary structures, and ligand-binding activities. Of which, DR2 (dopamine receptor 2) and D(2)RA-like (D(2) dopamine receptor A-like) were considered the invertebrate-specific type 1 and type 2 dopamine receptors, respectively. Expression analysis indicated that the DR2 and D(2)RA-like were highly expressed in the fast-growing oyster "Haida No.1". After in vitro incubation of ganglia and adductor muscle with exogenous dopamine and dopamine receptor antagonists, the expression of these two dopamine receptors and ILPs (insulin-like peptides) was also significantly affected. Dual-fluorescence in situ hybridization results showed that D(2)RA-like and DR2 were co-localized with MIRP3 (molluscan insulin-related peptide 3) and MIRP3-like (molluscan insulin-related peptide 3-like) in the visceral ganglia, and were co-localized with ILP (insulin-like peptide) in the adductor muscle. Furthermore, the downstream components of dopamine signaling, including PKA, ERK, CREB, CaMKK1, AKT, and GSK3β were also significantly affected by the exogenous dopamine and dopamine receptor antagonists. These findings confirmed that dopamine might affect the secretion of ILPs through the invertebrate-specific dopamine receptors D(2)RA-like and DR2, and thus played crucial roles in the growth regulation of the Pacific oysters. Our study establishes the potential regulatory relationship between the dopaminergic system and insulin-like signaling pathway in marine invertebrates.
Collapse
Affiliation(s)
- Yongjing Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ying Tan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Liting Ren
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
7
|
Han Q, Yan X, Ye Y, Han L, Ma X, Wang T, Cao D, Zhang WJ. ZBTB20 Regulates Prolactin Expression and Lactotrope Function in Adult Mice. Endocrinology 2022; 163:6775161. [PMID: 36288554 DOI: 10.1210/endocr/bqac181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/19/2022]
Abstract
Lactotropes are prolactin (PRL)-secreting endocrine cells in the anterior pituitary. We have established the zinc finger protein ZBTB20 as an essential transcription factor for lactotrope specification, the disruption of which results in complete loss of lactotropes in mice. However, the potential role of ZBTB20 in mature lactotropes remains unclear. Here we demonstrate that ZBTB20 acts as a critical cell-autonomous regulator for PRL expression in mature lactotropes in adult mice. Via a CRISPR/Cas9 approach, we first generated a tamoxifen-inducible Prl-CreER knockin mouse line that could efficiently mediate gene recombination specifically in lactotropes. Conditional deletion of the Zbtb20 gene specifically in mature lactotropes at adulthood led to a substantial decrease in PRL levels both in the pituitary and in plasma, without significant alterations of lactotrope relative density in the pituitary from male or female mice. Furthermore, conditional disruption of Zbtb20 in adult female mice did not significantly change pregnancy-elicited lactotrope expansion, but caused an impaired mammary gland expansion and lactation due to the PRL defect. Thus, our data point to an important role of ZBTB20 in regulating PRL expression and lactotrope function at adulthood.
Collapse
Affiliation(s)
- Qing Han
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Xuede Yan
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Yufei Ye
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Linhui Han
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Xianhua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Ting Wang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Dongmei Cao
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Weiping J Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| |
Collapse
|
8
|
dos Santos WO, Wasinski F, Tavares MR, Campos AMP, Elias CF, List EO, Kopchick JJ, Szawka RE, Donato J. Ablation of Growth Hormone Receptor in GABAergic Neurons Leads to Increased Pulsatile Growth Hormone Secretion. Endocrinology 2022; 163:6634255. [PMID: 35803590 PMCID: PMC9302893 DOI: 10.1210/endocr/bqac103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) acts in several hypothalamic neuronal populations to modulate metabolism and the autoregulation of GH secretion via negative-feedback loops. However, few studies have investigated whether GH receptor (GHR) expression in specific neuronal populations is required for the homeostatic control of GH secretion and energy homeostasis. In the present study, we investigated the consequences of the specific GHR ablation in GABAergic (VGAT-expressing) or glutamatergic (VGLUT2-expressing) cells. GHR ablation in GABAergic neurons led to increased GH secretion, lean mass, and body growth in male and female mice. VGAT-specific GHR knockout (KO) male mice also showed increased serum insulin-like growth factor-1, hypothalamic Ghrh, and hepatic Igf1 messenger RNA levels. In contrast, normal GH secretion, but reduced lean body mass, was observed in mice carrying GHR ablation in glutamatergic neurons. GHR ablation in GABAergic cells increased weight loss and led to decreased blood glucose levels during food restriction, whereas VGLUT2-specific GHR KO mice showed blunted feeding response to 2-deoxy-D-glucose both in males and females, and increased relative food intake, oxygen consumption, and serum leptin levels in male mice. Of note, VGLUT2-cre female mice, independently of GHR ablation, exhibited a previously unreported phenotype of mild reduction in body weight without further metabolic alterations. The autoregulation of GH secretion via negative-feedback loops requires GHR expression in GABAergic cells. Furthermore, GHR ablation in GABAergic and glutamatergic neuronal populations leads to distinct metabolic alterations. These findings contribute to the understanding of the neuronal populations responsible for mediating the neuroendocrine and metabolic effects of GH.
Collapse
Affiliation(s)
- Willian O dos Santos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Frederick Wasinski
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Mariana R Tavares
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Ana M P Campos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, 48109-5622, USA
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Jose Donato
- Correspondence: Jose Donato Jr, PhD, Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo, 05508-000, Brazil.
| |
Collapse
|
9
|
Saari L, Backman EA, Wahlsten P, Gardberg M, Kaasinen V. Height and nigral neuron density in Parkinson's disease. BMC Neurol 2022; 22:254. [PMID: 35820861 PMCID: PMC9277822 DOI: 10.1186/s12883-022-02775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background The dopaminergic system modulates growth hormone secretion and previous results have suggested a link between short stature and an increased risk of Parkinson’s disease (PD). Methods In 36 Lewy body spectrum disease (LBD) cases (PD = 22) and 19 controls, nigral TH-positive neuron densities were measured postmortem from midbrain sections and corrected with the Abercrombie method. Body measurements were collected from autopsies or patient records. Our aim was to investigate the possible relationship between height and the density of neurons in the substantia nigra pars compacta (SNc). Results SNc neuron density (n/mm2) had an inverse association with height, (R2 = 0.317, p < 0.0001) in patients. The association was not explained by weight, age, sex, brain weight, medication, or disease motor severity. The association was also separately observed in patients with PD (n = 22), but not in subjects who died without diagnosed neurological diseases. Conclusions Individual adult height may be connected to nigral neuron numbers in patients with LBDs, including PD.
Collapse
Affiliation(s)
- Laura Saari
- Clinical Neurosciences, Faculty of Medicine, University of Turku, Turku, Finland. .,Neurocenter, Turku University Hospital, Turku, Finland.
| | - Emmilotta A Backman
- Clinical Neurosciences, Faculty of Medicine, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Pia Wahlsten
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Southwest Finland region, Helsinki, Finland
| | - Maria Gardberg
- Department of Pathology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Valtteri Kaasinen
- Clinical Neurosciences, Faculty of Medicine, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
10
|
Penn DJ, Zala SM, Luzynski KC. Regulation of Sexually Dimorphic Expression of Major Urinary Proteins. Front Physiol 2022; 13:822073. [PMID: 35431992 PMCID: PMC9008510 DOI: 10.3389/fphys.2022.822073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Male house mice excrete large amounts of protein in their urinary scent marks, mainly composed of Major Urinary Proteins (MUPs), and these lipocalins function as pheromones and pheromone carriers. Here, we review studies on sexually dimorphic MUP expression in house mice, including the proximate mechanisms controlling MUP gene expression and their adaptive functions. Males excrete 2 to 8 times more urinary protein than females, though there is enormous variation in gene expression across loci in both sexes. MUP expression is dynamically regulated depending upon a variety of factors. Males regulate MUP expression according to social status, whereas females do not, and males regulate expression depending upon health and condition. Male-biased MUP expression is regulated by pituitary secretion of growth hormone (GH), which binds receptors in the liver, activating the JAK2-STAT5 signaling pathway, chromatin accessibility, and MUP gene transcription. Pulsatile male GH secretion is feminized by several factors, including caloric restriction, microbiota depletion, and aging, which helps explain condition-dependent MUP expression. If MUP production has sex-specific fitness optima, then this should generate sexual antagonism over allelic expression (intra-locus sexual conflict) selectively favoring sexually dimorphic expression. MUPs influence the sexual attractiveness of male urinary odor and increased urinary protein excretion is correlated with the reproductive success of males but not females. This finding could explain the selective maintenance of sexually dimorphic MUP expression. Producing MUPs entails energetic costs, but increased excretion may reduce the net energetic costs and predation risks from male scent marking as well as prolong the release of chemical signals. MUPs may also provide physiological benefits, including regulating metabolic rate and toxin removal, which may have sex-specific effects on survival. A phylogenetic analysis on the origins of male-biased MUP gene expression in Mus musculus suggests that this sexual dimorphism evolved by increasing male MUP expression rather than reducing female expression.
Collapse
Affiliation(s)
- Dustin J. Penn
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | |
Collapse
|
11
|
Lopez-Vicchi F, De Winne C, Ornstein AM, Sorianello E, Toneatto J, Becu-Villalobos D. Severe Hyperprolactinemia Promotes Brown Adipose Tissue Whitening and Aggravates High Fat Diet Induced Metabolic Imbalance. Front Endocrinol (Lausanne) 2022; 13:883092. [PMID: 35757410 PMCID: PMC9226672 DOI: 10.3389/fendo.2022.883092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The association of high serum prolactin and increased body weight is positive but controversial, therefore we hypothesized that additional factors such as diets and the impact of prolactin on brown adipose tissue may condition its metabolic effects. METHODS We used LacDrd2KO females with lifelong severe hyperprolactinemia due dopamine-D2 receptor deletion from lactotropes, and slow onset of metabolic disturbances, and compared them to their respective controls (Drd2 loxP/loxP ). Food intake, and binge eating was evaluated. We then challenged mice with a High Fat (HFD) or a Control Diet (CD) for 8 weeks, beginning at 3 months of age, when no differences in body weight are found between genotypes. At the end of the protocol brown and white adipose tissues were weighed, and thermogenic and lipogenic markers studied, using real time PCR (Ucp1, Cidea, Pgc1a, Lpl, adiponectin, Prlr) or immunohistochemistry (UCP1). Histochemical analysis of brown adipose tissue, and glucose tolerance tests were performed. RESULTS Hyperprolactinemic mice had increased food intake and binge eating behavior. Metabolic effects induced by a HFD were exacerbated in lacDrd2KO mice. Hyperprolactinemia aggravated HFD-induced body weight gain and glucose intolerance. In brown adipose tissue pronounced cellular whitening as well as decreased expression of the thermogenic markers Ucp1 and Pgc1a were observed in response to high prolactin levels, regardless of the diet, and furthermore, hyperprolactinemia potentiated the decrease in Cidea mRNA expression induced by HFD. In subcutaneous white adipose tissue hyperprolactinemia synergistically increased tissue weight, while decreasing Prlr, Adiponectin and Lpl mRNA levels regardless of the diet. CONCLUSIONS Pathological hyperprolactinemia has a strong impact in brown adipose tissue, lowering thermogenic markers and evoking tissue whitening. Furthermore, it modifies lipogenic markers in subcutaneous white adipose, and aggravates HFD-induced glucose intolerance and Cidea decrease. Therefore, severe high prolactin levels may target BAT function, and furthermore represent an adjuvant player in the development of obesity induced by high fat diets.
Collapse
|
12
|
Zhang Q, Zhang L, Huang Y, Ma P, Mao B, Ding YQ, Song NN. Satb2 regulates the development of dopaminergic neurons in the arcuate nucleus by Dlx1. Cell Death Dis 2021; 12:879. [PMID: 34564702 PMCID: PMC8464595 DOI: 10.1038/s41419-021-04175-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Dopaminergic (DA) neurons in the arcuate nucleus (ARC) of the hypothalamus play essential roles in the secretion of prolactin and the regulation of energy homeostasis. However, the gene regulatory network responsible for the development of the DA neurons remains poorly understood. Here we report that the transcription factor special AT-rich binding protein 2 (Satb2) is required for the development of ARC DA neurons. Satb2 is expressed in a large proportion of DA neurons without colocalization with proopiomelanocortin (POMC), orexigenic agouti-related peptide (AgRP), neuropeptide-Y (NPY), somatostatin (Sst), growth hormone-releasing hormone (GHRH), or galanin in the ARC. Nestin-Cre;Satb2flox/flox (Satb2 CKO) mice show a reduced number of ARC DA neurons with unchanged numbers of the other types of ARC neurons, and exhibit an increase of serum prolactin level and an elevated metabolic rate. The reduction of ARC DA neurons in the CKO mice is observed at an embryonic stage and Dlx1 is identified as a potential downstream gene of Satb2 in regulating the development of ARC DA neurons. Together, our study demonstrates that Satb2 plays a critical role in the gene regulatory network directing the development of DA neurons in ARC.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Huang
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Moreira CG, Morawska MM, Baumann A, Masneuf S, Linnebank M, Sommerauer M, Landolt HP, Noain D, Baumann CR. Improved functional and histochemical outcomes in l-DOPA plus tolcapone treated VMAT2-deficient mice. Neuropharmacology 2020; 181:108353. [PMID: 33038358 DOI: 10.1016/j.neuropharm.2020.108353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023]
Abstract
Parkinson disease is typically treated with L-3,4-dihydroxyphenylalanine (or levodopa) co-prescribed with concentration stabilizers to prevent undesired motor fluctuations. However, the beneficial role of the chronic combined therapy on disease progression has not been thoroughly explored. We hypothesized that tolcapone, a catechol-O-methyl-transferase inhibitor, co-administered with levodopa may offer beneficial long-term disease-modifying effects through its dopamine stabilization actions. Here, we followed vesicular monoamine transporter 2-deficient and wild-type mice treated twice daily per os with vehicle, levodopa (20 mg/kg), tolcapone (15 mg/kg) or levodopa (12.5 mg/kg) + tolcapone (15 mg/kg) for 17 weeks. We assessed open field, bar test and rotarod performances at baseline and every 4th week thereafter, corresponding to OFF-medication weeks. Finally, we collected coronal sections from the frontal caudate-putamen and determined the reactivity level of dopamine transporter. Vesicular monoamine transporter 2-deficient mice responded positively to chronic levodopa + tolcapone intervention in the bar test during OFF-periods. Neither levodopa nor tolcapone interventions offered significant improvements on their own. Similarly, chronic levodopa + tolcapone intervention was associated with partially rescued dopamine transporter levels, whereas animals treated solely with levodopa or tolcapone did not present this effect. Interestingly, 4-month progression of bar test scores correlated significantly with dopamine-transporter-label density. Overall, we observed a moderate functional and histopathological improvement effect by chronic dopamine replacement when combined with tolcapone in vesicular monoamine transporter 2-deficient mice. Altogether, chronic stabilization of dopamine levels by catechol-O-methyl-transferase inhibition, besides its intended immediate actions, arises as a potential long-term beneficial approach during the progression of Parkinson disease.
Collapse
Affiliation(s)
- Carlos G Moreira
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marta M Morawska
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Aron Baumann
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Sophie Masneuf
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Michael Linnebank
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Michael Sommerauer
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Irchel Campus Y17, Winterthurerstrasse 190, 8057 Zurich, Switzerland; University Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Daniela Noain
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Christian R Baumann
- Neurology Department, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland; University Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Enhanced Dopamine Transmission and Hyperactivity in the Dopamine Transporter Heterozygous Mice Lacking the D3 Dopamine Receptor. Int J Mol Sci 2020; 21:ijms21218216. [PMID: 33153031 PMCID: PMC7662256 DOI: 10.3390/ijms21218216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Dopamine transporter knockout (DATk) mice are known to demonstrate profound hyperactivity concurrent with elevated (5-fold) extracellular dopamine in the basal ganglia. At the same time, heterozygous DAT mice (DATh) demonstrate a 2-fold increase in dopamine levels yet only a marginal elevation in locomotor activity level. Another model of dopaminergic hyperactivity is the D3 dopamine receptor knockout (D3k) mice, which present only a modest hyperactivity phenotype, predominately manifested as stereotypical behaviors. In the D3k mice, the hyperactivity is also correlated with elevated extracellular dopamine levels (2-fold) in the basal ganglia. Cross-breeding was used to evaluate the functional consequences of the deletion of both genes. In the heterozygous DAT mice, inactivation of the D3R gene (DATh/D3k) resulted in significant hyperactivity and further elevation of striatal extracellular dopamine above levels observed in respective single mutant mice. The decreased weight of DATk mice was evident regardless of the D3 dopamine receptor genotype. In contrast, measures of thermoregulation revealed that the marked hypothermia of DATk mice (−2 °C) was reversed in double knockout mice. Thus, the extracellular dopamine levels elevated by prolonging uptake could be elevated even further by eliminating the D3 receptor. These data also suggest that the hypothermia observed in DATk mice may be mediated through D3 receptors.
Collapse
|
15
|
Quaresma PGF, Dos Santos WO, Wasinski F, Metzger M, Donato J. Neurochemical phenotype of growth hormone-responsive cells in the mouse paraventricular nucleus of the hypothalamus. J Comp Neurol 2020; 529:1228-1239. [PMID: 32844436 DOI: 10.1002/cne.25017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Multiple neuroendocrine, autonomic and behavioral responses are regulated by the paraventricular nucleus of the hypothalamus (PVH). Previous studies have shown that PVH neurons express the growth hormone (GH) receptor (GHR), although the role of GH signaling on PVH neurons is still unknown. Given the great heterogeneity of cell types located in the PVH, we performed a detailed analysis of the neurochemical identity of GH-responsive cells to understand the possible physiological importance of GH action on PVH neurons. GH-responsive cells were detected via the phosphorylated form of the signal transducer and activator of transcription-5 (pSTAT5) in adult male mice that received an intraperitoneal GH injection. Approximately 51% of GH-responsive cells in the PVH co-localized with the vesicular glutamate transporter 2. Rare co-localizations between pSTAT5 and vesicular GABA transporter or vasopressin were observed, whereas approximately 20% and 38% of oxytocin and tyrosine hydroxylase (TH) cells, respectively, were responsive to GH in the PVH. Approximately 55%, 35% and 63% of somatostatin, thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH) neurons expressed GH-induced pSTAT5, respectively. Additionally, 8%, 49% and 75% of neuroendocrine TH, TRH and CRH neurons, and 67%, 32% and 74% of nonneuroendocrine TH, TRH and CRH neurons were responsive to GH in the PVH of Fluoro-Gold-injected mice. Our findings suggest that GH action on PVH neurons is involved in the regulation of the thyroid, somatotropic and adrenal endocrine axes, possibly influencing homeostatic and stress responses.
Collapse
Affiliation(s)
- Paula G F Quaresma
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Willian O Dos Santos
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Frederick Wasinski
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Metzger
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Donato
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Tyrosine Hydroxylase Neurons Regulate Growth Hormone Secretion via Short-Loop Negative Feedback. J Neurosci 2020; 40:4309-4322. [PMID: 32317389 DOI: 10.1523/jneurosci.2531-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Classical studies suggest that growth hormone (GH) secretion is controlled by negative-feedback loops mediated by GH-releasing hormone (GHRH)- or somatostatin-expressing neurons. Catecholamines are known to alter GH secretion and neurons expressing TH are located in several brain areas containing GH-responsive cells. However, whether TH-expressing neurons are required to regulate GH secretion via negative-feedback mechanisms is unknown. In the present study, we showed that between 50% and 90% of TH-expressing neurons in the periventricular, paraventricular, and arcuate hypothalamic nuclei and locus ceruleus of mice exhibited STAT5 phosphorylation (pSTAT5) after an acute GH injection. Ablation of GH receptor (GHR) from TH cells or in the entire brain markedly increased GH pulse secretion and body growth in both male and female mice. In contrast, GHR ablation in cells that express the dopamine transporter (DAT) or dopamine β-hydroxylase (DBH; marker of noradrenergic/adrenergic cells) did not affect body growth. Nevertheless, less than 50% of TH-expressing neurons in the hypothalamus were found to express DAT. Ablation of GHR in TH cells increased the hypothalamic expression of Ghrh mRNA, although very few GHRH neurons were found to coexpress TH- and GH-induced pSTAT5. In summary, TH neurons that do not express DAT or DBH are required for the autoregulation of GH secretion via a negative-feedback loop. Our findings revealed a critical and previously unidentified group of catecholaminergic interneurons that are apt to sense changes in GH levels and regulate the somatotropic axis in mice.SIGNIFICANCE STATEMENT Textbooks indicate until now that the pulsatile pattern of growth hormone (GH) secretion is primarily controlled by GH-releasing hormone and somatostatin neurons. The regulation of GH secretion relies on the ability of these cells to sense changes in circulating GH levels to adjust pituitary GH secretion within a narrow physiological range. However, our study identifies a specific population of tyrosine hydroxylase-expressing neurons that is critical to autoregulate GH secretion via a negative-feedback loop. The lack of this mechanism in transgenic mice results in aberrant GH secretion and body growth. Since GH plays a key role in cell proliferation, body growth, and metabolism, our findings provide a major advance to understand how the brain regulates the somatotropic axis.
Collapse
|
17
|
Lopez‐Vicchi F, Ladyman SR, Ornstein AM, Gustafson P, Knowles P, Luque GM, Grattan DR, Becu‐Villalobos D. Chronic high prolactin levels impact on gene expression at discrete hypothalamic nuclei involved in food intake. FASEB J 2020; 34:3902-3914. [DOI: 10.1096/fj.201902357r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Felicitas Lopez‐Vicchi
- Instituto de Biología y Medicina Experimental Consejo Nacional de Investigaciones Científicas y Técnicas Buenos AiresArgentina
| | - Sharon R. Ladyman
- Centre for Neuroendocrinology, Department of Anatomy School of Biomedical Sciences University of Otago Dunedin New Zealand
- Maurice Wilkins Centre Auckland New Zealand
| | - Ana Maria Ornstein
- Instituto de Biología y Medicina Experimental Consejo Nacional de Investigaciones Científicas y Técnicas Buenos AiresArgentina
| | - Papillon Gustafson
- Centre for Neuroendocrinology, Department of Anatomy School of Biomedical Sciences University of Otago Dunedin New Zealand
| | - Penelope Knowles
- Centre for Neuroendocrinology, Department of Anatomy School of Biomedical Sciences University of Otago Dunedin New Zealand
| | - Guillermina Maria Luque
- Instituto de Biología y Medicina Experimental Consejo Nacional de Investigaciones Científicas y Técnicas Buenos AiresArgentina
| | - David R. Grattan
- Centre for Neuroendocrinology, Department of Anatomy School of Biomedical Sciences University of Otago Dunedin New Zealand
- Maurice Wilkins Centre Auckland New Zealand
| | - Damasia Becu‐Villalobos
- Instituto de Biología y Medicina Experimental Consejo Nacional de Investigaciones Científicas y Técnicas Buenos AiresArgentina
| |
Collapse
|
18
|
Brie B, Ramirez MC, De Winne C, Lopez Vicchi F, Villarruel L, Sorianello E, Catalano P, Ornstein AM, Becu-Villalobos D. Brain Control of Sexually Dimorphic Liver Function and Disease: The Endocrine Connection. Cell Mol Neurobiol 2019; 39:169-180. [PMID: 30656469 PMCID: PMC11469862 DOI: 10.1007/s10571-019-00652-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
A multistep signaling cascade originates in brain centers that regulate hypothalamic growth hormone-releasing hormone (Ghrh) and somatostatin expression levels and release to control the pattern of GH secretion. This process is sexually fine-tuned, and relays important information to the liver where GH receptors can be found. The temporal pattern of pituitary GH secretion, which is sex-specific in many species (episodic in males and more stable in females), represents a major component in establishing and maintaining the sexual dimorphism of hepatic gene transcription. The liver is sexually dimorphic exhibiting major differences in the profile of more than 1000 liver genes related to steroid, lipid, and foreign compound metabolism. Approximately, 90% of these sex-specific liver genes were shown to be primarily dependent on sexually dimorphic GH secretory patterns. This proposes an interesting scenario in which the central nervous system, indirectly setting GH profiles through GHRH and somatostatin control, regulates sexual dimorphism of liver activity in accordance with the need for sex-specific steroid metabolism and performance. We describe the influence of the loss of sexual dimorphism in liver gene expression due to altered brain function. Among other many factors, abnormal brain sexual differentiation, xenoestrogen exposure and D2R ablation from neurons dysregulate the GHRH-GH axis, and ultimately modify the liver capacity for adaptive mechanisms. We, therefore, propose that an inefficient brain control of the endocrine growth axis may underlie alterations in several metabolic processes through an indirect influence of sexual dimorphism of liver genes.
Collapse
Affiliation(s)
- Belen Brie
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | | | - Catalina De Winne
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Felicitas Lopez Vicchi
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Luis Villarruel
- Departament of Micro y Nanotechnology, Instituto de Nanociencia y Nanotecnología, Comisión Nacional de Energia Atomica-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Eleonora Sorianello
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Paolo Catalano
- Departament of Micro y Nanotechnology, Instituto de Nanociencia y Nanotecnología, Comisión Nacional de Energia Atomica-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ana María Ornstein
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Zessis NR, Gao F, Vadlamudi G, Gutmann DH, Hollander AS. Height Growth Impairment in Children With Neurofibromatosis Type 1 Is Characterized by Decreased Pubertal Growth Velocity in Both Sexes. J Child Neurol 2018; 33:762-766. [PMID: 30009646 DOI: 10.1177/0883073818786807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have suggested that children with neurofibromatosis type 1 are shorter than their unaffected counterparts as an effect of a germline NF1 gene mutation. The pathophysiology of this effect is still uncertain. The purpose of this study was to characterize longitudinal growth in children with neurofibromatosis type 1 in order to assess growth velocity and its influence on stature. Longitudinal height data were collected for 188 patients with a confirmed clinical diagnosis of neurofibromatosis type 1. Children with neurofibromatosis type 1 had population mean heights statistically different from the general population, with a reduced peak height velocity during pubertal growth. In addition, there were no significant differences in the timing of peak height velocity during puberty between the general population and those with neurofibromatosis type 1. These data demonstrate that short stature in neurofibromatosis type 1 is due in part to subnormal height acquisition during puberty.
Collapse
Affiliation(s)
- Nicholas R Zessis
- 1 Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Feng Gao
- 2 Division of Biostatistics, Washington University School of Medicine, St Louis, MO, USA
| | - Gayathri Vadlamudi
- 1 Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - David H Gutmann
- 3 Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Abby S Hollander
- 1 Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
20
|
Lee W, Yang E, Curley JP. Foraging dynamics are associated with social status and context in mouse social hierarchies. PeerJ 2018; 6:e5617. [PMID: 30258716 PMCID: PMC6151111 DOI: 10.7717/peerj.5617] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/21/2018] [Indexed: 11/25/2022] Open
Abstract
Living in social hierarchies requires individuals to adapt their behavior and physiology. We have previously shown that male mice living in groups of 12 form linear and stable hierarchies with alpha males producing the highest daily level of major urinary proteins and urine. These findings suggest that maintaining alpha status in a social group requires higher food and water intake to generate energetic resources and produce more urine. To investigate whether social status affects eating and drinking behaviors, we measured the frequency of these behaviors in each individual mouse living in a social hierarchy with non-stop video recording for 24 h following the initiation of group housing and after social ranks were stabilized. We show alpha males eat and drink most frequently among all individuals in the hierarchy and had reduced quiescence of foraging both at the start of social housing and after hierarchies were established. Subdominants displayed a similar pattern of behavior following hierarchy formation relative to subordinates. The association strength of foraging behavior was negatively associated with that of agonistic behavior corrected for gregariousness (HWIG), suggesting animals modify foraging behavior to avoid others they engaged with aggressively. Overall, this study provides evidence that animals with different social status adapt their eating and drinking behaviors according to their physiological needs and current social environment.
Collapse
Affiliation(s)
- Won Lee
- Department of Psychology, Columbia University, New York, NY, United States of America
| | - Eilene Yang
- Department of Psychology, Columbia University, New York, NY, United States of America
| | - James P. Curley
- Department of Psychology, Columbia University, New York, NY, United States of America
- Center for Integrative Animal Behavior, Columbia University, New York, NY, United States of America
- Department of Psychology, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
21
|
Lee W, Khan A, Curley JP. Major urinary protein levels are associated with social status and context in mouse social hierarchies. Proc Biol Sci 2018; 284:rspb.2017.1570. [PMID: 28931741 DOI: 10.1098/rspb.2017.1570] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/16/2017] [Indexed: 01/18/2023] Open
Abstract
We have previously shown that male mice living in groups of 12 males establish and maintain stable linear social hierarchies with each individual having a defined social rank. However, it is not clear which social cues mice use to signal and recognize their relative social status within their hierarchy. In this study, we investigate how individual social status both in pairs and in groups affects the levels of major urinary proteins (MUPs) and specifically MUP20 in urine. We housed groups of adult outbred CD1 male mice in a complex social environment for three weeks and collected urine samples from all individuals repeatedly. We found that dominant males produce more MUPs than subordinates when housed in pairs and that the production of MUPs and MUP20 is significantly higher in alpha males compared with all other individuals in a social hierarchy. Furthermore, we found that hepatic mRNA expression of Mup3 and Mup20 is significantly higher in alpha males than in subordinate males. We also show that alpha males have lower urinary creatinine levels consistent with these males urinating more than others living in hierarchies. These differences emerged within one week of animals being housed together in social hierarchies. This study demonstrates that as males transition to become alpha males, they undergo physiological changes that contribute to communication of their social status that may have implications for the energetic demands of maintaining dominance.
Collapse
Affiliation(s)
- Won Lee
- Department of Psychology, Columbia University, New York, NY, USA
| | - Amber Khan
- The Sophie Davis School of Medicine, The City University of New York, New York, NY, USA
| | - James P Curley
- Department of Psychology, Columbia University, New York, NY, USA .,Center for Integrative Animal Behavior, Columbia University, New York, NY, USA.,Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Perrone S, Zubeldia-Brenner L, Gazza E, Demarchi G, Baccarini L, Baricalla A, Mertens F, Luque G, Vankelecom H, Berner S, Becu-Villalobos D, Cristina C. Notch system is differentially expressed and activated in pituitary adenomas of distinct histotype, tumor cell lines and normal pituitaries. Oncotarget 2017; 8:57072-57088. [PMID: 28915655 PMCID: PMC5593626 DOI: 10.18632/oncotarget.19046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
Pituitary adenomas are among the most frequent intracranial neoplasms and treatment depends on tumor subtype and clinical features. Unfortunately, non responder cases occur, then new molecular targets are needed. Notch system component expression and activation data are scarce in pituitary tumorigenesis, we therefore aimed to characterize Notch system in pituitary tumors of different histotype. In human pituitary adenomas we showed NOTCH1-4 receptors, JAGGED1 ligand and HES1 target gene expression with positive correlations between NOTCH1,2,4 and HES1, and NOTCH3 and JAGGED1 denoting Notch system activation in a subset of tumors. Importantly, NOTCH3 positive cells were higher in corticotropinomas and somatotropinomas compared to non functioning adenomas. In accordance, Notch activation was evidenced in AtT20 tumor corticotropes, with higher levels of NOTCH1-3 active domains, Jagged1 and Hes1 compared to normal pituitary. In the prolactinoma cell lines GH3 and MMQ, in vivo GH3 tumors and normal glands, Notch system activation was lower than in corticotropes. In MMQ cells only the NOTCH2 active domain was increased, whereas NOTCH1 active domain was higher in GH3 tumors. High levels of Jagged1 and Dll1 were found solely in GH3 cells, and Hes1, Hey1 and Hey2 were expressed in a model dependent pattern. Prolactinomas harbored by lacDrd2KO mice expressed high levels of NOTCH1 active domain and reduced Hes1. We show a differential expression of Notch system components in tumoral and normal pituitaries and specific Notch system involvement depending on adenoma histotype, with higher activation in corticotropinomas. These data suggest that targeting Notch pathway may benefit non responder pituitary adenomas.
Collapse
Affiliation(s)
- Sofia Perrone
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | | | - Elias Gazza
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Gianina Demarchi
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Leticia Baccarini
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Agustin Baricalla
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| | - Freya Mertens
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, KU Leuven (University of Leuven), Campus Gasthuisberg O&N4, B-3000 Leuven, Belgium
| | - Guillermina Luque
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, 1428 Buenos Aires, Argentina
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, KU Leuven (University of Leuven), Campus Gasthuisberg O&N4, B-3000 Leuven, Belgium
| | - Silvia Berner
- Servicio de Neurocirugía, Clínica Santa Isabel, C1406GZJ Buenos Aires, Argentina
| | | | - Carolina Cristina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, 2700 Buenos Aires, Argentina
| |
Collapse
|
23
|
Kasuya E, Sutoh M, Yayou KI. The effects of l-DOPA and sulpiride on growth hormone secretion at different injection times in Holstein steers. Anim Sci J 2017; 88:1842-1848. [PMID: 28585780 DOI: 10.1111/asj.12850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/27/2017] [Indexed: 11/29/2022]
Abstract
The effects of l-DOPA, a precursor of dopamine (DA), and sulpiride, a D2 -type DA receptor blocker, on growth hormone (GH) and prolactin (PRL) secretion were investigated in steers. Eight Holstein steers (212.8 ± 7.8 kg body weight) were used. Lighting conditions were 12:12 L:D (lights on: 06.00-18.00 hours). Blood samplings were performed during the daytime (11.00-15.00 hours) and nighttime (23.00-03.00 hours). Intravenous injections of drugs or saline were performed at 12.00 hour for the daytime and 00.00 hour for the nighttime, respectively. Plasma GH and PRL concentrations were determined by radioimmunoassay. l-DOPA did not alter the GH secretion when it was injected at 12.00 hour (spontaneous GH level at its peak). On the other hand, l-DOPA increased GH secretion at 00.00 hour (GH level at its trough). Injection of sulpiride suppressed GH secretion at 12.00 hour but did not affect GH levels at 00.00 hour. l-DOPA inhibited and sulpiride stimulated PRL release during both periods. These results suggest that dopaminergic neurons have stimulatory action on GH secretion and inhibitory action on PRL secretion in cattle. In addition, injection time should be considered to evaluate the exact effects on GH secretion due to its ultradian rhythm of GH secretion in cattle.
Collapse
Affiliation(s)
- Etsuko Kasuya
- Animal Environment and Health Unit, Division of Animal Environment and Waste Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Madoka Sutoh
- Animal Environment and Health Unit, Division of Animal Environment and Waste Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Ken-Ichi Yayou
- Animal Environment and Health Unit, Division of Animal Environment and Waste Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
24
|
Bello EP, Casas-Cordero R, Galiñanes GL, Casey E, Belluscio MA, Rodríguez V, Noaín D, Murer MG, Rubinstein M. Inducible ablation of dopamine D2 receptors in adult mice impairs locomotion, motor skill learning and leads to severe parkinsonism. Mol Psychiatry 2017; 22:595-604. [PMID: 27431292 DOI: 10.1038/mp.2016.105] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/20/2016] [Accepted: 05/06/2016] [Indexed: 11/09/2022]
Abstract
Motor execution and planning are tightly regulated by dopamine D1 and D2 receptors present in basal ganglia circuits. Although stimulation of D1 receptors is known to enhance motor function, the global effect of D2 receptor (D2R) stimulation or blockade remains highly controversial, with studies showing increasing, decreasing or no changes in motor activity. Moreover, pharmacological and genetic attempts to block or eliminate D2R have led to controversial results that questioned the importance of D2R in motor function. In this study, we generated an inducible Drd2 null-allele mouse strain that circumvented developmental compensations found in constitutive Drd2-/- mice and allowed us to directly evaluate the participation of D2R in spontaneous locomotor activity and motor learning. We have found that loss of D2R during adulthood causes severe motor impairments, including hypolocomotion, deficits in motor coordination, impaired learning of new motor routines and spontaneous catatonia. Moreover, severe motor impairment, resting tremor and abnormal gait and posture, phenotypes reminiscent of Parkinson's disease, were evident when the mutation was induced in aged mice. Altogether, the conditional Drd2 knockout model studied here revealed the overall fundamental contribution of D2R in motor functions and explains some of the side effects elicited by D2R blockers when used in neurological and psychiatric conditions, including schizophrenia, bipolar disorder, Tourette's syndrome, dementia, alcohol-induced delusions and obsessive-compulsive disorder.
Collapse
Affiliation(s)
- E P Bello
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - R Casas-Cordero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - G L Galiñanes
- Instituto de Fisiología y Biofísica Bernardo Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - E Casey
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M A Belluscio
- Instituto de Fisiología y Biofísica Bernardo Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - V Rodríguez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - D Noaín
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M G Murer
- Instituto de Fisiología y Biofísica Bernardo Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, Vom Saal F. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 2017; 68:3-33. [PMID: 27760374 PMCID: PMC5365353 DOI: 10.1016/j.reprotox.2016.10.001] [Citation(s) in RCA: 715] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/04/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations.
Collapse
Affiliation(s)
- Jerrold J Heindel
- National Institute of Environmental Health Sciences, Division of Extramural Research and Training Research Triangle Park, NC, USA.
| | - Bruce Blumberg
- University of California, Department of Developmental and Cell Biology, Irvine CA, USA
| | - Mathew Cave
- University of Louisville, Division of Gastroenterology, Hepatology and Nutrition, Louisville KY, USA
| | | | | | - Michelle A Mendez
- University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill NC, USA
| | - Angel Nadal
- Institute of Bioengineering and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Paola Palanza
- University of Parma, Department of Neurosciences, Parma, Italy
| | - Giancarlo Panzica
- University of Turin, Department of Neuroscience and Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy
| | - Robert Sargis
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine Chicago, IL, USA
| | - Laura N Vandenberg
- University of Massachusetts, Department of Environmental Health Sciences, School of Public Health & Health Sciences, Amherst, MA, USA
| | - Frederick Vom Saal
- University of Missouri, Department of Biological Sciences, Columbia, MO, USA
| |
Collapse
|
26
|
Luque GM, Lopez-Vicchi F, Ornstein AM, Brie B, De Winne C, Fiore E, Perez-Millan MI, Mazzolini G, Rubinstein M, Becu-Villalobos D. Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine D2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance. Am J Physiol Endocrinol Metab 2016; 311:E974-E988. [PMID: 27802964 DOI: 10.1152/ajpendo.00200.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 12/21/2022]
Abstract
We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage.
Collapse
Affiliation(s)
- Guillermina María Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Felicitas Lopez-Vicchi
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ana María Ornstein
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Belén Brie
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Catalina De Winne
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Esteban Fiore
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT-CONICET), Universidad Austral, Buenos Aires, Argentina; and
| | - Maria Inés Perez-Millan
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT-CONICET), Universidad Austral, Buenos Aires, Argentina; and
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET, and Departamento de Fisiología, y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina;
| |
Collapse
|
27
|
Cornejo MP, Hentges ST, Maliqueo M, Coirini H, Becu-Villalobos D, Elias CF. Neuroendocrine Regulation of Metabolism. J Neuroendocrinol 2016; 28:10.1111/jne.12395. [PMID: 27114114 PMCID: PMC4956544 DOI: 10.1111/jne.12395] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 12/29/2022]
Abstract
Given the current environment in most developed countries, it is a challenge to maintain a good balance between calories consumed and calories burned, although maintenance of metabolic balance is key to good health. Therefore, understanding how metabolic regulation is achieved and how the dysregulation of metabolism affects health is an area of intense research. Most studies focus on the hypothalamus, which is a brain area that acts as a key regulator of metabolism. Among the nuclei that comprise the hypothalamus, the arcuate nucleus is one of the major mediators in the regulation of food intake. The regulation of energy balance is also a key factor ensuring the maintenance of any species as a result of the dependence of reproduction on energy stores. Adequate levels of energy reserves are necessary for the proper functioning of the hypothalamic-pituitary-gonadal axis. This review discusses valuable data presented in the 2015 edition of the International Workshop of Neuroendocrinology concerning the fundamental nature of the hormonal regulation of the hypothalamus and the impact on energy balance and reproduction.
Collapse
Affiliation(s)
- Maria P. Cornejo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, dependent on the Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Shane T. Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, Department of Medicine West Division, School of Medicine University of Chile, Santiago de Chile, Chile
| | - Hector Coirini
- Laboratory of Neurobiology, Institute of Biology and Experimental Medicine [(IBYME), dependent on CONICET] and Department of Human Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Laboratory of Pituitary Regulation, Institute of Biology and Experimental Medicine [(IBYME), dependent on CONICET], Buenos Aires, Argentina
| | - Carol F. Elias
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Dopaminergic drugs in type 2 diabetes and glucose homeostasis. Pharmacol Res 2016; 109:74-80. [DOI: 10.1016/j.phrs.2015.12.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023]
|
29
|
Dopamine regulates body size in Caenorhabditis elegans. Dev Biol 2016; 412:128-138. [DOI: 10.1016/j.ydbio.2016.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/08/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
|
30
|
Korner G, Noain D, Ying M, Hole M, Flydal MI, Scherer T, Allegri G, Rassi A, Fingerhut R, Becu-Villalobos D, Pillai S, Wueest S, Konrad D, Lauber-Biason A, Baumann CR, Bindoff LA, Martinez A, Thöny B. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency. Brain 2015; 138:2948-63. [PMID: 26276013 DOI: 10.1093/brain/awv224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2023] Open
Abstract
Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum.
Collapse
Affiliation(s)
- Germaine Korner
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Daniela Noain
- 4 Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
| | - Ming Ying
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Magnus Hole
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marte I Flydal
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Tanja Scherer
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Gabriella Allegri
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Anahita Rassi
- 6 Division of Clinical Chemistry and Biochemistry, Department of Paediatrics, University of Zürich, Zürich, Switzerland
| | - Ralph Fingerhut
- 7 Swiss Newborn Screening Laboratory, University Children's Hospital, Zurich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | | | - Samyuktha Pillai
- 9 Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - Stephan Wueest
- 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland 10 Division of Endocrinology, Department of Pediatrics, University of Zurich, Switzerland
| | - Daniel Konrad
- 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland 10 Division of Endocrinology, Department of Pediatrics, University of Zurich, Switzerland
| | - Anna Lauber-Biason
- 11 Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Christian R Baumann
- 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 4 Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
| | - Laurence A Bindoff
- 12 Department of Clinical Medicine K1, University of Bergen, Norway 13 Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Aurora Martinez
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Beat Thöny
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| |
Collapse
|
31
|
Zielonka M, Makhseed N, Blau N, Bettendorf M, Hoffmann GF, Opladen T. Dopamine-Responsive Growth-Hormone Deficiency and Central Hypothyroidism in Sepiapterin Reductase Deficiency. JIMD Rep 2015; 24:109-13. [PMID: 26006722 PMCID: PMC4582026 DOI: 10.1007/8904_2015_450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 01/20/2023] Open
Abstract
Sepiapterin reductase (SR) deficiency is a rare autosomal recessively inherited error of tetrahydrobiopterin (BH4) biosynthesis, resulting in disturbed dopaminergic and serotonergic neurotransmission. The clinical phenotype is characterized by dopa-responsive movement disorders including muscular hypotonia, dystonia, and parkinsonism. Due to the rarity of the disease, the phenotype of SR deficiency is far from being completely understood. Here, we report a 7-year-old boy, who was referred for diagnostic evaluation of combined psychomotor retardation, spastic tetraplegia, extrapyramidal symptoms, and short stature. Due to discrepancy between motor status and mental condition, analyses of biogenic amines and pterins in CSF were performed, leading to the diagnosis of SR deficiency. The diagnosis was confirmed by a novel homozygous mutation c.530G>C; p.(Arg177Pro) in exon 2 of the SPR gene. Because of persistent short stature, systematic endocrinological investigations were initiated. Insufficient growth-hormone release in a severe hypoglycemic episode after overnight fasting confirmed growth-hormone deficiency as a cause of short stature. In addition, central hypothyroidism was present. A general hypothalamic affection could be excluded. Since dopamine is known to regulate growth-hormone excretion, IGF-1, IGF-BP3, and peripheral thyroid hormone levels were monitored under L-dopa/carbidopa supplementation. Both growth-hormone-dependent factors and thyroid function normalized under treatment. This is the first report describing growth-hormone deficiency and central hypothyroidism in SR deficiency. It extends the phenotypic spectrum of the disease and identifies dopamine depletion as cause for the endocrinological disturbances.
Collapse
Affiliation(s)
- Matthias Zielonka
- />Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Nawal Makhseed
- />Pediatric Department, Jahra Hospital, Qadisiya, Kuwait
| | - Nenad Blau
- />Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Markus Bettendorf
- />Division of Pediatric Endocrinology, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg Friedrich Hoffmann
- />Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Thomas Opladen
- />Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Ramirez MC, Ornstein AM, Luque GM, Perez Millan MI, Garcia-Tornadu I, Rubinstein M, Becu-Villalobos D. Pituitary and brain dopamine D2 receptors regulate liver gene sexual dimorphism. Endocrinology 2015; 156:1040-51. [PMID: 25545383 PMCID: PMC4330309 DOI: 10.1210/en.2014-1714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Liver sexual gene dimorphism, which depends mainly on specific patterns of GH secretion, may underlie differential susceptibility to some liver diseases. Because GH and prolactin secretion are regulated by dopaminergic pathways, we studied the participation of brain and lactotrope dopamine 2 receptors (D2Rs) on liver gene sexual dimorphism, to explore a link between the brain and liver gene expression. We used global D2R knockout mice (Drd2(-/-)) and conducted a functional dissection strategy based on cell-specific Drd2 inactivation in neurons (neuroDrd2KO) or pituitary lactotropes. Disruption of neuronal D2Rs (which impaired the GH axis) decreased most of male or female-predominant class I liver genes and increased female-predominant class II genes in males, consistent with the positive (class I) or negative (class II) regulation of these genes by GH. Notably, sexual dimorphism was lost for class I and II genes in neuroDrd2KO mice. Disruption of lactotrope D2Rs did not modify class I or II genes in either sex, because GH axis was preserved. But surprisingly, 1 class II gene (Prlr) and female-predominant class I genes were markedly up-regulated in lacDrd2KO females, pointing to direct or indirect effects of prolactin in the regulation of selected female-predominant liver genes. This suggestion was strengthened in the hyperprolactinemic Drd2(-/-) female mouse, in which increased expression of the same 4 liver genes was observed, despite a decreased GH axis. We hereby demonstrate endocrine-mediated D2R actions on sexual dimorphic liver gene expression, which may be relevant during chronic dopaminergic medications in psychiatric disease.
Collapse
Affiliation(s)
- Maria Cecilia Ramirez
- Instituto de Biología y Medicina Experimental (M.C.R., A.M.O., G.M.L., M.I.P.M., I.G.T., D.B.-V.), Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina; and Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
33
|
Enhanced Aggressive Behaviour in a Mouse Model of Depression. Neurotox Res 2014; 27:129-42. [DOI: 10.1007/s12640-014-9498-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
|
34
|
Message in a bottle: major urinary proteins and their multiple roles in mouse intraspecific chemical communication. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Ramirez MC, Zubeldía-Brenner L, Wargon V, Ornstein AM, Becu-Villalobos D. Expression and methylation status of female-predominant GH-dependent liver genes are modified by neonatal androgenization in female mice. Mol Cell Endocrinol 2014; 382:825-34. [PMID: 24239981 DOI: 10.1016/j.mce.2013.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 01/04/2023]
Abstract
Neonatal androgenization masculinizes the GH axis and thus may impact on liver gene regulation. Neonatal testosterone administration to female mice decreased (defeminized) female predominant GH-dependent liver gene expression (Hnf6, Adh1, Prlr, Cyp3a41) and did not modify male predominant genes (Cyp7b1, Cyp4a12, Slp). Female predominance of Cis mRNA, an inhibitor of episodic GH signaling pathway, was unaltered. At birth, Cyp7b1 promoter exhibited a higher methylation status in female livers, while the Hnf6 promoter was equally methylated in both sexes; no differences in gene expression were detected at this age. In adulthood, consistent with sex specific predominance, lower methylation status was determined for the Cyp7b1 promoter in males, and for the Hnf6 promoter in females, and this last difference was prevented by neonatal androgenization. Therefore, early steroid treatment or eventually endocrine disruptor exposure may alter methylation status and sexual dimorphic expression of liver genes, and consequently modify liver physiology in females.
Collapse
Affiliation(s)
- Maria Cecilia Ramirez
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina
| | - Lautaro Zubeldía-Brenner
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina
| | - Victoria Wargon
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina
| | - Ana María Ornstein
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| |
Collapse
|
36
|
Influencing the Social Group. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:107-34. [DOI: 10.1016/b978-0-12-800222-3.00006-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Cristina C, Luque GM, Demarchi G, Lopez Vicchi F, Zubeldia-Brenner L, Perez Millan MI, Perrone S, Ornstein AM, Lacau-Mengido IM, Berner SI, Becu-Villalobos D. Angiogenesis in pituitary adenomas: human studies and new mutant mouse models. Int J Endocrinol 2014; 2014:608497. [PMID: 25505910 PMCID: PMC4251882 DOI: 10.1155/2014/608497] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/30/2014] [Indexed: 01/01/2023] Open
Abstract
The role of angiogenesis in pituitary tumor development has been questioned, as pituitary tumors have been usually found to be less vascularized than the normal pituitary tissue. Nevertheless, a significantly higher degree of vasculature has been shown in invasive or macropituitary prolactinomas when compared to noninvasive and microprolactinomas. Many growth factors and their receptors are involved in pituitary tumor development. For example, VEGF, FGF-2, FGFR1, and PTTG, which give a particular vascular phenotype, are modified in human and experimental pituitary adenomas of different histotypes. In particular, vascular endothelial growth factor, VEGF, the central mediator of angiogenesis in endocrine glands, was encountered in experimental and human pituitary tumors at different levels of expression and, in particular, was higher in dopamine agonist resistant prolactinomas. Furthermore, several anti-VEGF techniques lowered tumor burden in human and experimental pituitary adenomas. Therefore, even though the role of angiogenesis in pituitary adenomas is contentious, VEGF, making permeable pituitary endothelia, might contribute to adequate temporal vascular supply and mechanisms other than endothelial cell proliferation. The study of angiogenic factor expression in aggressive prolactinomas with resistance to dopamine agonists will yield important data in the search of therapeutical alternatives.
Collapse
Affiliation(s)
- Carolina Cristina
- Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
- CITNOBA (CONICET-UNNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, Pergamino, 2700 Buenos Aires, Argentina
| | - Guillermina María Luque
- Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Gianina Demarchi
- CITNOBA (CONICET-UNNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, Pergamino, 2700 Buenos Aires, Argentina
| | - Felicitas Lopez Vicchi
- Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Lautaro Zubeldia-Brenner
- Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Ines Perez Millan
- Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Sofia Perrone
- CITNOBA (CONICET-UNNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, Pergamino, 2700 Buenos Aires, Argentina
| | - Ana Maria Ornstein
- Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Isabel M. Lacau-Mengido
- Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Silvia Inés Berner
- Servicio de Neurocirugía, Clínica Santa Isabel, Avenida Directorio 2037, C1406GZJ Buenos Aires, Argentina
- Servicio de Neurocirugía, Hospital Santa Lucía, Avenida San Juan 2021, C1232AAC Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
- *Damasia Becu-Villalobos:
| |
Collapse
|