1
|
Christensen CW, Weed SE, Brown TE, Hentges ST. Exploring the role of beta-endorphin in activity-based anorexia in mice. Physiol Rep 2025; 13:e70201. [PMID: 39930661 PMCID: PMC11810985 DOI: 10.14814/phy2.70201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 02/14/2025] Open
Abstract
Anorexia nervosa (AN) remains one of the most lethal mental health disorders and is poorly understood from a neurobiological perspective. The most widely used animal model of AN is activity-based anorexia (ABA) where scheduled food presentation leads to a spontaneous maladaptive increase in running-wheel activity and rapid weight loss in rodents, recapitulating specific aspects of AN. Research using the ABA paradigm to probe the role of hedonic and homeostatic circuits has indicated that the hypothalamic proopiomelanocortin (POMC) system may play a role in both the increased activity and reduced food intake observed. Previous work has shown that Pomc mRNA and its peptide product beta-endorphin (β-end) are increased during the onset of ABA. β-end is reinforcing and increases locomotor activity, and mice lacking the mu opioid receptor (MOR), the primary target of β-end, display blunted food-anticipatory activity in the ABA paradigm. Thus, the current work was designed to determine if aspects of ABA would be diminished in mice lacking β-end. We did not find any significant differences in wheel-running, food intake, or body weight loss in β-end knockout mice of either sex during ABA compared to wild-type littermates. Therefore, we conclude that the development of ABA does not require β-end.
Collapse
Affiliation(s)
- Connor W. Christensen
- Department of Integrative Physiology and NeuroscienceWashington State UniversityPullmanWashingtonUSA
| | - Samantha E. Weed
- Department of Integrative Physiology and NeuroscienceWashington State UniversityPullmanWashingtonUSA
| | - Travis E. Brown
- Department of Integrative Physiology and NeuroscienceWashington State UniversityPullmanWashingtonUSA
| | - Shane T. Hentges
- Department of Integrative Physiology and NeuroscienceWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
2
|
Lee TH, Nicolas JC, Quarta C. Molecular and functional mapping of the neuroendocrine hypothalamus: a new era begins. J Endocrinol Invest 2024; 47:2627-2648. [PMID: 38878127 DOI: 10.1007/s40618-024-02411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Recent advances in neuroscience tools for single-cell molecular profiling of brain neurons have revealed an enormous spectrum of neuronal subpopulations within the neuroendocrine hypothalamus, highlighting the remarkable molecular and cellular heterogeneity of this brain area. RATIONALE Neuronal diversity in the hypothalamus reflects the high functional plasticity of this brain area, where multiple neuronal populations flexibly integrate a variety of physiological outputs, including energy balance, stress and fertility, through crosstalk mechanisms with peripheral hormones. Intrinsic functional heterogeneity is also observed within classically 'defined' subpopulations of neuroendocrine neurons, including subtypes with distinct neurochemical signatures, spatial organisation and responsiveness to hormonal cues. AIM The aim of this review is to critically evaluate past and current research on the functional diversity of hypothalamic neuroendocrine neurons and their plasticity. It focuses on how this neuronal plasticity in this brain area relates to metabolic control, feeding regulation and interactions with stress and fertility-related neural circuits. CONCLUSION Our analysis provides an original framework for improving our understanding of the hypothalamic regulation of hormone function and the development of neuroendocrine diseases.
Collapse
Affiliation(s)
- T H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - J-C Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - C Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
3
|
Wang J, O'Reilly M, Cooper IA, Chehrehasa F, Moody H, Beecher K. Mapping GABAergic projections that mediate feeding. Neurosci Biobehav Rev 2024; 163:105743. [PMID: 38821151 DOI: 10.1016/j.neubiorev.2024.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Neuroscience offers important insights into the pathogenesis and treatment of obesity by investigating neural circuits underpinning appetite and feeding. Gamma-aminobutyric acid (GABA), one of the most abundant neurotransmitters in the brain, and its associated receptors represent an array of pharmacologically targetable mediators of appetite signalling. Targeting the GABAergic system is therefore an increasingly investigated approach to obesity treatment. However, the many GABAergic projections that control feeding have yet to be collectively analysed. This review provides a comprehensive analysis of the relationship between GABAergic signalling and appetite by examining both foundational studies and the results of newly emerging chemogenetic/optogenetic experiments. A current snapshot of these efforts to map GABAergic projections influencing appetite is provided, and potential avenues for further investigation are provided.
Collapse
Affiliation(s)
- Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia.
| | - Max O'Reilly
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| | | | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Hayley Moody
- Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| |
Collapse
|
4
|
Leon S, Simon V, Lee TH, Steuernagel L, Clark S, Biglari N, Lesté-Lasserre T, Dupuy N, Cannich A, Bellocchio L, Zizzari P, Allard C, Gonzales D, Le Feuvre Y, Lhuillier E, Brochard A, Nicolas JC, Teillon J, Nikolski M, Marsicano G, Fioramonti X, Brüning JC, Cota D, Quarta C. Single cell tracing of Pomc neurons reveals recruitment of 'Ghost' subtypes with atypical identity in a mouse model of obesity. Nat Commun 2024; 15:3443. [PMID: 38658557 PMCID: PMC11043070 DOI: 10.1038/s41467-024-47877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The hypothalamus contains a remarkable diversity of neurons that orchestrate behavioural and metabolic outputs in a highly plastic manner. Neuronal diversity is key to enabling hypothalamic functions and, according to the neuroscience dogma, it is predetermined during embryonic life. Here, by combining lineage tracing of hypothalamic pro-opiomelanocortin (Pomc) neurons with single-cell profiling approaches in adult male mice, we uncovered subpopulations of 'Ghost' neurons endowed with atypical molecular and functional identity. Compared to 'classical' Pomc neurons, Ghost neurons exhibit negligible Pomc expression and are 'invisible' to available neuroanatomical approaches and promoter-based reporter mice for studying Pomc biology. Ghost neuron numbers augment in diet-induced obese mice, independent of neurogenesis or cell death, but weight loss can reverse this shift. Our work challenges the notion of fixed, developmentally programmed neuronal identities in the mature hypothalamus and highlight the ability of specialised neurons to reversibly adapt their functional identity to adult-onset obesogenic stimuli.
Collapse
Affiliation(s)
- Stéphane Leon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Thomas H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Samantha Clark
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Nasim Biglari
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | | | - Nathalie Dupuy
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Astrid Cannich
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Luigi Bellocchio
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Delphine Gonzales
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Yves Le Feuvre
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Emeline Lhuillier
- University of Toulouse III Paul Sabatier, INSERM, Institut des Maladies Métaboliques et Cardiovasculaires, U1297, 31400, France; GeT-Santé, Plateforme Génome et Transcriptome, GenoToul, Toulouse, France
| | - Alexandre Brochard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Jean Charles Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Jérémie Teillon
- University of Bordeaux, CNRS, INSERM, BIC, US4, UAR 3420, F-33000, Bordeaux, France
| | - Macha Nikolski
- University of Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Xavier Fioramonti
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
5
|
Engin A. The Unrestrained Overeating Behavior and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:167-198. [PMID: 39287852 DOI: 10.1007/978-3-031-63657-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
6
|
Mansano NDS, Vieira HR, Araujo-Lopes R, Szawka RE, Donato J, Frazao R. Fasting Modulates GABAergic Synaptic Transmission to Arcuate Kisspeptin Neurons in Female Mice. Endocrinology 2023; 164:bqad150. [PMID: 37793082 DOI: 10.1210/endocr/bqad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
It is well-established that the hypothalamic-pituitary-gonadal (HPG) axis is suppressed due to negative energy balance. However, less information is available on whether kisspeptin neuronal activity contributes to fasting-induced responses. In the present study, female and male mice were fasted for 24 hours or provided food ad libitum (fed group) to determine whether acute fasting is sufficient to modulate kisspeptin neuronal activity. In female mice, fasting attenuated luteinizing hormone (LH) and prolactin (PRL) serum levels and increased follicle-stimulating hormone levels compared with the fed group. In contrast, fasting did not affect gonadotropin or PRL secretion in male mice. By measuring genes related to LH pulse generation in micropunches obtained from the arcuate nucleus of the hypothalamus (ARH), we observed that fasting reduced Kiss1 mRNA levels in female and male mice. In contrast, Pdyn expression was upregulated only in fasted female mice, whereas no changes in the Tac2 mRNA levels were observed in both sexes. Interestingly, the frequency and amplitude of the GABAergic postsynaptic currents recorded from ARH kisspeptin neurons (ARHKisspeptin) were reduced in 24-hour fasted female mice but not in males. Additionally, neuropeptide Y induced a hyperpolarization in the resting membrane potential of ARHKisspeptin neurons of fed female mice but not in males. Thus, the response of ARHKisspeptin neurons to fasting is sexually dependent with a female bias, associated with changes in gonadotropins and PRL secretion. Our findings suggest that GABAergic transmission to ARHKisspeptin neurons modulates the activity of the HPG axis during situations of negative energy balance.
Collapse
Affiliation(s)
- Naira da Silva Mansano
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| | - Henrique Rodrigues Vieira
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| | - Roberta Araujo-Lopes
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Belo Horizonte, MG 31270-901, Brazil
| | - Raphael Escorsim Szawka
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Belo Horizonte, MG 31270-901, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP 05508-000, Brazil
| | - Renata Frazao
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
7
|
Priest MF, Freda SN, Rieth IJ, Badong D, Dumrongprechachan V, Kozorovitskiy Y. Peptidergic and functional delineation of the Edinger-Westphal nucleus. Cell Rep 2023; 42:112992. [PMID: 37594894 PMCID: PMC10512657 DOI: 10.1016/j.celrep.2023.112992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 06/15/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
Many neuronal populations that release fast-acting excitatory and inhibitory neurotransmitters in the brain also contain slower-acting neuropeptides. These facultative peptidergic cell types are common, but it remains uncertain whether neurons that solely release peptides exist. Our fluorescence in situ hybridization, genetically targeted electron microscopy, and electrophysiological characterization suggest that most neurons of the non-cholinergic, centrally projecting Edinger-Westphal nucleus in mice are obligately peptidergic. We further show, using anterograde projection mapping, monosynaptic retrograde tracing, angled-tip fiber photometry, and chemogenetic modulation and genetically targeted ablation in conjunction with canonical assays for anxiety, that this peptidergic population activates in response to loss of motor control and promotes anxiety responses. Together, these findings elucidate an integrative, ethologically relevant role for the Edinger-Westphal nucleus and functionally align the nucleus with the periaqueductal gray, where it resides. This work advances our understanding of peptidergic modulation of anxiety and provides a framework for future investigations of peptidergic systems.
Collapse
Affiliation(s)
- Michael F Priest
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Sara N Freda
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Isabelle J Rieth
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Deanna Badong
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Vasin Dumrongprechachan
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
8
|
Beekly BG, Rupp A, Burgess CR, Elias CF. Fast neurotransmitter identity of MCH neurons: Do contents depend on context? Front Neuroendocrinol 2023; 70:101069. [PMID: 37149229 PMCID: PMC11190671 DOI: 10.1016/j.yfrne.2023.101069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/07/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.
Collapse
Affiliation(s)
- B G Beekly
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States.
| | - A Rupp
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| | - C R Burgess
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - C F Elias
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
10
|
Zhou H, Rao Z, Zhang Z, Zhou J. Function of the GABAergic System in Diabetic Encephalopathy. Cell Mol Neurobiol 2023; 43:605-619. [PMID: 35460435 PMCID: PMC11415196 DOI: 10.1007/s10571-022-01214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Diabetes is a common metabolic disease characterized by loss of blood sugar control and a high rate of complications. γ-Aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter in the adult mammalian brain. The normal function of the GABAergic system is affected in diabetes. Herein, we summarize the role of the GABAergic system in diabetic cognitive dysfunction, diabetic blood sugar control disorders, diabetes-induced peripheral neuropathy, diabetic central nervous system damage, maintaining diabetic brain energy homeostasis, helping central control of blood sugar and attenuating neuronal oxidative stress damage. We show the key regulatory role of the GABAergic system in multiple comorbidities in patients with diabetes and hope that further studies elucidating the role of the GABAergic system will yield benefits for the treatment and prevention of comorbidities in patients with diabetes.
Collapse
Affiliation(s)
- Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Zhili Rao
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, People's Republic of China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, People's Republic of China.
| |
Collapse
|
11
|
Choi Y, Min HY, Hwang J, Jo YH. Magel2 knockdown in hypothalamic POMC neurons innervating the medial amygdala reduces susceptibility to diet-induced obesity. Life Sci Alliance 2022; 5:5/11/e202201502. [PMID: 36007929 PMCID: PMC9418835 DOI: 10.26508/lsa.202201502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperphagia and obesity profoundly affect the health of children with Prader-Willi syndrome (PWS). The Magel2 gene among the genes in the Prader-Willi syndrome deletion region is expressed in proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC). Knockout of the Magel2 gene disrupts POMC neuronal circuits and functions. Here, we report that loss of the Magel2 gene exclusively in ARCPOMC neurons innervating the medial amygdala (MeA) causes a reduction in body weight in both male and female mice fed with a high-fat diet. This anti-obesity effect is associated with an increased locomotor activity. There are no significant differences in glucose and insulin tolerance in mice without the Magel2 gene in ARCPOMC neurons innervating the MeA. Plasma estrogen levels are higher in female mutant mice than in controls. Blockade of the G protein-coupled estrogen receptor (GPER), but not estrogen receptor-α (ER-α), reduces locomotor activity in female mutant mice. Hence, our study provides evidence that knockdown of the Magel2 gene in ARCPOMC neurons innervating the MeA reduces susceptibility to diet-induced obesity with increased locomotor activity through activation of central GPER.
Collapse
Affiliation(s)
- Yuna Choi
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA.,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA
| | - Hyeon-Young Min
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA.,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA
| | - Jiyeon Hwang
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA.,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA
| | - Young-Hwan Jo
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY, USA .,Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, NY, USA
| |
Collapse
|
12
|
Hwang E, Scarlett JM, Baquero AF, Bennett CM, Dong Y, Chau D, Brown JM, Mercer AJ, Meek TH, Grove KL, Phan BAN, Morton GJ, Williams KW, Schwartz MW. Sustained inhibition of NPY/AgRP neuronal activity by FGF1. JCI Insight 2022; 7:e160891. [PMID: 35917179 PMCID: PMC9536267 DOI: 10.1172/jci.insight.160891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
In rodent models of type 2 diabetes (T2D), central administration of FGF1 normalizes elevated blood glucose levels in a manner that is sustained for weeks or months. Increased activity of NPY/AgRP neurons in the hypothalamic arcuate nucleus (ARC) is implicated in the pathogenesis of hyperglycemia in these animals, and the ARC is a key brain area for the antidiabetic action of FGF1. We therefore sought to determine whether FGF1 inhibits NPY/AgRP neurons and, if so, whether this inhibitory effect is sufficiently durable to offer a feasible explanation for sustained diabetes remission induced by central administration of FGF1. Here, we show that FGF1 inhibited ARC NPY/AgRP neuron activity, both after intracerebroventricular injection in vivo and when applied ex vivo in a slice preparation; we also showed that the underlying mechanism involved increased input from presynaptic GABAergic neurons. Following central administration, the inhibitory effect of FGF1 on NPY/AgRP neurons was also highly durable, lasting for at least 2 weeks. To our knowledge, no precedent for such a prolonged inhibitory effect exists. Future studies are warranted to determine whether NPY/AgRP neuron inhibition contributes to the sustained antidiabetic action elicited by intracerebroventricular FGF1 injection in rodent models of T2D.
Collapse
Affiliation(s)
- Eunsang Hwang
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Jarrad M. Scarlett
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, Washington, USA
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Arian F. Baquero
- Obesity Research, Novo Nordisk Research Center Seattle, Seattle, Washington, USA
| | - Camdin M. Bennett
- Obesity Research, Novo Nordisk Research Center Seattle, Seattle, Washington, USA
| | - Yanbin Dong
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Dominic Chau
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Jenny M. Brown
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, Washington, USA
- University of Copenhagen, Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Aaron J. Mercer
- Obesity Research, Novo Nordisk Research Center Seattle, Seattle, Washington, USA
| | - Thomas H. Meek
- Obesity Research, Novo Nordisk Research Center Seattle, Seattle, Washington, USA
- Discovery Technologies & Genomics, Novo Nordisk Research Centre Oxford, Oxford, United Kingdom
| | - Kevin L. Grove
- Obesity Research, Novo Nordisk Research Center Seattle, Seattle, Washington, USA
| | - Bao Anh N. Phan
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, Washington, USA
| | - Gregory J. Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, Washington, USA
| | - Kevin W. Williams
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Michael W. Schwartz
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, Washington, USA
| |
Collapse
|
13
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
14
|
Daimon CM, Hentges ST. Inhibition of POMC neurons in mice undergoing activity-based anorexia selectively blunts food anticipatory activity without affecting body weight or food intake. Am J Physiol Regul Integr Comp Physiol 2022; 322:R219-R227. [PMID: 35043681 PMCID: PMC8858678 DOI: 10.1152/ajpregu.00313.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anorexia nervosa (AN) is a debilitating eating disorder characterized by severely restricted eating and significant body weight loss. In addition, many individuals also report engaging in excessive exercise. Previous research using the activity-based anorexia (ABA) model has implicated the hypothalamic proopiomelanocortin (POMC) system. Using the ABA model, Pomc mRNA has been shown to be transiently elevated in both male and female rodents undergoing ABA. In addition, the POMC peptide β-endorphin appears to contribute to food anticipatory activity (FAA), a characteristic of ABA, as both deletion and antagonism of the µ opioid receptor (MOR) that β-endorphin targets, results in decreased FAA. The role of β-endorphin in reduced food intake in ABA is unknown and POMC neurons release multiple transmitters in addition to β-endorphin. In the current study, we set out to determine whether targeted inhibition of POMC neurons themselves rather than their peptide products would lessen the severity of ABA. Inhibition of POMC neurons during ABA via chemogenetic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology resulted in reduced FAA in both male and female mice with no significant changes in body weight or food intake. The selective reduction in FAA persisted even in the face of concurrent chemogenetic inhibition of additional cell types in the hypothalamic arcuate nucleus. The results suggest that POMC neurons could be contributing preferentially to excessive exercise habits in patients with AN. Furthermore, the results also suggest that metabolic control during ABA appears to take place via a POMC neuron-independent mechanism.
Collapse
Affiliation(s)
- Caitlin M. Daimon
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T. Hentges
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
15
|
Metz MJ, Daimon CM, King CM, Rau AR, Hentges ST. Individual arcuate nucleus proopiomelanocortin neurons project to select target sites. Am J Physiol Regul Integr Comp Physiol 2021; 321:R982-R989. [PMID: 34755553 PMCID: PMC8714814 DOI: 10.1152/ajpregu.00169.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) are a diverse group of neurons that project widely to different brain regions. It is unknown how this small population of neurons organizes its efferent projections. In this study, we hypothesized that individual ARH POMC neurons exclusively innervate select target regions. To investigate this hypothesis, we first verified that only a fraction of ARH POMC neurons innervate the lateral hypothalamus (LH), the paraventricular nucleus of the hypothalamus (PVN), the periaqueductal gray (PAG), or the ventral tegmental area (VTA) using the retrograde tracer cholera toxin B (CTB). Next, two versions of CTB conjugated to distinct fluorophores were injected bilaterally into two of the regions such that PVN and VTA, PAG and VTA, or LH and PVN received tracers simultaneously. These pairs of target sites were chosen based on function and location. Few individual ARH POMC neurons projected to two brain regions at once, suggesting that there are ARH POMC neuron subpopulations organized by their efferent projections. We also investigated whether increasing the activity of POMC neurons could increase the number of ARH POMC neurons labeled with CTB, implying an increase in new synaptic connections to downstream regions. However, chemogenetic enhancement of POMC neuron activity did not increase retrograde tracing of CTB back to ARH POMC neurons from either the LH, PVN, or VTA. Overall, subpopulations of ARH POMC neurons with distinct efferent projections may serve as a way for the POMC population to organize its many functions.
Collapse
Affiliation(s)
- Marissa J Metz
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Caitlin M Daimon
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Connie M King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Andrew R Rau
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
16
|
Caron A, Jane Michael N. New Horizons: Is Obesity a Disorder of Neurotransmission? J Clin Endocrinol Metab 2021; 106:e4872-e4886. [PMID: 34117881 DOI: 10.1210/clinem/dgab421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/19/2022]
Abstract
Obesity is a disease of the nervous system. While some will view this statement as provocative, others will take it as obvious. Whatever our side is, the pharmacology tells us that targeting the nervous system works for promoting weight loss. It works, but at what cost? Is the nervous system a safe target for sustainable treatment of obesity? What have we learned-and unlearned-about the central control of energy balance in the last few years? Herein we provide a thought-provoking exploration of obesity as a disorder of neurotransmission. We discuss the state of knowledge on the brain pathways regulating energy homeostasis that are commonly targeted in anti-obesity therapy and explore how medications affecting neurotransmission such as atypical antipsychotics, antidepressants, and antihistamines relate to body weight. Our goal is to provide the endocrine community with a conceptual framework that will help expending our understanding of the pathophysiology of obesity, a disease of the nervous system.
Collapse
Affiliation(s)
- Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| |
Collapse
|
17
|
Saucisse N, Mazier W, Simon V, Binder E, Catania C, Bellocchio L, Romanov RA, Léon S, Matias I, Zizzari P, Quarta C, Cannich A, Meece K, Gonzales D, Clark S, Becker JM, Yeo GSH, Fioramonti X, Merkle FT, Wardlaw SL, Harkany T, Massa F, Marsicano G, Cota D. Functional heterogeneity of POMC neurons relies on mTORC1 signaling. Cell Rep 2021; 37:109800. [PMID: 34644574 DOI: 10.1016/j.celrep.2021.109800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hypothalamic pro-opiomelanocortin (POMC) neurons are known to trigger satiety. However, these neuronal cells encompass heterogeneous subpopulations that release γ-aminobutyric acid (GABA), glutamate, or both neurotransmitters, whose functions are poorly defined. Using conditional mutagenesis and chemogenetics, we show that blockade of the energy sensor mechanistic target of rapamycin complex 1 (mTORC1) in POMC neurons causes hyperphagia by mimicking a cellular negative energy state. This is associated with decreased POMC-derived anorexigenic α-melanocyte-stimulating hormone and recruitment of POMC/GABAergic neurotransmission, which is restrained by cannabinoid type 1 receptor signaling. Electrophysiology and optogenetic studies further reveal that pharmacological blockade of mTORC1 simultaneously activates POMC/GABAergic neurons and inhibits POMC/glutamatergic ones, implying that the functional specificity of these subpopulations relies on mTORC1 activity. Finally, POMC neurons with different neurotransmitter profiles possess specific molecular signatures and spatial distribution. Altogether, these findings suggest that mTORC1 orchestrates the activity of distinct POMC neurons subpopulations to regulate feeding behavior.
Collapse
Affiliation(s)
- Nicolas Saucisse
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Wilfrid Mazier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Elke Binder
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Caterina Catania
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Luigi Bellocchio
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Stéphane Léon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Isabelle Matias
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Astrid Cannich
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Kana Meece
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Delphine Gonzales
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Samantha Clark
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Julia M Becker
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Giles S H Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux University, Bordeaux INP, F-33000 Bordeaux, France
| | - Florian T Merkle
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria; Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Federico Massa
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France.
| |
Collapse
|
18
|
Leyrer-Jackson JM, Hood LE, Olive MF. Alcohol consumption preferentially activates a subset of pro-opiomelanocortin (POMC) producing neurons targeting the amygdala. Neuropharmacology 2021; 195:108674. [PMID: 34153315 DOI: 10.1016/j.neuropharm.2021.108674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alcohol abuse is a worldwide public health concern and leads to an estimated 90,000 alcohol-related deaths in the United States annually. Alcohol may promote its euphoric and motivational effects, in part, by activating the endogenous opioid system. Pro-opiomelanocortin (POMC) producing neurons located within the arcuate nucleus (ArcN) of the hypothalamus make up one circuit of the endogenous opioid system, and heavily projects to reward-related brain areas such as the amygdala, nucleus accumbens (NAc) and ventral tegmental area (VTA). POMC producing neurons release β-endorphin and other peptides that target opioid receptors within reward areas to elicit their associated rewarding effects. Here we explore ArcN POMC neuronal activation, as assessed via FosB expression, following alcohol consumption to determine whether activation varied within subsets of ArcN POMC projection neurons targeting different reward-related areas. METHODS Fluorescent retrobeads were used to label ArcN POMC projection neurons targeting the NAc, amygdala and VTA in POMC-cre mice expressing the reporter tdTomato. Animals (n = 57) were then allowed to voluntarily consume alcohol or water using the drinking-in-the-dark (DID) paradigm, and sacrificed for immunohistochemistry to examine FosB expression within ArcN POMC neurons. RESULTS Female mice displayed escalation of alcohol intake across DID sessions, whereas males did not. A greater percent of ArcN POMC neurons target the amygdala over the NAc and VTA, and alcohol consumption preferentially activated ArcN POMC neurons targeting the amygdala over other areas. CONCLUSION These findings highlight a novel aspect alcohol-induced activation of the endogenous opioid system, whereby alcohol activates a specific subpopulation of ArcN POMC producing neurons that project primarily to the amygdala.
Collapse
Affiliation(s)
| | - Lauren E Hood
- Department of Psychology, Arizona State University, Tempe, AZ, 85281, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, 85281, USA
| |
Collapse
|
19
|
Stincic TL, Rønnekleiv OK, Kelly MJ. Membrane and nuclear initiated estrogenic regulation of homeostasis. Steroids 2021; 168:108428. [PMID: 31229508 PMCID: PMC6923613 DOI: 10.1016/j.steroids.2019.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
Abstract
Reproduction and energy balance are inextricably linked in order to optimize the evolutionary fitness of an organism. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy and produce unhealthy or obesity-prone offspring. The quintessential function of the hypothalamus is to act as a bridge between the endocrine and nervous systems, coordinating fertility and autonomic functions. Across the female reproductive cycle various motivations wax and wane, following levels of ovarian hormones. Estrogens, more specifically 17β-estradiol (E2), coordinate a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool of cells, this triumvirate is composed of the kisspeptin (Kiss1ARH), proopiomelanocortin (POMC), and neuropeptide Y/agouti-related peptide (AgRP) neurons. Although the excitability of these neuronal subpopulations is subject to genomic and rapid estrogenic regulation, kisspeptin neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we will review the recent findings on the synaptic interactions between Kiss1, AgRP and POMC neurons and how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States.
| |
Collapse
|
20
|
Guillaumin MCC, Burdakov D. Neuropeptides as Primary Mediators of Brain Circuit Connectivity. Front Neurosci 2021; 15:644313. [PMID: 33776641 PMCID: PMC7991401 DOI: 10.3389/fnins.2021.644313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Across sleep and wakefulness, brain function requires inter-neuronal interactions lasting beyond seconds. Yet, most studies of neural circuit connectivity focus on millisecond-scale interactions mediated by the classic fast transmitters, GABA and glutamate. In contrast, neural circuit roles of the largest transmitter family in the brain–the slow-acting peptide transmitters–remain relatively overlooked, or described as “modulatory.” Neuropeptides may efficiently implement sustained neural circuit connectivity, since they are not rapidly removed from the extracellular space, and their prolonged action does not require continuous presynaptic firing. From this perspective, we review actions of evolutionarily-conserved neuropeptides made by brain-wide-projecting hypothalamic neurons, focusing on lateral hypothalamus (LH) neuropeptides essential for stable consciousness: the orexins/hypocretins. Action potential-dependent orexin release inside and outside the hypothalamus evokes slow postsynaptic excitation. This excitation does not arise from modulation of classic neurotransmission, but involves direct action of orexins on their specific G-protein coupled receptors (GPCRs) coupled to ion channels. While millisecond-scale, GABA/glutamate connectivity within the LH may not be strong, re-assessing LH microcircuits from the peptidergic viewpoint is consistent with slow local microcircuits. The sustained actions of neuropeptides on neuronal membrane potential may enable core brain functions, such as temporal integration and the creation of lasting permissive signals that act as “eligibility traces” for context-dependent information routing and plasticity. The slowness of neuropeptides has unique advantages for efficient neuronal processing and feedback control of consciousness.
Collapse
Affiliation(s)
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
21
|
Quarta C, Claret M, Zeltser LM, Williams KW, Yeo GSH, Tschöp MH, Diano S, Brüning JC, Cota D. POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nat Metab 2021; 3:299-308. [PMID: 33633406 PMCID: PMC8085907 DOI: 10.1038/s42255-021-00345-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Hypothalamic AgRP and POMC neurons are conventionally viewed as the yin and yang of the body's energy status, since they act in an opposite manner to modulate appetite and systemic energy metabolism. However, although AgRP neurons' functions are comparatively well understood, a unifying theory of how POMC neuronal cells operate has remained elusive, probably due to their high level of heterogeneity, which suggests that their physiological roles might be more complex than initially thought. In this Perspective, we propose a conceptual framework that integrates POMC neuronal heterogeneity with appetite regulation, whole-body metabolic physiology and the development of obesity. We highlight emerging evidence indicating that POMC neurons respond to distinct combinations of interoceptive signals and food-related cues to fine-tune divergent metabolic pathways and behaviours necessary for survival. The new framework we propose reflects the high degree of developmental plasticity of this neuronal population and may enable progress towards understanding of both the aetiology and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Carmelo Quarta
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM U1215, Bordeaux, France
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER), Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniela Cota
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM U1215, Bordeaux, France.
| |
Collapse
|
22
|
Kwon E, Joung HY, Liu SM, Chua SC, Schwartz GJ, Jo YH. Optogenetic stimulation of the liver-projecting melanocortinergic pathway promotes hepatic glucose production. Nat Commun 2020; 11:6295. [PMID: 33293550 PMCID: PMC7722761 DOI: 10.1038/s41467-020-20160-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
The central melanocortin system plays a fundamental role in the control of feeding and body weight. Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) also regulate overall glucose homeostasis via insulin-dependent and -independent pathways. Here, we report that a subset of ARC POMC neurons innervate the liver via preganglionic parasympathetic acetylcholine (ACh) neurons in the dorsal motor nucleus of the vagus (DMV). Optogenetic stimulation of this liver-projecting melanocortinergic pathway elevates blood glucose levels that is associated with increased expression of hepatic gluconeogenic enzymes in female and male mice. Pharmacological blockade and knockdown of the melanocortin-4 receptor gene in the DMV abolish this stimulation-induced effect. Activation of melanocortin-4 receptors inhibits DMV cholinergic neurons and optogenetic inhibition of liver-projecting parasympathetic cholinergic fibers increases blood glucose levels. This elevated blood glucose is not due to altered pancreatic hormone release. Interestingly, insulin-induced hypoglycemia increases ARC POMC neuron activity. Hence, this liver-projecting melanocortinergic circuit that we identified may play a critical role in the counterregulatory response to hypoglycemia.
Collapse
Affiliation(s)
- Eunjin Kwon
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hye-Young Joung
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shun-Mei Liu
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Streamson C Chua
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gary J Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA.
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Rau AR, King CM, Hentges ST. Disruption of GABA or glutamate release from POMC neurons in the adult mouse does not affect metabolic end points. Am J Physiol Regul Integr Comp Physiol 2020; 319:R592-R601. [PMID: 32936679 DOI: 10.1152/ajpregu.00180.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proopiomelanocortin (POMC) neurons contribute to the regulation of many physiological processes; the majority of which have been attributed to the release of peptides produced from the POMC prohormone such as α-MSH, which plays key roles in food intake and metabolism. However, it is now clear that POMC neurons also release amino acid transmitters that likely contribute to the overall function of POMC cells. Recent work indicates that constitutive deletion of these transmitters can affect metabolic phenotypes, but also that the expression of GABAergic or glutamatergic markers changes throughout development. The goal of the present study was to determine whether the release of glutamate or GABA from POMC neurons in the adult mouse contributes notably to energy balance regulation. Disturbed release of glutamate or GABA specifically from POMC neurons in adult mice was achieved using a tamoxifen-inducible Cre construct (Pomc-CreERT2) expressed in mice also carrying floxed versions of Slc17a6 (vGlut2) or Gad1 and Gad2, encoding the vesicular glutamate transporter type 2 and GAD67 and GAD65 proteins, respectively. All mice in the experiments received tamoxifen injections, but control mice lacked the tamoxifen-inducible Cre sequence. Body weight was unchanged in Gad1- and Gad2- or vGlut2-deleted female and male mice. Additionally, no significant differences in glucose tolerance or refeeding after an overnight fast were observed. These data collectively suggest that the release of GABA or glutamate from POMC neurons in adult mice does not significantly contribute to the metabolic parameters tested here. In light of prior work, the data also suggest that amino acid transmitter release from POMC cells may contribute to separate functions in the adult versus the developing mouse.
Collapse
Affiliation(s)
- Andrew R Rau
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Connie M King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
24
|
Dunigan AI, Swanson AM, Olson DP, Roseberry AG. Whole-brain efferent and afferent connectivity of mouse ventral tegmental area melanocortin-3 receptor neurons. J Comp Neurol 2020; 529:1157-1183. [PMID: 32856297 DOI: 10.1002/cne.25013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/10/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
The mesolimbic dopamine (DA) system is involved in the regulation of multiple behaviors, including feeding, and evidence demonstrates that the melanocortin system can act on the mesolimbic DA system to control feeding and other behaviors. The melanocortin-3 receptor (MC3R) is an important component of the melanocortin system, but its overall role is poorly understood. Because MC3Rs are highly expressed in the ventral tegmental area (VTA) and are likely to be the key interaction point between the melanocortin and mesolimbic DA systems, we set out to identify both the efferent projection patterns of VTA MC3R neurons and the location of the neurons providing afferent input to them. VTA MC3R neurons were broadly connected to neurons across the brain but were strongly connected to a discrete set of brain regions involved in the regulation of feeding, reward, and aversion. Surprisingly, experiments using monosynaptic rabies virus showed that proopiomelanocortin (POMC) and agouti-related protein (AgRP) neurons in the arcuate nucleus made few direct synapses onto VTA MC3R neurons or any of the other major neuronal subtypes in the VTA, despite being extensively labeled by general retrograde tracers injected into the VTA. These results greatly contribute to our understanding of the anatomical interactions between the melanocortin and mesolimbic systems and provide a foundation for future studies of VTA MC3R neurons and the circuits containing them in the control of feeding and other behaviors.
Collapse
Affiliation(s)
- Anna I Dunigan
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Andrew M Swanson
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - David P Olson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron G Roseberry
- Department of Biology, Georgia State University, Atlanta, Georgia, USA.,Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Navarro VM. Metabolic regulation of kisspeptin - the link between energy balance and reproduction. Nat Rev Endocrinol 2020; 16:407-420. [PMID: 32427949 PMCID: PMC8852368 DOI: 10.1038/s41574-020-0363-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Hypothalamic kisspeptin neurons serve as the nodal regulatory centre of reproductive function. These neurons are subjected to a plethora of regulatory factors that ultimately affect the release of kisspeptin, which modulates gonadotropin-releasing hormone (GnRH) release from GnRH neurons to control the reproductive axis. The presence of sufficient energy reserves is critical to achieve successful reproduction. Consequently, metabolic factors impose a very tight control over kisspeptin synthesis and release. This Review offers a synoptic overview of the different steps in which kisspeptin neurons are subjected to metabolic regulation, from early developmental stages to adulthood. We cover an ample array of known mechanisms that underlie the metabolic regulation of KISS1 expression and kisspeptin release. Furthermore, the novel role of kisspeptin neurons as active players within the neuronal circuits that govern energy balance is discussed, offering evidence of a bidirectional role of these neurons as a nexus between metabolism and reproduction.
Collapse
Affiliation(s)
- Víctor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Graduate Program in Neuroscience, Boston, MA, USA.
| |
Collapse
|
26
|
Ethanol has concentration-dependent effects on hypothalamic POMC neuronal excitability. Alcohol 2020; 86:103-112. [PMID: 32304714 DOI: 10.1016/j.alcohol.2020.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/21/2022]
Abstract
Alcohol abuse is a worldwide public health concern, yet the precise molecular targets of alcohol in the brain are still not fully understood. Alcohol may promote its euphoric and motivational effects, in part, by activating the endogenous opioid system. One particular component of this system consists of pro-opiomelanocortin (POMC) -producing neurons in the arcuate nucleus (ArcN) of the hypothalamus, which project to reward-related brain areas. To identify the physiological effects of ethanol on ArcN POMC neurons, we utilized whole cell patch-clamp recordings and bath application of ethanol (5-40 mM) to identify alterations in spontaneous baseline activity, rheobase, spiking characteristics, or intrinsic neuronal properties. We found that 10 mM ethanol increased the number of depolarization-induced spikes in the majority of recorded cells, whereas higher concentrations of ethanol (20-40 mM) decreased the number of spikes. Interestingly, we found that basal firing rates of ArcN POMC neurons may predict physiological responding to ethanol. Rheobase and spontaneous activity, measured by spontaneous excitatory post-synaptic potentials (EPSPs) at rest, were unchanged after exposure to ethanol, regardless of concentration. These results suggest that ethanol has concentration-dependent modulatory effects on ArcN POMC neuronal activity, which may be relevant to treatments for alcohol use disorders that target endogenous opioid systems.
Collapse
|
27
|
Trotta M, Bello EP, Alsina R, Tavella MB, Ferrán JL, Rubinstein M, Bumaschny VF. Hypothalamic Pomc expression restricted to GABAergic neurons suppresses Npy overexpression and restores food intake in obese mice. Mol Metab 2020; 37:100985. [PMID: 32311511 PMCID: PMC7292867 DOI: 10.1016/j.molmet.2020.100985] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Objective Hypothalamic arcuate proopiomelanocortin (Arc-POMC) neurons are involved in different physiological processes such as the regulation of energy balance, glucose homeostasis, and stress-induced analgesia. Since these neurons heterogeneously express different biological markers and project to many hypothalamic and extrahypothalamic areas, it is proposed that Arc-POMC neurons could be classified into different subpopulations having diverse physiological roles. The aim of the present study was to characterize the contribution of the subpopulation of Arc-POMC neurons cosecreting gamma-aminobutyric acid (GABA) neurotransmitter in the control of energy balance. Methods Arc-Pomc expression restricted to GABAergic-POMC neurons was achieved by crossing a reversible Pomc-deficient mouse line (arcPomc−) with a tamoxifen-inducible Gad2-CreER transgenic line. Pomc expression was rescued in the compound arcPomc−/−:Gad2-CreER female and male mice by tamoxifen treatment at postnatal days 25 (P25) or 60 (P60), and body weight, daily food intake, fasting glycemia, and fasting-induced hyperphagia were measured. POMC recovery was quantified by immunohistochemistry and semiquantitative RT-PCR. Neuropeptide Y (NPY) and GABAergic neurons were identified by in situ hybridization. Arc-POMC neurons projecting to the dorsomedial hypothalamic nucleus (DMH) were studied by stereotactic intracerebral injection of fluorescent retrobeads into the DMH. Results Tamoxifen treatment of arcPomc−/−:Gad2-CreER mice at P60 resulted in Pomc expression in ∼23–25% of Arc-POMC neurons and ∼15–23% of Pomc mRNA levels, compared to Gad2-CreER control mice. Pomc rescue in GABAergic-POMC neurons at P60 normalized food intake, glycemia, and fasting-induced hyperphagia, while significantly reducing body weight. Energy balance was also improved in arcPomc−/−:Gad2-CreER mice treated with tamoxifen at P25. Distribution analysis of rescued POMC immunoreactive fibers revealed that the DMH is a major target site of GABAergic-POMC neurons. Further, the expression of the orexigenic neuropeptide Y (NPY) in the DMH was increased in arcPomc−/− obese mice but was completely restored after Pomc rescue in arcPomc−/−:Gad2-CreER mice. Finally, we found that ∼75% of Arc-POMC neurons projecting to the DMH are GABAergic. Conclusions In the present study, we show that the expression of Pomc in the subpopulation of Arc-GABAergic-POMC neurons is sufficient to maintain normal food intake. In addition, we found that DMH-NPY expression is negatively correlated with Pomc expression in GABAergic-POMC neurons, suggesting that food intake may be regulated by an Arc-GABAergic-POMC → DMH-NPY pathway. The subpopulation of arcuate GABAergic-POMC neurons is sufficient to maintain normal food intake. Overweight induced by Pomc deficiency is reduced by arcuate Pomc expression restricted to GABAergic-POMC neurons. DMH-Npy overexpression in POMC-deficient mice is restored by Pomc rescue restricted to GABAergic-POMC neurons. Arcuate POMC neurons projecting to the DMH are mainly GABAergic.
Collapse
Affiliation(s)
- Milagros Trotta
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO HOUSSAY), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Estefanía Pilar Bello
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO HOUSSAY), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ramiro Alsina
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO HOUSSAY), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Belén Tavella
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| | - José Luis Ferrán
- Department of Human Anatomy, School of Medicine, University of Murcia and IMIB-Arrixaca Institute, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain.
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Viviana Florencia Bumaschny
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO HOUSSAY), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Ciencias Fisiológicas, Facultad de Medicina. Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
28
|
Hanchate NK, Lee EJ, Ellis A, Kondoh K, Kuang D, Basom R, Trapnell C, Buck LB. Connect-seq to superimpose molecular on anatomical neural circuit maps. Proc Natl Acad Sci U S A 2020; 117:4375-4384. [PMID: 32034095 PMCID: PMC7049128 DOI: 10.1073/pnas.1912176117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mouse brain contains about 75 million neurons interconnected in a vast array of neural circuits. The identities and functions of individual neuronal components of most circuits are undefined. Here we describe a method, termed "Connect-seq," which combines retrograde viral tracing and single-cell transcriptomics to uncover the molecular identities of upstream neurons in a specific circuit and the signaling molecules they use to communicate. Connect-seq can generate a molecular map that can be superimposed on a neuroanatomical map to permit molecular and genetic interrogation of how the neuronal components of a circuit control its function. Application of this method to hypothalamic neurons controlling physiological responses to fear and stress reveals subsets of upstream neurons that express diverse constellations of signaling molecules and can be distinguished by their anatomical locations.
Collapse
Affiliation(s)
- Naresh K Hanchate
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Eun Jeong Lee
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Andria Ellis
- Department of Genome Sciences, University of Washington, Seattle, WA 98115
| | - Kunio Kondoh
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Donghui Kuang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98115
- The Brotman Baty Institute for Precision Medicine, Seattle, WA 98195
| | - Linda B Buck
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109;
- The Brotman Baty Institute for Precision Medicine, Seattle, WA 98195
| |
Collapse
|
29
|
Melnick I, Krishtal OA, Colmers WF. Integration of energy homeostasis and stress by parvocellular neurons in rat hypothalamic paraventricular nucleus. J Physiol 2020; 598:1073-1092. [PMID: 31952096 DOI: 10.1113/jp279387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Central regulation of energy homeostasis and stress are believed to be reciprocally regulated, i.e. excessive food intake suppresses, while prolonged hunger exacerbates, stress responses in vivo. This relationship may be mediated by neuroendocrine parvocellular corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus that receive both stress- and feeding-related input. We find that hunger strongly and selectively potentiates, while re-feeding suppresses, a cellular analogue of a stress response induced by acute glucopenia in CRH neurons in rat hypothalamic slices. Neuronal activation in response to glucopenia was mediated synaptically, via the relative enhancement of glutamate over GABA input. These results illustrate how acute stress responses may be initiated in vivo and show that it is reciprocally integrated with energy balance via local hypothalamic mechanisms acting at the level of CRH neurons and their afferent terminals. ABSTRACT Increased food intake is a common response to help cope with stress, implying the existence of a previously postulated but imperfectly understood, inverse relationship between the regulation of feeding and stress. We have identified components of the neural circuitry that can integrate these homeostatic responses. Prior fasting (∼24 h) potentiates, and re-feeding suppresses, excitatory responses to acute glucopenia in about half of the corticotropin releasing hormone (CRH)-expressing, putatively neurosecretory, stress-related neurons in the paraventricular nucleus of the hypothalamus studied. Glucoprivation stress ex vivo resulted from a preferential relative increase in excitatory (glutamatergic) over inhibitory (GABAergic) inputs. Putative preautonomic cells were less sensitive to fasting, and showed a predominant inhibition to acute glucopenia. We conclude that hunger may sensitize hypothalamic stress responses by acting via local mechanisms, at the level of CRH neurons and their presynaptic inputs. Those mechanisms involve neither presynaptic ATP-sensitive potassium channels nor postsynaptic ATP levels.
Collapse
Affiliation(s)
- Igor Melnick
- Bogomoletz Institute of Physiology, Bogomoletz str 4, Kiev, 01024, Ukraine
| | - Oleg A Krishtal
- Bogomoletz Institute of Physiology, Bogomoletz str 4, Kiev, 01024, Ukraine
| | - William F Colmers
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| |
Collapse
|
30
|
He Z, Gao Y, Lieu L, Afrin S, Cao J, Michael NJ, Dong Y, Sun J, Guo H, Williams KW. Direct and indirect effects of liraglutide on hypothalamic POMC and NPY/AgRP neurons - Implications for energy balance and glucose control. Mol Metab 2019; 28:120-134. [PMID: 31446151 PMCID: PMC6822260 DOI: 10.1016/j.molmet.2019.07.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The long-acting glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, stimulates insulin secretion and efficiently suppresses food intake to reduce body weight. As such, liraglutide is growing in popularity in the treatment of diabetes and chronic weight management. Within the brain, liraglutide has been shown to alter the activity of hypothalamic proopiomelanocortin (POMC) and Neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons. Moreover, the acute activities of POMC and NPY neurons have been directly linked to feeding behavior, body weight, and glucose metabolism. Despite the increased usage of liraglutide and other GLP-1 analogues as diabetic and obesity interventions, the cellular mechanisms by which liraglutide alters the activity of metabolically relevant neuronal populations are poorly understood. METHODS In order to resolve this issue, we utilized neuron-specific transgenic mouse models to identify POMC and NPY neurons for patch-clamp electrophysiology experiments. RESULTS We found that liraglutide directly activated arcuate POMC neurons via TrpC5 channels, sharing a similar mechanistic pathway to the adipose-derived peptide leptin. Liraglutide also indirectly increases excitatory tone to POMC neurons. In contrast, liraglutide inhibited NPY/AgRP neurons through post-synaptic GABAA receptors and enhanced activity of pre-synaptic GABAergic neurons, which required both TrpC5 subunits and K-ATP channels. In support of an additive role of leptin and liraglutide in suppressing food intake, leptin potentiated the acute effects of liraglutide to activate POMC neurons. TrpC5 subunits in POMC neurons were also required for the intact pharmacological effects of liraglutide on food intake and body weight. Thus, the current study adds to recent work from our group and others, which highlight potential mechanisms to amplify the effects of GLP-1 agonists in vivo. Moreover, these data highlight multiple sites of action (both pre- and post-synaptic) for GLP-1 agonists on this circuit. CONCLUSIONS Taken together, our results identify critical molecular mechanisms linking GLP-1 analogues in arcuate POMC and NPY/AgRP neurons with metabolism.
Collapse
Affiliation(s)
- Zhenyan He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yong Gao
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Linh Lieu
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Sadia Afrin
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Jianhong Cao
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Natalie J Michael
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yanbin Dong
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China
| | - Jia Sun
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Hongbo Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kevin W Williams
- Division of Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
31
|
mTORC1 and CB1 receptor signaling regulate excitatory glutamatergic inputs onto the hypothalamic paraventricular nucleus in response to energy availability. Mol Metab 2019; 28:151-159. [PMID: 31420305 PMCID: PMC6822143 DOI: 10.1016/j.molmet.2019.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The hypothalamic paraventricular nucleus (PVN) is a key target of the melanocortin system, which orchestrates behavioral and metabolic responses depending on energy availability. The mechanistic target of rapamycin complex 1 (mTORC1) and the endocannabinoid type 1 receptor (CB1R) pathways are two key signaling systems involved in the regulation of energy balance whose activity closely depends upon energy availability. Here we tested the hypothesis that modulation of mTORC1 and CB1R signaling regulates excitatory glutamatergic inputs onto the PVN. METHODS Patch-clamp recordings in C57BL/6J mice, in mice lacking the mTORC1 component Rptor or CB1R in pro-opio-melanocortin (POMC) neurons, combined with pharmacology targeting mTORC1, the melanocortin receptor type 4 (MC4R), or the endocannabinoid system under chow or a hypercaloric diet. RESULTS Acute pharmacological inhibition of mTORC1 in C57BL/6J mice decreased glutamatergic inputs onto the PVN via a mechanism requiring modulation of MC4R, endocannabinoid 2-AG mobilization by PVN parvocellular neurons, and retrograde activation of presynaptic CB1R. Further electrophysiology studies using mice lacking mTORC1 activity or CB1R in POMC neurons indicated that the observed effects involved mTORC1 and CB1R-dependent regulation of glutamate release from POMC neurons. Finally, energy surfeit caused by hypercaloric high-fat diet feeding, rapidly and time-dependently altered the glutamatergic inputs onto parvocellular neurons and the ability of mTORC1 and CB1R signaling to modulate such excitatory activity. CONCLUSIONS These findings pinpoint the relationship between mTORC1 and endocannabinoid-CB1R signaling in the regulation of the POMC-mediated glutamatergic inputs onto PVN parvocellular neurons and its rapid alteration in conditions favoring the development of obesity.
Collapse
|
32
|
Jones GL, Wittmann G, Yokosawa EB, Yu H, Mercer AJ, Lechan RM, Low MJ. Selective Restoration of Pomc Expression in Glutamatergic POMC Neurons: Evidence for a Dynamic Hypothalamic Neurotransmitter Network. eNeuro 2019; 6:ENEURO.0400-18.2019. [PMID: 30957016 PMCID: PMC6449166 DOI: 10.1523/eneuro.0400-18.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 01/19/2023] Open
Abstract
Hypothalamic POMC deficiency leads to obesity and metabolic deficiencies, largely due to the loss of melanocortin peptides. However, POMC neurons in the arcuate nucleus (ARC) are comprised of glutamatergic and GABAergic subpopulations. The developmental program, relative proportion and function of these two subpopulations are unresolved. To test whether glutamatergic POMC neurons serve a distinct role in maintaining energy homeostasis, we activated Pomc expression Cre- dependently in Vglut2-expressing neurons of mice with conditionally silenced Pomc alleles. The Vglut2-Pomc restored mice had normal ARC Pomc mRNA levels, POMC immunoreactivity, as well as body weight and body composition at age 12 weeks. Unexpectedly, the cumulative total of Vglut2+ glutamatergic- and Gad67+ GABAergic-Pomc neurons detected by in situ hybridization (ISH) exceeded 100% in both Vglut2- Pomc restored and control mice, indicating that a subpopulation of Pomc neurons must express both neuronal markers. Consistent with this hypothesis, triple ISH of C57BL/6J hypothalami revealed that 35% of ARC Pomc neurons were selectively Gad67+, 21% were selectively Vglut2+, and 38% expressed both Gad67 and Vglut2. The single Gad67+ and Vglut2+Pomc neurons were most prevalent in the rostral ARC, while the Vglut2/Gad67+ dual-phenotype cells predominated in the caudal ARC. A lineage trace using Ai9-tdTomato reporter mice to label fluorescently all Vglut2-expressing neurons showed equal numbers of tdTomato+ and tdTomato- POMC immunoreactive neurons. Together, these data suggest that POMC neurons exhibit developmental plasticity in their expression of glutamatergic and GABAergic markers, enabling re-establishment of normal energy homeostasis in the Vglut2-Pomc restored mice.
Collapse
Affiliation(s)
- Graham L. Jones
- Neuroscience Graduate Program
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Gábor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, MA 02111
| | - Eva B. Yokosawa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Hui Yu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Aaron J. Mercer
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Ronald M. Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, MA 02111
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
33
|
van den Pol AN, Acuna C, Davis JN, Huang H, Zhang X. Defining the caudal hypothalamic arcuate nucleus with a focus on anorexic excitatory neurons. J Physiol 2019; 597:1605-1625. [PMID: 30618146 PMCID: PMC6418765 DOI: 10.1113/jp277152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Excitatory glutamate neurons are sparse in the rostral hypothalamic arcuate nucleus (ARC), the subregion that has received the most attention in the past. In striking contrast, excitatory neurons are far more common (by a factor of 10) in the caudal ARC, an area which has received relatively little attention. These glutamate cells may play a negative role in energy balance and food intake. They can show an increase in phosphorylated Stat-3 in the presence of leptin, are electrically excited by the anorectic neuromodulator cholecystokinin, and inhibited by orexigenic neuromodulators neuropeptide Y, met-enkephalin, dynorphin and the catecholamine dopamine. The neurons project local axonal connections that excite other ARC neurons including proopiomelanocortin neurons that can play an important role in obesity. These data are consistent with models suggesting that the ARC glutamatergic neurons may play both a rapid and a slower role in acting as anorectic neurons in CNS control of food intake and energy homeostasis. ABSTRACT Here we interrogate a unique class of excitatory neurons in the hypothalamic arcuate nucleus (ARC) that utilizes glutamate as a fast neurotransmitter using mice expressing GFP under control of the vesicular glutamate transporter 2 (vGluT2) promoter. These neurons show a unique distribution, synaptic characterization, cellular physiology and response to neuropeptides involved in energy homeostasis. Although apparently not previously appreciated, the caudal ARC showed a far greater density of vGluT2 cells than the rostral ARC, as seen in transgenic vGluT2-GFP mice and mRNA analysis. After food deprivation, leptin induced an increase in phosphorylated Stat-3 in vGluT2-positive neurons, indicating a response to hormonal cues of energy state. Based on whole-cell recording electrophysiology in brain slices, vGluT2 neurons were spontaneously active with a spike frequency around 2 Hz. vGluT2 cells were responsive to a number of neuropeptides related to energy homeostasis; they were excited by the anorectic peptide cholecystokinin, but inhibited by orexigenic neuropeptide Y, dynorphin and met-enkephalin, consistent with an anorexic role in energy homeostasis. Dopamine, associated with the hedonic aspect of enhancing food intake, inhibited vGluT2 neurons. Optogenetic excitation of vGluT2 cells evoked EPSCs in neighbouring neurons, indicating local synaptic excitation of other ARC neurons. Microdrop excitation of ARC glutamate cells in brain slices rapidly increased excitatory synaptic activity in anorexigenic proopiomelanocortin neurons. Together these data support the perspective that vGluT2 cells may be more prevalent in the ARC than previously appreciated, and play predominantly an anorectic role in energy metabolism.
Collapse
Affiliation(s)
| | - Claudio Acuna
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - John N. Davis
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - Hao Huang
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - Xiaobing Zhang
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| |
Collapse
|
34
|
Ahmadi F, Zendehdel M, Babapour V, Panahi N. CRF1/CRF2 and MC3/MC4 Receptors Affect Glutamate- Induced Food Intake in Neonatal Meat-Type Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Estradiol Drives the Anorexigenic Activity of Proopiomelanocortin Neurons in Female Mice. eNeuro 2018; 5:eN-NWR-0103-18. [PMID: 30310864 PMCID: PMC6179576 DOI: 10.1523/eneuro.0103-18.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/11/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Energy balance is regulated by anorexigenic proopiomelanocortin (POMC) and orexigenic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons of the hypothalamic arcuate nucleus. POMC neurons make extensive projections and are thought to release both amino acid and peptide neurotransmitters. However, whether they communicate directly with NPY/AgRP neurons is debated. Initially, using single-cell RT-PCR, we determined that mouse POMCeGFP neurons express Slc17a6 (Vglut2) and Slc18a2 (Vmat2), but not Slc31a1 (Vgat) mRNA, suggesting glutamate and non-canonical GABA release. Quantitative (q)RT-PCR of POMCeGFP cells revealed that Vglut2 and Vmat2 expression was significantly increased in E2- versus oil-treated, ovariectomized (OVX) female mice. Since 17β-estradiol (E2) is anorexigenic, we hypothesized that an underlying mechanism is enhancement of POMC signaling. Therefore, we optogenetically stimulated POMC neurons in hypothalamic slices to examine evoked release of neurotransmitters onto NPY/AgRP neurons. Using brief light pulses, we primarily observed glutamatergic currents and, based on the paired pulse ratio (PPR), determined that release probability was higher in E2- versus oil-treated, OVX female, congruent with increased Vlgut2 expression. Moreover, bath perfusion of the Gq-coupled membrane estrogen receptor (ER) agonist STX recapitulated the effects of E2 treatment. In addition, high-frequency (20 Hz) stimulation generated a slow outward current that reversed near Ek+ and was antagonized by naloxone, indicative of β-endorphin release. Furthermore, individual NPY/AgRP neurons were found to express Oprm1, the transcript for μ-opioid receptor, and DAMGO, a selective agonist, elicited an outward current. Therefore, POMC excitability and neurotransmission are enhanced by E2, which would facilitate decreased food consumption through marked inhibition of NPY/AgRP neurons.
Collapse
|
36
|
Rau AR, Hughes AR, Hentges ST. Various transgenic mouse lines to study proopiomelanocortin cells in the brain stem label disparate populations of GABAergic and glutamatergic neurons. Am J Physiol Regul Integr Comp Physiol 2018; 315:R144-R152. [PMID: 29590552 PMCID: PMC6087889 DOI: 10.1152/ajpregu.00047.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022]
Abstract
Products of the proopiomelanocortin (POMC) prohormone regulate aspects of analgesia, reward, and energy balance; thus, the neurons that produce POMC in the hypothalamus have received considerable attention. However, there are also cells in the nucleus of the solitary tract (NTS) that transcribe Pomc, although low levels of Pomc mRNA and relative lack of POMC peptide products in the adult mouse NTS have hindered the study of these cells. Therefore, studies of NTS POMC cells have largely relied on transgenic mouse lines. Here, we set out to determine the amino acid (AA) transmitter phenotype of NTS POMC neurons by using Pomc-Gfp transgenic mice to identify POMC cells. We found that cells expressing the green fluorescent protein (GFP) represent a mix of GABAergic and glutamatergic cells as indicated by Gad2 and vesicular Glut2 ( vGlut2) mRNA expression, respectively. We then examined the AA phenotype of POMC cells labeled by a Pomc-Cre transgene and found that these are also a mix of GABAergic and glutamatergic cells. However, the NTS cells labeled by the Gfp- and Cre-containing transgenes represented distinct populations of cells in three different Pomc-Cre mouse lines. Consistent with previous work, we were unable to reliably detect Pomc mRNA in the NTS despite clear expression in the hypothalamus. Thus, it was not possible to determine which transgenic tool most accurately identifies NTS cells that may express Pomc or release POMC peptides, although the results indicate the transgenic tools for study of these NTS neurons can label disparate populations of cells with varied AA phenotypes.
Collapse
Affiliation(s)
- Andrew R Rau
- Department of Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Alexander R Hughes
- Department of Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| |
Collapse
|
37
|
Calarco CA, Li Z, Taylor SR, Lee S, Zhou W, Friedman JM, Mineur YS, Gotti C, Picciotto MR. Molecular and cellular characterization of nicotinic acetylcholine receptor subtypes in the arcuate nucleus of the mouse hypothalamus. Eur J Neurosci 2018; 48:10.1111/ejn.13966. [PMID: 29791746 PMCID: PMC6251769 DOI: 10.1111/ejn.13966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
Abstract
Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti-related peptide (AgRP) and anorexigenic pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), yet nicotine and other nAChR agonists decrease food intake in mice. Viral-mediated knockdown of the β4 nAChR subunit in all neuronal cell types in the ARC prevents the nicotinic agonist cytisine from decreasing food intake, but it is not known whether the β4 subunit is selectively expressed in anorexigenic neurons or how other nAChR subtypes are distributed in this nucleus. Using translating ribosome affinity purification (TRAP) on ARC tissue from mice with ribosomes tagged in either AgRP or POMC cells, we examined nAChR subunit mRNA levels using real-time PCR. Both AgRP and POMC cells express a comparable panel of nAChR subunits with differences in α7 mRNA levels and a trend for difference in α4 levels, but no differences in β4 expression. Immunoprecipitation of assembled nAChRs revealed that the β4 subunit forms assembled channels with α3, β2 and α4, but not other subunits found in the ARC. Finally, using cell type-selective, virally delivered small hairpin RNAs targeting either the β4 or α7 subunit, we examined the contribution of each subunit in either AgRP or POMC cells to the behavioural response to nicotine, refining the understanding of nicotinic regulation of this feeding circuit. These experiments identify a more complex set of nAChRs expressed in ARC than in other hypothalamic regions. Thus, the ARC appears to be a particular target of nicotinic modulation.
Collapse
Affiliation(s)
- Cali A. Calarco
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | - Seth R. Taylor
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| | - Somin Lee
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| | - Wenliang Zhou
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | - Yann S. Mineur
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | - Marina R. Picciotto
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| |
Collapse
|
38
|
Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018; 85:21-33. [PMID: 28757457 PMCID: PMC5747977 DOI: 10.1016/j.neubiorev.2017.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/16/2017] [Indexed: 01/12/2023]
Abstract
An array of neuromodulators, including monoamines and neuropeptides, regulate most behavioural and physiological traits. In the past decade, dramatic progress has been made in mapping neuromodulatory circuits, in analysing circuit dynamics, and interrogating circuit function using pharmacogenetic, optogenetic and imaging methods This review will focus on several distinct neural networks (acetylcholine/GABA/glutamate; histamine/GABA; orexin/glutamate; and relaxin-3/GABA) that originate from neural hubs that regulate wakefulness and related attentional and cognitive processes, and highlight approaches that have identified dual transmitter roles in these behavioural functions. Modulation of these different neural networks might be effective treatments of diseases related to arousal/sleep dysfunction and of cognitive dysfunction in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Balázs Hangya
- 'Lendület' Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
39
|
Abstract
Mice subjected to cold or caloric deprivation can reduce body temperature and metabolic rate and enter a state of torpor. Here we show that administration of pyruvate, an energy-rich metabolic intermediate, can induce torpor in mice with diet-induced or genetic obesity. This is associated with marked hypothermia, decreased activity, and decreased metabolic rate. The drop in body temperature correlates with the degree of obesity and is blunted by housing mice at thermoneutrality. Induction of torpor by pyruvate in obese mice relies on adenosine signaling and is accompanied by changes in brain levels of hexose bisphosphate and GABA as detected by mass spectroscopy-based imaging. Pyruvate does not induce torpor in lean mice but results in the activation of brown adipose tissue (BAT) with an increase in the level of uncoupling protein-1 (UCP1). Denervation of BAT in lean mice blocks this increase in UCP1 and allows the pyruvate-induced torpor phenotype. Thus, pyruvate administration induces torpor in obese mice by pathways involving adenosine and GABA signaling and a failure of normal activation of BAT.
Collapse
|
40
|
Gao Y, Vidal-Itriago A, Milanova I, Korpel NL, Kalsbeek MJ, Tom RZ, Kalsbeek A, Hofmann SM, Yi CX. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase. Mol Metab 2017; 7:155-160. [PMID: 29174000 PMCID: PMC5784319 DOI: 10.1016/j.molmet.2017.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 01/16/2023] Open
Abstract
Objective Leptin is a cytokine produced by adipose tissue that acts mainly on the hypothalamus to regulate appetite and energy homeostasis. Previous studies revealed that the leptin receptor is expressed not only in neurons, but also in glial cells. Microglia are resident immune cells in the brain that play an essential role in immune defense and neural network development. Previously we reported that microglial morphology and cytokine production are changed in the leptin receptor deficient db/db mouse, suggesting that leptin's central effects on metabolic control might involve signaling through microglia. In the current study, we aimed to uncover the role of leptin signaling in microglia in systemic metabolic control. Methods We generated a mouse model with leptin receptor deficiency, specifically in the myeloid cells, to determine the role of microglial leptin signaling in the development of metabolic disease and to investigate microglial functions. Results We discovered that these mice have increased body weight with hyperphagia. In the hypothalamus, pro-opiomelanocortin neuron numbers in the arcuate nucleus (ARC) and α-MSH projections from the ARC to the paraventricular nucleus (PVN) decreased, which was accompanied by the presence of less ramified microglia with impaired phagocytic capacity in the PVN. Conclusions Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism. Microglia express functional leptin receptor. Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Microglial leptin signaling is vital for maintaining hypothalamic neuronal circuits.
Collapse
Affiliation(s)
- Yuanqing Gao
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Andrés Vidal-Itriago
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Irina Milanova
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Nikita L Korpel
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Martin J Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Robby Zachariah Tom
- Institute for Diabetes and Regeneration Research & Helmholtz Diabetes Center, Helmholtz Zentrum München, Germany
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Susanna M Hofmann
- Institute for Diabetes and Regeneration Research & Helmholtz Diabetes Center, Helmholtz Zentrum München, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der LMU, München, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017; 4:eN-NWR-0013-17. [PMID: 28966976 PMCID: PMC5617207 DOI: 10.1523/eneuro.0013-17.2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/14/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
The lateral hypothalamic area (LHA) lies at the intersection of multiple neural and humoral systems and orchestrates fundamental aspects of behavior. Two neuronal cell types found in the LHA are defined by their expression of hypocretin/orexin (Hcrt/Ox) and melanin-concentrating hormone (MCH) and are both important regulators of arousal, feeding, and metabolism. Conflicting evidence suggests that these cell populations have a more complex signaling repertoire than previously appreciated, particularly in regard to their coexpression of other neuropeptides and the machinery for the synthesis and release of GABA and glutamate. Here, we undertook a single-cell expression profiling approach to decipher the neurochemical phenotype, and heterogeneity therein, of Hcrt/Ox and MCH neurons. In transgenic mouse lines, we used single-cell quantitative polymerase chain reaction (qPCR) to quantify the expression of 48 key genes, which include neuropeptides, fast neurotransmitter components, and other key markers, which revealed unexpected neurochemical diversity. We found that single MCH and Hcrt/Ox neurons express transcripts for multiple neuropeptides and markers of both excitatory and inhibitory fast neurotransmission. Virtually all MCH and approximately half of the Hcrt/Ox neurons sampled express both the machinery for glutamate release and GABA synthesis in the absence of a vesicular GABA release pathway. Furthermore, we found that this profile is characteristic of a subpopulation of LHA glutamatergic neurons but contrasts with a broad population of LHA GABAergic neurons. Identifying the neurochemical diversity of Hcrt/Ox and MCH neurons will further our understanding of how these populations modulate postsynaptic excitability through multiple signaling mechanisms and coordinate diverse behavioral outputs.
Collapse
|
42
|
Modulatory function of NMDA glutamate receptor on MC3/MC4 receptors agonist-induced hypophagia in neonatal meat-type chicken. Vet Res Commun 2017; 41:241-248. [DOI: 10.1007/s11259-017-9693-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
|
43
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
44
|
Xu P, Zhu L, Saito K, Yang Y, Wang C, He Y, Yan X, Hyseni I, Tong Q, Xu Y. Melanocortin 4 receptor is not required for estrogenic regulations on energy homeostasis and reproduction. Metabolism 2017; 70:152-159. [PMID: 28403939 PMCID: PMC5407306 DOI: 10.1016/j.metabol.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brain estrogen receptor-α (ERα) is essential for estrogenic regulation of energy homeostasis and reproduction. We previously showed that ERα expressed by pro-opiomelanocortin (POMC) neurons mediates estrogen's effects on food intake, body weight, negative regulation of hypothalamic-pituitary-gonadal axis (HPG axis) and fertility. RESULTS AND CONCLUSIONS We report here that global deletion of a key downstream receptor for POMC peptide, the melanocortin 4 receptor (MC4R), did not affect normal negative feedback regulation of estrogen on the HPG axis, estrous cyclicity and female fertility. Furthermore, loss of the MC4R did not influence estrogenic regulation on food intake and body weight. These results indicate that the MC4R is not required for estrogen's effects on metabolic and reproductive functions.
Collapse
Affiliation(s)
- Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030.
| | - Liangru Zhu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Kenji Saito
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Xiaofeng Yan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Ilirjana Hyseni
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030.
| |
Collapse
|
45
|
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability and lead to early death. The total amount of dietary fat consumption may be the most potent food-related risk factor for weight gain. In this respect, dietary intake of high-caloric, high-fat diets due to chronic over-eating and sedentary lifestyle lead to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues . Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance in an inflammation-independent manner. Even in the absence of metabolic disorders, mismatch between fatty acid uptake and utilization leads to the accumulation of toxic lipid species resulting in organ dysfunction. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction may play role in the pathogenesis of lipotoxicity. The hypothalamus senses availability of circulating levels of glucose, lipids and amino acids, thereby modifies feeding according to the levels of those molecules. However, the hypothalamus is also similarly vulnerable to lipotoxicity as the other ectopic lipid accumulated tissues. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B kinase beta subunit/nuclear factor kappa B (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, the mechanisms by which high-fat diet induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown. In this chapter, besides lipids and leptin, the role of glucose and insulin on specialized fuel-sensing neurons of hypothalamic neuronal circuits has been debated.
Collapse
|
46
|
Jarvie BC, King CM, Hughes AR, Dicken MS, Dennison CS, Hentges ST. Caloric restriction selectively reduces the GABAergic phenotype of mouse hypothalamic proopiomelanocortin neurons. J Physiol 2016; 595:571-582. [PMID: 27531218 DOI: 10.1113/jp273020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Hypothalamic proopiomelanocortin (POMC) neurons release peptide products that potently inhibit food intake and reduce body weight. These neurons also release the amino acid transmitter GABA, which can inhibit downstream neurons. Although the release of peptide transmitters from POMC neurons is regulated by energy state, whether similar regulation of GABA release might occur had not been examined. The present results show that the GABAergic phenotype of POMC neurons is decreased selectively by caloric deficit and not altered by high-fat diet or stress. The fact the GABAergic phenotype of POMC neurons is sensitive to energy state suggests a dynamic physiological role for this transmitter and highlights the importance of determining the functional consequence of GABA released from POMC neurons in terms of the regulation of normal energy balance. ABSTRACT In addition to peptide transmitters, hypothalamic neurons, including proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, also release amino acid transmitters that can alter energy balance regulation. While recent studies show that the GABAergic nature of AgRP neurons is increased by caloric restriction, whether the GABAergic phenotype of POMC neurons is also regulated in an energy-state-dependent manner has not been previously examined. The present studies used fluorescence in situ hybridization to detect Gad1 and Gad2 mRNA in POMC neurons, as these encode the glutamate decarboxylase enzymes GAD67 and GAD65, respectively. The results show that both short-term fasting and chronic caloric restriction significantly reduce the percentage of POMC neurons expressing Gad1 mRNA in both male and female mice, with less of an effect on Gad2 expression. Neither acute nor chronic intermittent restraint stress altered Gad1 expression in POMC neurons. Maintenance on a high-fat diet also did not affect the portion POMC neurons expressing Gad1, suggesting that the GABAergic phenotype of POMC neurons is particularly sensitive to energy deficit. Because changes in Gad1 expression have been previously shown to correlate with altered terminal GABA release, fasting is likely to cause a decrease in GABA release from POMC neurons. Altogether, the present results show that the GABAergic nature of POMC neurons can be dynamically regulated by energy state in a manner opposite to that in AgRP neurons and suggest the importance of considering the functional role of GABA release in addition to the peptide transmitters from POMC neurons.
Collapse
Affiliation(s)
- Brooke C Jarvie
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Connie M King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80253, USA
| | - Alexander R Hughes
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80253, USA
| | - Matthew S Dicken
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80253, USA
| | - Christina S Dennison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80253, USA
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80253, USA
| |
Collapse
|
47
|
Epigenomic and metabolic responses of hypothalamic POMC neurons to gestational nicotine exposure in adult offspring. Genome Med 2016; 8:93. [PMID: 27609221 PMCID: PMC5015242 DOI: 10.1186/s13073-016-0348-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/23/2016] [Indexed: 01/06/2023] Open
Abstract
Background Epidemiological and animal studies have reported that prenatal nicotine exposure (PNE) leads to obesity and type-2 diabetes in offspring. Central leptin-melanocortin signaling via hypothalamic arcuate proopiomelanocortin (POMC) neurons is crucial for the regulation of energy and glucose balance. Furthermore, hypothalamic POMC neurons were recently found to mediate the anorectic effects of nicotine through activation of acetylcholine receptors. Here, we hypothesized that PNE impairs leptin-melanocortinergic regulation of energy balance in first-generation offspring by altering expression of long non-coding RNAs (lncRNAs) putatively regulating development and/or function of hypothalamic POMC neurons. Methods C57BL/6J females were exposed ad libitum to nicotine through drinking water and crossed with C57BL/6J males. Nicotine exposure was sustained during pregnancy and discontinued at parturition. Offspring development was monitored from birth into adulthood. From the age of 8 weeks, central leptin-melanocortin signaling, diabetes, and obesity susceptibility were assessed in male offspring fed a low-fat or high-fat diet for 16 weeks. Nicotine-exposed and non-exposed C57BL/6J females were also crossed with C57BL/6J males expressing the enhanced green fluorescent protein specifically in POMC neurons. Transgenic male offspring were subjected to laser microdissections and RNA sequencing (RNA-seq) analysis of POMC neurons for determination of nicotine-induced gene expression changes and regulatory lncRNA/protein-coding gene interactions. Results Contrary to expectation based on previous studies, PNE did not impair but rather enhanced leptin-melanocortinergic regulation of energy and glucose balance via POMC neurons in offspring. RNA-seq of laser microdissected POMC neurons revealed only one consistent change, upregulation of Gm15851, a lncRNA of yet unidentified function, in nicotine-exposed offspring. RNA-seq further suggested 82 cis-regulatory lncRNA/protein-coding gene interactions, 19 of which involved coding genes regulating neural development and/or function, and revealed expression of several previously unidentified metabolic, neuroendocrine, and neurodevelopment pathways in POMC neurons. Conclusions PNE does not result in obesity and type 2 diabetes but instead enhances leptin-melanocortinergic feeding and body weight regulation via POMC neurons in adult offspring. PNE leads to selective upregulation of Gm15851, a lncRNA, in adult offspring POMC neurons. POMC neurons express several lncRNAs and pathways possibly regulating POMC neuronal development and/or function. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0348-2) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Nestor CC, Qiu J, Padilla SL, Zhang C, Bosch MA, Fan W, Aicher SA, Palmiter RD, Rønnekleiv OK, Kelly MJ. Optogenetic Stimulation of Arcuate Nucleus Kiss1 Neurons Reveals a Steroid-Dependent Glutamatergic Input to POMC and AgRP Neurons in Male Mice. Mol Endocrinol 2016; 30:630-44. [PMID: 27093227 DOI: 10.1210/me.2016-1026] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. Proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, located in the arcuate nucleus (ARC) of the hypothalamus, integrate numerous excitatory and inhibitory inputs to ultimately regulate energy homeostasis. Given that POMC and AgRP neurons are contacted by Kiss1 neurons in the ARC (Kiss1(ARC)) and they express androgen receptors, Kiss1(ARC) neurons may mediate the orexigenic action of testosterone via POMC and/or AgRP neurons. Quantitative PCR analysis of pooled Kiss1(ARC) neurons revealed that mRNA levels for Kiss1 and vesicular glutamate transporter 2 were higher in castrated male mice compared with gonad-intact males. Single-cell RT-PCR analysis of yellow fluorescent protein (YFP) ARC neurons harvested from males injected with AAV1-EF1α-DIO-ChR2:YFP revealed that 100% and 88% expressed mRNAs for Kiss1 and vesicular glutamate transporter 2, respectively. Whole-cell, voltage-clamp recordings from nonfluorescent postsynaptic ARC neurons showed that low frequency photo-stimulation (0.5 Hz) of Kiss1-ChR2:YFP neurons elicited a fast glutamatergic inward current in POMC and AgRP neurons. Paired-pulse, photo-stimulation revealed paired-pulse depression, which is indicative of greater glutamate release, in the castrated male mice compared with gonad-intact male mice. Group I and group II metabotropic glutamate receptor agonists depolarized and hyperpolarized POMC and AgRP neurons, respectively, which was mimicked by high frequency photo-stimulation (20 Hz) of Kiss1(ARC) neurons. Therefore, POMC and AgRP neurons receive direct steroid- and frequency-dependent glutamatergic synaptic input from Kiss1(ARC) neurons in male mice, which may be a critical pathway for Kiss1 neurons to help coordinate energy homeostasis and reproduction.
Collapse
Affiliation(s)
- Casey C Nestor
- Department of Physiology and Pharmacology (C.CN., J.Q., C.Z., M.A.B., S.A.A., O.K.R., M.J.K.) and Anesthesiology and Perioperative Medicine and Knight Cardiovascular Institute (W.F.), Oregon Health & Science University, Portland, Oregon 97239; Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006; and Howard Hughes Medical Institute (S.L.P., R.D.P.), University of Washington, Seattle, Washington 98195
| | - Jian Qiu
- Department of Physiology and Pharmacology (C.CN., J.Q., C.Z., M.A.B., S.A.A., O.K.R., M.J.K.) and Anesthesiology and Perioperative Medicine and Knight Cardiovascular Institute (W.F.), Oregon Health & Science University, Portland, Oregon 97239; Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006; and Howard Hughes Medical Institute (S.L.P., R.D.P.), University of Washington, Seattle, Washington 98195
| | - Stephanie L Padilla
- Department of Physiology and Pharmacology (C.CN., J.Q., C.Z., M.A.B., S.A.A., O.K.R., M.J.K.) and Anesthesiology and Perioperative Medicine and Knight Cardiovascular Institute (W.F.), Oregon Health & Science University, Portland, Oregon 97239; Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006; and Howard Hughes Medical Institute (S.L.P., R.D.P.), University of Washington, Seattle, Washington 98195
| | - Chunguang Zhang
- Department of Physiology and Pharmacology (C.CN., J.Q., C.Z., M.A.B., S.A.A., O.K.R., M.J.K.) and Anesthesiology and Perioperative Medicine and Knight Cardiovascular Institute (W.F.), Oregon Health & Science University, Portland, Oregon 97239; Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006; and Howard Hughes Medical Institute (S.L.P., R.D.P.), University of Washington, Seattle, Washington 98195
| | - Martha A Bosch
- Department of Physiology and Pharmacology (C.CN., J.Q., C.Z., M.A.B., S.A.A., O.K.R., M.J.K.) and Anesthesiology and Perioperative Medicine and Knight Cardiovascular Institute (W.F.), Oregon Health & Science University, Portland, Oregon 97239; Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006; and Howard Hughes Medical Institute (S.L.P., R.D.P.), University of Washington, Seattle, Washington 98195
| | - Wei Fan
- Department of Physiology and Pharmacology (C.CN., J.Q., C.Z., M.A.B., S.A.A., O.K.R., M.J.K.) and Anesthesiology and Perioperative Medicine and Knight Cardiovascular Institute (W.F.), Oregon Health & Science University, Portland, Oregon 97239; Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006; and Howard Hughes Medical Institute (S.L.P., R.D.P.), University of Washington, Seattle, Washington 98195
| | - Sue A Aicher
- Department of Physiology and Pharmacology (C.CN., J.Q., C.Z., M.A.B., S.A.A., O.K.R., M.J.K.) and Anesthesiology and Perioperative Medicine and Knight Cardiovascular Institute (W.F.), Oregon Health & Science University, Portland, Oregon 97239; Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006; and Howard Hughes Medical Institute (S.L.P., R.D.P.), University of Washington, Seattle, Washington 98195
| | - Richard D Palmiter
- Department of Physiology and Pharmacology (C.CN., J.Q., C.Z., M.A.B., S.A.A., O.K.R., M.J.K.) and Anesthesiology and Perioperative Medicine and Knight Cardiovascular Institute (W.F.), Oregon Health & Science University, Portland, Oregon 97239; Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006; and Howard Hughes Medical Institute (S.L.P., R.D.P.), University of Washington, Seattle, Washington 98195
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology (C.CN., J.Q., C.Z., M.A.B., S.A.A., O.K.R., M.J.K.) and Anesthesiology and Perioperative Medicine and Knight Cardiovascular Institute (W.F.), Oregon Health & Science University, Portland, Oregon 97239; Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006; and Howard Hughes Medical Institute (S.L.P., R.D.P.), University of Washington, Seattle, Washington 98195
| | - Martin J Kelly
- Department of Physiology and Pharmacology (C.CN., J.Q., C.Z., M.A.B., S.A.A., O.K.R., M.J.K.) and Anesthesiology and Perioperative Medicine and Knight Cardiovascular Institute (W.F.), Oregon Health & Science University, Portland, Oregon 97239; Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006; and Howard Hughes Medical Institute (S.L.P., R.D.P.), University of Washington, Seattle, Washington 98195
| |
Collapse
|
49
|
Hypothalamic leptin action is mediated by histone deacetylase 5. Nat Commun 2016; 7:10782. [PMID: 26923837 PMCID: PMC4773494 DOI: 10.1038/ncomms10782] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/21/2016] [Indexed: 12/15/2022] Open
Abstract
Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and greater diet-induced obesity when fed high-fat diet. Pharmacological and genetic inhibition of HDAC5 activity in the mediobasal hypothalamus increases food intake and modulates pathways implicated in leptin signalling. We show HDAC5 directly regulates STAT3 localization and transcriptional activity via reciprocal STAT3 deacetylation at Lys685 and phosphorylation at Tyr705. In vivo, leptin sensitivity is substantially impaired in HDAC5 loss-of-function mice. Hypothalamic HDAC5 overexpression improves leptin action and partially protects against HFD-induced leptin resistance and obesity. Overall, our data suggest that hypothalamic HDAC5 activity is a regulator of leptin signalling that adapts food intake and body weight to our dietary environment. Histone deacetylases (HDACs) regulate energy metabolism in peripheral tissues, but whether HDACs expressed in the brain influence systemic metabolism is unknown. Here the authors show that hypothalamic HDAC5 expression is affected by the diet and HDAC5 regulates leptin sensitivity by deacetylating STAT3.
Collapse
|
50
|
Münster-Wandowski A, Zander JF, Richter K, Ahnert-Hilger G. Co-existence of Functionally Different Vesicular Neurotransmitter Transporters. Front Synaptic Neurosci 2016; 8:4. [PMID: 26909036 PMCID: PMC4754932 DOI: 10.3389/fnsyn.2016.00004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/01/2016] [Indexed: 01/25/2023] Open
Abstract
The vesicular transmitter transporters VGLUT, VGAT, VMAT2 and VAChT, define phenotype and physiological properties of neuronal subtypes. VGLUTs concentrate the excitatory amino acid glutamate, VGAT the inhibitory amino acid GABA, VMAT2 monoamines, and VAChT acetylcholine (ACh) into synaptic vesicle (SV). Following membrane depolarization SV release their content into the synaptic cleft. A strict segregation of vesicular transporters is mandatory for the precise functioning of synaptic communication and of neuronal circuits. In the last years, evidence accumulates that subsets of neurons express more than one of these transporters leading to synaptic co-release of different and functionally opposing transmitters and modulation of synaptic plasticity. Synaptic co-existence of transporters may change during pathological scenarios in order to ameliorate misbalances in neuronal activity. In addition, evidence increases that transporters also co-exist on the same vesicle providing another layer of regulation. Generally, vesicular transmitter loading relies on an electrochemical gradient ΔμH+ driven by the proton ATPase rendering the lumen of the vesicle with respect to the cytosol positive (Δψ) and acidic (ΔpH). While the activity of VGLUT mainly depends on the Δψ component, VMAT, VGAT and VAChT work best at a high ΔpH. Thus, a vesicular synergy of transporters depending on the combination may increase or decrease the filling of SV with the principal transmitter. We provide an overview on synaptic co-existence of vesicular transmitter transporters including changes in the excitatory/inhibitory balance under pathological conditions. Additionally, we discuss functional aspects of vesicular synergy of transmitter transporters.
Collapse
Affiliation(s)
| | | | - Karin Richter
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|