1
|
Moreira P, Pocock R. Functions of nuclear factor Y in nervous system development, function and health. Neural Regen Res 2025; 20:2887-2894. [PMID: 39610092 PMCID: PMC11826454 DOI: 10.4103/nrr.nrr-d-24-00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 11/30/2024] Open
Abstract
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes, one of the most common motifs found in gene promoters and enhancers. Over the last 30 years, research has revealed that the nuclear factor Y complex controls many aspects of brain development, including differentiation, axon guidance, homeostasis, disease, and most recently regeneration. However, a complete understanding of transcriptional regulatory networks, including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive. In this review, we explore the nuclear factor Y complex's role and mode of action during brain development, as well as how genomic technologies may expand understanding of this key regulator of gene expression.
Collapse
Affiliation(s)
- Pedro Moreira
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Ohata Y, Ali MM, Tsubakihara Y, Itoh Y, Rosén G, Bergström T, Morén A, Golán-Cancela I, Nakada A, Voytyuk O, Tsuchiya M, Fukui R, Yamamoto K, Martín-Rubio P, Sancho P, Strell C, Micke P, Wechsler-Reya RJ, Hashizume Y, Miyazono K, Caja L, Heldin CH, Swartling FJ, Moustakas A. The transcription factor LHX2 mediates and enhances oncogenic BMP signaling in medulloblastoma. Cell Death Differ 2025:10.1038/s41418-025-01488-6. [PMID: 40148468 DOI: 10.1038/s41418-025-01488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Oncogenic events perturb cerebellar development leading to medulloblastoma, a common childhood brain malignancy. Molecular analyses classify medulloblastoma into the WNT, SHH, Group 3 and Group 4 subgroups. Bone morphogenetic protein (BMP) pathways control cerebellar development and have been linked to the progression of medulloblastoma disease, with major remaining gaps in their mechanistic and clinically-relevant roles. We therefore aimed at exploring BMP mechanisms of action in medulloblastoma. Patient-derived tumors from different subgroups were analyzed in mouse xenografts, complemented by independent tumor immunohistochemical analysis. Cell-based assays analyzed signaling mechanisms. Medulloblastoma cell orthotopic xenografts analyzed tumor growth and metastasis in vivo. Active BMP signaling, detected as nuclear and phosphorylated SMAD1/5, characterized several medulloblastoma subgroups, with enrichment in Group 4, SHH and Group 3 tumors. Spatial transcriptomics in tumor areas, complemented by transcriptomic analysis of multiple cell models, identified BMP-dependent transcriptional induction of the LIM-homeobox gene 2 (LHX2). BMP signaling via SMADs induced LHX2 expression and LHX2 transcriptionally induced BMP type I receptor (ACVR1) expression by association with the proximal promoter region of the ACVR1 gene. BMP signaling and LHX2 gain-of-function expression led to enriched stemness and associated chemoresistance in medulloblastoma cultures. In-mouse orthotopic transplantation of paired primary/recurrent Group 4 medulloblastoma cell populations, correspondingly expressing LHX2-low/BMP-low signaling and LHX2-high/BMP-high signaling, ascribed to the latter (high) group more efficient tumor propagation and spinal cord metastatic potential. Depletion of LHX2 in these recurrent tumor cells suppressed both BMP signaling and tumor propagation in vivo. Thus, LHX2 cooperates with, and enhances, oncogenic BMP signaling in medulloblastoma tumors. The molecular pathway that couples LHX2 function to BMP signaling in medulloblastoma deepens our understanding this malignancy.
Collapse
Affiliation(s)
- Yae Ohata
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yutaro Tsubakihara
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yuka Itoh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tobias Bergström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anita Morén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Irene Golán-Cancela
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Ayana Nakada
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
- Faculty of Pharmaceutical Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Oleksandr Voytyuk
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Maiko Tsuchiya
- Department of Oral Pathology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Pathology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Rei Fukui
- Department of Pathology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Paula Martín-Rubio
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza, Spain
| | - Patricia Sancho
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza, Spain
| | - Carina Strell
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robert J Wechsler-Reya
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Yoshinobu Hashizume
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Wako, Saitama, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Nguyen QH, Tran HN, Jeong Y. Regulation of neuronal fate specification and connectivity of the thalamic reticular nucleus by the Ascl1-Isl1 transcriptional cascade. Cell Mol Life Sci 2024; 81:478. [PMID: 39625482 PMCID: PMC11615174 DOI: 10.1007/s00018-024-05523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
The thalamic reticular nucleus (TRN) is an anatomical and functional hub that modulates the flow of information between the cerebral cortex and thalamus, and its dysfunction has been linked to sensory disturbance and multiple behavioral disorders. Therefore, understanding how TRN neurons differentiate and establish connectivity is crucial to clarify the basics of TRN functions. Here, we showed that the regulatory cascade of the transcription factors Ascl1 and Isl1 promotes the fate of TRN neurons and concomitantly represses the fate of non-TRN prethalamic neurons. Furthermore, we found that this cascade is necessary for the correct development of the two main axonal connections, thalamo-cortical projections and prethalamo-thalamic projections. Notably, the disruption of prethalamo-thalamic axons can cause the pathfinding defects of thalamo-cortical axons in the thalamus. Finally, forced Isl1 expression can rescue disruption of cell fate specification and prethalamo-thalamic projections in in vitro primary cultures of Ascl1-deficient TRN neurons, indicating that Isl1 is an essential mediator of Ascl1 function in TRN development. Together, our findings provide insights into the molecular mechanisms for TRN neuron differentiation and circuit formation.
Collapse
Affiliation(s)
- Quy-Hoai Nguyen
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hong-Nhung Tran
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yongsu Jeong
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
4
|
Li CP, Wu S, Sun YQ, Peng XQ, Gong M, Du HZ, Zhang J, Teng ZQ, Wang N, Liu CM. Lhx2 promotes axon regeneration of adult retinal ganglion cells and rescues neurodegeneration in mouse models of glaucoma. Cell Rep Med 2024; 5:101554. [PMID: 38729157 PMCID: PMC11148806 DOI: 10.1016/j.xcrm.2024.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Chang-Ping Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xue-Qi Peng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Maolei Gong
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 450052, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
5
|
Shin D, Kim CN, Ross J, Hennick KM, Wu SR, Paranjape N, Leonard R, Wang JC, Keefe MG, Pavlovic BJ, Donohue KC, Moreau C, Wigdor EM, Larson HH, Allen DE, Cadwell CR, Bhaduri A, Popova G, Bearden CE, Pollen AA, Jacquemont S, Sanders SJ, Haussler D, Wiita AP, Frost NA, Sohal VS, Nowakowski TJ. Thalamocortical organoids enable in vitro modeling of 22q11.2 microdeletion associated with neuropsychiatric disorders. Cell Stem Cell 2024; 31:421-432.e8. [PMID: 38382530 PMCID: PMC10939828 DOI: 10.1016/j.stem.2024.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Thalamic dysfunction has been implicated in multiple psychiatric disorders. We sought to study the mechanisms by which abnormalities emerge in the context of the 22q11.2 microdeletion, which confers significant genetic risk for psychiatric disorders. We investigated early stages of human thalamus development using human pluripotent stem cell-derived organoids and show that the 22q11.2 microdeletion underlies widespread transcriptional dysregulation associated with psychiatric disorders in thalamic neurons and glia, including elevated expression of FOXP2. Using an organoid co-culture model, we demonstrate that the 22q11.2 microdeletion mediates an overgrowth of thalamic axons in a FOXP2-dependent manner. Finally, we identify ROBO2 as a candidate molecular mediator of the effects of FOXP2 overexpression on thalamic axon overgrowth. Together, our study suggests that early steps in thalamic development are dysregulated in a model of genetic risk for schizophrenia and contribute to neural phenotypes in 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- David Shin
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jayden Ross
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelsey M Hennick
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sih-Rong Wu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Neha Paranjape
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Rachel Leonard
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jerrick C Wang
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew G Keefe
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin C Donohue
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clara Moreau
- Sainte Justine Research Center, University of Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Emilie M Wigdor
- Institute of Developmental and Regenerative Medicine, University of Oxford, Headington, Oxford OX3 7TY, UK
| | - H Hanh Larson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Denise E Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Galina Popova
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carrie E Bearden
- Integrative Center for Neurogenetics, Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sebastien Jacquemont
- Sainte Justine Research Center, University of Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute of Developmental and Regenerative Medicine, University of Oxford, Headington, Oxford OX3 7TY, UK
| | - David Haussler
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Nicholas A Frost
- Department of Neurology, University of Utah, Salt Lake City, UT 84108, USA
| | - Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Huerga-Gómez I, Martini FJ, López-Bendito G. Building thalamic neuronal networks during mouse development. Front Neural Circuits 2023; 17:1098913. [PMID: 36817644 PMCID: PMC9936079 DOI: 10.3389/fncir.2023.1098913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The thalamic nuclear complex contains excitatory projection neurons and inhibitory local neurons, the two cell types driving the main circuits in sensory nuclei. While excitatory neurons are born from progenitors that reside in the proliferative zone of the developing thalamus, inhibitory local neurons are born outside the thalamus and they migrate there during development. In addition to these cell types, which occupy most of the thalamus, there are two small thalamic regions where inhibitory neurons target extra-thalamic regions rather than neighboring neurons, the intergeniculate leaflet and the parahabenular nucleus. Like excitatory thalamic neurons, these inhibitory neurons are derived from progenitors residing in the developing thalamus. The assembly of these circuits follows fine-tuned genetic programs and it is coordinated by extrinsic factors that help the cells find their location, associate with thalamic partners, and establish connections with their corresponding extra-thalamic inputs and outputs. In this review, we bring together what is currently known about the development of the excitatory and inhibitory components of the thalamocortical sensory system, in particular focusing on the visual pathway and thalamic interneurons in mice.
Collapse
Affiliation(s)
- Irene Huerga-Gómez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | |
Collapse
|
7
|
Fernández‐Nogales M, López‐Cascales MT, Murcia‐Belmonte V, Escalante A, Fernández‐Albert J, Muñoz‐Viana R, Barco A, Herrera E. Multiomic Analysis of Neurons with Divergent Projection Patterns Identifies Novel Regulators of Axon Pathfinding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200615. [PMID: 35988153 PMCID: PMC9561852 DOI: 10.1002/advs.202200615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Axon pathfinding is a key step in neural circuits formation. However, the transcriptional mechanisms regulating its progression remain poorly understood. The binary decision of crossing or avoiding the midline taken by some neuronal axons during development represents a robust model to investigate the mechanisms that control the selection of axonal trajectories. Here, to identify novel regulators of axon guidance, this work compares the transcriptome and chromatin occupancy profiles of two neuronal subpopulations, ipsilateral (iRGC) and contralateral retinal ganglion cells (cRGC), with similar functions but divergent axon trajectories. These analyses retrieved a number of genes encoding for proteins not previously implicated in axon pathfinding. In vivo functional experiments confirm the implication of some of these candidates in axonal navigation. Among the candidate genes, γ-synuclein is identified as essential for inducing midline crossing. Footprint and luciferase assays demonstrate that this small-sized protein is regulated by the transcription factor (TF) Pou4f1 in cRGCs. It is also shown that Lhx2/9 are specifically expressed in iRGCs and control a program that partially overlaps with that regulated by Zic2, previously described as essential for iRGC specification. Overall, the analyses identify dozens of new molecules potentially involved in axon guidance and reveal the regulatory logic behind the selection of axonal trajectories.
Collapse
Affiliation(s)
- Marta Fernández‐Nogales
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Maria Teresa López‐Cascales
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Verónica Murcia‐Belmonte
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Augusto Escalante
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Jordi Fernández‐Albert
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Rafael Muñoz‐Viana
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Angel Barco
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Eloísa Herrera
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| |
Collapse
|
8
|
Herrera E, Escalante A. Transcriptional Control of Axon Guidance at Midline Structures. Front Cell Dev Biol 2022; 10:840005. [PMID: 35265625 PMCID: PMC8900194 DOI: 10.3389/fcell.2022.840005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the nervous system is a time-ordered and multi-stepped process that includes neurogenesis and neuronal specification, axonal navigation, and circuits assembly. During axonal navigation, the growth cone, a dynamic structure located at the tip of the axon, senses environmental signals that guide axons towards their final targets. The expression of a specific repertoire of receptors on the cell surface of the growth cone together with the activation of a set of intracellular transducing molecules, outlines the response of each axon to specific guidance cues. This collection of axon guidance molecules is defined by the transcriptome of the cell which, in turn, depends on transcriptional and epigenetic regulators that modify the structure and DNA accessibility to determine what genes will be expressed to elicit specific axonal behaviors. Studies focused on understanding how axons navigate intermediate targets, such as the floor plate of vertebrates or the mammalian optic chiasm, have largely contributed to our knowledge of how neurons wire together during development. In fact, investigations on axon navigation at these midline structures led to the identification of many of the currently known families of proteins that act as guidance cues and their corresponding receptors. Although the transcription factors and the regulatory mechanisms that control the expression of these molecules are not well understood, important advances have been made in recent years in this regard. Here we provide an updated overview on the current knowledge about the transcriptional control of axon guidance and the selection of trajectories at midline structures.
Collapse
|
9
|
Zibetti C. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells 2022; 11:cells11050806. [PMID: 35269428 PMCID: PMC8908986 DOI: 10.3390/cells11050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal neurogenesis is driven by concerted actions of transcription factors, some of which are expressed in a continuum and across several cell subtypes throughout development. While seemingly redundant, many factors diversify their regulatory outcome on gene expression, by coordinating variations in chromatin landscapes to drive divergent retinal specification programs. Recent studies have furthered the understanding of the epigenetic contribution to the progression of age-related macular degeneration, a leading cause of blindness in the elderly. The knowledge of the epigenomic mechanisms that control the acquisition and stabilization of retinal cell fates and are evoked upon damage, holds the potential for the treatment of retinal degeneration. Herein, this review presents the state-of-the-art approaches to investigate the retinal epigenome during development, disease, and reprogramming. A pipeline is then reviewed to functionally interrogate the epigenetic and transcriptional networks underlying cell fate specification, relying on a truly unbiased screening of open chromatin states. The related work proposes an inferential model to identify gene regulatory networks, features the first footprinting analysis and the first tentative, systematic query of candidate pioneer factors in the retina ever conducted in any model organism, leading to the identification of previously uncharacterized master regulators of retinal cell identity, such as the nuclear factor I, NFI. This pipeline is virtually applicable to the study of genetic programs and candidate pioneer factors in any developmental context. Finally, challenges and limitations intrinsic to the current next-generation sequencing techniques are discussed, as well as recent advances in super-resolution imaging, enabling spatio-temporal resolution of the genome.
Collapse
Affiliation(s)
- Cristina Zibetti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Building 36, 0455 Oslo, Norway
| |
Collapse
|
10
|
Pal S, Dwivedi D, Pramanik T, Godbole G, Iwasato T, Jabaudon D, Bhalla US, Tole S. An Early Cortical Progenitor-Specific Mechanism Regulates Thalamocortical Innervation. J Neurosci 2021; 41:6822-6835. [PMID: 34193558 PMCID: PMC8360687 DOI: 10.1523/jneurosci.0226-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
The cortical subplate is critical in regulating the entry of thalamocortical sensory afferents into the cortex. These afferents reach the subplate at embryonic day (E)15.5 in the mouse, but "wait" for several days, entering the cortical plate postnatally. We report that when transcription factor LHX2 is lost in E11.5 cortical progenitors, which give rise to subplate neurons, thalamocortical afferents display premature, exuberant ingrowth into the E15.5 cortex. Embryonic mutant subplate neurons are correctly positioned below the cortical plate, but they display an altered transcriptome and immature electrophysiological properties during the waiting period. The sensory thalamus in these cortex-specific Lhx2 mutants displays atrophy and by postnatal day (P) 7, sensory innervation to the cortex is nearly eliminated leading to a loss of the somatosensory barrels. Strikingly, these phenotypes do not manifest if LHX2 is lost in postmitotic subplate neurons, and the transcriptomic dysregulation in the subplate resulting from postmitotic loss of LHX2 is vastly distinct from that seen when LHX2 is lost in progenitors. These results demonstrate a mechanism operating in subplate progenitors that has profound consequences on the growth of thalamocortical axons into the cortex.SIGNIFICANCE STATEMENT Thalamocortical nerves carry sensory information from the periphery to the cortex. When they first grow into the embryonic cortex, they "wait" at the subplate, a structure critical for the guidance and eventual connectivity of thalamic axons with their cortical targets. How the properties of subplate neurons are regulated is unclear. We report that transcription factor LHX2 is required in the progenitor "mother" cells of the cortical primordium when they are producing their "daughter" subplate neurons, in order for the thalamocortical pathway to wait at the subplate. Without LHX2 function in subplate progenitors, thalamocortical axons grow past the subplate, entering the cortical plate prematurely. This is followed by their eventual attrition and, consequently, a profound loss of sensory innervation of the mature cortex.
Collapse
Affiliation(s)
- Suranjana Pal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560001, India
| | - Tuli Pramanik
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Geeta Godbole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, 411-8540, Japan
- Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland; Department of Neurology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560001, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| |
Collapse
|
11
|
Wurmser M, Muppavarapu M, Tait CM, Laumonnerie C, González-Castrillón LM, Wilson SI. Robo2 Receptor Gates the Anatomical Divergence of Neurons Derived From a Common Precursor Origin. Front Cell Dev Biol 2021; 9:668175. [PMID: 34249921 PMCID: PMC8263054 DOI: 10.3389/fcell.2021.668175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022] Open
Abstract
Sensory information relayed to the brain is dependent on complex, yet precise spatial organization of neurons. This anatomical complexity is generated during development from a surprisingly small number of neural stem cell domains. This raises the question of how neurons derived from a common precursor domain respond uniquely to their environment to elaborate correct spatial organization and connectivity. We addressed this question by exploiting genetically labeled mouse embryonic dorsal interneuron 1 (dI1) neurons that are derived from a common precursor domain and give rise to spinal projection neurons with distinct organization of cell bodies with axons projecting either commissurally (dI1c) or ipsilaterally (dI1i). In this study, we examined how the guidance receptor, Robo2, which is a canonical Robo receptor, influenced dI1 guidance during embryonic development. Robo2 was enriched in embryonic dI1i neurons, and loss of Robo2 resulted in misguidance of dI1i axons, whereas dI1c axons remained unperturbed within the mantle zone and ventral commissure. Further, Robo2 profoundly influenced dI1 cell body migration, a feature that was partly dependent on Slit2 signaling. These data suggest that dI1 neurons are dependent on Robo2 for their organization. This work integrated with the field support of a model whereby canonical Robo2 vs. non-canonical Robo3 receptor expression facilitates projection neurons derived from a common precursor domain to read out the tissue environment uniquely giving rise to correct anatomical organization.
Collapse
Affiliation(s)
- Maud Wurmser
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | | | | | | | - Sara Ivy Wilson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Morona R, Bandín S, López JM, Moreno N, González A. Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis. J Comp Neurol 2020; 528:2361-2403. [PMID: 32162311 DOI: 10.1002/cne.24899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
The early patterning of the thalamus during embryonic development defines rostral and caudal progenitor domains, which are conserved from fishes to mammals. However, the subsequent developmental mechanisms that lead to the adult thalamic configuration have only been investigated for mammals and other amniotes. In this study, we have analyzed in the anuran amphibian Xenopus laevis (an anamniote vertebrate), through larval and postmetamorphic development, the progressive regional expression of specific markers for the rostral (GABA, GAD67, Lhx1, and Nkx2.2) and caudal (Gbx2, VGlut2, Lhx2, Lhx9, and Sox2) domains. In addition, the regional distributions at different developmental stages of other markers such as calcium binding proteins and neuropeptides, helped the identification of thalamic nuclei. It was observed that the two embryonic domains were progressively specified and compartmentalized during premetamorphosis, and cell subpopulations characterized by particular gene expression combinations were located in periventricular, intermediate and superficial strata. During prometamorphosis, three dorsoventral tiers formed from the caudal domain and most pronuclei were defined, which were modified into the definitive nuclear configuration through the metamorphic climax. Mixed cell populations originated from the rostral and caudal domains constitute most of the final nuclei and allowed us to propose additional subdivisions in the adult thalamus, whose main afferent and efferent connections were assessed by tracing techniques under in vitro conditions. This study corroborates shared features of early gene expression patterns in the thalamus between Xenopus and mouse, however, the dynamic changes in gene expression observed at later stages in the amphibian support mechanisms different from those of mammals.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Sandra Bandín
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Lhx2/9 and Etv1 Transcription Factors have Complementary roles in Regulating the Expression of Guidance Genes slit1 and sema3a. Neuroscience 2020; 434:66-82. [PMID: 32200077 DOI: 10.1016/j.neuroscience.2020.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023]
Abstract
During neural network development, growing axons read a map of guidance cues expressed in the surrounding tissue that lead the axons toward their targets. In particular, Xenopus retinal ganglion axons use the cues Slit1 and Semaphorin 3a (Sema3a) at a key guidance decision point in the mid-diencephalon in order to continue on to their midbrain target, the optic tectum. The mechanisms that control the expression of these cues, however, are poorly understood. Extrinsic Fibroblast Growth Factor (Fgf) signals are known to help coordinate the development of the brain by regulating gene expression. Here, we propose Lhx2/9 and Etv1 as potential downstream effectors of Fgf signalling to regulate slit1 and sema3a expression in the Xenopus forebrain. We find that lhx2/9 and etv1 mRNAs are expressed complementary to and within slit1/sema3a expression domains, respectively. Our data indicate that Lhx2 functions as an indirect repressor in that lhx2 overexpression within the forebrain downregulates the mRNA expression of both guidance genes, and in vitro lhx2/9 overexpression decreases the activity of slit1 and sema3a promoters. The Lhx2-VP16 constitutive activator fusion reduces sema3a promoter function, and the Lhx2-En constitutive repressor fusion increases slit1 induction. In contrast, etv1 gain of function transactivates both guidance genes in vitro and in the forebrain. Based on these data, together with our previous work, we hypothesize that Fgf signalling promotes both slit1 and sema3a expression in the forebrain through Etv1, while using Lhx2/9 to limit the extent of expression, thereby establishing the proper boundaries of guidance cue expression.
Collapse
|
14
|
Abstract
The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo-optic dysplasia. Over the past decade, the acceleration of next-generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo-pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR-Cas9 as the method for gene editing is replacing previous laborious and time-consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389-413, 2020.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
15
|
Roig-Puiggros S, Vigouroux RJ, Beckman D, Bocai NI, Chiou B, Davimes J, Gomez G, Grassi S, Hoque A, Karikari TK, Kiffer F, Lopez M, Lunghi G, Mazengenya P, Meier S, Olguín-Albuerne M, Oliveira MM, Paraíso-Luna J, Pradhan J, Radiske A, Ramos-Hryb AB, Ribeiro MC, Schellino R, Selles MC, Singh S, Theotokis P, Chédotal A. Construction and reconstruction of brain circuits: normal and pathological axon guidance. J Neurochem 2019; 153:10-32. [PMID: 31630412 DOI: 10.1111/jnc.14900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Perception of our environment entirely depends on the close interaction between the central and peripheral nervous system. In order to communicate each other, both systems must develop in parallel and in coordination. During development, axonal projections from the CNS as well as the PNS must extend over large distances to reach their appropriate target cells. To do so, they read and follow a series of axon guidance molecules. Interestingly, while these molecules play critical roles in guiding developing axons, they have also been shown to be critical in other major neurodevelopmental processes, such as the migration of cortical progenitors. Currently, a major hurdle for brain repair after injury or neurodegeneration is the absence of axonal regeneration in the mammalian CNS. By contrasts, PNS axons can regenerate. Many hypotheses have been put forward to explain this paradox but recent studies suggest that hacking neurodevelopmental mechanisms may be the key to promote CNS regeneration. Here we provide a seminar report written by trainees attending the second Flagship school held in Alpbach, Austria in September 2018 organized by the International Society for Neurochemistry (ISN) together with the Journal of Neurochemistry (JCN). This advanced school has brought together leaders in the fields of neurodevelopment and regeneration in order to discuss major keystones and future challenges in these respective fields.
Collapse
Affiliation(s)
| | - Robin J Vigouroux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Danielle Beckman
- California National Primate Research Center, UC Davis, Davis, California, USA
| | - Nadia I Bocai
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Brian Chiou
- Department of Pediatrics, University of California - San Francisco, San Francisco, California, USA
| | - Joshua Davimes
- Faculty of Health Sciences School of Anatomical Sciences, University of the Witwatersrand, Parktown Johannesburg, South Africa
| | - Gimena Gomez
- Laboratorio de Parkinson Experimental, Instituto de Investigaciones Farmacológicas (ININFA-CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ashfaqul Hoque
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,School of Life Sciences, University of Warwick, Coventry, UK.,Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, UK
| | - Frederico Kiffer
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mary Lopez
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicin, University of Milano, Segrate, Italy
| | - Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sonja Meier
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Mauricio Olguín-Albuerne
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mauricio M Oliveira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juan Paraíso-Luna
- Ramón y Cajal Institute of Health Research (IRYCIS), Department of Biochemistry and Molecular Biology and University Research Institute in Neurochemistry (IUIN), Complutense University, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jonu Pradhan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Belén Ramos-Hryb
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina.,Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Mayara C Ribeiro
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| | - Roberta Schellino
- Neuroscience Department "Rita Levi-Montalcini" and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Maria Clara Selles
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shripriya Singh
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Paschalis Theotokis
- Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Macedonia, Greece
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
16
|
Nakagawa Y. Development of the thalamus: From early patterning to regulation of cortical functions. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e345. [PMID: 31034163 DOI: 10.1002/wdev.345] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
The thalamus is a brain structure of the vertebrate diencephalon that plays a central role in regulating diverse functions of the cerebral cortex. In traditional view of vertebrate neuroanatomy, the thalamus includes three regions, dorsal thalamus, ventral thalamus, and epithalamus. Recent molecular embryological studies have redefined the thalamus and the associated axial nomenclature of the diencephalon in the context of forebrain patterning. This new view has provided a useful conceptual framework for studies on molecular mechanisms of patterning, neurogenesis and fate specification in the thalamus as well as the guidance mechanisms for thalamocortical axons. Additionally, the availability of genetic tools in mice has led to important findings on how thalamic development is linked to the development of other brain regions, particularly the cerebral cortex. This article will give an overview of the organization of the embryonic thalamus and how progenitor cells in the thalamus generate neurons that are organized into discrete nuclei. I will then discuss how thalamic development is orchestrated with the development of the cerebral cortex and other brain regions. This article is categorized under: Nervous System Development > Vertebrates: Regional Development Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Yasushi Nakagawa
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
17
|
LDB1 Is Required for the Early Development of the Dorsal Telencephalon and the Thalamus. eNeuro 2019; 6:eN-NWR-0356-18. [PMID: 30873428 PMCID: PMC6416242 DOI: 10.1523/eneuro.0356-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
LIM domain binding protein 1 (LDB1) is a protein cofactor that participates in several multiprotein complexes with transcription factors that regulate mouse forebrain development. Since Ldb1 null mutants display early embryonic lethality, we used a conditional knockout strategy to examine the role of LDB1 in early forebrain development using multiple Cre lines. Loss of Ldb1 from E8.75 using Foxg1Cre caused a disruption of midline boundary structures in the dorsal telencephalon. While this Cre line gave the expected pattern of recombination of the floxed Ldb1 locus, unexpectedly, standard Cre lines that act from embryonic day (E)10.5 (Emx1Cre) and E11.5 (NesCre) did not show efficient or complete recombination in the dorsal telencephalon by E12.5. Intriguingly, this effect was specific to the Ldb1 floxed allele, since three other lines including floxed Ai9 and mTmG reporters, and a floxed Lhx2 line, each displayed the expected spatial patterns of recombination. Furthermore, the incomplete recombination of the floxed Ldb1 locus using NesCre was limited to the dorsal telencephalon, while the ventral telencephalon and the diencephalon displayed the expected loss of Ldb1. This permitted us to examine the requirement for LDB1 in the development of the thalamus in a context wherein the cortex continued to express Ldb1. We report that the somatosensory VB nucleus is profoundly shrunken upon loss of LDB1. Our findings highlight the unusual nature of the Ldb1 locus in terms of recombination efficiency, and also report a novel role for LDB1 during the development of the thalamus.
Collapse
|
18
|
Wang Z, Li P, Wu T, Zhu S, Deng L, Cui G. Axon guidance pathway genes are associated with schizophrenia risk. Exp Ther Med 2018; 16:4519-4526. [PMID: 30542400 PMCID: PMC6257106 DOI: 10.3892/etm.2018.6781] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/11/2018] [Indexed: 01/09/2023] Open
Abstract
In the present study, we analyzed schizophrenia (SCZ)-related genome-wide association studies (GWAS) to identify genes and pathways associated with SCZ. We identified 1,098 common genes (1,098/9,468) and 20 shared KEGG pathways (both P<0.01) by integrating candidate genes from the European and American SCZ-related GWAS. The pathways related to axon guidance, long term potentiation and arrhythmogenic right ventricular cardiomyopathy (ARVC) were highly significant (P<10-3). Moreover, 15 axon guidance pathway-related genes were associated with SCZ. The association between axon guidance pathway genes and SCZ was validated by a two-stage case-control study on Shandong migrants in northeastern China. Moreover, individuals with the rs9944880 TT polymorphism in the deleted in colorectal cancer (DCC) gene were associated with SCZ. These findings indicate that the axon guidance pathway genes and the rs9944880 SNP in DCC gene are associated with SCZ pathogenesis.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Academic Research, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Ping Li
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Tong Wu
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shuangyue Zhu
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang 310007, P.R. China
| | - Libin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Guangcheng Cui
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
19
|
López-Bendito G. Development of the Thalamocortical Interactions: Past, Present and Future. Neuroscience 2018; 385:67-74. [PMID: 29932982 DOI: 10.1016/j.neuroscience.2018.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023]
Abstract
For the past two decades, we have advanced in our understanding of the mechanisms implicated in the formation of brain circuits. The connection between the cortex and thalamus has deserved much attention, as thalamocortical connectivity is crucial for sensory processing and motor learning. Classical dye tracing studies in wild-type and knockout mice initially helped to characterize the developmental progression of this connectivity and revealed key transcription factors involved. With the recent advances in technical tools to specifically label subsets of projecting neurons, knock-down genes individually and/or modify their activity, the field has gained further understanding on the rules operating in thalamocortical circuit formation and plasticity. In this review, I will summarize the most relevant discoveries that have been made in this field, from development to early plasticity processes covering three major aspects: axon guidance, thalamic influence on sensory cortical specification, and the role of spontaneous thalamic activity. I will emphasize how the implementation of new tools has helped the field to progress and what I consider to be open questions and the perspective for the future.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
20
|
The logistics of afferent cortical specification in mice and men. Semin Cell Dev Biol 2018; 76:112-119. [DOI: 10.1016/j.semcdb.2017.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 11/17/2022]
|
21
|
Abstract
A hundred years after Lhx2 ortholog apterous was identified as a critical regulator of wing development in Drosophila, LIM-HD gene family members have proved to be versatile and powerful components of the molecular machinery that executes the blueprint of embryogenesis across vertebrate and invertebrate species. Here, we focus on the spatio-temporally varied functions of LIM-homeodomain transcription factor LHX2 in the developing mouse forebrain. Right from its earliest known role in telencephalic and eye field patterning, to the control of the neuron-glia cell fate switch, and the regulation of axon pathfinding and dendritic arborization in late embryonic stages, LHX2 has been identified as a fundamental, temporally dynamic, always necessary, and often sufficient factor in a range of critical developmental phenomena. While Lhx2 mutant phenotypes have been characterized in detail in multiple brain structures, only recently have we advanced in our understanding of the molecular mechanisms by which this factor acts. Common themes emerge from how this multifunctional molecule controls a range of developmental steps in distinct forebrain structures. Examining these shared features, and noting unique aspects of LHX2 function is likely to inform our understanding of how a single factor can bring about a diversity of effects and play central and critical roles across systems and stages. The parallels in LHX2 and APTEROUS functions, and the protein complexes they participate in, offer insights into evolutionary strategies that conserve tool kits and deploy them to play new, yet familiar roles in species separated by hundreds of millions of years.
Collapse
Affiliation(s)
- Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
22
|
Benítez-Burraco A, Barcos-Martínez M, Espejo-Portero I, Fernández-Urquiza M, Torres-Ruiz R, Rodríguez-Perales S, Jiménez-Romero MS. Narrowing the Genetic Causes of Language Dysfunction in the 1q21.1 Microduplication Syndrome. Front Pediatr 2018; 6:163. [PMID: 29922639 PMCID: PMC5996825 DOI: 10.3389/fped.2018.00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
The chromosome 1q21.1 duplication syndrome (OMIM# 612475) is characterized by head anomalies, mild facial dysmorphisms, and cognitive problems, including autistic features, mental retardation, developmental delay, and learning disabilities. Speech and language development are sometimes impaired, but no detailed characterization of language problems in this condition has been provided to date. We report in detail on the cognitive and language phenotype of a child who presents with a duplication in 1q21.1 (arr[hg19] 1q21.1q21.2(145,764,455-147,824,207) × 3), and who exhibits cognitive delay and behavioral disturbances. Language is significantly perturbed, being the expressive domain the most impaired area (with significant dysphemic features in absence of pure motor speech deficits), although language comprehension and use (pragmatics) are also affected. Among the genes found duplicated in the child, CDH1L is upregulated in the blood of the proband. ROBO1, a candidate for dyslexia, is also highly upregulated, whereas, TLE3, a target of FOXP2, is significantly downregulated. These changes might explain language, and particularly speech dysfunction in the proband.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, University of Seville, Seville, Spain
| | - Montserrat Barcos-Martínez
- Laboratory of Molecular Genetics, University Hospital "Reina Sofía", Córdoba, Spain.,Maimónides Institute of Biomedical Research, Córdoba, Spain
| | - Isabel Espejo-Portero
- Laboratory of Molecular Genetics, University Hospital "Reina Sofía", Córdoba, Spain.,Maimónides Institute of Biomedical Research, Córdoba, Spain
| | | | - Raúl Torres-Ruiz
- Molecular Cytogenetics Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | | | | |
Collapse
|
23
|
Halperin Kuhns VL, Pluznick JL. Novel differences in renal gene expression in a diet-induced obesity model. Am J Physiol Renal Physiol 2017; 314:F517-F530. [PMID: 29141937 DOI: 10.1152/ajprenal.00345.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Obesity is a significant risk factor for both chronic kidney disease and end-stage renal disease. To better understand disease development, we sought to identify novel genes differentially expressed early in disease progression. We first confirmed that mice fed a high-fat (HF) diet exhibit early signs of renal injury including hyperfiltration. We then performed RNA-Seq using renal cortex RNA from C57BL6/J male mice fed either HF or control (Ctrl) diet. We identified 1,134 genes differentially expressed in the cortex on HF vs. Ctrl, of which 31 genes were selected for follow-up analysis. This included the 9 most upregulated, the 11 most downregulated, and 11 genes of interest (primarily sensory receptors and G proteins). Quantitative (q)RT-PCR for these 31 genes was performed on additional male renal cortex and medulla samples, and 11 genes (including all 9 upregulated genes) were selected for further study based on qRT-PCR. We then examined expression of these 11 genes in Ctrl and HF male heart and liver samples, which demonstrated that these changes are relatively specific to the renal cortex. These 11 genes were also examined in female renal cortex, where we found that the expression changes seen in males on a HF diet are not replicated in females, even when the females are started on the diet sooner to match weight gain of the males. In sum, these data demonstrate that in a HF-diet model of early disease, novel transcriptional changes occur that are both sex specific and specific to the renal cortex.
Collapse
Affiliation(s)
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
24
|
Gezelius H, Moreno-Juan V, Mezzera C, Thakurela S, Rodríguez-Malmierca LM, Pistolic J, Benes V, Tiwari VK, López-Bendito G. Genetic Labeling of Nuclei-Specific Thalamocortical Neurons Reveals Putative Sensory-Modality Specific Genes. Cereb Cortex 2017; 27:5054-5069. [PMID: 27655933 PMCID: PMC7610997 DOI: 10.1093/cercor/bhw290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/22/2016] [Indexed: 11/14/2022] Open
Abstract
The thalamus is a central brain structure with topographically ordered long-range axonal projections that convey sensory information to the cortex via distinct nuclei. Although there is an increasing knowledge about genes important for thalamocortical (TC) development, the identification of genetic landmarks of the distinct thalamic nuclei during the embryonic development has not been addressed systematically. Indeed, a more comprehensive understanding of how the axons from the individual nuclei find their way and connect to their corresponding cortical area is called for. Here, we used a genetic dual labeling strategy in mice to purify distinct principal sensory thalamic neurons. Subsequent genome-wide transcriptome profiling revealed genes specifically expressed in each nucleus during embryonic development. Analysis of regulatory regions of the identified genes revealed key transcription factors and networks that likely underlie the specification of individual sensory-modality TC connections. Finally, the importance of correct axon targeting for the specific sensory-modality population transcriptome was evidenced in a Sema6A mutant, in which visual TC axons are derailed at embryonic life. In sum, our data determined the developmental transcriptional profile of the TC neurons that will eventually support sensory processing.
Collapse
Affiliation(s)
- Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | - Cecilia Mezzera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
- Present address: Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sudhir Thakurela
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Luis Miguel Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | | | - Vladimir Benes
- EMBL, GeneCore, Meyerhofstr. 1, D-69117 Heidelberg, Germany
| | - Vijay K. Tiwari
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| |
Collapse
|
25
|
Dmrt5, a Novel Neurogenic Factor, Reciprocally Regulates Lhx2 to Control the Neuron-Glia Cell-Fate Switch in the Developing Hippocampus. J Neurosci 2017; 37:11245-11254. [PMID: 29025924 PMCID: PMC5688529 DOI: 10.1523/jneurosci.1535-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 11/21/2022] Open
Abstract
Regulation of the neuron-glia cell-fate switch is a critical step in the development of the CNS. Previously, we demonstrated that Lhx2 is a necessary and sufficient regulator of this process in the mouse hippocampal primordium, such that Lhx2 overexpression promotes neurogenesis and suppresses gliogenesis, whereas loss of Lhx2 has the opposite effect. We tested a series of transcription factors for their ability to mimic Lhx2 overexpression and suppress baseline gliogenesis, and also to compensate for loss of Lhx2 and suppress the resulting enhanced level of gliogenesis in the hippocampus. Here, we demonstrate a novel function of Dmrt5/Dmrta2 as a neurogenic factor in the developing hippocampus. We show that Dmrt5, as well as known neurogenic factors Neurog2 and Pax6, can each not only mimic Lhx2 overexpression, but also can compensate for loss of Lhx2 to different extents. We further uncover a reciprocal regulatory relationship between Dmrt5 and Lhx2, such that each can compensate for loss of the other. Dmrt5 and Lhx2 also have opposing regulatory control on Pax6 and Neurog2, indicating a complex bidirectionally regulated network that controls the neuron-glia cell-fate switch.SIGNIFICANCE STATEMENT We identify Dmrt5 as a novel regulator of the neuron-glia cell-fate switch in the developing hippocampus. We demonstrate Dmrt5 to be neurogenic, and reciprocally regulated by Lhx2: loss of either factor promotes gliogenesis; overexpression of either factor suppresses gliogenesis and promotes neurogenesis; each can substitute for loss of the other. Furthermore, each factor has opposing effects on established neurogenic genes Neurog2 and Pax6 Dmrt5 is known to suppress their expression, and we show that Lhx2 is required to maintain it. Our study reveals a complex regulatory network with bidirectional control of a fundamental feature of CNS development, the control of the production of neurons versus astroglia in the developing hippocampus.Finally, we confirm that Lhx2 binds a highly conserved putative enhancer of Dmrt5, suggesting an evolutionarily conserved regulatory relationship between these factors. Our findings uncover a complex network that involves Lhx2, Dmrt5, Neurog2, and Pax6, and that ensures the appropriate amount and timing of neurogenesis and gliogenesis in the developing hippocampus.
Collapse
|
26
|
An oscillopathic approach to developmental dyslexia: From genes to speech processing. Behav Brain Res 2017; 329:84-95. [DOI: 10.1016/j.bbr.2017.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/14/2017] [Accepted: 03/18/2017] [Indexed: 12/27/2022]
|
27
|
Bibollet-Bahena O, Okafuji T, Hokamp K, Tear G, Mitchell KJ. A dual-strategy expression screen for candidate connectivity labels in the developing thalamus. PLoS One 2017; 12:e0177977. [PMID: 28558017 PMCID: PMC5448750 DOI: 10.1371/journal.pone.0177977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
The thalamus or “inner chamber” of the brain is divided into ~30 discrete nuclei, with highly specific patterns of afferent and efferent connectivity. To identify genes that may direct these patterns of connectivity, we used two strategies. First, we used a bioinformatics pipeline to survey the predicted proteomes of nematode, fruitfly, mouse and human for extracellular proteins containing any of a list of motifs found in known guidance or connectivity molecules. Second, we performed clustering analyses on the Allen Developing Mouse Brain Atlas data to identify genes encoding surface proteins expressed with temporal profiles similar to known guidance or connectivity molecules. In both cases, we then screened the resultant genes for selective expression patterns in the developing thalamus. These approaches identified 82 candidate connectivity labels in the developing thalamus. These molecules include many members of the Ephrin, Eph-receptor, cadherin, protocadherin, semaphorin, plexin, Odz/teneurin, Neto, cerebellin, calsyntenin and Netrin-G families, as well as diverse members of the immunoglobulin (Ig) and leucine-rich receptor (LRR) superfamilies, receptor tyrosine kinases and phosphatases, a variety of growth factors and receptors, and a large number of miscellaneous membrane-associated or secreted proteins not previously implicated in axonal guidance or neuronal connectivity. The diversity of their expression patterns indicates that thalamic nuclei are highly differentiated from each other, with each one displaying a unique repertoire of these molecules, consistent with a combinatorial logic to the specification of thalamic connectivity.
Collapse
Affiliation(s)
| | - Tatsuya Okafuji
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Guy Tear
- Department of Developmental Neurobiology, New Hunt’s House, Guy’s Campus, King’s College, London, United Kingdom
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
28
|
Friocourt F, Chédotal A. The Robo3 receptor, a key player in the development, evolution, and function of commissural systems. Dev Neurobiol 2017; 77:876-890. [DOI: 10.1002/dneu.22478] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022]
Affiliation(s)
- François Friocourt
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision; 17 Rue Moreau Paris 75012 France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision; 17 Rue Moreau Paris 75012 France
| |
Collapse
|
29
|
Lee M, Yoon J, Song H, Lee B, Lam DT, Yoon J, Baek K, Clevers H, Jeong Y. Tcf7l2 plays crucial roles in forebrain development through regulation of thalamic and habenular neuron identity and connectivity. Dev Biol 2017; 424:62-76. [DOI: 10.1016/j.ydbio.2017.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 11/28/2022]
|
30
|
Gezelius H, López-Bendito G. Thalamic neuronal specification and early circuit formation. Dev Neurobiol 2016; 77:830-843. [PMID: 27739248 DOI: 10.1002/dneu.22460] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/16/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
The thalamus is a central structure of the brain, primarily recognized for the relay of incoming sensory and motor information to the cerebral cortex but also key in high order intracortical communication. It consists of glutamatergic projection neurons organized in several distinct nuclei, each having a stereotype connectivity pattern and functional roles. In the adult, these nuclei can be appreciated by architectural boundaries, although their developmental origin and specification is only recently beginning to be revealed. Here, we summarize the current knowledge on the specification of the distinct thalamic neurons and nuclei, starting from early embryonic patterning until the postnatal days when active sensory experience is initiated and the overall system connectivity is already established. We also include an overview of the guidance processes important for establishing thalamocortical connections, with emphasis on the early topographical specification. The extensively studied thalamocortical axon branching in the cortex is briefly mentioned; however, the maturation and plasticity of this connection are beyond the scope of this review. In separate chapters, additional mechanisms and/or features that influence the specification and development of thalamic neurons and their circuits are also discussed. Finally, an outlook of future directions is given. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 830-843, 2017.
Collapse
Affiliation(s)
- Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Spain
| |
Collapse
|
31
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
32
|
Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2016; 83:742-764. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are characterised by marked language deficits, but it is not clear how these arise from gene mutations associated with the disorders. Our goal is to narrow the gap between SZ and ASD and, ultimately, give support to the view that they represent abnormal (but related) ontogenetic itineraries for the human faculty of language. We will focus on the distinctive oscillatory profiles of the SZ and ASD brains, in turn using these insights to refine our understanding of how the brain implements linguistic computations by exploring a novel model of linguistic feature-set composition. We will argue that brain rhythms constitute the best route to interpreting language deficits in both conditions and mapping them to neural dysfunction and risk alleles of the genes. Importantly, candidate genes for SZ and ASD are overrepresented among the gene sets believed to be important for language evolution. This translational effort may help develop an understanding of the aetiology of SZ and ASD and their high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | | |
Collapse
|
33
|
Quach TT, Lerch JK, Honnorat J, Khanna R, Duchemin AM. Neuronal networks in mental diseases and neuropathic pain: Beyond brain derived neurotrophic factor and collapsin response mediator proteins. World J Psychiatry 2016; 6:18-30. [PMID: 27014595 PMCID: PMC4804265 DOI: 10.5498/wjp.v6.i1.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/24/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023] Open
Abstract
The brain is a complex network system that has the capacity to support emotion, thought, action, learning and memory, and is characterized by constant activity, constant structural remodeling, and constant attempt to compensate for this remodeling. The basic insight that emerges from complex network organization is that substantively different networks can share common key organizational principles. Moreover, the interdependence of network organization and behavior has been successfully demonstrated for several specific tasks. From this viewpoint, increasing experimental/clinical observations suggest that mental disorders are neural network disorders. On one hand, single psychiatric disorders arise from multiple, multifactorial molecular and cellular structural/functional alterations spreading throughout local/global circuits leading to multifaceted and heterogeneous clinical symptoms. On the other hand, various mental diseases may share functional deficits across the same neural circuit as reflected in the overlap of symptoms throughout clinical diagnoses. An integrated framework including experimental measures and clinical observations will be necessary to formulate a coherent and comprehensive understanding of how neural connectivity mediates and constraints the phenotypic expression of psychiatric disorders.
Collapse
|
34
|
Harb K, Magrinelli E, Nicolas CS, Lukianets N, Frangeul L, Pietri M, Sun T, Sandoz G, Grammont F, Jabaudon D, Studer M, Alfano C. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications. eLife 2016; 5:e09531. [PMID: 26814051 PMCID: PMC4744182 DOI: 10.7554/elife.09531] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/13/2015] [Indexed: 12/25/2022] Open
Abstract
During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features.
Collapse
Affiliation(s)
- Kawssar Harb
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Elia Magrinelli
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Céline S Nicolas
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Nikita Lukianets
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Laura Frangeul
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mariel Pietri
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Tao Sun
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, United States
| | - Guillaume Sandoz
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Franck Grammont
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Laboratoire J.A. Dieudonné, Nice, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Michele Studer
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Christian Alfano
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
35
|
Massinen S, Wang J, Laivuori K, Bieder A, Tapia Paez I, Jiao H, Kere J. Genomic sequencing of a dyslexia susceptibility haplotype encompassing ROBO1. J Neurodev Disord 2016; 8:4. [PMID: 26877820 PMCID: PMC4751651 DOI: 10.1186/s11689-016-9136-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background The DYX5 locus for developmental dyslexia was mapped to chromosome 3 by linkage study of a large Finnish family, and later, roundabout guidance receptor 1 (ROBO1) was implicated as a candidate gene at DYX5 with suppressed expression from the segregating rare haplotype. A functional magnetoencephalographic study of several family members revealed abnormal auditory processing of interaural interaction, supporting a defect in midline crossing of auditory pathways. In the current study, we have characterized genetic variation in the broad ROBO1 gene region in the DYX5-linked family, aiming to identify variants that would increase our understanding of the altered expression of ROBO1. Methods We have used a whole genome sequencing strategy on a pooled sample of 19 individuals in combination with two individually sequenced genomes. The discovered genetic variants were annotated and filtered. Subsequently, the most interesting variants were functionally tested using relevant methods, including electrophoretic mobility shift assay (EMSA), luciferase assay, and gene knockdown by lentiviral small hairpin RNA (shRNA) in lymphoblasts. Results We found one novel intronic single nucleotide variant (SNV) and three novel intergenic SNVs in the broad region of ROBO1 that were specific to the dyslexia susceptibility haplotype. Functional testing by EMSA did not support the binding of transcription factors to three of the SNVs, but one of the SNVs was bound by the LIM homeobox 2 (LHX2) protein, with increased binding affinity for the non-reference allele. Knockdown of LHX2 in lymphoblast cell lines extracted from subjects from the DYX5-linked family showed decreasing expression of ROBO1, supporting the idea that LHX2 regulates ROBO1 also in human. Conclusions The discovered variants may explain the segregation of dyslexia in this family, but the effect appears subtle in the experimental settings. Their impact on the developing human brain remains suggestive based on the association and subtle experimental support. Electronic supplementary material The online version of this article (doi:10.1186/s11689-016-9136-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Satu Massinen
- Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland ; Folkhälsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
| | - Jingwen Wang
- Department of Biosciences and Nutrition, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Krista Laivuori
- Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland ; Folkhälsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
| | - Andrea Bieder
- Department of Biosciences and Nutrition, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Isabel Tapia Paez
- Department of Biosciences and Nutrition, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jiao
- Department of Biosciences and Nutrition, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland ; Folkhälsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland ; Department of Biosciences and Nutrition, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Control of axon guidance and neurotransmitter phenotype of dB1 hindbrain interneurons by Lim-HD code. J Neurosci 2015; 35:2596-611. [PMID: 25673852 DOI: 10.1523/jneurosci.2699-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hindbrain dorsal interneurons (HDIs) are implicated in receiving, processing, integrating, and transmitting sensory inputs from the periphery and spinal cord, including the vestibular, auditory, and proprioceptive systems. During development, multiple molecularly defined HDI types are set in columns along the dorsoventral axis, before migrating along well-defined trajectories to generate various brainstem nuclei. Major brainstem functions rely on the precise assembly of different interneuron groups and higher brain domains into common circuitries. Yet, knowledge regarding interneuron axonal patterns, synaptic targets, and the transcriptional control that govern their connectivity is sparse. The dB1 class of HDIs is formed in a district dorsomedial position along the hindbrain and gives rise to the inferior olive nuclei, dorsal cochlear nuclei, and vestibular nuclei. dB1 interneurons express various transcription factors (TFs): the pancreatic transcription factor 1a (Ptf1a), the homeobox TF-Lbx1 and the Lim-homeodomain (Lim-HD), and TF Lhx1 and Lhx5. To decipher the axonal and synaptic connectivity of dB1 cells, we have used advanced enhancer tools combined with conditional expression systems and the PiggyBac-mediated DNA transposition system in avian embryos. Multiple ipsilateral and contralateral axonal projections were identified ascending toward higher brain centers, where they formed synapses in the Purkinje cerebellar layer as well as at discrete midbrain auditory and vestibular centers. Decoding the mechanisms that instruct dB1 circuit formation revealed a fundamental role for Lim-HD proteins in regulating their axonal patterns, synaptic targets, and neurotransmitter choice. Together, this study provides new insights into the assembly and heterogeneity of HDIs connectivity and its establishment through the central action of Lim-HD governed programs.
Collapse
|
37
|
Santiago C, Bashaw GJ. Transcription factors and effectors that regulate neuronal morphology. Development 2015; 141:4667-80. [PMID: 25468936 DOI: 10.1242/dev.110817] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transcription factors establish the tremendous diversity of cell types in the nervous system by regulating the expression of genes that give a cell its morphological and functional properties. Although many studies have identified requirements for specific transcription factors during the different steps of neural circuit assembly, few have identified the downstream effectors by which they control neuronal morphology. In this Review, we highlight recent work that has elucidated the functional relationships between transcription factors and the downstream effectors through which they regulate neural connectivity in multiple model systems, with a focus on axon guidance and dendrite morphogenesis.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Boeckx C, Benítez-Burraco A. Globularity and language-readiness: generating new predictions by expanding the set of genes of interest. Front Psychol 2014; 5:1324. [PMID: 25505436 PMCID: PMC4243498 DOI: 10.3389/fpsyg.2014.01324] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022] Open
Abstract
This study builds on the hypothesis put forth in Boeckx and Benítez-Burraco (2014), according to which the developmental changes expressed at the levels of brain morphology and neural connectivity that resulted in a more globular braincase in our species were crucial to understand the origins of our language-ready brain. Specifically, this paper explores the links between two well-known 'language-related' genes like FOXP2 and ROBO1 implicated in vocal learning and the initial set of genes of interest put forth in Boeckx and Benítez-Burraco (2014), with RUNX2 as focal point. Relying on the existing literature, we uncover potential molecular links that could be of interest to future experimental inquiries into the biological foundations of language and the testing of our initial hypothesis. Our discussion could also be relevant for clinical linguistics and for the interpretation of results from paleogenomics.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA)Barcelona, Spain
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
| | | |
Collapse
|
39
|
Blockus H, Chédotal A. The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases. Curr Opin Neurobiol 2014; 27:82-8. [PMID: 24698714 DOI: 10.1016/j.conb.2014.03.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/17/2014] [Accepted: 03/09/2014] [Indexed: 11/20/2022]
Abstract
Slit repulsion, mediated by Robo receptors, is known to play a major role in axon guidance in the nervous system. However, recent studies have revealed that in the mammalian cortex these molecules are highly versatile and that their function extends far beyond axon guidance. They act at all phases of development to control neurogenesis, neuronal migration, axon patterning, dendritic outgrowth and spinogenesis. The expression of Robo receptors in cortical and thalamocortical axons (TCAs) is tightly regulated by a combination of transcription factors (TFs), proteases and activity. These findings also suggest that Slit and Robos have influenced the evolution of cortical circuits. Last, novel genetic evidence associates various neurological disorders, such as autism, to abnormal Slit/Robo signaling.
Collapse
Affiliation(s)
- Heike Blockus
- INSERM UMR_S968, Institut de la Vision, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la vision, F-75012, France; CNRS, UMR7210, F-75012 Paris, France
| | - Alain Chédotal
- INSERM UMR_S968, Institut de la Vision, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, Institut de la vision, F-75012, France; CNRS, UMR7210, F-75012 Paris, France.
| |
Collapse
|
40
|
Stettler O, Moya KL. Distinct roles of homeoproteins in brain topographic mapping and in neural circuit formation. Semin Cell Dev Biol 2014; 35:165-72. [PMID: 25042849 DOI: 10.1016/j.semcdb.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 01/02/2023]
Abstract
The construction of the brain is a highly regulated process, requiring coordination of various cellular and molecular mechanisms that together ensure the stability of the cerebrum architecture and functions. The mature brain is an organ that performs complex computational operations using specific sensory information from the outside world and this requires precise organization within sensory networks and a separation of sensory modalities during development. We review here the role of homeoproteins in the arealization of the brain according to sensorimotor functions, the micropartition of its cytoarchitecture, and the maturation of its sensory circuitry. One of the most interesting observation about homeoproteins in recent years concerns their ability to act both in a cell-autonomous and non-cell-autonomous manner. The highlights in the present review collectively show how these two modes of action of homeoproteins confer various functions in shaping cortical maps.
Collapse
Affiliation(s)
- Olivier Stettler
- Laboratoire CRRET EAC 7149, Université Paris-Est Créteil, 61, Av. du Général de Gaulle, 94010 Créteil Cedex, France.
| | - Kenneth L Moya
- Collège de France, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, 11 place Marcelin Berthelot, 75005 Paris, France; Labex Memolife, PSL Research University, France
| |
Collapse
|
41
|
Caronia-Brown G, Yoshida M, Gulden F, Assimacopoulos S, Grove EA. The cortical hem regulates the size and patterning of neocortex. Development 2014; 141:2855-65. [PMID: 24948604 DOI: 10.1242/dev.106914] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cortical hem, a source of Wingless-related (WNT) and bone morphogenetic protein (BMP) signaling in the dorsomedial telencephalon, is the embryonic organizer for the hippocampus. Whether the hem is a major regulator of cortical patterning outside the hippocampus has not been investigated. We examined regional organization across the entire cerebral cortex in mice genetically engineered to lack the hem. Indicating that the hem regulates dorsoventral patterning in the cortical hemisphere, the neocortex, particularly dorsomedial neocortex, was reduced in size in late-stage hem-ablated embryos, whereas cortex ventrolateral to the neocortex expanded dorsally. Unexpectedly, hem ablation also perturbed regional patterning along the rostrocaudal axis of neocortex. Rostral neocortical domains identified by characteristic gene expression were expanded, and caudal domains diminished. A similar shift occurs when fibroblast growth factor (FGF) 8 is increased at the rostral telencephalic organizer, yet the FGF8 source was unchanged in hem-ablated brains. Rather we found that hem WNT or BMP signals, or both, have opposite effects to those of FGF8 in regulating transcription factors that control the size and position of neocortical areas. When the hem is ablated a necessary balance is perturbed, and cerebral cortex is rostralized. Our findings reveal a much broader role for the hem in cortical development than previously recognized, and emphasize that two major signaling centers interact antagonistically to pattern cerebral cortex.
Collapse
Affiliation(s)
| | - Michio Yoshida
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA RIKEN Center for Developmental Biology, Kobe, Japan
| | - Forrest Gulden
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | | - Elizabeth A Grove
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
42
|
Boeckx C, Benítez-Burraco A. The shape of the human language-ready brain. Front Psychol 2014; 5:282. [PMID: 24772099 PMCID: PMC3983487 DOI: 10.3389/fpsyg.2014.00282] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Abstract
Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals–Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA) Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona Barcelona, Spain
| | | |
Collapse
|
43
|
Santiago C, Labrador JP, Bashaw GJ. The homeodomain transcription factor Hb9 controls axon guidance in Drosophila through the regulation of Robo receptors. Cell Rep 2014; 7:153-65. [PMID: 24685136 DOI: 10.1016/j.celrep.2014.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 02/05/2023] Open
Abstract
Transcription factors establish neural diversity and wiring specificity; however, how they orchestrate changes in cell morphology remains poorly understood. The Drosophila Roundabout (Robo) receptors regulate connectivity in the CNS, but how their precise expression domains are established is unknown. Here, we show that the homeodomain transcription factor Hb9 acts upstream of Robo2 and Robo3 to regulate axon guidance in the Drosophila embryo. In ventrally projecting motor neurons, hb9 is required for robo2 expression, and restoring Robo2 activity in hb9 mutants rescues motor axon defects. Hb9 requires its conserved repressor domain and functions in parallel with Nkx6 to regulate robo2. Moreover, hb9 can regulate the medio-lateral position of axons through robo2 and robo3, and restoring robo3 expression in hb9 mutants rescues the lateral position defects of a subset of neurons. Altogether, these data identify Robo2 and Robo3 as key effectors of Hb9 in regulating nervous system development.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Abstract
Roundabout receptors (Robo) and their Slit ligands were discovered in the 1990s and found to be key players in axon guidance. Slit was initially described s an extracellular matrix protein that was expressed by midline glia in Drosophila. A few years later, it was shown that, in vertebrates and invertebrates, Slits acted as chemorepellents for axons crossing the midline. Robo proteins were originally discovered in Drosophila in a mutant screen for genes involved in the regulation of midline crossing. This ligand-receptor pair has since been implicated in a variety of other neuronal and non-neuronal processes ranging from cell migration to angiogenesis, tumourigenesis and even organogenesis of tissues such as kidneys, lungs and breasts.
Collapse
|
45
|
Kuzmanov A, Hopfer U, Marti P, Meyer-Schaller N, Yilmaz M, Christofori G. LIM-homeobox gene 2 promotes tumor growth and metastasis by inducing autocrine and paracrine PDGF-B signaling. Mol Oncol 2013; 8:401-16. [PMID: 24423492 DOI: 10.1016/j.molonc.2013.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 12/17/2022] Open
Abstract
An epithelial-mesenchymal transition (EMT) is a critical process during embryonic development and the progression of epithelial tumors to metastatic cancers. Gene expression profiling has uncovered the transcription factor LIM homeobox gene 2 (Lhx2) with up-regulated expression during TGFβ-induced EMT in normal and cancerous breast epithelial cells. Loss and gain of function experiments in transgenic mouse models of breast cancer and of insulinoma in vivo and in breast cancer cells in vitro indicate that Lhx2 plays a critical role in primary tumor growth and metastasis. Notably, the transgenic expression of Lhx2 during breast carcinogenesis promotes vessel maturation, primary tumor growth, tumor cell intravasation and metastasis by directly inducing the expression of platelet-derived growth factor (PDGF)-B in tumor cells and by indirectly increasing the expression of PDGF receptor-β (PDGFRβ) on tumor cells and pericytes. Pharmacological inhibition of PDGF-B/PDGFRβ signaling reduces vessel functionality and tumor growth and Lhx2-induced cell migration and cell invasion. The data indicate a dual role of Lhx2 during EMT and tumor progression: by inducing the expression of PDGF-B, Lhx2 provokes an autocrine PDGF-B/PDGFRβ loop required for cell migration, invasion and metastatic dissemination and paracrine PDGF-B/PDGFRβ signaling to support blood vessel functionality and, thus, primary tumor growth.
Collapse
Affiliation(s)
- Aleksandar Kuzmanov
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Ulrike Hopfer
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; Novartis, Basel, Switzerland
| | - Patricia Marti
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; Novartis, Basel, Switzerland
| | | | - Mahmut Yilmaz
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; Roche, Basel, Switzerland
| | - Gerhard Christofori
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| |
Collapse
|
46
|
Abstract
LIM homeodomain transcription factors are critical regulators of early development in multiple systems but have yet to be examined for a role in circuit formation. The LIM homeobox gene Lhx2 is expressed in cortical progenitors during development and also in the superficial layers of the neocortex in maturity. However, analysis of Lhx2 function at later stages of cortical development has been hampered by severe phenotypes associated with early loss of function. We identified a particular Cre-recombinase line that acts in the cortical primordium after its specification is complete, permitting an analysis of Lhx2 function in neocortical lamination, regionalization, and circuit formation by selective elimination of Lhx2 in the dorsal telencephalon. We report a profound disruption of cortical neuroanatomical and molecular features upon loss of Lhx2 in the cortex from embryonic day 11.5. A unique feature of cortical circuitry, the somatosensory barrels, is undetectable, and molecular patterning of cortical regions appears disrupted. Surprisingly, thalamocortical afferents innervate the mutant cortex with apparently normal regional specificity. Electrophysiological recordings reveal a loss of responses evoked by stimulation of individual whiskers, but responses to simultaneous stimulation of multiple whiskers were present, suggesting that thalamic afferents are unable to organize the neurocircuitry for barrel formation because of a cortex-specific requirement of Lhx2. We report that Lhx2 is required for the expression of transcription factor paired box gene 6, axon guidance molecule Ephrin A5, and the receptor NMDA receptor 1. These genes may mediate Lhx2 function in the formation of specialized neurocircuitry necessary for neocortical function.
Collapse
|
47
|
Lakhina V, Subramanian L, Huilgol D, Shetty AS, Vaidya VA, Tole S. Seizure evoked regulation of LIM-HD genes and co-factors in the postnatal and adult hippocampus. F1000Res 2013; 2:205. [PMID: 25110573 PMCID: PMC4111125 DOI: 10.12688/f1000research.2-205.v1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 12/03/2022] Open
Abstract
The LIM-homeodomain (LIM-HD) family of transcription factors is well known for its functions during several developmental processes including cell fate specification, cell migration and axon guidance, and its members play fundamental roles in hippocampal development. The hippocampus is a structure that displays striking activity dependent plasticity. We examined whether LIM-HD genes and their co-factors are regulated during kainic acid induced seizure in the adult rat hippocampus as well as in early postnatal rats, when the hippocampal circuitry is not fully developed. We report a distinct and field-specific regulation of LIM-HD genes
Lhx1,Lhx2, and
Lhx9, LIM-only gene
Lmo4, and cofactor
Clim1a in the adult hippocampus after seizure induction. In contrast none of these genes displayed altered levels upon induction of seizure in postnatal animals. Our results provide evidence of temporal and spatial seizure mediated regulation of LIM-HD family members and suggest that LIM-HD gene function may be involved in activity dependent plasticity in the adult hippocampus
Collapse
Affiliation(s)
- Vanisha Lakhina
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Lewis Sigler Institute for Integrative Genomics, Princeton University, NJ, USA
| | - Lakshmi Subramanian
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Department of Neurology, University of California, San Francisco, CA, USA
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Cold Spring Harbor Laboratory, NY, USA
| | - Ashwin S Shetty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
48
|
Leyva-Díaz E, López-Bendito G. In and out from the cortex: development of major forebrain connections. Neuroscience 2013; 254:26-44. [PMID: 24042037 DOI: 10.1016/j.neuroscience.2013.08.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
In this review we discuss recent advances in the understanding of the development of forebrain projections attending to their origin, fate determination, and axon guidance. Major forebrain connections include callosal, corticospinal, corticothalamic and thalamocortical projections. Although distinct transcriptional programs specify these subpopulations of projecting neurons, the mechanisms involved in their axonal development are similar. Guidance by short- and long-range molecular cues, interaction with intermediate target populations and activity-dependent mechanisms contribute to their development. Moreover, some of these connections interact with each other showing that the development of these axonal tracts is a well-orchestrated event. Finally, we will recapitulate recent discoveries that challenge the field of neural wiring that show that these forebrain connections can be changed once formed. The field of reprogramming has arrived to postmitotic cortical neurons and has showed us that forebrain connectivity is not immutable and might be changed by manipulations in the transcriptional program of matured cells.
Collapse
Affiliation(s)
- E Leyva-Díaz
- Instituto de Neurociencias de Alicante, CSIC & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | | |
Collapse
|
49
|
Gordon PJ, Yun S, Clark AM, Monuki ES, Murtaugh LC, Levine EM. Lhx2 balances progenitor maintenance with neurogenic output and promotes competence state progression in the developing retina. J Neurosci 2013; 33:12197-207. [PMID: 23884928 PMCID: PMC3721834 DOI: 10.1523/jneurosci.1494-13.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/29/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022] Open
Abstract
The LIM-Homeodomain transcription factor Lhx2 is an essential organizer of early eye development and is subsequently expressed in retinal progenitor cells (RPCs). To determine its requirement in RPCs, we performed a temporal series of conditional inactivations in mice with the early RPC driver Pax6 α-Cre and the tamoxifen-inducible Hes1(CreERT2) driver. Deletion of Lhx2 caused a significant reduction of the progenitor population and a corresponding increase in neurogenesis. Precursor fate choice correlated with the time of inactivation; early and late inactivation led to the overproduction of retinal ganglion cells (RGCs) and rod photoreceptors, respectively. In each case, however, the overproduction was selective, occurring at the expense of other cell types and indicating a role for Lhx2 in generating cell type diversity. RPCs that persisted in the absence of Lhx2 continued to generate RGC precursors beyond their normal production window, suggesting that Lhx2 facilitates a transition in competence state. These results identify Lhx2 as a key regulator of RPC properties that contribute to the ordered production of multiple cell types during retinal tissue formation.
Collapse
Affiliation(s)
- Patrick J. Gordon
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
- Interdepartmental Program in Neuroscience, and
| | - Sanghee Yun
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
| | - Anna M. Clark
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
| | - Edwin S. Monuki
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California 92697
| | - L. Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84132, and
| | - Edward M. Levine
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center
- Department of Neurobiology and Anatomy
| |
Collapse
|
50
|
Hadas Y, Nitzan N, Furley AJW, Kozlov SV, Klar A. Distinct cis regulatory elements govern the expression of TAG1 in embryonic sensory ganglia and spinal cord. PLoS One 2013; 8:e57960. [PMID: 23469119 PMCID: PMC3582508 DOI: 10.1371/journal.pone.0057960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/29/2013] [Indexed: 01/06/2023] Open
Abstract
Cell fate commitment of spinal progenitor neurons is initiated by long-range, midline-derived, morphogens that regulate an array of transcription factors that, in turn, act sequentially or in parallel to control neuronal differentiation. Included among these are transcription factors that regulate the expression of receptors for guidance cues, thereby determining axonal trajectories. The Ig/FNIII superfamily molecules TAG1/Axonin1/CNTN2 (TAG1) and Neurofascin (Nfasc) are co-expressed in numerous neuronal cell types in the CNS and PNS – for example motor, DRG and interneurons - both promote neurite outgrowth and both are required for the architecture and function of nodes of Ranvier. The genes encoding TAG1 and Nfasc are adjacent in the genome, an arrangement which is evolutionarily conserved. To study the transcriptional network that governs TAG1 and Nfasc expression in spinal motor and commissural neurons, we set out to identify cis elements that regulate their expression. Two evolutionarily conserved DNA modules, one located between the Nfasc and TAG1 genes and the second directly 5′ to the first exon and encompassing the first intron of TAG1, were identified that direct complementary expression to the CNS and PNS, respectively, of the embryonic hindbrain and spinal cord. Sequential deletions and point mutations of the CNS enhancer element revealed a 130bp element containing three conserved E-boxes required for motor neuron expression. In combination, these two elements appear to recapitulate a major part of the pattern of TAG1 expression in the embryonic nervous system.
Collapse
Affiliation(s)
- Yoav Hadas
- Dept. of medical neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Noa Nitzan
- Dept. of medical neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Andrew J. W. Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (AV); (SVK); (AJWF)
| | - Serguei V. Kozlov
- Center for Advanced Preclinical Research, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, United States of America
- * E-mail: (AV); (SVK); (AJWF)
| | - Avihu Klar
- Dept. of medical neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail: (AV); (SVK); (AJWF)
| |
Collapse
|