1
|
Clemente KJE, Thomsen MS. Co-occurring foundation species increase habitat heterogeneity across estuarine intertidal environments on the South Island of New Zealand. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107150. [PMID: 40252593 DOI: 10.1016/j.marenvres.2025.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Estuaries are traditionally considered sedimentary 'bare' ecosystems, dominated by infauna that bury into sediments to avoid being eaten by fish or birds. However, estuaries can be converted to biogenic complex 'hard' habitats, like seagrass beds, seaweed patches or surface-deposits of live or dead shells. Furthermore, habitat heterogeneity is enhanced if these foundation species co-occur. Still, few studies have quantified abundances and co-occurrences of different types of foundation species along spatiotemporal stress gradients. We therefore quantified abundances of seagrasses (Zostera muelleri), seaweeds (Ulva spp., Gracilaria chilensis), surface deposited dead shells and densities of dominant and partly buried cockles (Austrovenus stutchburyi) in estuaries on the South Island of New Zealand. A total of 927 large-scale drone images, 1264 small-scale camera images, and 160 sediment-quadrats were collected from 32 common estuarine environments (fully crossed 5-factorial surveys with 2 latitudes x 2 sites x 2 intertidal elevations x 2 seasons x 2 intra-seasonal sampling months). Across the 32 environments, seagrass was most abundant (19-22 % cover, depending on sampling method), followed by shells (9-13 %) and seaweed (4 %). Scattered seaweed and shells were, despite their low cover, ubiquitous in the 32 environments, and seagrasses always co-occurred with shells and/or seaweed. The spatial gradients had a stronger influence on abundances of foundation species than temporal factors, that mainly affected seaweed and live cockles, with high (70 %), medium (50 %) and low (30 %) statistical agreement between analysis of drone vs. camera images for seaweed, shells and seagrass, respectively. Finally, correlation analysis revealed negative associations between seagrasses and both shells and seaweed, but with large variation between seasons. Our study highlights that foundation species rarely occur as single-species stands, and that the ecological impacts of scattered seaweeds and dead surface-deposited shells within seagrass beds should be studied in more detail. Our findings also underscore the critical role of spatiotemporal stressors in shaping estuarine ecosystems and highlight the importance of using supplementary sampling methods to inform management strategies for estuaries in the face of environmental change.
Collapse
Affiliation(s)
- Ken Joseph E Clemente
- Marine Ecology Research Group, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; University of Santo Tomas, Manila, Philippines.
| | - Mads S Thomsen
- Marine Ecology Research Group, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, Australia; Department of Ecoscience, Aarhus University, Roskilde, Denmark
| |
Collapse
|
2
|
Burgess SC, Speare KE, McLachlan RH, Johnston EC, Adam TC, Vega Thurber R, Burkepile DE. Differential effects of nutrients and consumer pressure on sympatric cryptic coral species (Pocillopora spp.). Ecology 2025; 106:e70079. [PMID: 40329653 PMCID: PMC12056465 DOI: 10.1002/ecy.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 05/08/2025]
Abstract
Cryptic species (evolutionarily distinct lineages that do not align with morphologically defined species) are being increasingly discovered but are poorly integrated into ecological theory. In particular, we still lack a useful understanding of if and how cryptic species differ in ways that affect community recovery from disturbances and responses to anthropogenic stressors, such as the removal of consumers and pollution from nutrients. On coral reefs, nutrient pollution increases the growth of macroalgae that displace corals. Reductions in herbivorous fishes reduce the suppression of macroalgae, while reductions in coralivorous fishes reduce predation on corals. An unresolved question is if and how cryptic coral species respond differently to these impacts, thereby differing in their ability to influence coral community dynamics and maintain coral dominance. Therefore, we assessed how the response of cryptic Pocillopora species over a period of three years following a simulated disturbance from a cyclone depended on the experimental reduction of fish consumer pressure and nutrient addition. After three years, five morphologically cryptic, but genetically distinct, Pocillopora species recruited to the reef. However, recruitment was dominated by two species: Pocillopora tuahiniensis (46%) and Pocillopora meandrina (43%). Under ambient conditions, recruitment of P. tuahiniensis and P. meandrina was similar, but experimentally reducing consumer pressure increased recruitment of P. tuahiniensis by up to 73% and reduced recruitment of P. meandrina by up to 49%. In both species, nutrient enrichment increased recruitment and colony growth rates equally, but colonies of P. tuahiniensis grew faster and were up to 25% larger after three years than those of P. meandrina, and growth was unaffected by reduced consumer pressure. Predation by excavating corallivorous fish was higher for P. meandrina than for P. tuahiniensis, especially under nutrient enrichment. In contrast, polyp extension (an indicator of elevated heterotrophic feeding as well as susceptibility and attractiveness to corallivores) was lower for P. meandrina than for P. tuahiniensis, especially under low to medium consumer pressure. Overall, we uncovered ecological differences in the response of morphologically cryptic foundation species to two pervasive stressors on coral reefs. Our results demonstrate how cryptic species respond differently to key anthropogenic stressors, which may contribute to response diversity that can support ecological resilience or increase extinction risk.
Collapse
Affiliation(s)
- Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Kelly E. Speare
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Present address:
School of Geographical Sciences & Urban PlanningArizona State UniversityTempeArizonaUSA
| | | | - Erika C. Johnston
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
- Present address:
Hawai‘i Institute of Marine BiologyUniversity of Hawai'iKāne‘oheHawaiiUSA
| | - Thomas C. Adam
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Rebecca Vega Thurber
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Department of MicrobiologyOregon State UniversityCorvallisOregonUSA
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Deron E. Burkepile
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| |
Collapse
|
3
|
Abdala-Roberts L, Puentes A, Finke DL, Marquis RJ, Montserrat M, Poelman EH, Rasmann S, Sentis A, Symons CC, van Dam NM, Wimp G, Björkman C, Mooney KA. Connecting the dots: Managing species interaction networks to mitigate the impacts of global change. eLife 2025; 14:e98899. [PMID: 40198102 PMCID: PMC11978301 DOI: 10.7554/elife.98899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Global change is causing unprecedented degradation of the Earth's biological systems and thus undermining human prosperity. Past practices have focused either on monitoring biodiversity decline or mitigating ecosystem services degradation. Missing, but critically needed, are management approaches that monitor and restore species interaction networks, thus bridging existing practices. Our overall aim here is to lay the foundations of a framework for developing network management, defined here as the study, monitoring, and management of species interaction networks. We review theory and empirical evidence demonstrating the importance of species interaction networks for the provisioning of ecosystem services, how human impacts on those networks lead to network rewiring that underlies ecosystem service degradation, and then turn to case studies showing how network management has effectively mitigated such effects or aided in network restoration. We also examine how emerging technologies for data acquisition and analysis are providing new opportunities for monitoring species interactions and discuss the opportunities and challenges of developing effective network management. In summary, we propose that network management provides key mechanistic knowledge on ecosystem degradation that links species- to ecosystem-level responses to global change, and that emerging technological tools offer the opportunity to accelerate its widespread adoption.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de YucatánYucatanMexico
| | - Adriana Puentes
- Department of Ecology, Swedish University of Agricultural SciencesUppsalaSweden
| | - Deborah L Finke
- Division of Plant Sciences, University of MissouriColumbiaUnited States
| | - Robert J Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri–St. LouisSt. LouisUnited States
| | - Marta Montserrat
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones CientıficasMálagaSpain
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen UniversityWageningenNetherlands
| | - Sergio Rasmann
- Institute of Biology, University of NeuchȃtelNeuchâtelSwitzerland
| | - Arnaud Sentis
- UMR RECOVER, INRAE, Aix Marseille UniversityAix-en-ProvenceFrance
| | - Celia C Symons
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvineUnited States
| | - Nicole M van Dam
- Plant Biotic Interactions, Leibniz Institute for Vegetable and Ornamental CropsGrosbeerenGermany
| | - Gina Wimp
- Department of Biology, Georgetown UniversityWashington, DCUnited States
| | - Christer Björkman
- Department of Ecology, Swedish University of Agricultural SciencesUppsalaSweden
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvineUnited States
| |
Collapse
|
4
|
Peters JR, Reed DC, Shrestha J, Hamilton SL, Burkepile DE. Frequent disturbance to a foundation species disrupts consumer-mediated nutrient cycling in giant kelp forests. Ecology 2025; 106:e70019. [PMID: 40066697 DOI: 10.1002/ecy.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/19/2024] [Accepted: 11/14/2024] [Indexed: 05/13/2025]
Abstract
Structure-forming foundation species facilitate consumers by providing habitat and refugia. In return, consumers can benefit foundation species by reducing top-down pressures and increasing the supply of nutrients. Consumer-mediated nutrient dynamics (CND) fuel the growth of autotrophic foundation species and generate more habitat for consumers, forming reciprocal feedbacks. Such feedbacks are threatened when foundation species are lost to disturbances, yet testing these interactions requires long-term studies, which are rare. Here, we experimentally evaluated how disturbance to giant kelp, a marine foundation species, affects (1) CND of the forest animal community and (2) nutrient feedbacks that help sustain forest primary production during extended periods of low nitrate. Our experiment involved removing giant kelp annually during the winter for 10 years at four sites to mimic frequent wave disturbance. We paired temporal changes in the forest community in kelp removal and control plots with estimates of taxon-specific ammonium excretion rates (reef fishes and macroinvertebrates) and nitrogen (N) demand (giant kelp and understory macroalgae) to determine the effects of disturbance on CND as measured by ammonium excretion, N demand by kelp forest macroalgae, and the percentage of nitrogen demand met by ammonium excretion. We found that disturbance to giant kelp decreased ammonium excretion by 66% over the study, mostly due to declines in fishes. Apart from a few fish species that dominated CND, most reef-associated consumers were unaffected by disturbance. Disturbance to giant kelp reduced its N demand by 56% but increased that of the understory by 147% due to its increased abundance in the absence of a kelp canopy. Overall, disturbance had little effect on the fraction of N demand of macroalgae met by consumer excretion due to the offsetting responses of giant kelp, understory macroalgae, and consumers to disturbance. Across both disturbance regimes, on average, consumers supported 11%-12% of the N required by all kelp forest macroalgae and 48% of N demand by the understory macroalgae (which are confined to the benthos where most reef-associated consumers reside). Our findings suggest that CND constitutes a considerable contribution of N required in kelp forests, yet nutrient inputs decrease following reductions in essential habitat perpetuated by frequent disturbances.
Collapse
Affiliation(s)
- Joseph R Peters
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - June Shrestha
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Deron E Burkepile
- Marine Science Institute, University of California, Santa Barbara, California, USA
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
5
|
Bulleri F, Schubert N, Hall‐Spencer JM, Basso D, Burdett HL, Francini‐Filho RB, Grall J, Horta PA, Kamenos NA, Martin S, Nannini M, Neves P, Olivé I, Peña V, Ragazzola F, Ribeiro C, Rinde E, Sissini M, Tuya F, Silva J. Positive species interactions structure rhodolith bed communities at a global scale. Biol Rev Camb Philos Soc 2025; 100:428-444. [PMID: 39300809 PMCID: PMC11718630 DOI: 10.1111/brv.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Rhodolith beds are diverse and globally distributed habitats. Nonetheless, the role of rhodoliths in structuring the associated species community through a hierarchy of positive interactions is yet to be recognised. In this review, we provide evidence that rhodoliths can function as foundation species of multi-level facilitation cascades and, hence, are fundamental for the persistence of hierarchically structured communities within coastal oceans. Rhodoliths generate facilitation cascades by buffering physical stress, reducing consumer pressure and enhancing resource availability. Due to large variations in their shape, size and density, a single rhodolith bed can support multiple taxonomically distant and architecturally distinct habitat-forming species, such as primary producers, sponges or bivalves, thus encompassing a broad range of functional traits and providing a wealth of secondary microhabitat and food resources. In addition, rhodoliths are often mobile, and thus can redistribute associated species, potentially expanding the distribution of species with short-distance dispersal abilities. Key knowledge gaps we have identified include: the experimental assessment of the role of rhodoliths as basal facilitators; the length and temporal stability of facilitation cascades; variations in species interactions within cascades across environmental gradients; and the role of rhodolith beds as climate refugia. Addressing these research priorities will allow the development of evidence-based policy decisions and elevate rhodolith beds within marine conservation strategies.
Collapse
Affiliation(s)
- Fabio Bulleri
- Dipartimento di BiologiaUniversità di PisaVia Derna 1Pisa56126Italy
| | - Nadine Schubert
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de GambelasUniversidade do AlgarveFaro8005‐139Portugal
| | - Jason M. Hall‐Spencer
- Shimoda Marine Research CenterUniversity of TsukubaShizuokaJapan
- School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| | - Daniela Basso
- Department of Earth and Environmental SciencesUniversity of Milano–Bicocca, CoNISMa Research Unit of Milano–BicoccaMilanItaly
| | - Heidi L. Burdett
- Umeå Marine Sciences CentreUmeå UniversityNorrbynSweden
- Department of Ecology and Environmental SciencesUmeå UniversityUmeåSweden
| | - Ronaldo B. Francini‐Filho
- Laboratório de Biodiversidade e Conservação Marinha, Centro de Biologia Marinha (CEBIMar)Universidade de São Paulo (USP)São SebastiãoBrazil
| | - Jacques Grall
- UAR 3113 OSUInstitut Universitaire Européen de la Mer, Univ BrestPlouzanéFrance
| | - Paulo A. Horta
- Laboratório de Ficologia, Departamento de Botânica, Centro de Ciências BiológicasUniversidade Federal de Santa CatarinaFlorianopolisBrazil
| | - Nicholas A. Kamenos
- Umeå Marine Sciences CentreUmeå UniversityNorrbynSweden
- Department of Ecology and Environmental SciencesUmeå UniversityUmeåSweden
| | - Sophie Martin
- UMR 7144 Adaptation et Diversité en Milieu MarinCNRS, Sorbonne Université, Station Biologique de RoscoffRoscoffFrance
| | - Matteo Nannini
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnVilla ComunaleNaplesNA80121Italy
| | - Pedro Neves
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de GambelasUniversidade do AlgarveFaro8005‐139Portugal
- Observatório Oceânico da Madeira, Agência Regional para o Desenvolvimento da InvestigaçãoTecnologia e Inovação (OOM/ARDITI)FunchalMadeiraPortugal
| | - Irene Olivé
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnVilla ComunaleNaplesNA80121Italy
| | - Viviana Peña
- BioCost Research Group, Faculty of SciencesUniversity of A Coruñarúa da Fraga 10A Coruña15008Spain
| | - Federica Ragazzola
- Department of Integrative Marine EcologyGenoa Marine Centre, Stazione Zoologica Anton Dohrn9 Villa del Principe, Piazza del Principe 4Genoa16126Italy
- NBFC, National Biodiversity Future CenterPalermo90133Italy
| | - Cláudia Ribeiro
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de GambelasUniversidade do AlgarveFaro8005‐139Portugal
- IFCN—Instituto das Florestas e Conservação da Natureza, IP‐RAMFunchalMadeiraPortugal
| | - Eli Rinde
- Norwegian Institute for Water ResearchOsloNorway
| | - Marina Sissini
- Department of Marine BiologyFederal Fluminense UniversityNiteroiRio de JaneiroBrazil
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación (IU‐ECOAQUA)Universidad de Las Palmas de Gran CanariaTeldeSpain
| | - João Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de GambelasUniversidade do AlgarveFaro8005‐139Portugal
| |
Collapse
|
6
|
Stuart E, King N, Smale D. The influence of subtidal Laminaria canopies on local environmental conditions and the structure of understorey communities. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106957. [PMID: 39798228 DOI: 10.1016/j.marenvres.2025.106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Understanding the role of species interactions (e.g. competition and facilitation) in structuring communities is a fundamental goal of ecology. It is well established that large canopy-forming seaweeds (e.g. kelps and fucoids) exert a strong influence on community structure, by offering biogenic habitat, altering environmental conditions and interacting with other species. While many studies have manipulated the density of seaweeds to causatively examine their effects on the local environment and associated communities, they are biased towards certain regions and canopy-forming species. We conducted a manipulative experiment at two subtidal sites characterised by mixed Laminaria canopies, in southwest England, UK. Three treatments were established in multiple replicate circular plots (area of 7.1 m2): 0% kelp removal (i.e. unmanipulated control), 50% kelp removal (i.e. thinning), and 100% removal. Within each plot, temperature, light levels and sedimentation rates were monitored over 3 months, and after 5 months the density of juvenile kelp recruits, the biomass of understorey macroalgae and the abundance of recruiting fauna were quantified. We found kelp canopies had no impact on temperature or sedimentation rates but their removal led to marked increases in light availability, juvenile kelp recruitment and understorey macroalgal biomass. Overall, our study shows that physical disturbance to Laminaria canopies alters resource availability (i.e. light and space), leading to increased abundances of kelp recruits and understory algae. Significant reductions in kelp canopy density, driven by storm disturbance, harvesting or decreased water quality for example, would lead to shifts in community structure and ecological functioning.
Collapse
Affiliation(s)
- Emma Stuart
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, PlySmouth, PL1 2PB, UK
| | - Nathan King
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, PlySmouth, PL1 2PB, UK
| | - Dan Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, PlySmouth, PL1 2PB, UK.
| |
Collapse
|
7
|
Longman EK, Merolla S, Talke SA, Trautman N, Largier JL, Harris L, Sanford E. Evaluating historical changes in a mussel bed community in northern California. Sci Rep 2025; 15:1930. [PMID: 39809892 PMCID: PMC11733294 DOI: 10.1038/s41598-025-86105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Marine foundation species are increasingly impacted by anthropogenic stressors, driving a loss of diversity within these critical habitats. Prior studies suggest that species diversity within mussel beds has declined precipitously in southern California, USA, but it is unclear whether a similar loss has occurred farther north. Here, we resurvey a mussel bed community in northern California first sampled in 1941 to evaluate changes in diversity after 78 years. More broadly, we explore the value and potential challenges of using imperfect historical data to assess community changes. Our 2019 survey documented 90 species/taxa across 10 phyla. The majority of species (~ 72%) were common to all replicate plots, suggesting that variation in species diversity over small spatial scales was unlikely to mask temporal changes. In contrast to results from southern California, we observed no decline in species diversity between timepoints. However, there were shifts in species composition, with an increase in the abundance of southern species and a decrease in northern species, consistent with warming observed at a nearby shoreline site. Overall, our findings are an encouraging sign for the health of this mussel bed community in northern California and illustrate how non-traditional data can contribute to assessments of long-term ecological change.
Collapse
Affiliation(s)
- Emily K Longman
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA, 94923, USA.
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, 95616, USA.
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA.
| | - Sarah Merolla
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Stefan A Talke
- Department of Civil and Environmental Engineering, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Nicholas Trautman
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA, 94923, USA
| | - John L Largier
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA, 94923, USA
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, 95616, USA
| | - Leslie Harris
- Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA, 94923, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Bertness MD, Cavieres LA, Lortie CJ, Callaway RM. Positive interactions and interdependence in communities. Trends Ecol Evol 2024; 39:1014-1023. [PMID: 39389799 DOI: 10.1016/j.tree.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Facilitative interactions play crucial roles in community organization, and the stress gradient hypothesis (SGH) provides a simple conceptual framework for the context-dependency of competitive and facilitative interactions. The idea is that positive interactions are more common under high physical and consumer stress, where species benefit from stress-tolerant neighbors, than in benign environments. We explore insights from the SGH into ecological generality, niche theory, community assembly, and diversity effects on ecosystem function and discuss how the SGH can inform our understanding of rapid evolution, mutualisms, exotic invasions, and facilitation cascades. We suggest that, with escalating global stresses, the SGH may provide a conceptual template for an interdependent perspective in ecology that can contribute to conservation and restoration efforts.
Collapse
Affiliation(s)
- Mark D Bertness
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Lohengrin A Cavieres
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; Instituto de Ecología y Biodiversidad, Casilla 653, Santiago, Chile
| | - C J Lortie
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
9
|
Fairchild TP, Walter B, Mutter JJ, Griffin JN. Topographic heterogeneity triggers complementary cascades that enhance ecosystem multifunctionality. Ecology 2024; 105:e4434. [PMID: 39354801 DOI: 10.1002/ecy.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/18/2024] [Accepted: 07/31/2024] [Indexed: 10/03/2024]
Abstract
Topographic heterogeneity sets the stage for community assembly, but its effects on ecosystem functioning remain poorly understood. Here, we test the hypothesis that topographic heterogeneity underpins multiple cascading species interactions and functional pathways that indirectly control multifunctionality. To do so, we combined experimental manipulation of a form of topographic heterogeneity on rocky shores (holes of various sizes) with a comprehensive assessment of naturally assembled communities and multifunctionality. Structural equation modeling indicated that heterogeneity: (1) enhanced biodiversity by supporting filter feeder richness; (2) triggered a facilitation cascade via reef-forming (polychaete) and biomass-dominant (macroalga) foundation species, which in turn broadly supported functionally diverse epibiotic and understory assemblages; and (3) inhibited a key consumer (limpet). The model supported that these mechanisms exerted complementary positive effects on individual functions (e.g., water filtration, ecosystem metabolism, nutrient uptake) and, in turn, collectively enhanced multifunctionality. Topographic heterogeneity may therefore serve as a cornerstone physical attribute by initiating multiple cascades that propagate through ecological communities via foundation species, ultimately manifesting disproportionate effects on ecosystem multifunctionality.
Collapse
Affiliation(s)
- Tom P Fairchild
- Faculty of Science and Engineering, Wallace Building, Swansea University, Singleton Park Campus, Swansea, UK
| | - Bettina Walter
- Project Seagrass, Unit 1 Garth Drive, Brackla Industrial Estate, Bridgend, UK
| | - Joshua J Mutter
- Faculty of Science and Engineering, Wallace Building, Swansea University, Singleton Park Campus, Swansea, UK
| | - John N Griffin
- Faculty of Science and Engineering, Wallace Building, Swansea University, Singleton Park Campus, Swansea, UK
| |
Collapse
|
10
|
Luo W, Sun C, Yang S, Chen W, Sun Y, Li Z, Liu J, Tao W, Tao J. Contrasting range changes and drivers of four forest foundation species under future climate change in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173784. [PMID: 38851330 DOI: 10.1016/j.scitotenv.2024.173784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Forest foundation species, vital for shaping community structure and dynamics through non-trophic level interactions, are key to forest succession and sustainability. Despite their ecological importance, the habitat ranges of these species in China and their responses to future climate change remain unclear. Our study employed the optimal MaxEnt model to assess the range shifts and their essential drivers of four typical forest foundation species from three climatic zones in China under climate scenarios, including Acer tegmentosum, Acer pseudo-sieboldianum (temperate zone), Quercus glandulifera (subtropical zone), and Ficus hispida (tropical zone). The optimal MaxEnt model exhibited high evaluation indices (AUC values > 0.90) for the four foundation species, indicating excellent predictive performance. Currently, we observed that A. tegmentosum and A. pseudo-sieboldianum are predominantly inhabited temperate forest areas in northeastern China, Q. glandulifera is primarily concentrated in subtropical forests in southeastern China, and F. hispida is mainly distributed across the tropical forests in southern China. Climate factors, particularly temperature, emerged as the primary environmental factors influencing the potential range of forest foundation species. Moreover, precipitation strongly influenced the potential range of A. tegmentosum and A. pseudo-sieboldianum, while elevation exhibited a greater impact on the range of Q. glandulifera and F. hispida. Under future climate scenarios, suitable areas for A. tegmentosum and A. pseudo-sieboldianum tend to expand southward, F. hispida tends to expand northward, while Q. glandulifera exhibited a tendency to contract towards the center. This study advances our understanding of the spatial and temporal dynamics of forest foundation species in China under climate change, providing critical insights for conservation efforts and sustainable forest management practices.
Collapse
Affiliation(s)
- Weixue Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Chengxiang Sun
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Shuo Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenke Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhong Sun
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Zongfeng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Jinchun Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Wenjing Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Jianping Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| |
Collapse
|
11
|
Love DT, Fill JM, Zee A, Tevlin S, Pérez HE, Crandall RM. Competition limits first-year growth and flowering of wiregrass (Aristida beyrichiana) at a sandhills restoration site. PLoS One 2024; 19:e0297795. [PMID: 39226260 PMCID: PMC11371212 DOI: 10.1371/journal.pone.0297795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/12/2024] [Indexed: 09/05/2024] Open
Abstract
Uncertainty in ecosystem restoration can be mitigated by information on drivers of variability in restoration outcomes, especially through experimental study. In southeastern USA pine savannas, efforts to restore the perennial bunchgrass wiregrass (Aristida beyrichiana) often achieve variable outcomes in the first year. Although ecotypic differentiation and competition with other native vegetation are known to influence wiregrass seedling establishment and growth, to our knowledge, no studies have examined interactions between these drivers. We experimentally quantified individual and interactive effects of competition, seed source, and soil type on wiregrass density, size, and flowering culm production in the field. We sowed seeds from dry and wet sites reciprocally into dry and wet soils and weeded half of the plots. We found that competition removal resulted in significantly larger plants and a greater proportion of flowering plants with more culms on average, regardless of seed source or soil type. Seeds sourced from a wet site resulted in more plants per plot than seeds from a dry site, which might have been influenced by the greater number of filled seeds from the wet site. After seedlings become established, competition contributes to variation in growth and reproduction. Although competition removal could help start wiregrass populations, the necessity of mitigation depends on fire management needs.
Collapse
Affiliation(s)
- Debriana T. Love
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Jennifer M. Fill
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, United States of America
| | - April Zee
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Sarah Tevlin
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida, United States of America
| | - Héctor E. Pérez
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida, United States of America
| | - Raelene M. Crandall
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
12
|
Wang X, Lin C, Wang W, Zhang L. The non-negligible contribution of foundation species to artificial reef construction revealed by Ecopath models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121887. [PMID: 39025015 DOI: 10.1016/j.jenvman.2024.121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
The seabed desertification has increasingly highlighted the importance of benthic habitat restoration. Strategically engineered artificial reefs emerges as pivotal in achieving restoration objectives. However, the significant influence of foundation species on biotic components and ecosystem attributes within diverse artificial reefs has been underrecognized. This study collated twenty Ecopath models of artificial reefs and their corresponding natural control ecosystems along the coasts of the Yellow Sea and Bohai Sea, China, categorizing them into five distinct system types predicated on the biomass and productivity of foundational species. Our results suggest that dimensionless indices, rather than actual system values, were posited to facilitate inter-comparative analysis. The comparative analysis revealed differences in biomass distribution, energy utilization, and trophic structure across the five ecosystem types. All the artificial reef systems collectively enhanced the utilization of primary production. Foundation species components formed the cornerstone of system functionality, significantly impacting ecosystem stability through modulation of energy flow dynamics. Distinct impacts were observed from shellfish and macroalgae; the former augmenting the detrital food chain, while the latter bolstering the grazing food chain. Consequently, the model-based integrated analysis enabled a robust comparison among various types of artificial reef ecosystems and confirmed that promoting the colonization of foundation species was a non-negligible factor in the design and deployment of artificial reefs.
Collapse
Affiliation(s)
- Xu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd, Yantai, 261413, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Rovira GL, Capdevila P, Zentner Y, Margarit N, Ortega J, Casals D, Figuerola-Ferrando L, Aspillaga E, Medrano A, Pagès-Escolà M, Hereu B, Garrabou J, Linares C. When resilience is not enough: 2022 extreme marine heatwave threatens climatic refugia for a habitat-forming Mediterranean octocoral. J Anim Ecol 2024. [PMID: 38867406 DOI: 10.1111/1365-2656.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/12/2024] [Indexed: 06/14/2024]
Abstract
Climate change is impacting ecosystems worldwide, and the Mediterranean Sea is no exception. Extreme climatic events, such as marine heat waves (MHWs), are increasing in frequency, extent and intensity during the last decades, which has been associated with an increase in mass mortality events for multiple species. Coralligenous assemblages, where the octocoral Paramuricea clavata lives, are strongly affected by MHWs. The Medes Islands Marine Reserve (NW Mediterranean) was considered a climate refugia for P. clavata, as their populations were showing some resilience to these changing conditions. In this study, we assessed the impacts of the MHWs that occurred between 2016 and 2022 in seven shallow populations of the octocoral P. clavata from a Mediterranean Marine Protected Area. The years that the mortality rates increased significantly were associated with the ones with strong MHWs, 2022 being the one with higher mortalities. In 2022, with 50 MHW days, the proportion of total affected colonies was almost 70%, with a proportion of the injured surface of almost 40%, reaching levels never attained in our study site since the monitoring was started. We also found spatial variability between the monitored populations. Whereas few of them showed low levels of mortality, others lost around 75% of their biomass. The significant impacts documented here raise concerns about the future of shallow P. clavata populations across the Mediterranean, suggesting that the resilience of this species may not be maintained to sustain these populations face the ongoing warming trends.
Collapse
Affiliation(s)
- Graciel la Rovira
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Pol Capdevila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Yanis Zentner
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Núria Margarit
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Julia Ortega
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - David Casals
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laura Figuerola-Ferrando
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Eneko Aspillaga
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Alba Medrano
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Pagès-Escolà
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Bernat Hereu
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Joaquim Garrabou
- Institut de Ciències del Mar-CSIC, Barcelona, Spain
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
14
|
Ray K, Basak SK, Giri CK, Kotal HN, Mandal A, Chatterjee K, Saha S, Biswas B, Mondal S, Das I, Ghosh A, Bhadury P, Joshi R. Ecological restoration at pilot-scale employing site-specific rationales for small-patch degraded mangroves in Indian Sundarbans. Sci Rep 2024; 14:12952. [PMID: 38839775 PMCID: PMC11153218 DOI: 10.1038/s41598-024-63281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
To date, degraded mangrove ecosystem restoration accomplished worldwide primarily aligns towards rehabilitation with monotypic plantations, while ecological restoration principles are rarely followed in these interventions. However, researchers admit that most of these initiatives' success rate is not appreciable often. An integrative framework of ecological restoration for degraded mangroves where site-specific observations could be scientifically rationalized, with co-located reference pristine mangroves as the target ecosystem to achieve is currently distinctively lacking. Through this experimental scale study, we studied the suitability of site-specific strategies to ecologically restore degraded mangrove patches vis-à-vis the conventional mono-species plantations in a highly vulnerable mangrove ecosystem in Indian Sundarbans. This comprehensive restoration framework was trialed in small discrete degraded mangrove patches spanning ~ 65 ha. Site-specific key restoration components applied are statistically validated through RDA analyses and Bayesian t-tests. 25 quantifiable metrics evaluate the restoration success of a ~ 3 ha degraded mangrove patch with Ridgeline distribution, Kolmogorov-Smirnov (K-S) tests, and Mahalanobis Distance (D2) measure to prove the site's near-equivalence to pristine reference in multiple ecosystem attributes. This restoration intervention irrevocably establishes the greater potential of this framework in the recovery of ecosystem functions and self-sustenance compared to that of predominant monoculture practices for vulnerable mangroves.
Collapse
Affiliation(s)
- Krishna Ray
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, 700126, India.
| | - Sandip Kumar Basak
- Sarat Centenary College, Dhaniakhali, Hooghly, West Bengal, 712302, India.
| | - Chayan Kumar Giri
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, 700126, India
| | - Hemendra Nath Kotal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, 700126, India
| | - Anup Mandal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, 700126, India
| | - Kiranmoy Chatterjee
- Department of Statistics, Bidhannagar College, Salt Lake City, Sector 1, Block EB, Kolkata, 700064, India
| | - Subhajit Saha
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, 700126, India
| | - Biswajit Biswas
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, 700126, India
| | - Sumana Mondal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, 700126, India
| | - Ipsita Das
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata, 700126, India
| | - Anwesha Ghosh
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Rahul Joshi
- Zoological Survey of India (ZSI), Prani Vigyan Bhawan, Block M, New Alipore, Kolkata, 700053, India
| |
Collapse
|
15
|
Leong RC, Bugnot AB, Ross PM, Erickson KR, Gibbs MC, Marzinelli EM, O'Connor WA, Parker LM, Poore AGB, Scanes E, Gribben PE. Recruitment of a threatened foundation oyster species varies with large and small spatial scales. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2968. [PMID: 38562000 DOI: 10.1002/eap.2968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/20/2023] [Accepted: 10/28/2023] [Indexed: 04/04/2024]
Abstract
Understanding how habitat attributes (e.g., patch area and sizes, connectivity) control recruitment and how this is modified by processes operating at larger spatial scales is fundamental to understanding population sustainability and developing successful long-term restoration strategies for marine foundation species-including for globally threatened reef-forming oysters. In two experiments, we assessed the recruitment and energy reserves of oyster recruits onto remnant reefs of the oyster Saccostrea glomerata in estuaries spanning 550 km of coastline in southeastern Australia. In the first experiment, we determined whether recruitment of oysters to settlement plates in three estuaries was correlated with reef attributes within patches (distances to patch edges and surface elevation), whole-patch attributes (shape and size of patches), and landscape attributes (connectivity). We also determined whether environmental factors (e.g., sedimentation and water temperature) explained the differences among recruitment plates. We also tested whether differences in energy reserves of recruits could explain the differences between two of the estuaries (one high- and one low-sedimentation estuary). In the second experiment, across six estuaries (three with nominally high and three with nominally low sedimentation rates), we tested the hypothesis that, at the estuary scale, recruitment and survival were negatively correlated to sedimentation. Overall, total oyster recruitment varied mostly at the scale of estuaries rather than with reef attributes and was negatively correlated with sedimentation. Percentage recruit survival was, however, similar among estuaries, although energy reserves and condition of recruits were lower at a high- compared to a low-sediment estuary. Within each estuary, total oyster recruitment increased with patch area and decreased with increasing tidal height. Our results showed that differences among estuaries have the largest influence on oyster recruitment and recruit health and this may be explained by environmental processes operating at the same scale. While survival was high across all estuaries, growth and reproduction of oysters on remnant reefs may be affected by sublethal effects on the health of recruits in high-sediment estuaries. Thus, restoration programs should consider lethal and sublethal effects of whole-estuary environmental processes when selecting sites and include environmental mitigation actions to maximize recruitment success.
Collapse
Affiliation(s)
- Rick C Leong
- Centre for Marine Science and Innovation, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Ana B Bugnot
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
- CSIRO Environment, Saint Lucia, Queensland, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Katherine R Erickson
- Centre for Marine Science and Innovation, University of New South Wales Sydney, Kensington, New South Wales, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Mitchell C Gibbs
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Anna Bay, New South Wales, Australia
| | - Laura M Parker
- Centre for Marine Science and Innovation, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Alistair G B Poore
- Centre for Marine Science and Innovation, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Paul E Gribben
- Centre for Marine Science and Innovation, University of New South Wales Sydney, Kensington, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| |
Collapse
|
16
|
Silliman BR, Hensel MJS, Gibert JP, Daleo P, Smith CS, Wieczynski DJ, Angelini C, Paxton AB, Adler AM, Zhang YS, Altieri AH, Palmer TM, Jones HP, Gittman RK, Griffin JN, O'Connor MI, van de Koppel J, Poulsen JR, Rietkerk M, He Q, Bertness MD, van der Heide T, Valdez SR. Harnessing ecological theory to enhance ecosystem restoration. Curr Biol 2024; 34:R418-R434. [PMID: 38714175 DOI: 10.1016/j.cub.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Ecosystem restoration can increase the health and resilience of nature and humanity. As a result, the international community is championing habitat restoration as a primary solution to address the dual climate and biodiversity crises. Yet most ecosystem restoration efforts to date have underperformed, failed, or been burdened by high costs that prevent upscaling. To become a primary, scalable conservation strategy, restoration efficiency and success must increase dramatically. Here, we outline how integrating ten foundational ecological theories that have not previously received much attention - from hierarchical facilitation to macroecology - into ecosystem restoration planning and management can markedly enhance restoration success. We propose a simple, systematic approach to determining which theories best align with restoration goals and are most likely to bolster their success. Armed with a century of advances in ecological theory, restoration practitioners will be better positioned to more cost-efficiently and effectively rebuild the world's ecosystems and support the resilience of our natural resources.
Collapse
Affiliation(s)
- Brian R Silliman
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA.
| | - Marc J S Hensel
- Biological Sciences Department, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA; Nature Coast Biological Station, Institute of Food and Agricultural Sciences, University of Florida, Cedar Key, FL 32625, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, NC, USA
| | - Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Carter S Smith
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | | | - Christine Angelini
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Avery B Paxton
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 101 Pivers Island Road, Beaufort, NC 28516, USA
| | - Alyssa M Adler
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - Y Stacy Zhang
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Todd M Palmer
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Holly P Jones
- Department of Biological Sciences and Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rachel K Gittman
- Department of Biology and Coastal Studies Institute, East Carolina University, Greenville, NC, USA
| | - John N Griffin
- Department of Biosciences, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Mary I O'Connor
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6R 1W4, Canada
| | - Johan van de Koppel
- Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - John R Poulsen
- The Nature Conservancy, 2424 Spruce Street, Boulder, CO 80302, USA; Nicholas School of the Environment, Duke University, PO Box 90328, Durham, NC 27708, USA
| | - Max Rietkerk
- Department Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Qiang He
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mark D Bertness
- Department of Ecology and Evolutionary Biology, Brown University, 90 Witman Street, Providence, RI, USA
| | - Tjisse van der Heide
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Stephanie R Valdez
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| |
Collapse
|
17
|
Jia J, Zhao X, Jia P, Zhang X, Li D, Liu Y, Huang L. Ecophysiological responses of Phragmites australis populations to a tidal flat gradient in the Yangtze River Estuary, China. FRONTIERS IN PLANT SCIENCE 2024; 15:1326345. [PMID: 38756962 PMCID: PMC11097105 DOI: 10.3389/fpls.2024.1326345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Phragmites australis is a prevalent species in the Chongming Dongtan wetland and is capable of thriving in various tidal flat environments, including high salinity habitats. P. australis population displays inconsistent ecological performances, highlighting the need to uncover their survival strategies and mechanisms in tidal flats with diverse soil salinities. Upon comparing functional traits of P. australis at multiple tidal flats (low, middle, and high) and their responses to soil physicochemical properties, this study aimed to clarify the salt-tolerant strategy of P. australis and the corresponding mechanisms. These results showed that leaf characteristics, such as specific leaf area and leaf dry matter content, demonstrated more robust stability to soil salinity than shoot height and dry weight. Furthermore, as salt stress intensified, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxisome (POD) in P. australis leaves at low tidal flat exhibited an increased upward trend compared to those at other tidal flats. The molecular mechanism of salt tolerance in Phragmites australis across various habitats was investigated using transcriptome sequencing. Weighted correlation network analysis (WGCNA) combined with differentially expressed genes (DEGs) screened out 3 modules closely related to high salt tolerance and identified 105 core genes crucial for high salt tolerance. Further research was carried out on the few degraded populations at low tidal flat, and 25 core genes were identified by combining WGCNA and DEGs. A decrease in the activity of ferroptosis marker gonyautoxin-4 and an increase in the content of Fe3+ in the degenerated group were observed, indicating that ferroptosis might participate in degradation. Furthermore, correlation analysis indicated a possible regulatory network between salt tolerance and ferroptosis. In short, this study provided new insights into the salt tolerance mechanism of P. australis population along tidal flats.
Collapse
Affiliation(s)
- Jing Jia
- East China Normal University, Shanghai, China
| | | | - Peng Jia
- East China Normal University, Shanghai, China
| | - Xin Zhang
- GeneMind Biosciences, Shenzhen, China
| | - Dezhi Li
- East China Normal University, Shanghai, China
| | | | | |
Collapse
|
18
|
Jeevannavar A, Narwani A, Matthews B, Spaak P, Brantschen J, Mächler E, Altermatt F, Tamminen M. Foundation species stabilize an alternative eutrophic state in nutrient-disturbed ponds via selection on microbial community. Front Microbiol 2024; 15:1310374. [PMID: 38628870 PMCID: PMC11019512 DOI: 10.3389/fmicb.2024.1310374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Eutrophication due to nutrient addition can result in major alterations in aquatic ecosystem productivity. Foundation species, individually and interactively, whether present as invasive species or as instruments of ecosystem management and restoration, can have unwanted effects like stabilizing turbid eutrophic states. In this study, we used whole-pond experimental manipulations to investigate the impacts of disturbance by nutrient additions in the presence and absence of two foundation species: Dreissena polymorpha (a freshwater mussel) and Myriophyllum spicatum (a macrophyte). We tracked how nutrient additions to ponds changed the prokaryotic and eukaryotic communities, using 16S, 18S, and COI amplicon sequencing. The nutrient disturbance and foundation species imposed strong selection on the prokaryotic communities, but not on the microbial eukaryotic communities. The prokaryotic communities changed increasingly over time as the nutrient disturbance intensified. Post-disturbance, the foundation species stabilized the prokaryotic communities as observed by the reduced rate of change in community composition. Our analysis suggests that prokaryotic community change contributed both directly and indirectly to major changes in ecosystem properties, including pH and dissolved oxygen. Our work shows that nutrient disturbance and foundation species strongly affect the prokaryotic community composition and stability, and that the presence of foundation species can, in some cases, promote the emergence and persistence of a turbid eutrophic ecosystem state.
Collapse
Affiliation(s)
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Kastanienbaum, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Elvira Mächler
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Manu Tamminen
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Tumolo BB, Albertson LK, Daniels MD, Cross WF, Sklar LL. Facilitation strength across environmental and beneficiary trait gradients in stream communities. J Anim Ecol 2023; 92:2005-2015. [PMID: 37555442 DOI: 10.1111/1365-2656.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
Ecosystem engineers modify habitats in ways that facilitate other community members by ameliorating harsh conditions. The strength of such facilitation is predicted to be influenced by both beneficiary traits and abiotic context. One key trait of animals that could control the strength of facilitation is beneficiary body size because it should determine how beneficiaries fit within and exploit stress ameliorating habitat modifications. However, few studies have measured how beneficiary body size relates to facilitation strength along environmental gradients. We examined how the strength of facilitation by net-spinning caddisflies on invertebrate communities in streams varied along an elevation gradient and based on traits of the invertebrate beneficiaries. We measured whether use of silk retreats as habitat concentrated invertebrate density and biomass compared to surrounding rock surface habitat and whether the use of retreat habitat varied across body sizes of community members along the gradient. We found that retreats substantially concentrated the densities of a diversity of taxa including eight different Orders, and this effect was greatest at high elevations. Caddisfly retreats also concentrated invertebrate biomass more as elevation increased. Body size of invertebrates inhabiting retreats was lower than that of surrounding rock habitats at low elevation sites, however, body size between retreats and rocks converged at higher elevation sites. Additionally, the body size of invertebrates found in retreats varied within and across taxa. Specifically, caddisfly retreats functioned as a potential nursery for taxa with large maximal body sizes. However, the patterns of this taxon-specific nursery effect were not influenced by elevation unlike the patterns observed based on community-level body size. Collectively, our results indicate that invertebrates use retreats in earlier life stages or when they are smaller in body size independent of life stage. Furthermore, our analysis suggests that facilitation strength intensifies as elevation increases within stream invertebrate communities. Further consideration of how trait variation and environmental gradients interact to determine the strength and direction of biotic interactions will be important as species ranges and environmental conditions continue to shift.
Collapse
Affiliation(s)
- Benjamin B Tumolo
- Department of Ecology, Montana State University, Bozeman, Montana, USA
- Rocky Mountain Biological Laboratory (RMBL), Crested Butte, Colorado, USA
| | - Lindsey K Albertson
- Department of Ecology, Montana State University, Bozeman, Montana, USA
- Rocky Mountain Biological Laboratory (RMBL), Crested Butte, Colorado, USA
| | | | - Wyatt F Cross
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Leonard L Sklar
- Department of Geography, Planning and Environment, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Montie S, Thomsen MS. Facilitation of animals is stronger during summer marine heatwaves and around morphologically complex foundation species. Ecol Evol 2023; 13:e10512. [PMID: 37727775 PMCID: PMC10505761 DOI: 10.1002/ece3.10512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Foundation species create biogenic habitats, modify environmental conditions, augment biodiversity, and control animal community structures. In recent decades, marine heatwaves (MHWs) have affected the ecology of foundation species worldwide, and perhaps also their associated animal communities. However, no realistic field experiment has tested how MHWs affect animals that live in and around these foundation species. We therefore tested, in a four-factorial field experiment, if colonisation by small mobile marine animals (epifauna) onto plates with attached single versus co-occurring foundation species of different morphological complexities, were affected by 3-5°C heating (that mirrored a recent extreme MHW in the study area) and if the heating effect on the epifauna varied within and between seasons. For this experiment mimics of turf seaweed represented the single foundation species and holdfasts of seven common canopy-forming seaweed represented the co-occurring foundation species with different morphological complexities. We found that the taxonomic richness and total abundance of epifauna, dominated by copepods, generally were higher on heated plates with complex seaweed holdfasts in warmer summer trials. Furthermore, several interactions between test-factors were significant, e.g., epifaunal abundances, were, across taxonomic groups, generally higher in warmer than colder summer trials. These results suggest that, in temperate ecosystems, small, mobile, short-lived, and fast-growing marine epifauna can be facilitated by warmer oceans and morphologically complex foundation species, implying that future MHWs may increase secondary production and trophic transfers between primary producers and fish. Future studies should test whether these results can be scaled to other ecological species-interactions, across latitudes and biogeographical regions, and if similar results are found after longer MHWs or within live foundation species under real MHW conditions.
Collapse
Affiliation(s)
- Shinae Montie
- Marine Ecology Research Group, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Mads S. Thomsen
- Marine Ecology Research Group, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
- Aarhus UniversityDepartment of EcoscienceRoskildeDenmark
| |
Collapse
|
21
|
Mahanes SA, Sorte CJB, Bracken MES. The functional effects of a dominant consumer are altered following the loss of a dominant producer. Ecol Evol 2023; 13:e10342. [PMID: 37546568 PMCID: PMC10396790 DOI: 10.1002/ece3.10342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Human impacts on ecosystems are resulting in unprecedented rates of biodiversity loss worldwide. The loss of species results in the loss of the multiple roles that each species plays or functions (i.e., "ecosystem multifunctionality") that it provides. A more comprehensive understanding of the effects of species on ecosystem multifunctionality is necessary for assessing the ecological impacts of species loss. We studied the effects of two dominant intertidal species, a primary producer (the seaweed Neorhodomela oregona) and a consumer (the shellfish Mytilus trossulus), on 12 ecosystem functions in a coastal ecosystem, both in undisturbed tide pools and following the removal of the dominant producer. We modified analytical methods used in biodiversity-multifunctionality studies to investigate the potential effects of individual dominant species on ecosystem function. The effects of the two dominant species from different trophic levels tended to differ in directionality (+/-) consistently (92% of the time) across the 12 individual functions considered. Using averaging and multiple threshold approaches, we found that the dominant consumer-but not the dominant producer-was associated with ecosystem multifunctionality. Additionally, the relationship between abundance and multifunctionality differed depending on whether the dominant producer was present, with a negative relationship between the dominant consumer and ecosystem function with the dominant producer present compared to a non-significant, positive trend where the producer had been removed. Our findings suggest that interactions among dominant species can drive ecosystem function. The results of this study highlight the utility of methods previously used in biodiversity-focused research for studying functional contributions of individual species, as well as the importance of species abundance and identity in driving ecosystem multifunctionality, in the context of species loss.
Collapse
Affiliation(s)
- Samuel A. Mahanes
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Cascade J. B. Sorte
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Matthew E. S. Bracken
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
22
|
Froehlich CYM, Klanten OS, Hing ML, Dowton M, Wong MYL. Delayed recovery and host specialization may spell disaster for coral-fish mutualism. Ecol Evol 2023; 13:e10209. [PMID: 37361899 PMCID: PMC10285627 DOI: 10.1002/ece3.10209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Mutualisms are prevalent in many ecosystems, yet little is known about how symbioses are affected by ecological pressures. Here, we show delayed recovery for 13 coral-dwelling goby fishes (genus Gobiodon) compared with their host Acropora corals following four consecutive cyclones and heatwaves. While corals became twice as abundant in 3 years postdisturbances, gobies were only half as abundant relative to predisturbances and half of the goby species disappeared. Although gobies primarily occupied one coral species in greater abundance predisturbances, surviving goby species shifted hosts to newly abundant coral species when their previously occupied hosts became rare postdisturbances. As host specialization is key for goby fitness, shifting hosts may have negative fitness consequences for gobies and corals alike and affect their survival in response to environmental changes. Our study is an early sign that mutualistic partners may not recover similarly from multiple disturbances, and that goby host plasticity, while potentially detrimental, may be the only possibility for early recovery.
Collapse
Affiliation(s)
| | - O. Selma Klanten
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Martin L. Hing
- Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | - Mark Dowton
- Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | - Marian Y. L. Wong
- Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
23
|
Pedicini L, Vannini C, Rindi F, Ravaglioli C, Bertocci I, Bulleri F. Variations in epilithic microbial biofilm composition and recruitment of a canopy-forming alga between pristine and urban rocky shores. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106035. [PMID: 37267663 DOI: 10.1016/j.marenvres.2023.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Brown algae of the genus Ericaria are habitat formers on Mediterranean rocky shores supporting marine biodiversity and ecosystem functioning. Their population decline has prompted attempts for restoration of threatened populations. Although epilithic microbial biofilms (EMBs) are determinant for macroalgal settlement, their role in regulating the recovery of populations through the recruitment of new thalli is yet to be explored. In this study, we assessed variations in microbial biofilms composition on the settlement of Ericaria amentacea at sites exposed to different human pressures. Artificial fouling surfaces were deployed in two areas at each of three study sites in the Ligurian Sea (Capraia Island, Secche della Meloria and the mainland coast of Livorno), to allow bacterial biofilm colonization. In the laboratory, zygotes of E. amentacea were released on these surfaces to evaluate the survival of germlings. The EMB's composition was assessed through DNA metabarcoding analysis, which revealed a difference between the EMB of Capraia Island and that of Livorno. Fouling surfaces from Capraia Island had higher rates of zygote settlement than the other two sites. This suggests that different environmental conditions can influence the EMB composition on substrata, possibly influencing algal settlement rate. Assessing the suitability of rocky substrata for E. amentacea settlement is crucial for successful restoration.
Collapse
Affiliation(s)
- Ludovica Pedicini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Claudia Vannini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Pisa, Italy
| | - Fabio Rindi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, I-60131, Ancona, Italy; National Biodiversity Future Center, Italy
| | - Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Iacopo Bertocci
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Pisa, Italy
| |
Collapse
|
24
|
King NG, Moore PJ, Thorpe JM, Smale DA. Consistency and Variation in the Kelp Microbiota: Patterns of Bacterial Community Structure Across Spatial Scales. MICROBIAL ECOLOGY 2023; 85:1265-1275. [PMID: 35589992 DOI: 10.1007/s00248-022-02038-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/09/2022] [Indexed: 05/10/2023]
Abstract
Kelp species are distributed along ~ 25% of the world's coastlines and the forests they form represent some of the world's most productive and diverse ecosystems. Like other marine habitat-formers, the associated microbial community is fundamental for host and, in turn, wider ecosystem functioning. Given there are thousands of bacteria-host associations, determining which relationships are important remains a major challenge. We characterised the associated bacteria of two habitat-forming kelp species, Laminaria hyperborea and Saccharina latissima, from eight sites across a range of spatial scales (10 s of metres to 100 s of km) in the northeast Atlantic. We found no difference in diversity or community structure between the two kelps, but there was evidence of regional structuring (across 100 s km) and considerable variation between individuals (10 s of metres). Within sites, individuals shared few amplicon sequence variants (ASVs) and supported a very small proportion of diversity found across the wider study area. However, consistent characteristics between individuals were observed with individual host communities containing a small conserved "core" (8-11 ASVs comprising 25 and 32% of sample abundances for L. hyperborea and S. latissima, respectively). At a coarser taxonomic resolution, communities were dominated by four classes (Planctomycetes, Gammaproteobacteria, Alphaproteobacteria and Bacteroidia) that made up ~ 84% of sample abundances. Remaining taxa (47 classes) made up very little contribution to overall abundance but the majority of taxonomic diversity. Overall, our study demonstrates the consistent features of kelp bacterial communities across large spatial scales and environmental gradients and provides an ecologically meaningful baseline to track environmental change.
Collapse
Affiliation(s)
- Nathan G King
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, PL1 2PB, UK.
| | - Pippa J Moore
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jamie M Thorpe
- Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, PL1 2PB, UK
| |
Collapse
|
25
|
Arroyo-Correa B, Jordano P, Bartomeus I. Intraspecific variation in species interactions promotes the feasibility of mutualistic assemblages. Ecol Lett 2023; 26:448-459. [PMID: 36688287 DOI: 10.1111/ele.14163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023]
Abstract
Patterns of resource use observed at the species level emerge from the way individuals exploit the range of available resources. Hence, accounting for interindividual differences in resource use, such as pollinator use by plants, is essential to advance our understanding of community assembly and persistence. By using finely resolved data on plant-pollinator interactions, we evaluated how interindividual plant variation in pollinator use scales up to affect community structure and dynamics. All co-occurring plant species comprised specialists interacting with proper subsets of pollinators that visited generalists, and differences in interaction patterns were driven by among-individual trait variation. Furthermore, the nested structure and feasibility of plant-pollinator communities were maximised at higher levels of interindividual plant variation in traits and pollinator use. Our study sheds light on how pervasive properties of community structure arise from individual-level processes and contributes to elucidate the importance of preserving intraspecific variation in traits and resource use within populations.
Collapse
Affiliation(s)
- Blanca Arroyo-Correa
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain.,Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Ignasi Bartomeus
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| |
Collapse
|
26
|
Ansley RJ, Rivera‐Monroy VH, Griffis‐Kyle K, Hoagland B, Emert A, Fagin T, Loss SR, McCarthy HR, Smith NG, Waring EF. Assessing impacts of climate change on selected foundation species and ecosystem services in the South‐Central USA. Ecosphere 2023. [DOI: 10.1002/ecs2.4412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- R. James Ansley
- Natural Resource Ecology and Management Department Oklahoma State University Stillwater Oklahoma USA
| | - Victor H. Rivera‐Monroy
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment Louisiana State University Baton Rouge Louisiana USA
| | - Kerry Griffis‐Kyle
- Department of Natural Resources Management Texas Tech University Lubbock Texas USA
| | - Bruce Hoagland
- Department of Geography and Environmental Sustainability University of Oklahoma Norman Oklahoma USA
| | - Amanda Emert
- The Institute of Environmental and Human Health Texas Tech University Lubbock Texas USA
| | - Todd Fagin
- The Center for Spatial Analysis University of Oklahoma Norman Oklahoma USA
| | - Scott R. Loss
- Natural Resource Ecology and Management Department Oklahoma State University Stillwater Oklahoma USA
| | - Heather R. McCarthy
- The Department of Microbiology and Plant Biology University of Oklahoma Norman Oklahoma USA
| | - Nicholas G. Smith
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
| | - Elizabeth F. Waring
- Department of Natural Sciences Northeastern State University Tahlequah Oklahoma USA
| |
Collapse
|
27
|
Jardim VL, Gauthier O, Toumi C, Grall J. Quantifying maerl (rhodolith) habitat complexity along an environmental gradient at regional scale in the Northeast Atlantic. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105768. [PMID: 36240648 DOI: 10.1016/j.marenvres.2022.105768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Maerl beds are ecologically important marine biogenic habitats founded on a few species of free-living coralline algae that aggregate and form highly complex rhodoliths. The high biodiversity found in these habitats have been mainly justified by the structural complexity that they provide. However, few attempts to quantify this complexity have been made. Maerl species distribution, density, rhodolith growth forms, and shapes vary with environmental conditions. Hydrodynamics and depth have been shown to drive morphology. Using species-specific metrics such as sphericity and branching density, as well as diameter and fractal dimension at the rhodolith level, and maerl density at the habitat level, we quantified the habitat complexity within ten maerl beds at a regional scale (along ∼400 km of the coastline of Brittany in Western France). Using both long-term monitoring data and environmental models, we investigated how maerl habitat complexity varies among beds and which environmental conditions drive those differences. The effects of currents, exposure to wind-generated waves, temperature and sediment granulometry were evaluated. We confirmed variations in complexity in maerl beds at the habitat and rhodolith levels at local and regional scales, which might have ecological and conservational implications for their associated biodiversity. The analysed environmental conditions drive around a third of the variance in habitat complexity. Sediment granulometry is the main driver of maerl habitat complexity in Brittany, while the isolated effects of depth and hydrodynamics accounted for less than 5% of the variability each. Our results have important implications for paleoecology, and we suggest that maerl facies should be interpreted carefully. Our study provides a first attempt at explicitly quantifying maerl habitat complexity, and further contributes to the understanding of this fundamental ecological question.
Collapse
Affiliation(s)
- Victor L Jardim
- LEMAR, Univ Brest, CNRS, IRD, Ifremer, 29280, Plouzané, France.
| | - Olivier Gauthier
- LEMAR, Univ Brest, CNRS, IRD, Ifremer, 29280, Plouzané, France; OSU IUEM, Univ Brest, CNRS, IRD, 29280, Plouzané, France
| | - Chirine Toumi
- LEMAR, Univ Brest, CNRS, IRD, Ifremer, 29280, Plouzané, France
| | - Jacques Grall
- LEMAR, Univ Brest, CNRS, IRD, Ifremer, 29280, Plouzané, France; OSU IUEM, Univ Brest, CNRS, IRD, 29280, Plouzané, France
| |
Collapse
|
28
|
Ramus AP, Lefcheck JS, Long ZT. Foundational biodiversity effects propagate through coastal food webs via multiple pathways. Ecology 2022; 103:e3796. [PMID: 35724974 PMCID: PMC9787374 DOI: 10.1002/ecy.3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/30/2022]
Abstract
Relatively few studies have attempted to resolve the pathways through which the effects of biodiversity on ecosystem functioning cascade from one trophic level to another. Here, we manipulated the richness of habitat-forming seaweeds in a western Atlantic estuary to explore how changes in foundation species diversity affect the structure and functioning of the benthic consumer communities that they support. Structural equation modeling revealed that macroalgal richness enhanced invertebrate abundance, biomass, and diversity, both directly by changing the quality and palatability of the foundational substrate and indirectly by increasing the total biomass of available habitat. Consumer responses were largely driven by a single foundational seaweed, although stronger complementarity among macroalgae was observed for invertebrate richness. These findings with diverse foundational phyla extend earlier inferences from terrestrial grasslands by showing that biodiversity effects can simultaneously propagate through multiple independent pathways to maintain animal foodwebs. Our work also highlights the potential ramifications of human-induced changes in marine ecosystems.
Collapse
Affiliation(s)
- Aaron P. Ramus
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNorth CarolinaUSA
| | - Jonathan S. Lefcheck
- Tennenbaum Marine Observatories NetworkMarineGEO, Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - Zachary T. Long
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNorth CarolinaUSA
| |
Collapse
|
29
|
Hernández DL, Antia A, McKone MJ. The ecosystem impacts of dominant species exclusion in a prairie restoration. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2592. [PMID: 35362635 DOI: 10.1002/eap.2592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Dominant species often have disproportionately high abundance in restored communities compared to native remnants, which potentially could reduce the conservation value of restorations. Research is needed to determine how the abundance of dominant species in restoration plantings affects community assembly, species diversity, and ecosystem function. Most studies of dominant species in grasslands were modeled after experiments on keystone species, using the short-term experimental removal of dominants to test their functional role in ecosystems. However, the removal of established dominants constitutes a major disturbance that may influence the interpretation of their long-term functional impact. To address this, we experimentally assembled high-diversity tallgrass prairie communities that included or excluded the predicted dominant species (Andropogon gerardii and Sorghastrum nutans) from the seed mix at the time of planting, but without further manipulation of community composition. From 2013 to 2019, we measured several ecosystem functions and community dynamics in the presence or absence of dominants. Communities that included the dominant species had lower species richness, greater aboveground biomass, and reduced light availability at the soil surface. Dominant species presence also increased soil nutrient availability and rates of litter decomposition, although dominant grass litter decomposed more slowly than litter from other common species in both treatments. In the absence of the dominant grasses, communities were instead dominated by a common unplanted forb, Solidago altissima, and there was partial compensation in ecosystem functioning in these forb-dominated communities. The effects of dominant species exclusion may only be apparent in long-term studies of experimentally assembled communities that avoid the legacy effects associated with removal experiments. Furthermore, our results suggest that prairie restorations that limit or exclude the dominant grasses in seed mixes may achieve higher species diversity, increasing the conservation value of these systems.
Collapse
Affiliation(s)
| | - Alice Antia
- Biology Department, Carleton College, Northfield, Minnesota, USA
| | - Mark J McKone
- Biology Department, Carleton College, Northfield, Minnesota, USA
| |
Collapse
|
30
|
Awasthi P, Bargali K, Bargali SS. Relative Performance of Woody Vegetation in Response to Facilitation by Coriaria nepalensis in Central Himalaya, India. RUSS J ECOL+ 2022. [DOI: 10.1134/s1067413622030031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Sanmartí N, Ontoria Y, Ricart AM, Arthur R, Alcoverro T, Pérez M, Romero J. Exploring coexistence mechanisms in a three-species assemblage. MARINE ENVIRONMENTAL RESEARCH 2022; 178:105647. [PMID: 35605380 DOI: 10.1016/j.marenvres.2022.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Interactions among species are essential in shaping ecological communities, although it is not always clear under what conditions they can persist when the number of species involved is higher than two. Here we describe a three-species assemblage involving the seagrass Cymodocea nodosa, the pen shell Pinna nobilis and the herbivore sea urchin Paracentrotus lividus, and we explore the mechanisms allowing its persistence through field observations and manipulative experiments. The abundance of pen shells was higher in seagrass beds than in bare sand, suggesting a recruitment facilitation. The presence of sea urchins, almost exclusively attached or around pen shells, indicated habitat facilitation for sea urchins, which overgrazed the meadow around the pen shells forming seagrass-free halos. Our results suggest that this system persists thanks to: (i) the behavioral reluctance of sea urchins to move far from pen shells, making their impact on seagrass strictly local, (ii) the sparse distribution of pen shells and (iii) the plant's resistance mechanisms to herbivory. Unpacking these mechanisms allows a better understanding of how ecological communities are assembled.
Collapse
Affiliation(s)
- Neus Sanmartí
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Yaiza Ontoria
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Aurora M Ricart
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, 04544, USA
| | - Rohan Arthur
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, 17300, Blanes, Spain; Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, 570 002, Mysore, Karnataka, India
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés a la cala Sant Francesc, 14, 17300, Blanes, Spain; Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, 570 002, Mysore, Karnataka, India
| | - Marta Pérez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Javier Romero
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
32
|
Bell K, Doherty TS, Wevill T, Driscoll DA. Restoration of a declining foundation plant species: testing the roles of competitor suppression, fire reintroduction and herbivore exclusion. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kristian Bell
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong VIC Australia
| | - Tim S. Doherty
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong VIC Australia
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - T. Wevill
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong VIC Australia
| | - Don A. Driscoll
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong VIC Australia
| |
Collapse
|
33
|
Roos RE, Birkemoe T, Bokhorst S, Wardle DA, Asplund J. The importance of foundation species identity: a field experiment with lichens and their associated micro-arthropod communities. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
34
|
BURLAKOVA LYUBOVE, KARATAYEV ALEXANDERY, HRYCIK ALLISONR, DANIEL SUSANE, MEHLER KNUT, RUDSTAM LARSG, WATKINS JAMESM, DERMOTT RONALD, SCHAROLD JILL, ELGIN ASHLEYK, NALEPA THOMAS. Six decades of Lake Ontario ecological history according to benthos. JOURNAL OF GREAT LAKES RESEARCH 2022; 48:274-288. [PMID: 36092777 PMCID: PMC9454375 DOI: 10.1016/j.jglr.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The Laurentian Great Lakes have experienced multiple anthropogenic changes in the past century, including cultural eutrophication, phosphorus abatement initiatives, and the introduction of invasive species. Lake Ontario, the most downstream lake in the system, is considered to be among the most impaired. The benthos of Lake Ontario has been studied intensively in the last six decades and can provide insights into the impact of environmental changes over time. We used multivariate community analyses to examine temporal changes in community composition over the last 54 years, and to assess the major drivers of long-term changes in benthos. The benthic community of Lake Ontario underwent significant transformations that correspond with three major periods. The first period, termed the pre/early Dreissena period (1964-1990), was characterized by high densities of Diporeia, Sphaeriidae, and Tubificidae. During the next period defined by zebra mussel dominance (the 1990s) the same groups were still prevalent, but at altered densities. In the most recent period (2000s to present), which is characterized by the dominance and proliferation of quagga mussels deeper into the lake, the community has changed dramatically: Diporeia almost completely disappeared, Sphaeriidae have greatly declined, and densities of quagga mussels, Oligochaeta and Chironomidae have increased. The introduction of invasive dreissenids has changed the Lake Ontario benthic community, historically dominated by Diporeia, Oligochaeta and Sphaeriidae, to a community dominated by quagga mussels and Oligochaeta. Dreissenids, especially the quagga mussel, were the major drivers of these changes over the last half century.
Collapse
Affiliation(s)
- LYUBOV E. BURLAKOVA
- Great Lakes Center, SUNY Buffalo State, Buffalo, NY, USA
- Corresponding author: Phone: 716-878-5423, 716-878-4504, 716-878-4614, Fax: 716-878-6644,
| | | | | | | | - KNUT MEHLER
- Great Lakes Center, SUNY Buffalo State, Buffalo, NY, USA
| | - LARS G. RUDSTAM
- Cornell University, Department of Natural Resources, Ithaca, NY, 14850, USA
| | - JAMES M. WATKINS
- Cornell University, Department of Natural Resources, Ithaca, NY, 14850, USA
| | - RONALD DERMOTT
- Alumnus, Fisheries and Oceans Canada, Great Lakes Lab. Fisheries Aquatic Science, Burlington, ON, L7R4A6, Canada
| | - JILL SCHAROLD
- U.S. EPA Great Lakes Toxicology and Ecology Division, Duluth, MN, 55804, USA
| | - ASHLEY K. ELGIN
- NOAA Great Lakes Environmental Research Laboratory, Lake Michigan Field Station, 1431 Beach St., Muskegon, MI 49441, USA
| | - THOMAS NALEPA
- Water Center, University of Michigan, 214 S. State St., Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Zaytseva S, Shaw LB, Shi J, Kirwan ML, Lipcius RN. Pattern formation in marsh ecosystems modeled through the interaction of marsh vegetation, mussels and sediment. J Theor Biol 2022; 543:111102. [PMID: 35341780 DOI: 10.1016/j.jtbi.2022.111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Spatial self-organization, a common feature of multi-species communities, can provide important insights into ecosystem structure and resilience. As environmental conditions gradually worsen (e.g., resource depletion, erosion intensified by storms, drought), some ecological systems collapse to an irreversible state once a tipping point is reached. Spatial patterning may be one way for them to cope with such changes. We use a mathematical model to describe self-organization of an eroding marsh shoreline based on three-way interactions between sediment volume and two ecosystem engineers - smooth cordgrass Spartina alterniflora and ribbed mussels Geukensia demissa. Our model indicates that scale-dependent interactions between multiple ecosystem engineers drive the self-organization of eroding marsh edges and regulate the spatial scale of shoreline morphology. Spatial self-organization of the marsh edge increases the system's productivity, allows it to withstand erosion, and delays degradation that otherwise would occur in the absence of strong species interactions. Further, changes in wavelength and variance of the spatial patterns give insight into marsh recession. Finally, we find that the presence of mussels in the system modulates the spatial scale of the patterns, generates patterns with shorter wavelengths, and allows the system to tolerate a greater level of erosion. Although previous studies suggest that self-organization can emerge from local interactions and can result in increased ecosystem persistence and stability in various ecosystems, our findings extend these concepts to coastal salt marshes, emphasizing the importance of the ecosystem engineers, smooth cordgrass and ribbed mussels, and demonstrating the potential value of self-organization for ecosystem management and restoration.
Collapse
Affiliation(s)
- Sofya Zaytseva
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.
| | - Leah B Shaw
- Department of Mathematics, William & Mary, Williamsburg, VA, 23187, USA
| | - Junping Shi
- Department of Mathematics, William & Mary, Williamsburg, VA, 23187, USA
| | - Matthew L Kirwan
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, 23062, USA
| | - Romuald N Lipcius
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, 23062, USA
| |
Collapse
|
36
|
Kornbluth A, Perog BD, Crippen S, Zacherl D, Quintana B, Grosholz ED, Wasson K. Mapping oysters on the Pacific coast of North America: A coast-wide collaboration to inform enhanced conservation. PLoS One 2022; 17:e0263998. [PMID: 35298468 PMCID: PMC8929589 DOI: 10.1371/journal.pone.0263998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
To conserve coastal foundation species, it is essential to understand patterns of distribution and abundance and how they change over time. We synthesized oyster distribution data across the west coast of North America to develop conservation strategies for the native Olympia oyster (Ostrea lurida), and to characterize populations of the non-native Pacific oyster (Magallana gigas). We designed a user-friendly portal for data entry into ArcGIS Online and collected oyster records from unpublished data submitted by oyster experts and from the published literature. We used the resulting 2,000+ records to examine spatial and temporal patterns and made an interactive web-based map publicly available. Comparing records from pre-2000 vs. post-2000, we found that O. lurida significantly decreased in abundance and distribution, while M. gigas increased significantly. Currently the distribution and abundance of the two species are fairly similar, despite one species being endemic to this region since the Pleistocene, and the other a new introduction. We mapped the networks of sites occupied by oysters based on estimates of larval dispersal distance, and found that these networks were larger in Canada, Washington, and southern California than in other regions. We recommend restoration to enhance O. lurida, particularly within small networks, and to increase abundance where it declined. We also recommend restoring natural biogenic beds on mudflats and sandflats especially in the southern range, where native oysters are currently found most often on riprap and other anthropogenic structures. This project can serve as a model for collaborative mapping projects that inform conservation strategies for imperiled species or habitats.
Collapse
Affiliation(s)
- Aaron Kornbluth
- The Pew Charitable Trusts, Washington, D.C., United States of America
| | - Bryce D. Perog
- Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Samantha Crippen
- Department of Environmental Sciences, University of California Riverside, Riverside, California, United States of America
| | - Danielle Zacherl
- Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Brandon Quintana
- Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Edwin D. Grosholz
- Department of Environmental Science and Policy, University of California, Davis, Davis, California, United States of America
| | - Kerstin Wasson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
- Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, United States of America
- * E-mail: ,
| |
Collapse
|
37
|
Leong RC, Bugnot AB, Marzinelli EM, Figueira WF, Erickson KR, Poore AGB, Gribben PE. Variation in the density and body size of a threatened foundation species across multi‐spatial scales. Restor Ecol 2022. [DOI: 10.1111/rec.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rick C. Leong
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
| | - Ana B. Bugnot
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| | - Ezequiel M. Marzinelli
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
- Singapore Centre for Environmental Life Sciences Engineering Nanyang Technological University, 637551 Singapore
| | - Will F. Figueira
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| | - Katherine R. Erickson
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Alistair G. B. Poore
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
| | - Paul E. Gribben
- Centre for Marine Science and Innovation University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Evolution & Ecology Research Centre University of New South Wales Sydney Kensington New South Wales 2052 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| |
Collapse
|
38
|
Germain SJ, Lutz JA. Climate warming may weaken stabilizing mechanisms in old forests. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara J. Germain
- Department of Wildland Resources Utah State University Logan Utah USA
| | - James A. Lutz
- Department of Wildland Resources Utah State University Logan Utah USA
| |
Collapse
|
39
|
|
40
|
Tomlinson S, Tudor EP, Turner SR, Cross S, Riviera F, Stevens J, Valliere J, Lewandrowski W. Leveraging the value of conservation physiology for ecological restoration. Restor Ecol 2021. [DOI: 10.1111/rec.13616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sean Tomlinson
- School of Biological Sciences, University of Adelaide, North Terrace Adelaide South Australia 5000 Australia
- School of Molecular and Life Sciences, Curtin University Bentley Western Australia 6102 Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park, Western Australia 6005 Australia
| | - Emily P. Tudor
- School of Molecular and Life Sciences, Curtin University Bentley Western Australia 6102 Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park, Western Australia 6005 Australia
- School of Biological Sciences, University of Western Australia Crawley Western Australia 6009 Australia
| | - Shane R. Turner
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park, Western Australia 6005 Australia
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
- School of Biological Sciences, University of Western Australia Crawley Western Australia 6009 Australia
| | - Sophie Cross
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
| | - Fiamma Riviera
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
- School of Biological Sciences, University of Western Australia Crawley Western Australia 6009 Australia
| | - Jason Stevens
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park, Western Australia 6005 Australia
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
- School of Biological Sciences, University of Western Australia Crawley Western Australia 6009 Australia
| | - Justin Valliere
- Department of Biology California State University Dominguez Hills Carson California 90747 US
| | - Wolfgang Lewandrowski
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park, Western Australia 6005 Australia
- School of Biological Sciences, University of Western Australia Crawley Western Australia 6009 Australia
| |
Collapse
|
41
|
Azpeleta Tarancón A, Sánchez Meador AJ, Padilla T, Fulé PZ, Kim YS. Trends of forest and ecosystem services changes in the Mescalero Apache Tribal Lands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02459. [PMID: 34582603 DOI: 10.1002/eap.2459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Forests are critically important for the provision of ecosystem services. The Sacramento Mountains of New Mexico, USA, are a hotspot for conservation management and the Mescalero Apache Tribe's homeland. The multiple ecosystem services and functions and its high vulnerability to changes in climate conditions make their forests of ecological, cultural, and social importance. We used data from the Mescalero Apache Tribal Lands (MATL) Continuous Forest Inventory over 30 yr to analyze changes in the structure and composition of ecosystems as well as trends in ecosystem services. Many provisioning, regulating, cultural, and supporting services were shared among the MATL ecosystems and were tied to foundational species dominance, which could serve as a reliable indicator of ecosystem functioning. Our analysis indicates that the MATL are in an ongoing transition from conifer forests to woodlands with declines in two foundation species, quaking aspen and ponderosa pine, linked to past forest management and changing climate. In addition, we detected a decrease in species richness and tree size variability, amplifying the risk of forest loss in a rapid climatic change. Continuous permanent plots located on a dense grid (1 × 1 km) such as the ones monitored by the Bureau of Indian Affairs are the most detailed data available to estimate forests multiresource transitions over time. Native lands across the USA could serve as the leading edge of detecting decadal-scale forest changes and tracking climate impacts.
Collapse
Affiliation(s)
- Alicia Azpeleta Tarancón
- School of Forestry, Northern Arizona University, 200 East Pine Knoll Drive, Flagstaff, Arizona, 86011, USA
| | - Andrew J Sánchez Meador
- School of Forestry, Northern Arizona University, 200 East Pine Knoll Drive, Flagstaff, Arizona, 86011, USA
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Thora Padilla
- Mescalero Apache Tribe, Division of Resource Management and Protection, Mescalero, New Mexico, 88340, USA
| | - Peter Z Fulé
- School of Forestry, Northern Arizona University, 200 East Pine Knoll Drive, Flagstaff, Arizona, 86011, USA
| | - Yeon-Su Kim
- School of Forestry, Northern Arizona University, 200 East Pine Knoll Drive, Flagstaff, Arizona, 86011, USA
| |
Collapse
|
42
|
Frid A, McGreer M, Wilson KL, Du Preez C, Blaine T, Norgard T. Hotspots for rockfishes, structural corals, and large-bodied sponges along the central coast of Pacific Canada. Sci Rep 2021; 11:21944. [PMID: 34753952 PMCID: PMC8578610 DOI: 10.1038/s41598-021-00791-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022] Open
Abstract
Biological hotspots are places with outstanding biodiversity features, and their delineation is essential to the design of marine protected areas (MPAs). For the Central Coast of Canada's Northern Shelf Bioregion, where an MPA network is being developed, we identified hotspots for structural corals and large-bodied sponges, which are foundation species vulnerable to bottom contact fisheries, and for Sebastidae, a fish family which includes species that are long-lived (> 100 years), overexploited, evolutionary distinctive, and at high trophic levels. Using 11 years of survey data that spanned from inland fjords to oceanic waters, we derived hotspot indices that accounted for species characteristics and abundances and examined hotspot distribution across depths and oceanographic subregions. The results highlight previously undocumented hotspot distributions, thereby informing the placement of MPAs for which high levels of protection are warranted. Given the vulnerability of the taxa that we examined to cumulative fishery impacts, prospective MPAs derived from our data should be considered for interim protection measures during the protracted period between final network design and the enactment of MPA legislations. These recommendations reflect our scientific data, which are only one way of understanding the seascape. Our surveys did not cover many locations known to Indigenous peoples as biologically important. Consequently, Indigenous knowledge should also contribute substantially to the design of the MPA network.
Collapse
Affiliation(s)
- Alejandro Frid
- Central Coast Indigenous Resource Alliance, Campbell River, BC, Canada. .,School of Environmental Studies, University of Victoria, Victoria, BC, Canada.
| | - Madeleine McGreer
- Central Coast Indigenous Resource Alliance, Campbell River, BC, Canada
| | - Kyle L Wilson
- Central Coast Indigenous Resource Alliance, Campbell River, BC, Canada
| | - Cherisse Du Preez
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC, Canada
| | - Tristan Blaine
- Central Coast Indigenous Resource Alliance, Campbell River, BC, Canada
| | - Tammy Norgard
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
43
|
Briley S, Ware R, Whitcraft C, Zacherl D. Response of eelgrass (Zostera marina) to an adjacent Olympia oyster restoration project. PLoS One 2021; 16:e0258119. [PMID: 34618815 PMCID: PMC8496881 DOI: 10.1371/journal.pone.0258119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
Recent restoration efforts for the native Olympia oyster, Ostrea lurida, are commonly motivated by potential return of oyster-associated ecosystem services, including increased water filtration. The potential impact of such restoration on another species of ecological concern, eelgrass, Zostera marina, is unclear, but has been hypothesized to be positive if oyster filter feeding increases light penetration to eelgrass. For two years after construction of an oyster restoration project, we assessed the response of adjacent eelgrass (impact) compared to control and reference eelgrass beds by monitoring changes in light intensity, eelgrass shoot density, biomass, leaf morphometrics, and epiphyte load. We observed lower light intensity consistently over time, including prior to restoration, near the constructed oyster bed relative to the control and one of the reference locations. We also observed minor variations between control and impact eelgrass morphology and density. However, the changes observed were not outside the range of natural variation expected in this system, based upon comparisons to reference eelgrass beds, nor were they detrimental. This limited impact to eelgrass may be due in part to the incorporation of a buffer distance between the restored oyster bed and the existing eelgrass bed, which may have dampened both positive and negative impacts. These findings provide evidence that Olympia oyster restoration and eelgrass conservation goals can be compatible and occur simultaneously.
Collapse
Affiliation(s)
- Sara Briley
- Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
- * E-mail:
| | - Rick Ware
- Coastal Resources Management, Laguna Niguel, California, United States of America
| | - Christine Whitcraft
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, United States of America
| | - Danielle Zacherl
- Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| |
Collapse
|
44
|
|
45
|
Jara-Yáñez R, Meynard A, Acosta G, Latorre-Padilla N, Oyarzo-Miranda C, Castañeda F, Piña F, Rivas J, Bulboa C, Contreras-Porcia L. Negative Consequences on the Growth, Morphometry, and Community Structure of the Kelp Macrocystis pyrifera (Phaeophyceae, Ochrophyta) by a Short Pollution Pulse of Heavy Metals and PAHs. TOXICS 2021; 9:toxics9080190. [PMID: 34437508 PMCID: PMC8402373 DOI: 10.3390/toxics9080190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
The study of pollution effects in the marine environment has become important in recent decades, and the exposure to simultaneous pollutants has become especially relevant. Indeed, the study of key organisms, such as ecosystem engineers, can show a broader view of the effects of pollutants. In this context, we evaluate in situ the effects of a short (7-day) pollution pulse of combined solutions of heavy metals and polycyclic aromatic hydrocarbons (PAHs) (Cu + PAHs, Cd + PAHs, Cu + Cd, and Cu + Cd + PAHs) on the development and morphological features of Macrocystis pyrifera sporophytes over a period of 90 days. Additionally, we determined the effects on the community structure associated with this kelp. This study evidenced a smaller number of blades and a decreased size of blades and holdfasts, as well as the death of individuals exposed to a secondary mix of metals (Cu + Cd) and a tertiary mix of pollutants (Cu + Cd + PAHs). Regarding the effects on the accompanying fauna, low richness and diversity were registered. M. pyrifera grazers, according to the mixture of pollutants, were either absent or diminished. These results show that the pulse of contamination in the early stages of M. pyrifera negatively affects its development and morphometry, as well as its role as an ecosystem engineer, due to a negative alteration in the species composition.
Collapse
Affiliation(s)
- Roddy Jara-Yáñez
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Gladys Acosta
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
| | - Nicolás Latorre-Padilla
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Carolina Oyarzo-Miranda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Francisco Castañeda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
| | - Florentina Piña
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Jorge Rivas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Cristian Bulboa
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Correspondence: (C.B.); (L.C.-P.)
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
- Correspondence: (C.B.); (L.C.-P.)
| |
Collapse
|
46
|
Ridlon AD, Wasson K, Waters T, Adams J, Donatuto J, Fleener G, Froehlich H, Govender R, Kornbluth A, Lorda J, Peabody B, Pinchot IV G, Rumrill SS, Tobin E, Zabin CJ, Zacherl D, Grosholz ED. Conservation aquaculture as a tool for imperiled marine species: Evaluation of opportunities and risks for Olympia oysters, Ostrea lurida. PLoS One 2021; 16:e0252810. [PMID: 34153054 PMCID: PMC8216563 DOI: 10.1371/journal.pone.0252810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
Conservation aquaculture is becoming an important tool to support the recovery of declining marine species and meet human needs. However, this tool comes with risks as well as rewards, which must be assessed to guide aquaculture activities and recovery efforts. Olympia oysters (Ostrea lurida) provide key ecosystem functions and services along the west coast of North America, but populations have declined to the point of local extinction in some estuaries. Here, we present a species-level, range-wide approach to strategically planning the use of aquaculture to promote recovery of Olympia oysters. We identified 12 benefits of culturing Olympia oysters, including identifying climate-resilient phenotypes that add diversity to growers’ portfolios. We also identified 11 key risks, including potential negative ecological and genetic consequences associated with the transfer of hatchery-raised oysters into wild populations. Informed by these trade-offs, we identified ten priority estuaries where aquaculture is most likely to benefit Olympia oyster recovery. The two highest scoring estuaries have isolated populations with extreme recruitment limitation—issues that can be addressed via aquaculture if hatchery capacity is expanded in priority areas. By integrating social criteria, we evaluated which project types would likely meet the goals of local stakeholders in each estuary. Community restoration was most broadly suited to the priority areas, with limited commercial aquaculture and no current community harvest of the species, although this is a future stakeholder goal. The framework we developed to evaluate aquaculture as a tool to support species recovery is transferable to other systems and species globally; we provide a guide to prioritizing local knowledge and developing recommendations for implementation by using transparent criteria. Our collaborative process engaging diverse stakeholders including managers, scientists, Indigenous Tribal representatives, and shellfish growers can be used elsewhere to seek win-win opportunities to expand conservation aquaculture where benefits are maximized for both people and imperiled species.
Collapse
Affiliation(s)
- April D. Ridlon
- Science for Nature and People Partnership and National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| | - Kerstin Wasson
- Elkhorn Slough National Estuarine Research Reserve, Watsonvile, California, United States of America
- Ecology and Evolutionary Biology University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Tiffany Waters
- Global Aquaculture, The Nature Conservancy, Arlington, Virginia, United States of America
| | - John Adams
- Sound Fresh Clams and Oysters, Shelton, Washington, United States of America
| | - Jamie Donatuto
- Community Environmental Health Program, Swinomish Indian Tribal Community, LaConner, Washington, United States of America
| | - Gary Fleener
- Research and Development, Hog Island Oyster Co., Marshall, California, United States of America
| | - Halley Froehlich
- Ecology, Evolution & Marine Biology and Environmental Studies, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Rhona Govender
- Species at Risk Program, Fisheries and Oceans Canada, British Columbia, Canada
| | - Aaron Kornbluth
- Officer, The Pew Charitable Trusts, Washington D.C., United States of America
| | - Julio Lorda
- Facultad de Ciencias, Universidad Autónoma de Baja California, Mexicali, Mexico
- Tijuana River National Estuarine Research Reserve, Imperial Beach, California, United States of America
| | - Betsy Peabody
- Puget Sound Restoration Fund, Bainbridge Island, Washington, United States of America
| | | | - Steven S. Rumrill
- Marine Resources Program, Oregon Department of Fish and Wildlife, Newport, Oregon, United States of America
| | - Elizabeth Tobin
- Natural Resources Department, Jamestown S’Klallam Tribe, Sequim, Washington, United States of America
| | - Chela J. Zabin
- Marine Invasions Research, Smithsonian Environmental Research Center, Belvedere Tiburon, California, United States of America
| | - Danielle Zacherl
- Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Edwin D. Grosholz
- Department of Environmental Science and Policy, University of California—Davis, Davis, California, United States of America
| |
Collapse
|
47
|
Seagrass-driven changes in carbonate chemistry enhance oyster shell growth. Oecologia 2021; 196:565-576. [PMID: 34043070 DOI: 10.1007/s00442-021-04949-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 05/15/2021] [Indexed: 01/01/2023]
Abstract
Quantifying the strength of non-trophic interactions exerted by foundation species is critical to understanding how natural communities respond to environmental stress. In the case of ocean acidification (OA), submerged marine macrophytes, such as seagrasses, may create local areas of elevated pH due to their capacity to sequester dissolved inorganic carbon through photosynthesis. However, although seagrasses may increase seawater pH during the day, they can also decrease pH at night due to respiration. Therefore, it remains unclear how consequences of such diel fluctuations may unfold for organisms vulnerable to OA. We established mesocosms containing different levels of seagrass biomass (Zostera marina) to create a gradient of carbonate chemistry conditions and explored consequences for growth of juvenile and adult oysters (Crassostrea gigas), a non-native species widely used in aquaculture that can co-occur, and is often grown, in proximity to seagrass beds. In particular, we investigated whether increased diel fluctuations in pH due to seagrass metabolism affected oyster growth. Seagrasses increased daytime pH up to 0.4 units but had little effect on nighttime pH (reductions less than 0.02 units). Thus, both the average pH and the amplitude of diel pH fluctuations increased with greater seagrass biomass. The highest seagrass biomass increased oyster shell growth rate (mm day-1) up to 40%. Oyster somatic tissue weight and oyster condition index exhibited a different pattern, peaking at intermediate levels of seagrass biomass. This work demonstrates the ability of seagrasses to facilitate oyster calcification and illustrates how non-trophic metabolic interactions can modulate effects of environmental change.
Collapse
|
48
|
Miner CM, Burnaford JL, Ammann K, Becker BH, Fradkin SC, Ostermann-Kelm S, Smith JR, Whitaker SG, Raimondi PT. Latitudinal variation in long-term stability of North American rocky intertidal communities. J Anim Ecol 2021; 90:2077-2093. [PMID: 34002377 PMCID: PMC8518646 DOI: 10.1111/1365-2656.13504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Although long‐term ecological stability is often discussed as a community attribute, it is typically investigated at the species level (e.g. density, biomass), or as a univariate metric (e.g. species diversity). To provide a more comprehensive assessment of long‐term community stability, we used a multivariate similarity approach that included all species and their relative abundances. We used data from 74 sites sampled annually from 2006 to 2017 to examine broad temporal and spatial patterns of change within rocky intertidal communities along the west coast of North America. We explored relationships between community change (inverse of stability) and the following potential drivers of change/stability: (a) marine heatwave events; (b) three attributes of biodiversity: richness, diversity and evenness and (c) presence of the mussel, Mytilus californianus, a dominant space holder and foundation species in this system. At a broad scale, we found an inverse relationship between community stability and elevated water temperatures. In addition, we found substantial differences in stability among regions, with lower stability in the south, which may provide a glimpse into the patterns expected with a changing climate. At the site level, community stability was linked to high species richness and, perhaps counterintuitively, to low evenness, which could be a consequence of the dominance of mussels in this system. Synthesis. Assessments of long‐term stability at the whole‐community level are rarely done but are key to a comprehensive understanding of the impacts of climate change. In communities structured around a spatially dominant species, long‐term stability can be linked to the stability of this ‘foundation species’, as well as to traditional predictors, such as species richness.
Collapse
Affiliation(s)
- C Melissa Miner
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Jennifer L Burnaford
- Department of Biological Science, California State University, Fullerton, CA, USA
| | - Karah Ammann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Benjamin H Becker
- U.S. National Park Service, Point Reyes National Seashore, Point Reyes Station, CA, USA
| | - Steven C Fradkin
- U.S. National Park Service, Olympic National Park, Port Angeles, WA, USA
| | - Stacey Ostermann-Kelm
- U.S. National Park Service, Inventory and Monitoring Division, Thousand Oaks, CA, USA
| | - Jayson R Smith
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Stephen G Whitaker
- U.S. National Park Service, Channel Islands National Park, Ventura, CA, USA
| | - Peter T Raimondi
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
49
|
Iwaniec DM, Gooseff M, Suding KN, Samuel Johnson D, Reed DC, Peters DPC, Adams B, Barrett JE, Bestelmeyer BT, Castorani MCN, Cook EM, Davidson MJ, Groffman PM, Hanan NP, Huenneke LF, Johnson PTJ, McKnight DM, Miller RJ, Okin GS, Preston DL, Rassweiler A, Ray C, Sala OE, Schooley RL, Seastedt T, Spasojevic MJ, Vivoni ER. Connectivity: insights from the U.S. Long Term Ecological Research Network. Ecosphere 2021. [DOI: 10.1002/ecs2.3432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- David M. Iwaniec
- Urban Studies Institute Andrew Young School of Policy Studies Georgia State University Atlanta Georgia30303USA
| | - Michael Gooseff
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - Katharine N. Suding
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - David Samuel Johnson
- Virginia Institute of Marine Science William & Mary Gloucester Point Virginia23062USA
| | - Daniel C. Reed
- Marine Science Institute University of California Santa Barbara California93106USA
| | - Debra P. C. Peters
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico88003‐0003USA
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
| | - Byron Adams
- Department of Biology and Monte L. Bean Museum Brigham Young University Provo Utah84602USA
| | - John E. Barrett
- Department of Biological Sciences Virginia Tech University Blacksburg Virginia24061USA
| | - Brandon T. Bestelmeyer
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico88003‐0003USA
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
| | - Max C. N. Castorani
- Department of Environmental Sciences University of Virginia Charlottesville Virginia22904USA
| | - Elizabeth M. Cook
- Environmental Sciences Department Barnard College New York New York10027USA
| | - Melissa J. Davidson
- School Sustainability and Julie Ann Wrigley Global Institute of Sustainability Arizona State University Tempe Arizona85287USA
| | - Peter M. Groffman
- City University of New York Advanced Science Research Center at the Graduate Center New York New York10031USA
- Cary Institute of Ecosystem Studies Millbrook New York12545USA
| | - Niall P. Hanan
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Department of Plant and Environmental Sciences New Mexico State University Las Cruces New Mexico88003USA
| | - Laura F. Huenneke
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- School of Earth and Sustainability Northern Arizona University Flagstaff Arizona86011USA
| | - Pieter T. J. Johnson
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado80309USA
| | - Diane M. McKnight
- Civil, Environmental and Architectural Engineering University of Colorado Boulder Colorado80309USA
| | - Robert J. Miller
- Marine Science Institute University of California Santa Barbara California93106USA
| | - Gregory S. Okin
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Department of Geography University of California Los Angeles California90095USA
| | - Daniel L. Preston
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado80523USA
| | - Andrew Rassweiler
- Department of Biological Science Florida State University Tallahassee Florida32304USA
| | - Chris Ray
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - Osvaldo E. Sala
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Global Drylands Center School of Life Sciences and School of Sustainability Arizona State University Tempe Arizona85287USA
| | - Robert L. Schooley
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Department of Natural Resources and Environmental Sciences University of Illinois Urbana Illinois61801USA
| | - Timothy Seastedt
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - Marko J. Spasojevic
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California92521USA
| | - Enrique R. Vivoni
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- School of Earth and Space Exploration and School of Sustainable Engineering and the Built Environment Arizona State University Tempe Arizona85287USA
| |
Collapse
|
50
|
Lürig MD, Narwani A, Penson H, Wehrli B, Spaak P, Matthews B. Non-additive effects of foundation species determine the response of aquatic ecosystems to nutrient perturbation. Ecology 2021; 102:e03371. [PMID: 33961284 DOI: 10.1002/ecy.3371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/15/2021] [Accepted: 02/22/2021] [Indexed: 11/12/2022]
Abstract
Eutrophication is a persistent threat to aquatic ecosystems worldwide. Foundation species, namely those that play a central role in the structuring of communities and functioning of ecosystems, are likely important for the resilience of aquatic ecosystems in the face of disturbance. However, little is known about how interactions among such species influence ecosystem responses to nutrient perturbation. Here, using an array (N = 20) of outdoor experimental pond ecosystems (15,000 L), we manipulated the presence of two foundation species, the macrophyte Myriophyllum spicatum and the mussel Dreissena polymorpha, and quantified ecosystem responses to multiple nutrient disturbances, spread over two years. In the first year, we added five nutrient pulses, ramping up from 10 to 50 μg P/L over a 10-week period from mid-July to mid-October, and in the second year, we added a single large pulse of 50 μg P/L in mid-October. We used automated sondes to measure multiple ecosystems properties at high frequency (15-minute intervals), including phytoplankton and dissolved organic matter fluorescence, and to model whole-ecosystem metabolism. Overall, both foundation species strongly affected the ecosystem responses to nutrient perturbation, and, as expected, initially suppressed the increase in phytoplankton abundance following nutrient additions. However, when both species were present, phytoplankton biomass increased substantially relative to other treatment combinations: non-additivity was evident for multiple ecosystem metrics following the nutrient perturbations in both years but was diminished in the intervening months between our perturbations. Overall, these results demonstrate how interactions between foundation species can cause surprisingly strong deviations from the expected responses of aquatic ecosystems to perturbations such as nutrient additions.
Collapse
Affiliation(s)
- Moritz D Lürig
- Center for Adaptation to a Changing Environment (ACE), ETH Zürich, Zürich, CH-8092, Switzerland.,Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600, Switzerland
| | - Hannele Penson
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600, Switzerland
| | - Bernhard Wehrli
- Department of Surface Waters and Management, Center for Ecology, Evolution and Biochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, CH-8092, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technolog, Überland Strasse 133, Dübendorf, 8600, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047, Switzerland
| |
Collapse
|