1
|
Wosnitzka E, Gambarotto L, Nikoletopoulou V. Macroautophagy at the service of synapses. Curr Opin Neurobiol 2025; 93:103054. [PMID: 40414166 DOI: 10.1016/j.conb.2025.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/02/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Post-mitotic and highly polarized neurons are dependent on the fitness of their synapses, which are often found a long distance away from the soma. How the synaptic proteome is maintained, dynamically reshaped, and continuously turned over is a topic of intense investigation. Autophagy, a highly conserved, lysosome-mediated degradation pathway has emerged as a vital component of long-term neuronal maintenance, and now more specifically of synaptic homeostasis. Here, we review the most recent findings on how autophagy undergoes both dynamic and local regulation at the synapse, and how it contributes to pre- and post-synaptic proteostasis and function. We also discuss the insights and open questions that this new evidence brings.
Collapse
Affiliation(s)
- Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Vassiliki Nikoletopoulou
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
2
|
Oettinger D, Yamamoto A. Autophagy Dysfunction and Neurodegeneration: Where Does It Go Wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Pech U, Janssens J, Schoovaerts N, Kuenen S, Calatayud Aristoy C, Gallego SF, Makhzami S, Hulselmans GJ, Poovathingal S, Davie K, Bademosi AT, Swerts J, Vilain S, Aerts S, Verstreken P. Synaptic deregulation of cholinergic projection neurons causes olfactory dysfunction across five fly Parkinsonism models. eLife 2025; 13:RP98348. [PMID: 40178224 PMCID: PMC11968104 DOI: 10.7554/elife.98348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson's disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.
Collapse
Affiliation(s)
- Ulrike Pech
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Jasper Janssens
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Carles Calatayud Aristoy
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Samira Makhzami
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Gert J Hulselmans
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Suresh Poovathingal
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
- VIB-KU Leuven Center for Brain and Disease Research Technologies, Single Cell, Microfluidics and Bioinformatics Expertise UnitsLeuvenBelgium
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
- VIB-KU Leuven Center for Brain and Disease Research Technologies, Single Cell, Microfluidics and Bioinformatics Expertise UnitsLeuvenBelgium
| | - Adekunle T Bademosi
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Sven Vilain
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| |
Collapse
|
4
|
Karpova A, Hiesinger PR, Kuijpers M, Albrecht A, Kirstein J, Andres-Alonso M, Biermeier A, Eickholt BJ, Mikhaylova M, Maglione M, Montenegro-Venegas C, Sigrist SJ, Gundelfinger ED, Haucke V, Kreutz MR. Neuronal autophagy in the control of synapse function. Neuron 2025; 113:974-990. [PMID: 40010347 DOI: 10.1016/j.neuron.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Neurons are long-lived postmitotic cells that capitalize on autophagy to remove toxic or defective proteins and organelles to maintain neurotransmission and the integrity of their functional proteome. Mutations in autophagy genes cause congenital diseases, sharing prominent brain dysfunctions including epilepsy, intellectual disability, and neurodegeneration. Ablation of core autophagy genes in neurons or glia disrupts normal behavior, leading to motor deficits, memory impairment, altered sociability, and epilepsy, which are associated with defects in synapse maturation, plasticity, and neurotransmitter release. In spite of the importance of autophagy for brain physiology, the substrates of neuronal autophagy and the mechanisms by which defects in autophagy affect synaptic function in health and disease remain controversial. Here, we summarize the current state of knowledge on neuronal autophagy, address the existing controversies and inconsistencies in the field, and provide a roadmap for future research on the role of autophagy in the control of synaptic function.
Collapse
Affiliation(s)
- Anna Karpova
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - P Robin Hiesinger
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marijn Kuijpers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Anne Albrecht
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Janine Kirstein
- Leibniz Institute on Aging-Fritz-Lipmann-Institute, 07754 Jena, Germany; Friedrich-Schiller-Universität, Institute for Biochemistry & Biophysics, 07745 Jena, Germany
| | - Maria Andres-Alonso
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Britta J Eickholt
- Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marina Mikhaylova
- Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Marta Maglione
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carolina Montenegro-Venegas
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephan J Sigrist
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Volker Haucke
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Michael R Kreutz
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
5
|
Gambarotto L, Wosnitzka E, Nikoletopoulou V. The Life and Times of Brain Autophagic Vesicles. J Mol Biol 2025:169105. [PMID: 40154918 DOI: 10.1016/j.jmb.2025.169105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Most of the knowledge on the mechanisms and functions of autophagy originates from studies in yeast and other cellular models. How this valuable information is translated to the brain, one of the most complex and evolving organs, has been intensely investigated. Fueled by the tight dependence of the mammalian brain on autophagy, and the strong links of human brain diseases with autophagy impairment, the field has revealed adaptations of the autophagic machinery to the physiology of neurons and glia, the highly specialized cell types of the brain. Here, we first provide a detailed account of the tools available for studying brain autophagy; we then focus on the recent advancements in understanding how autophagy is regulated in brain cells, and how it contributes to their homeostasis and integrated functions. Finally, we discuss novel insights and open questions that the new knowledge has raised in the field.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
6
|
Busquets O, Li H, Syed KM, Jerez PA, Dunnack J, Bu RL, Verma Y, Pangilinan GR, Martin A, Straub J, Du Y, Simon VM, Poser S, Bush Z, Diaz J, Sahagun A, Gao J, Hong S, Hernandez DG, Levine KS, Booth EO, Blanchette M, Bateup HS, Rio DC, Blauwendraat C, Hockemeyer D, Soldner F. iSCORE-PD: an isogenic stem cell collection to research Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.12.579917. [PMID: 38405931 PMCID: PMC10888955 DOI: 10.1101/2024.02.12.579917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by complex genetic and environmental factors. Genome-edited human pluripotent stem cells (hPSCs) offer a unique experimental platform to advance our understanding of PD etiology by enabling the generation of disease-relevant cell types carrying patient mutations along with isogenic control cells. To facilitate this approach, we generated a collection of 65 human stem cell lines genetically engineered to harbor high risk or causal variants in genes associated with PD (SNCA A53T, SNCA A30P, PRKN Ex3del, PINK1 Q129X, DJ1/PARK7 Ex1-5del, LRRK2 G2019S, ATP13A2 FS, FBXO7 R498X/FS, DNAJC6 c.801 A>G/FS, SYNJ1 R258Q/FS, VPS13C A444P/FS, VPS13C W395C/FS, GBA1 IVS2+1/FS). All mutations were introduced into a fully characterized and sequenced female human embryonic stem cell (hESC) line (WIBR3; NIH approval number NIHhESC-10-0079) using different genome editing techniques. To ensure the genetic integrity of these cell lines, we implemented rigorous quality controls, including whole-genome sequencing of each line. Our analysis of the genetic variation in this cell line collection revealed that while genome editing, particularly using CRISPR/Cas9, can introduce rare off-target mutations, the predominant source of genetic variants arises from routine cell culture and are fixed in cell lines during clonal isolation. The observed genetic variation was minimal compared to that typically found in patient-derived iPSC experiments and predominantly affected non-coding regions of the genome. Importantly, our analysis outlines strategies for effectively managing genetic variation through stringent quality control measures and careful experimental design. This systematic approach ensures the high quality of our stem cell collection, highlights advantages of prime editing over conventional CRISPR/Cas9 methods and provides a roadmap for the generation of gene-edited hPSC collections at scale in an academic setting. Our iSCORE-PD collection represents an easily accessible and valuable platform to study PD, which can be used by investigators to understand the molecular pathophysiology of PD in a human cellular setting.
Collapse
Affiliation(s)
- Oriol Busquets
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- These authors contributed equally
| | - Hanqin Li
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- These authors contributed equally
| | - Khaja Mohieddin Syed
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Pilar Alvarez Jerez
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- These authors contributed equally
| | - Jesse Dunnack
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Riana Lo Bu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Yogendra Verma
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gabriella R. Pangilinan
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Annika Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jannes Straub
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - YuXin Du
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vivien M. Simon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Steven Poser
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Zipporiah Bush
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Jessica Diaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Atehsa Sahagun
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jianpu Gao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Samantha Hong
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin S. Levine
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ezgi O. Booth
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Helen S. Bateup
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Donald C. Rio
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dirk Hockemeyer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Frank Soldner
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Lead contact
| |
Collapse
|
7
|
Smith EM, Coughlan ML, Maday S. Turning garbage into gold: Autophagy in synaptic function. Curr Opin Neurobiol 2025; 90:102937. [PMID: 39667255 PMCID: PMC11903044 DOI: 10.1016/j.conb.2024.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Trillions of synapses in the human brain enable thought and behavior. Synaptic connections must be established and maintained, while retaining dynamic flexibility to respond to experiences. These processes require active remodeling of the synapse to control the composition and integrity of proteins and organelles. Macroautophagy (hereafter, autophagy) provides a mechanism to edit and prune the synaptic proteome. Canonically, autophagy has been viewed as a homeostatic process, which eliminates aged and damaged proteins to maintain neuronal survival. However, accumulating evidence suggests that autophagy also degrades specific cargoes in response to neuronal activity to impact neuronal transmission, excitability, and synaptic plasticity. Here, we will discuss the diverse roles, regulation, and mechanisms of neuronal autophagy in synaptic function and contributions from glial autophagy in these processes.
Collapse
Affiliation(s)
- Erin Marie Smith
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maeve Louise Coughlan
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Mishra AK, Tripathi MK, Kumar D, Gupta SP. Neurons Specialize in Presynaptic Autophagy: A Perspective to Ameliorate Neurodegeneration. Mol Neurobiol 2025; 62:2626-2640. [PMID: 39141193 DOI: 10.1007/s12035-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
The efficient and prolonged neurotransmission is reliant on the coordinated action of numerous synaptic proteins in the presynaptic compartment that remodels synaptic vesicles for neurotransmitter packaging and facilitates their exocytosis. Once a cycle of neurotransmission is completed, membranes and associated proteins are endocytosed into the cytoplasm for recycling or degradation. Both exocytosis and endocytosis are closely regulated in a timely and spatially constrained manner. Recent research demonstrated the impact of dysfunctional synaptic vesicle retrieval in causing retrograde degeneration of midbrain neurons and has highlighted the importance of such endocytic proteins, including auxilin, synaptojanin1 (SJ1), and endophilin A (EndoA) in neurodegenerative diseases. Additionally, the role of other associated proteins, including leucine-rich repeat kinase 2 (LRRK2), adaptor proteins, and retromer proteins, is being investigated for their roles in regulating synaptic vesicle recycling. Research suggests that the degradation of defective vesicles via presynaptic autophagy, followed by their recycling, not only revitalizes them in the active zone but also contributes to strengthening synaptic plasticity. The presynaptic autophagy rejuvenating terminals and maintaining neuroplasticity is unique in autophagosome formation. It involves several synaptic proteins to support autophagosome construction in tiny compartments and their retrograde trafficking toward the cell bodies. Despite having a comprehensive understanding of ATG proteins in autophagy, we still lack a framework to explain how autophagy is triggered and potentiated in compact presynaptic compartments. Here, we reviewed synaptic proteins' involvement in forming presynaptic autophagosomes and in retrograde trafficking of terminal cargos. The review also discusses the status of endocytic proteins and endocytosis-regulating proteins in neurodegenerative diseases and strategies to combat neurodegeneration.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, 494 337, Chhattisgarh, India.
| | - Manish Kumar Tripathi
- School of Pharmacy, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Dipak Kumar
- Department of Zoology, Munger University, Munger, Bihar, India
| | - Satya Prakash Gupta
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| |
Collapse
|
9
|
Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, Takla M, Korolchuk VI, Rubinsztein DC. Autophagy, aging, and age-related neurodegeneration. Neuron 2025; 113:29-48. [PMID: 39406236 DOI: 10.1016/j.neuron.2024.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 01/11/2025]
Abstract
Autophagy is a conserved mechanism that degrades damaged or superfluous cellular contents and enables nutrient recycling under starvation conditions. Many neurodegeneration-associated proteins are autophagy substrates, and autophagy upregulation ameliorates disease in many animal models of neurodegeneration by enhancing the clearance of toxic proteins, proinflammatory molecules, and dysfunctional organelles. Autophagy inhibition also induces neuronal and glial senescence, a phenomenon that occurs with increasing age in non-diseased brains as well as in response to neurodegeneration-associated stresses. However, aging and many neurodegeneration-associated proteins and mutations impair autophagy. This creates a potentially detrimental feedback loop whereby the accumulation of these disease-associated proteins impairs their autophagic clearance, facilitating their further accumulation and aggregation. Thus, understanding how autophagy interacts with aging, senescence, and neurodegenerative diseases in a temporal, cellular, and genetic context is important for the future clinical application of autophagy-modulating therapies in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer E Palmer
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Sung Min Son
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Pawel Obrocki
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Matea Rob
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michael Takla
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
10
|
Ito-Silva VI, Smith BJ, Martins-de-Souza D. The autophagy proteome in the brain. J Neurochem 2025; 169:e16204. [PMID: 39155518 DOI: 10.1111/jnc.16204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
As one of the most important cellular housekeepers, autophagy directly affects cellular health, homeostasis, and function. Even though the mechanisms behind autophagy are well described, how molecular alterations and dysfunctions can lead to pathology in disease contexts still demands deeper investigation. Proteomics is a widely employed tool used to investigate molecular alterations associated with pathological states and has proven useful in identifying alterations in protein expression levels and post-translational modifications in autophagy. In this narrative review, we expand on the molecular mechanisms behind autophagy and its regulation, and further compile recent literature associating autophagy disturbances in context of brain disorders, utilizing discoveries from varying models and species from rodents and cellular models to human post-mortem brain samples. To outline, the canonical pathways of autophagy, the effects of post-translational modifications on regulating each step of autophagy, and the future directions of proteomics in autophagy will be discussed. We further aim to suggest how advancing proteomics can help further unveil molecular mechanisms with regard to neurological disorders.
Collapse
Affiliation(s)
- Vitor I Ito-Silva
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil
| |
Collapse
|
11
|
Díaz‐Osorio Y, Gimeno‐Agud H, Mari‐Vico R, Illescas S, Ramos JM, Darling A, García‐Cazorla À, Oyarzábal A. Spermidine Recovers the Autophagy Defects Underlying the Pathophysiology of Cell Trafficking Disorders. J Inherit Metab Dis 2025; 48:e12841. [PMID: 39838718 PMCID: PMC11751594 DOI: 10.1002/jimd.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/23/2025]
Abstract
Cell trafficking alterations are a growing group of disorders and one of the largest categories of Inherited Metabolic Diseases. They have complex and variable clinical presentation. Regarding neurological manifestations they can present a wide repertoire of symptoms ranging from neurodevelopmental to neurodegnerative disorders. The study of monogenic cell trafficking diseases draws an scenario to understanding this complex group of disorders and to find new therapeutic avenues. Within their pathophysiology, alterations in autophagy outstand as a targetable mechanism of disease, ammended to be modulated through different strategies. In this work we have studied the pathophysiology of two cell trafficking disorders due to mutations in SYNJ1 and NBAS genes. Specifically, we have assesed the autophagic flux in primary fibroblast cultures of the patients and gender/age-matched controls and whether it could be address with a therapeutic purpose. The results have shaped autophagy as one of the hallmarks of the disease. Moreover, we tested in vitro the effect of spermidine, a natural polyamine that acts as an autopagy inductor. Due to the positive results, its efficacy was evaluated later on the patients as well, in a series of n-of-1 clinical trials, achieving improvement in some clinical aspects related to motricity and cognition. Defining autophagy alterations as a common feature in the pathophysiology of cell trafficking disorders is a great step towards their treatment, as it represents a potential actionable target for the personalized treatement of these disorders.
Collapse
Affiliation(s)
- Yaiza Díaz‐Osorio
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de DéuDepartment of Neurology and MetabERN; Esplugues de LlobregatBarcelonaSpain
| | - Helena Gimeno‐Agud
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de DéuDepartment of Neurology and MetabERN; Esplugues de LlobregatBarcelonaSpain
- Pediatric Neurometabolism + Personalized Therapies LabUniversity Abat Oliba CEUBarcelonaSpain
| | - Rosanna Mari‐Vico
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de DéuDepartment of Neurology and MetabERN; Esplugues de LlobregatBarcelonaSpain
| | - Sofía Illescas
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de DéuDepartment of Neurology and MetabERN; Esplugues de LlobregatBarcelonaSpain
| | - Jose Miguel Ramos
- Hospital Regional Universitario Materno‐Infantil de MálagaUniversidad de MálagaMálagaSpain
| | - Alejandra Darling
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de DéuDepartment of Neurology and MetabERN; Esplugues de LlobregatBarcelonaSpain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of NeurologyEsplugues de LlobregatBarcelonaSpain
| | - Àngels García‐Cazorla
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de DéuDepartment of Neurology and MetabERN; Esplugues de LlobregatBarcelonaSpain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of NeurologyEsplugues de LlobregatBarcelonaSpain
| | - Alfonso Oyarzábal
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de DéuDepartment of Neurology and MetabERN; Esplugues de LlobregatBarcelonaSpain
- Pediatric Neurometabolism + Personalized Therapies LabUniversity Abat Oliba CEUBarcelonaSpain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of NeurologyEsplugues de LlobregatBarcelonaSpain
| |
Collapse
|
12
|
El Fissi N, Rosenberger FA, Chang K, Wilhalm A, Barton-Owen T, Hansen FM, Golder Z, Alsina D, Wedell A, Mann M, Chinnery PF, Freyer C, Wredenberg A. Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster. Nat Commun 2024; 15:10719. [PMID: 39715749 PMCID: PMC11666730 DOI: 10.1038/s41467-024-55559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγexo-) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations. We identify critical pathways associated with nutrient sensing, insulin signalling, mitochondrial protein import, and autophagy that can rescue the lethal phenotype of the POLγexo- flies. Rescued flies, hemizygous for dilp1, atg2, tim14 or melted, normalise their autophagic flux and proteasome function and adapt their metabolism. Mutation frequencies remain high with the exception of melted-rescued flies, suggesting that melted may act early in development. Treating POLγexo- larvae with the autophagy activator rapamycin aggravates their lethal phenotype, highlighting that excessive autophagy can significantly contribute to the pathophysiology of mitochondrial diseases. Moreover, we show that the nucleation process of autophagy is a critical target for intervention.
Collapse
Affiliation(s)
- Najla El Fissi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Florian A Rosenberger
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Kai Chang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Alissa Wilhalm
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Tom Barton-Owen
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Fynn M Hansen
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Zoe Golder
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - David Alsina
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
- Faculty of Health Sciences, NNF Centre for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
13
|
Ng XY, Cao M. Dysfunction of synaptic endocytic trafficking in Parkinson's disease. Neural Regen Res 2024; 19:2649-2660. [PMID: 38595283 PMCID: PMC11168511 DOI: 10.4103/nrr.nrr-d-23-01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 04/11/2024] Open
Abstract
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum. The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive. Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease. Notably, several of these genes are linked to the synaptic vesicle recycling process, particularly the clathrin-mediated endocytosis pathway. This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease, followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a "dying back" mechanism. Recently, several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized. These models faithfully recapitulate certain Parkinson's disease-like features at the animal, circuit, and cellular levels, and exhibit defects in synaptic membrane trafficking, further supporting the findings from human genetics and clinical studies. In this review, we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins: auxilin (DNAJC6/PARK19) and synaptojanin 1 (SYNJ1/PARK20). The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect. Subsequently, we will delve into the involvement of several clathrin-mediated endocytosis-related proteins (GAK, endophilin A1, SAC2/INPP5F, synaptotagmin-11), identified as Parkinson's disease risk factors through genome-wide association studies, in Parkinson's disease pathogenesis. We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins (alpha-synuclein (PARK1/4), Parkin (PARK2), and LRRK2 (PARK8)) in synaptic endocytic trafficking. Additionally, we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways, particularly autophagy. Given that synaptic dysfunction is considered as an early event in Parkinson's disease, a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel targets for early diagnosis and the development of interventional therapies for Parkinson's disease. Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Xin Yi Ng
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Mian Cao
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Jarocki M, Turek K, Saczko J, Tarek M, Kulbacka J. Lipids associated with autophagy: mechanisms and therapeutic targets. Cell Death Discov 2024; 10:460. [PMID: 39477959 PMCID: PMC11525783 DOI: 10.1038/s41420-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Autophagy is a molecular process essential for maintaining cellular homeostasis, with its impairment or dysregulation linked to the progression of various diseases in mammals. Specific lipids, including phosphoinositides, sphingolipids, and oxysterols, play pivotal roles in inducing and regulating autophagy, highlighting their significance in this intricate process. This review focuses on the critical involvement of these lipids in autophagy and lipophagy, providing a comprehensive overview of the current understanding of their functions. Moreover, we delve into how abnormalities in autophagy, influenced by these lipids, contribute to the pathogenesis of various diseases. These include age-related conditions such as cardiovascular diseases, neurodegenerative disorders, type 2 diabetes, and certain cancers, as well as inflammatory and liver diseases, skeletal muscle pathologies and age-related macular degeneration (AMD). This review aims to highlight function of lipids and their potential as therapeutic targets in treating diverse human pathologies by elucidating the specific roles of phosphoinositides, sphingolipids, and oxysterols in autophagy.
Collapse
Affiliation(s)
- Michał Jarocki
- University Clinical Hospital, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
15
|
Liu JY, Yin X, Dong YT. Exploration of the shared gene signatures and molecular mechanisms between Alzheimer's disease and intracranial aneurysm. Sci Rep 2024; 14:24628. [PMID: 39427050 PMCID: PMC11490550 DOI: 10.1038/s41598-024-75694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Although Alzheimer's disease (AD) and intracranial aneurysm (IA) were two different types of diseases that occurred in the brain, ruptured IA (RIA) survivors may experience varying degrees of cognitive dysfunction. Neither AD nor IA is easily recognizable by an early onset so that the incidence of adverse clinical outcomes would be on the rise. Therefore, we focused on the exploration of the shared genes and molecular mechanisms between AD and IA, which would be significant for the efficiency of co-screening and co-diagnosis. Two GEO datasets were selected for the weighted gene co-expression network analysis (WGCNA) and differentially expressed gene screening, obtaining 78 overlapped genes. Next, 9 hub genes were identified by the protein-protein interaction network, including PIK3CA, GAB1, IGF1R, PLCB1, PGR, PDGFRB, PLCE1, FGFR3, and SYNJ1. The interactions among the hub genes, miRNA, and TFs were also explored. Meanwhile, we performed GO and KEGG pathway enrichment analyses for the results of WGCNA and hub genes, which showed that the Ras signaling and Rap1 signaling were the main shared pathogenesis. In conclusion, the present bioinformatics analysis revealed that AD and IA had the shared genes and molecular mechanisms, and these outcomes were associated with inflammation and calcium homeostasis, which could provide research clues for further studies.
Collapse
Affiliation(s)
- Ji-Yun Liu
- Department of Clinical Laboratory, Guiyang Second People's Hospital, Guiyang, People's Republic of China
| | - Xuan Yin
- Department of Women Healthcare, Guiyang Maternal and Child Health Hospital, Guiyang, People's Republic of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, No. 9, Beijing Road, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
16
|
Decet M, Scott P, Kuenen S, Meftah D, Swerts J, Calatayud C, Gallego SF, Kaempf N, Nachman E, Praschberger R, Schoovaerts N, Tang CC, Eidelberg D, Al Adawi S, Al Asmi A, Nandhagopal R, Verstreken P. A candidate loss-of-function variant in SGIP1 causes synaptic dysfunction and recessive parkinsonism. Cell Rep Med 2024; 5:101749. [PMID: 39332416 PMCID: PMC11513836 DOI: 10.1016/j.xcrm.2024.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/14/2024] [Accepted: 08/31/2024] [Indexed: 09/29/2024]
Abstract
Synaptic dysfunction is recognized as an early step in the pathophysiology of parkinsonism. Several genetic mutations affecting the integrity of synaptic proteins cause or increase the risk of developing disease. We have identified a candidate causative mutation in synaptic "SH3GL2 Interacting Protein 1" (SGIP1), linked to early-onset parkinsonism in a consanguineous Arab family. Additionally, affected siblings display intellectual, cognitive, and behavioral dysfunction. Metabolic network analysis of [18F]-fluorodeoxyglucose positron emission tomography scans shows patterns very similar to those of idiopathic Parkinson's disease. We show that the identified SGIP1 mutation causes a loss of protein function, and analyses in newly created Drosophila models reveal movement defects, synaptic transmission dysfunction, and neurodegeneration, including dopaminergic synapse loss. Histology and correlative light and electron microscopy reveal the absence of synaptic multivesicular bodies and the accumulation of degradative organelles. This research delineates a putative form of recessive parkinsonism, converging on defective synaptic proteostasis and opening avenues for diagnosis, genetic counseling, and treatment.
Collapse
Affiliation(s)
- Marianna Decet
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrick Scott
- Laboratory of Molecular Biology, Sainte-Justine University Hospital Center, Montréal QC H3T 1C5, Canada
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Douja Meftah
- Laboratory of Pulmonary Physiology, Department of Pediatrics, Sainte-Justine University Hospital Center, Montréal QC H3T 1C5, Canada
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Carles Calatayud
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Natalie Kaempf
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Eliana Nachman
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Roman Praschberger
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Samir Al Adawi
- Department of Behavioral Medicine, College of Medicine & Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman
| | - Abdullah Al Asmi
- Neurology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman
| | - Ramachandiran Nandhagopal
- Neurology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod 123, Muscat, Oman.
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
17
|
Parisi B, Esposito A, Castroflorio E, Bramini M, Pepe S, Marte A, Guarnieri FC, Valtorta F, Baldelli P, Benfenati F, Fassio A, Giovedì S. Apache is a neuronal player in autophagy required for retrograde axonal transport of autophagosomes. Cell Mol Life Sci 2024; 81:416. [PMID: 39367928 PMCID: PMC11455771 DOI: 10.1007/s00018-024-05441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 10/07/2024]
Abstract
Neurons are dependent on efficient quality control mechanisms to maintain cellular homeostasis and function due to their polarization and long-life span. Autophagy is a lysosomal degradative pathway that provides nutrients during starvation and recycles damaged and/or aged proteins and organelles. In neurons, autophagosomes constitutively form in distal axons and at synapses and are trafficked retrogradely to the cell soma to fuse with lysosomes for cargo degradation. How the neuronal autophagy pathway is organized and controlled remains poorly understood. Several presynaptic endocytic proteins have been shown to regulate both synaptic vesicle recycling and autophagy. Here, by combining electron, fluorescence, and live imaging microscopy with biochemical analysis, we show that the neuron-specific protein APache, a presynaptic AP-2 interactor, functions in neurons as an important player in the autophagy process, regulating the retrograde transport of autophagosomes. We found that APache colocalizes and co-traffics with autophagosomes in primary cortical neurons and that induction of autophagy by mTOR inhibition increases LC3 and APache protein levels at synaptic boutons. APache silencing causes a blockade of autophagic flux preventing the clearance of p62/SQSTM1, leading to a severe accumulation of autophagosomes and amphisomes at synaptic terminals and along neurites due to defective retrograde transport of TrkB-containing signaling amphisomes along the axons. Together, our data identify APache as a regulator of the autophagic cycle, potentially in cooperation with AP-2, and hypothesize that its dysfunctions contribute to the early synaptic impairments in neurodegenerative conditions associated with impaired autophagy.
Collapse
Affiliation(s)
- Barbara Parisi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- Present Affiliation: Department of Cell Biology, Universidad de Granada, Granada, Spain
| | - Alessandro Esposito
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCSS, Ospedale Policlinico San Martino, Viale Benedetto XV, 3, Genova, 16122, Italy
| | - Enrico Castroflorio
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- Present Affiliation: Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy
| | - Sara Pepe
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Antonella Marte
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Fabrizia C Guarnieri
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- IRCSS, Ospedale Policlinico San Martino, Viale Benedetto XV, 3, Genova, 16122, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Baldelli
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Anna Fassio
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Silvia Giovedì
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia.
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia.
- Department of Experimental Medicine, University of Genoa, Viale Benedetto XV, 3, Genova, 16122, Italy.
| |
Collapse
|
18
|
Yang Y, Huang Z, Luo J, He J, Shi L, Chen G, Chen S, Deng Y, Yang Y, Tang Y, Pang Y. Comprehensive transcriptome and scRNA-seq analyses uncover the expression and underlying mechanism of SYNJ2 in papillary thyroid carcinoma. IET Syst Biol 2024; 18:183-198. [PMID: 39370684 PMCID: PMC11490192 DOI: 10.1049/syb2.12099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Synaptojanin 2 (SYNJ2) has crucial role in various tumors, but its role in papillary thyroid carcinoma (PTC) remains unexplored. This study first detected SYNJ2 protein expression in PTC using immunohistochemistry method and further assessed SYNJ2 mRNA expression through mRNA chip and RNA sequencing data and its association with clinical characteristics. Additionally, KEGG, GSVA, and GSEA analyses were conducted to investigate potential biological functions, while single-cell RNA sequencing data were used to explore SYNJ2's underlying mechanisms in PTC. Meanwhile, immune infiltration status in different SYNJ2 expression groups were analyzed. Besides, we investigated the immune checkpoint gene expression and implemented drug sensitivity analysis. Results indicated that SYNJ2 is highly expressed in PTC (SMD = 0.66 [95% CI: 0.17-1.15]) and could distinguish between PTC and non-PTC tissues (AUC = 0.74 [0.70-0.78]). Furthermore, the study identified 134 intersecting genes of DEGs and CEGs, mainly enriched in the angiogenesis and epithelial-mesenchymal transition (EMT) pathways. Subsequent analysis showed the above pathways were activated in PTC epithelial cells. PTC patients with high SYNJ2 expression showed higher sensitivity to the six common drugs. Summarily, SYNJ2 may promote PTC progression through angiogenesis and EMT pathways. High SYNJ2 expression is associated with better response to immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yuan‐Ping Yang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhi‐Guang Huang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jia‐Yuan Luo
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Juan He
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Lin Shi
- Department of PathologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gang Chen
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Si‐Yuan Chen
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yu‐Wen Deng
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yi‐Jia Yang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yi‐Jun Tang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | | |
Collapse
|
19
|
Leno-Durán E, Arrabal L, Roldán S, Medina I, Alcántara-Domínguez C, García-Cabrera V, Saiz J, Barbas C, Sánchez MJ, Entrala-Bernal C, Fernández-Rosado F, Lorente JA, Gutierrez-Ríos P, Martínez-Gonzalez LJ. Identification of SYNJ1 in a Complex Case of Juvenile Parkinsonism Using a Multiomics Approach. Int J Mol Sci 2024; 25:9754. [PMID: 39273702 PMCID: PMC11396201 DOI: 10.3390/ijms25179754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to elucidate the genetic causes underlying the juvenile parkinsonism (JP) diagnosed in a girl with several family members diagnosed with spinocerebellar ataxia type 2 (SCA2). To achieve this, whole-exome sequencing, analysis of CAG repeats, RNA sequencing analysis on fibroblasts, and metabolite identification were performed. As a result, a homozygous missense mutation SNP T>C (rs2254562) in synaptojamin 1 (SYNJ1), which has been implicated in the regulation of membrane trafficking in the synaptic vesicles, was identified. Additionally, we observed overexpression of L1 cell adhesion molecule (L1CAM), Cdc37, GPX1, and GPX4 and lower expression of ceruloplasmin in the patient compared to the control. We also found changes in sphingolipid, inositol, and inositol phosphate metabolism. These findings help to clarify the mechanisms of JP and suggest that the etiology of JP in the patient may be multifactorial. This is the first report of the rs2254562 mutation in the SYNJ gene identified in a JP patient with seizures and cognitive impairment.
Collapse
Affiliation(s)
- Ester Leno-Durán
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Luisa Arrabal
- Pediatric Neurology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Susana Roldán
- Pediatric Neurology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Inmaculada Medina
- Pediatric Neurology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Clara Alcántara-Domínguez
- Centre for Genomics and Oncological Research (GENYO), Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Victor García-Cabrera
- Centre for Genomics and Oncological Research (GENYO), Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Jorge Saiz
- Centre for Metabolomics and Bionanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty, Universidad CEU San Pablo, 28926 Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bionanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty, Universidad CEU San Pablo, 28926 Madrid, Spain
| | - Maria José Sánchez
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Andalusian School of Public Health (EASP), 18080 Granada, Spain
- Instituto de Investigación Biosanitaria, ibs. GRANADA, 18012 Granada, Spain
| | - Carmen Entrala-Bernal
- Lorgen G.P., PT, Ciencias de la Salud-Business Innovation Centre (BIC), 18016 Granada, Spain
| | | | - Jose Antonio Lorente
- Centre for Genomics and Oncological Research (GENYO), Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
- Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine-PTS, University of Granada, 18016 Granada, Spain
| | | | - Luis Javier Martínez-Gonzalez
- Centre for Genomics and Oncological Research (GENYO), Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
20
|
Schepers J, Löser T, Behl C. Lipids and α-Synuclein: adding further variables to the equation. Front Mol Biosci 2024; 11:1455817. [PMID: 39188788 PMCID: PMC11345258 DOI: 10.3389/fmolb.2024.1455817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Aggregation of alpha-Synuclein (αSyn) has been connected to several neurodegenerative diseases, such as Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA), that are collected under the umbrella term synucleinopathies. The membrane binding abilities of αSyn to negatively charged phospholipids have been well described and are connected to putative physiological functions of αSyn. Consequently, αSyn-related neurodegeneration has been increasingly connected to changes in lipid metabolism and membrane lipid composition. Indeed, αSyn aggregation has been shown to be triggered by the presence of membranes in vitro, and some genetic risk factors for PD and DLB are associated with genes coding for proteins directly involved in lipid metabolism. At the same time, αSyn aggregation itself can cause alterations of cellular lipid composition and brain samples of patients also show altered lipid compositions. Thus, it is likely that there is a reciprocal influence between cellular lipid composition and αSyn aggregation, which can be further affected by environmental or genetic factors and ageing. Little is known about lipid changes during physiological ageing and regional differences of the lipid composition of the aged brain. In this review, we aim to summarise our current understanding of lipid changes in connection to αSyn and discuss open questions that need to be answered to further our knowledge of αSyn related neurodegeneration.
Collapse
Affiliation(s)
| | | | - Christian Behl
- The Autophagy Lab, Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
21
|
Saenz J, Khezerlou E, Aggarwal M, Shaikh A, Ganti N, Herborg F, Pan PY. Parkinson's disease gene, Synaptojanin1, dysregulates the surface maintenance of the dopamine transporter. NPJ Parkinsons Dis 2024; 10:148. [PMID: 39117637 PMCID: PMC11310474 DOI: 10.1038/s41531-024-00769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Missense mutations of PARK20/SYNJ1 (synaptojanin1/Synj1) were found in complex forms of familial Parkinsonism. However, the Synj1-regulated molecular and cellular changes associated with dopaminergic dysfunction remain unknown. We now report a fast depletion of evoked dopamine and impaired maintenance of the axonal dopamine transporter (DAT) in the Synj1 haploinsufficient (Synj1+/-) neurons. While Synj1 has been traditionally known to facilitate the endocytosis of synaptic vesicles, we provide in vitro and in vivo evidence demonstrating that Synj1 haploinsufficiency results in an increase of total DAT but a reduction of the surface DAT. Synj1+/- neurons exhibit maladaptive DAT trafficking, which could contribute to the altered DA release. We showed that the loss of surface DAT is associated with the impaired 5'-phosphatase activity and the hyperactive PI(4,5)P2-PKCβ pathway downstream of Synj1 deficiency. Thus, our findings provided important mechanistic insight for Synj1-regulated DAT trafficking integral to dysfunctional DA signaling, which might be relevant to early Parkinsonism.
Collapse
Affiliation(s)
- Jacqueline Saenz
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
- Rutgers Graduate School of Biomedical Sciences, Molecular Biosciences Graduate Program, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Elnaz Khezerlou
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Meha Aggarwal
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Amina Shaikh
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Naga Ganti
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Freja Herborg
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
22
|
Coukos R, Krainc D. Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci 2024; 25:393-413. [PMID: 38600347 DOI: 10.1038/s41583-024-00812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
23
|
Brooker SM, Naylor GE, Krainc D. Cell biology of Parkinson's disease: Mechanisms of synaptic, lysosomal, and mitochondrial dysfunction. Curr Opin Neurobiol 2024; 85:102841. [PMID: 38306948 DOI: 10.1016/j.conb.2024.102841] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Parkinson's disease (PD) is a growing cause of disability worldwide and there is a critical need for the development of disease-modifying therapies to slow or stop disease progression. Recent advances in characterizing the genetics of PD have expanded our understanding of the cell biology of this disorder. Mitochondrial oxidative stress, defects in synaptic function, and impaired lysosomal activity have been shown to be linked in PD, resulting in a pathogenic feedback cycle involving the accumulation of toxic oxidized dopamine and alpha-synuclein. In this review, we will highlight recent data on a subset of PD-linked genes which have key roles in these pathways and the pathogenic cycle. We will furthermore discuss findings highlighting the importance of dynamic mitochondria-lysosome contact sites that mediate direct inter-organelle cross-talk in the pathogenesis of PD and related disorders.
Collapse
Affiliation(s)
- Sarah M Brooker
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/BrookerSarahM
| | - Grace E Naylor
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/GENaylor
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Choquet D, Petrel M, Fernández-Monreal M. Targeting of membrane proteins with fluoronanogold probes for high-resolution correlative microscopy. Methods Cell Biol 2024; 187:57-72. [PMID: 38705630 DOI: 10.1016/bs.mcb.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Correlative light and electron microscopy (CLEM) can provide valuable information about a biological sample by giving information on the specific localization of a molecule of interest within an ultrastructural context. In this work, we describe a simple CLEM method to obtain high-resolution images of neurotransmitter receptor distribution in synapses by electron microscopy (EM). We use hippocampal organotypic slices from a previously reported mouse model expressing a modified AMPA receptor (AMPAR) subunit that binds biotin at the surface (Getz et al., 2022). This tag can be recognized by StreptAvidin-Fluoronanogold™ conjugates (SA-FNG), which reach receptors at synapses (synaptic cleft is 50-100nm thick). By using pre-embedding labeling, we found that SA-FNG reliably bind synaptic receptors and penetrate around 10-15μm in depth in live tissue. However, the silver enhancement was only reaching the surface of the slices. We show that permeabilization with triton is highly effective at increasing the in depth-gold amplification and that the membrane integrity is well preserved. Finally, we also apply high-resolution electron tomography, thus providing important information about the 3D organization of surface AMPA receptors in synapses at the nanoscale.
Collapse
Affiliation(s)
- Daniel Choquet
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center (BIC), Bordeaux, France; Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), Bordeaux, France
| | - Melina Petrel
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center (BIC), Bordeaux, France
| | | |
Collapse
|
25
|
Saenz J, Khezerlou E, Aggarwal M, Shaikh A, Ganti N, Herborg F, Pan PY. Parkinson's disease gene, Synaptojanin1, dysregulates the surface maintenance of the dopamine transporter. RESEARCH SQUARE 2024:rs.3.rs-4021466. [PMID: 38559229 PMCID: PMC10980101 DOI: 10.21203/rs.3.rs-4021466/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Missense mutations of PARK20/SYNJ1 (synaptojanin1/Synj1) have been linked to complex forms of familial parkinsonism, however, the molecular and cellular changes associated with dopaminergic dysfunction remains unknown. We now report fast depletion of evoked dopamine (DA) and altered maintenance of the axonal dopamine transporter (DAT) in the Synj1+/- neurons. While Synj1 has been traditionally known to facilitate the endocytosis of synaptic vesicles, we demonstrated that axons of cultured Synj1+/- neurons exhibit an increase of total DAT but a reduction of the surface DAT, which could be exacerbated by neuronal activity. We revealed that the loss of surface DAT is specifically associated with the impaired 5'-phosphatase activity of Synj1 and the hyperactive downstream PI(4,5)P2-PKCβ pathway. Thus, our findings provided important mechanistic insight for Synj1-regulated DAT trafficking integral to dysfunctional DA signaling in early parkinsonism.
Collapse
Affiliation(s)
- Jacqueline Saenz
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
- Rutgers Graduate School of Biomedical Sciences, Molecular Biosciences Graduate Program, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Elnaz Khezerlou
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Meha Aggarwal
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Amina Shaikh
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Naga Ganti
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Freja Herborg
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| |
Collapse
|
26
|
Carreras Mascaro A, Grochowska MM, Boumeester V, Dits NFJ, Bilgiҫ EN, Breedveld GJ, Vergouw L, de Jong FJ, van Royen ME, Bonifati V, Mandemakers W. LRP10 and α-synuclein transmission in Lewy body diseases. Cell Mol Life Sci 2024; 81:75. [PMID: 38315424 PMCID: PMC10844361 DOI: 10.1007/s00018-024-05135-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.
Collapse
Affiliation(s)
- Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja F J Dits
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ece Naz Bilgiҫ
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leonie Vergouw
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank Jan de Jong
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Gupta S, Khan J, Ghosh S. Molecular mechanism of cognitive impairment associated with Parkinson's disease: A stroke perspective. Life Sci 2024; 337:122358. [PMID: 38128756 DOI: 10.1016/j.lfs.2023.122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Parkinson's disease (PD) is a common neurological illness that causes several motor and non-motor symptoms, most characteristically limb tremors and bradykinesia. PD is a slowly worsening disease that arises due to progressive neurodegeneration of specific areas of the brain, especially the substantia nigra of the midbrain. Even though PD has continuously been linked to a higher mortality risk in numerous epidemiologic studies, there have been significant discoveries regarding the connection between PD and stroke. The incidence of strokes such as cerebral infarction and hemorrhage is substantially associated with the development of PD. Moreover, cognitive impairments, primarily dementia, have been associated with stroke and PD. However, the underlying molecular mechanism of this phenomenon is still obscure. This concise review focuses on the relationship between stroke and PD, emphasizing the molecular mechanism of cognition deficit and memory loss evident in PD and stroke. Furthermore, we are also highlighting some potential drug molecules that can target both PD and stroke.
Collapse
Affiliation(s)
- Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India.
| |
Collapse
|
28
|
Liénard C, Pintart A, Bomont P. Neuronal Autophagy: Regulations and Implications in Health and Disease. Cells 2024; 13:103. [PMID: 38201307 PMCID: PMC10778363 DOI: 10.3390/cells13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Autophagy is a major degradative pathway that plays a key role in sustaining cell homeostasis, integrity, and physiological functions. Macroautophagy, which ensures the clearance of cytoplasmic components engulfed in a double-membrane autophagosome that fuses with lysosomes, is orchestrated by a complex cascade of events. Autophagy has a particularly strong impact on the nervous system, and mutations in core components cause numerous neurological diseases. We first review the regulation of autophagy, from autophagosome biogenesis to lysosomal degradation and associated neurodevelopmental/neurodegenerative disorders. We then describe how this process is specifically regulated in the axon and in the somatodendritic compartment and how it is altered in diseases. In particular, we present the neuronal specificities of autophagy, with the spatial control of autophagosome biogenesis, the close relationship of maturation with axonal transport, and the regulation by synaptic activity. Finally, we discuss the physiological functions of autophagy in the nervous system, during development and in adulthood.
Collapse
Affiliation(s)
- Caroline Liénard
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
- CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Alexandre Pintart
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| | - Pascale Bomont
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| |
Collapse
|
29
|
Zhang T, Hale AT, Guo S, York JD. Coordinated inositide lipid-phosphatase activities of synaptojanin modulates actin cytoskeleton organization. Adv Biol Regul 2024; 91:101012. [PMID: 38220563 DOI: 10.1016/j.jbior.2023.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Synaptojanin proteins are evolutionarily conserved regulators of vesicle transport and membrane homeostasis. Disruption of synaptojanin function has been implicated in a wide range of neurological disorders. Synaptojanins act as dual-functional lipid phosphatases capable of hydrolyzing a variety of phosphoinositides (PIPs) through autonomous SAC1-like PIP 4-phosphatase and PIP2 5-phosphatase domains. The rarity of an evolutionary configuration of tethering two distinct enzyme activities in a single protein prompted us to investigate their individual and combined roles in budding yeast. Both PIP and PIP2 phosphatase activities are encoded by multiple gene products and are independently essential for cell viability. In contrast, we observed that the synaptojanin proteins utilized both lipid-phosphatase activities to properly coordinate polarized distribution of actin during the cell cycle. Expression of each activity untethered (in trans) failed to properly reconstitute the basal actin regulatory activity; whereas tethering (in cis), even through synthetic linkers, was sufficient to complement these defects. Studies of chimeric proteins harboring PIP and PIP2 phosphatase domains from a variety of gene products indicate synaptojanin proteins have highly specialized activities and that the length of the linker between the lipid-phosphatase domains is critical for actin regulatory activity. Our data are consistent with synaptojanin possessing a strict requirement for both two-domain configuration for some but not all functions and provide mechanistic insights into a coordinated role of tethering distinct lipid-phosphatase activities.
Collapse
Affiliation(s)
- Tong Zhang
- Departments of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Andrew T Hale
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shuling Guo
- Departments of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - John D York
- Departments of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, 27710, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
30
|
Lewerissa EI, Nadif Kasri N, Linda K. Epigenetic regulation of autophagy-related genes: Implications for neurodevelopmental disorders. Autophagy 2024; 20:15-28. [PMID: 37674294 PMCID: PMC10761153 DOI: 10.1080/15548627.2023.2250217] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily highly conserved catabolic process that is important for the clearance of cytosolic contents to maintain cellular homeostasis and survival. Recent findings point toward a critical role for autophagy in brain function, not only by preserving neuronal health, but especially by controlling different aspects of neuronal development and functioning. In line with this, mutations in autophagy-related genes are linked to various key characteristics and symptoms of neurodevelopmental disorders (NDDs), including autism, micro-/macrocephaly, and epilepsy. However, the group of NDDs caused by mutations in autophagy-related genes is relatively small. A significant proportion of NDDs are associated with mutations in genes encoding epigenetic regulatory proteins that modulate gene expression, so-called chromatinopathies. Intriguingly, several of the NDD-linked chromatinopathy genes have been shown to regulate autophagy-related genes, albeit in non-neuronal contexts. From these studies it becomes evident that tight transcriptional regulation of autophagy-related genes is crucial to control autophagic activity. This opens the exciting possibility that aberrant autophagic regulation might underly nervous system impairments in NDDs with disturbed epigenetic regulation. We here summarize NDD-related chromatinopathy genes that are known to regulate transcriptional regulation of autophagy-related genes. Thereby, we want to highlight autophagy as a candidate key hub mechanism in NDD-related chromatinopathies.Abbreviations: ADNP: activity dependent neuroprotector homeobox; ASD: autism spectrum disorder; ATG: AutTophaGy related; CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; EHMT: euchromatic histone lysine methyltransferase; EP300: E1A binding protein p300; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; H3K4me3: histone 3 lysine 4 trimethylation; H3K9me1/2/3: histone 3 lysine 9 mono-, di-, or trimethylation; H3K27me2/3: histone 3 lysine 27 di-, or trimethylation; hiPSCs: human induced pluripotent stem cells; HSP: hereditary spastic paraplegia; ID: intellectual disability; KANSL1: KAT8 regulatory NSL complex subunit 1; KAT8: lysine acetyltransferase 8; KDM1A/LSD1: lysine demethylase 1A; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NDD: neurodevelopmental disorder; PHF8: PHD finger protein 8; PHF8-XLID: PHF8-X linked intellectual disability syndrome; PTM: post-translational modification; SESN2: sestrin 2; YY1: YY1 transcription factor; YY1AP1: YY1 associated protein 1.
Collapse
Affiliation(s)
- Elly I. Lewerissa
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Flemish Brabant, Belgium
- Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Flemish Brabant, Belgium
| |
Collapse
|
31
|
Rasool A, Manzoor R, Ullah K, Afzal R, Ul-Haq A, Imran H, Kaleem I, Akhtar T, Farrukh A, Hameed S, Bashir S. Oxidative Stress and Dopaminergic Metabolism: A Major PD Pathogenic Mechanism and Basis of Potential Antioxidant Therapies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:852-864. [PMID: 37303175 DOI: 10.2174/1871527322666230609141519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 06/13/2023]
Abstract
Reactive oxygen species (ROS)-induced oxidative stress triggers the vicious cycle leading to the degeneration of dopaminergic neurons in the nigra pars compacta. ROS produced during the metabolism of dopamine is immediately neutralized by the endogenous antioxidant defense system (EADS) under physiological conditions. Aging decreases the vigilance of EADS and makes the dopaminergic neurons more vulnerable to oxidative stress. As a result, ROS left over by EADS oxidize the dopamine-derived catechols and produces a number of reactive dopamine quinones, which are precursors to endogenous neurotoxins. In addition, ROS causes lipid peroxidation, uncoupling of the electron transport chain, and DNA damage, which lead to mitochondrial dysfunction, lysosomal dysfunction, and synaptic dysfunction. The mutations in genes such as DNAJC6, SYNJ1, SH3GL2, LRRK2, PRKN, and VPS35 caused by ROS have been associated with synaptic dysfunction and the pathogenesis of Parkinson's disease (PD). The available drugs that are used against PD can only delay the progression of the disease, but they produce various side effects. Through their antioxidant activity, flavonoids can substantiate the EADS of dopaminergic neurons and disrupt the vicious cycle incepted by oxidative stress. In this review, we show how the oxidative metabolism of dopamine generates ROS and dopamine-quinones, which then exert unrestrained OS, causing mutations in several genes involved in the proper functioning of mitochondrion, synapse, and lysosome. Besides, we also present some examples of approved drugs used for the treatment of PD, therapies in the clinical trial phase, and an update on the flavonoids that have been tested to boost the EADS of dopaminergic neurons.
Collapse
Affiliation(s)
- Aamir Rasool
- Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Robina Manzoor
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
- Faculty of Marine Sciences, Lasbella University of Agriculture Water and Marine Sciences, Uthal 90050, Pakistan
| | - Kaleem Ullah
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan
| | - Ramsha Afzal
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Asad Ul-Haq
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hadia Imran
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | | | - Anum Farrukh
- Department of General Medicine, Fauji Foundation Hospital (FFH), Rawalpindi, Pakistan
| | - Sahir Hameed
- National Institute for Genomics and Advanced Biotechnology (N.I.G.A.B.) National Agriculture Research Centre Islamabad, Pakistan
| | - Shahid Bashir
- Neurosciences Center, King Fahad Specialist Hospital Dammam, P.O. Box 15215, Dammam 31444, Saudi Arabia
| |
Collapse
|
32
|
Tian Y, Yi S, Guo W, Feng C, Zhang X, Dong H, Wang K, Li R, Tian Y, Gan M, Wu T, Xie H, Gao X. SYNJ1 rescues motor functions in hereditary and sporadic Parkinson's disease mice by upregulating TSP-1 expression. Behav Brain Res 2023; 452:114569. [PMID: 37419331 DOI: 10.1016/j.bbr.2023.114569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
This study aimed to explore the role of SYNJ1 in Parkinson's disease (PD) and its potential as a neuroprotective factor. We found that SYNJ1 was decreased in the SN and striatum of hSNCA*A53T-Tg and MPTP-induced mice compared to normal mice, associated with motor dysfunction, increased α-synuclein and decreased tyrosine hydroxylase. To investigate its neuroprotective effects, SYNJ1 expression was upregulated in the striatum of mice through injection of the rAdV-Synj1 virus into the striatum, which resulted in the rescue of behavioral deficiencies and amelioration of pathological changes. Subsequently, transcriptomic sequencing, bioinformatics analysis and qPCR were conducted in SH-SY5Y cells following SYNJ1 gene knockdown to identify its downstream pathways, which revealed decreased expression of TSP-1 involving extracellular matrix pathways. The virtual protein-protein docking further suggested a potential interaction between the SYNJ1 and TSP-1 proteins. This was followed by the identification of a SYNJ1-dependent TSP-1 expression model in two PD models. The coimmunoprecipitation experiment verified that the interaction between SYNJ1 and TSP-1 was attenuated in 11-month-old hSNCA*A53T-Tg mice compared to normal controls. Our findings suggest that overexpression of SYNJ1 may protect hSNCA*A53T-Tg and MPTP-induced mice by upregulating TSP-1 expression, which is involved in the extracellular matrix pathways. This suggests that SYNJ1 could be a potential therapeutic target for PD, though more research is needed to understand its mechanism.
Collapse
Affiliation(s)
- Yueqin Tian
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Shang Yi
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Wanyun Guo
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Cuilian Feng
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Xiufen Zhang
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Huateng Dong
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Kaitao Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Runtong Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Min Gan
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Haiting Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China; Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| |
Collapse
|
33
|
García-Carmona JA, Amores-Iniesta J, Soler-Usero J, Cerdán-Sánchez M, Navarro-Zaragoza J, López-López M, Soria-Torrecillas JJ, Ballesteros-Arenas A, Pérez-Vicente JA, Almela P. Upregulation of Heat-Shock Protein (hsp)-27 in a Patient with Heterozygous SPG11 c.1951C>T and SYNJ1 c.2614G>T Mutations Causing Clinical Spastic Paraplegia. Genes (Basel) 2023; 14:1320. [PMID: 37510225 PMCID: PMC10379220 DOI: 10.3390/genes14071320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
We report a 49-year-old patient suffering from spastic paraplegia with a novel heterozygous mutation and analyzed the levels of heat shock proteins (hsp)-27, dopamine (DA), and its metabolites in their cerebrospinal fluid (CSF). The hsp27 protein concentration in the patient's CSF was assayed by an ELISA kit, while DA levels and its metabolites in the CSF, 3,4-dihydroxyphenylacetic acid (DOPAC), Cys-DA, and Cys-DOPA were measured by HPLC. Whole exome sequencing demonstrated SPG-11 c.1951C>T and novel SYNJ1 c.2614G>T mutations, both heterozygous recessive. The patient's DA and DOPAC levels in their CSF were significantly decreased (53.0 ± 6.92 and 473.3 ± 72.19, p < 0.05, respectively) while no differences were found in their Cys-DA. Nonetheless, Cys-DA/DOPAC ratio (0.213 ± 0.024, p < 0.05) and hsp27 levels (1073.0 ± 136.4, p < 0.05) were significantly higher. To the best of our knowledge, the c.2614G>T SYNJ1 mutation has not been previously reported. Our patient does not produce fully functional spatacsin and synaptojanin-1 proteins. In this line, our results showed decreased DA and DOPAC levels in the patient's CSF, indicating loss of DAergic neurons. Many factors have been described as being responsible for the increased cys-DA/DOPAC ratio, such as MAO inhibition and decreased antioxidant activity in DAergic neurons which would increase catecholquinones and consequently cysteinyl-catechols. In conclusion, haploinsufficiency of spatacsin and synaptojanin-1 proteins might be the underlying cause of neurodegeneration produced by protein trafficking defects, DA vesicle trafficking/recycling processes, autophagy dysfunction, and cell death leading to hsp27 upregulation as a cellular mechanism of protection and/or to balance impaired protein trafficking.
Collapse
Affiliation(s)
- Juan Antonio García-Carmona
- Department of Neurology, Santa Lucia University Hospital, 30202 Cartagena, Spain
- Group of Clinical & Experimental Pharmacology, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
| | - Joaquín Amores-Iniesta
- Department of Animal Health, University of Murcia, 30100 Murcia, Spain
- Group of Mycoplasmosis, Epidemiology and Pathogen-Host Interaction, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
| | - José Soler-Usero
- Department of Biology and Biochemistry, University of Castilla-León, 09001 Burgos, Spain
| | - María Cerdán-Sánchez
- Department of Neurology, Santa Lucia University Hospital, 30202 Cartagena, Spain
| | - Javier Navarro-Zaragoza
- Group of Clinical & Experimental Pharmacology, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
- Department of Pharmacology, University of Murcia, 30100 Murcia, Spain
| | - María López-López
- Department of Neurology, Santa Lucia University Hospital, 30202 Cartagena, Spain
| | | | | | | | - Pilar Almela
- Group of Clinical & Experimental Pharmacology, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
- Department of Pharmacology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
34
|
Grochowska MM, Ferraro F, Mascaro AC, Natale D, Winkelaar A, Boumeester V, Breedveld GJ, Bonifati V, Mandemakers W. deCLUTTER2+ - a pipeline to analyze calcium traces in a stem cell model for ventral midbrain patterned astrocytes. Dis Model Mech 2023; 16:dmm049980. [PMID: 37260295 PMCID: PMC10309582 DOI: 10.1242/dmm.049980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Astrocytes are the most populous cell type of the human central nervous system and are essential for physiological brain function. Increasing evidence suggests multiple roles for astrocytes in Parkinson's disease, nudging a shift in the research focus, which historically pivoted around ventral midbrain dopaminergic neurons (vmDANs). Studying human astrocytes and other cell types in vivo remains challenging. However, in vitro-reprogrammed human stem cell-based models provide a promising alternative. Here, we describe a novel protocol for astrocyte differentiation from human stem cell-derived vmDAN-generating progenitors. This protocol simulates the regionalization, gliogenic switch, radial migration and final differentiation that occur in the developing human brain. We characterized the morphological, molecular and functional features of these ventral midbrain patterned astrocytes with a broad palette of techniques and identified novel candidate midbrain-astrocyte specific markers. In addition, we developed a new pipeline for calcium imaging data analysis called deCLUTTER2+ (deconvolution of Ca2+ fluorescent patterns) that can be used to discover spontaneous or cue-dependent patterns of Ca2+ transients. Altogether, our protocol enables the characterization of the functional properties of human ventral midbrain patterned astrocytes under physiological conditions and in disease.
Collapse
Affiliation(s)
- Martyna M. Grochowska
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Federico Ferraro
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Ana Carreras Mascaro
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Domenico Natale
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Amber Winkelaar
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Valerie Boumeester
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Guido J. Breedveld
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Wim Mandemakers
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| |
Collapse
|
35
|
Zheng J, Deng Y, Wei Z, Zou H, Wen X, Cai J, Zhang S, Jia B, Lu M, Lu K, Lin Y. Lipid phosphatase SAC1 suppresses hepatitis B virus replication through promoting autophagic degradation of virions. Antiviral Res 2023; 213:105601. [PMID: 37068596 DOI: 10.1016/j.antiviral.2023.105601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/19/2023]
Abstract
Phosphatidylinositol lipids play vital roles in lipid signal transduction, membrane recognition, vesicle transport, and viral replication. Previous studies have revealed that SAC1-like phosphatidylinositol phosphatase (SACM1L/SAC1), which uses phosphatidylinositol-4-phosphate (PI4P) as its substrate, greatly affects the replication of certain bacteria and viruses in vitro. However, it remains unclear whether and how SAC1 modulates hepatitis B virus (HBV) replication in vitro and in vivo. In the present study, we observed that SAC1 silencing significantly increased HBV DNA replication, subviral particle (SVP) expression, and secretion of HBV virions, whereas SAC1 overexpression exerted the opposite effects. Moreover, SAC1 overexpression inhibited HBV DNA replication and SVP expression in a hydrodynamic injection-based HBV-persistent replicating mouse model. Mechanistically, SAC1 silencing increased the number of HBV-containing autophagosomes as well as PI4P levels on the autophagosome membrane. Moreover, SAC1 silencing blocked autophagosome-lysosome fusion by inhibiting the interaction between synaptosomal-associated protein 29 and vesicle-associated membrane protein 8. Collectively, our data indicate that SAC1 significantly inhibits HBV replication by promoting the autophagic degradation of HBV virions. Our findings support that SAC1-mediated phospholipid metabolism greatly modulates certain steps of the HBV life-cycle and provide a new theoretical basis for antiviral therapy.
Collapse
Affiliation(s)
- Jiaxin Zheng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yingying Deng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zhen Wei
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiang Wen
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jia Cai
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shujun Zhang
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bei Jia
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
36
|
Danics L, Abbas AA, Kis B, Pircs K. Fountain of youth—Targeting autophagy in aging. Front Aging Neurosci 2023; 15:1125739. [PMID: 37065462 PMCID: PMC10090449 DOI: 10.3389/fnagi.2023.1125739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
As our society ages inexorably, geroscience and research focusing on healthy aging is becoming increasingly urgent. Macroautophagy (referred to as autophagy), a highly conserved process of cellular clearance and rejuvenation has attracted much attention due to its universal role in organismal life and death. Growing evidence points to autophagy process as being one of the key players in the determination of lifespan and health. Autophagy inducing interventions show significant improvement in organismal lifespan demonstrated in several experimental models. In line with this, preclinical models of age-related neurodegenerative diseases demonstrate pathology modulating effect of autophagy induction, implicating its potential to treat such disorders. In humans this specific process seems to be more complex. Recent clinical trials of drugs targeting autophagy point out some beneficial effects for clinical use, although with limited effectiveness, while others fail to show any significant improvement. We propose that using more human-relevant preclinical models for testing drug efficacy would significantly improve clinical trial outcomes. Lastly, the review discusses the available cellular reprogramming techniques used to model neuronal autophagy and neurodegeneration while exploring the existing evidence of autophagy’s role in aging and pathogenesis in human-derived in vitro models such as embryonic stem cells (ESCs), induced pluripotent stem cell derived neurons (iPSC-neurons) or induced neurons (iNs).
Collapse
Affiliation(s)
- Lea Danics
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Anna Anoir Abbas
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Balázs Kis
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Karolina Pircs
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- *Correspondence: Karolina Pircs,
| |
Collapse
|
37
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
38
|
Balusu S, Praschberger R, Lauwers E, De Strooper B, Verstreken P. Neurodegeneration cell per cell. Neuron 2023; 111:767-786. [PMID: 36787752 DOI: 10.1016/j.neuron.2023.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
The clinical definition of neurodegenerative diseases is based on symptoms that reflect terminal damage of specific brain regions. This is misleading as it tells little about the initial disease processes. Circuitry failures that underlie the clinical symptomatology are themselves preceded by clinically mostly silent, slowly progressing multicellular processes that trigger or are triggered by the accumulation of abnormally folded proteins such as Aβ, Tau, TDP-43, and α-synuclein, among others. Methodological advances in single-cell omics, combined with complex genetics and novel ways to model complex cellular interactions using induced pluripotent stem (iPS) cells, make it possible to analyze the early cellular phase of neurodegenerative disorders. This will revolutionize the way we study those diseases and will translate into novel diagnostics and cell-specific therapeutic targets, stopping these disorders in their early track before they cause difficult-to-reverse damage to the brain.
Collapse
Affiliation(s)
- Sriram Balusu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Roman Praschberger
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Elsa Lauwers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium; UK Dementia Research Institute, London, UK.
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
39
|
Ng XY, Wu Y, Lin Y, Yaqoob SM, Greene LE, De Camilli P, Cao M. Mutations in Parkinsonism-linked endocytic proteins synaptojanin1 and auxilin have synergistic effects on dopaminergic axonal pathology. NPJ Parkinsons Dis 2023; 9:26. [PMID: 36792618 PMCID: PMC9932162 DOI: 10.1038/s41531-023-00465-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by defective dopaminergic (DAergic) input to the striatum. Mutations in two genes encoding synaptically enriched clathrin-uncoating factors, synaptojanin 1 (SJ1) and auxilin, have been implicated in atypical Parkinsonism. SJ1 knock-in (SJ1-KIRQ) mice carrying a disease-linked mutation display neurological manifestations reminiscent of Parkinsonism. Here we report that auxilin knockout (Aux-KO) mice display dystrophic changes of a subset of nigrostriatal DAergic terminals similar to those of SJ1-KIRQ mice. Furthermore, Aux-KO/SJ1-KIRQ double mutant mice have shorter lifespan and more severe synaptic defects than single mutant mice. These include increase in dystrophic striatal nerve terminals positive for DAergic markers and for the PD risk protein SV2C, as well as adaptive changes in striatal interneurons. The synergistic effect of the two mutations demonstrates a special lability of DAergic neurons to defects in clathrin uncoating, with implications for PD pathogenesis in at least some forms of this condition.
Collapse
Affiliation(s)
- Xin Yi Ng
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Yumei Wu
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Youneng Lin
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Sidra Mohamed Yaqoob
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lois E Greene
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mian Cao
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore.
- Department of Physiology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
40
|
Bademosi AT, Decet M, Kuenen S, Calatayud C, Swerts J, Gallego SF, Schoovaerts N, Karamanou S, Louros N, Martin E, Sibarita JB, Vints K, Gounko NV, Meunier FA, Economou A, Versées W, Rousseau F, Schymkowitz J, Soukup SF, Verstreken P. EndophilinA-dependent coupling between activity-induced calcium influx and synaptic autophagy is disrupted by a Parkinson-risk mutation. Neuron 2023; 111:1402-1422.e13. [PMID: 36827984 PMCID: PMC10166451 DOI: 10.1016/j.neuron.2023.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutations in the disordered loop, including a Parkinson disease-risk mutation, render EndoA insensitive to neuronal stimulation and affect protein dynamics: when EndoA is more flexible, its mobility in membrane nanodomains increases, making it available for autophagosome formation. Conversely, when EndoA is more rigid, its mobility reduces, blocking stimulation-induced autophagy. Balanced stimulation-induced autophagy is required for dopagminergic neuron survival, and a variant in the human ENDOA1 disordered loop conferring risk to Parkinson disease also blocks nanodomain protein mobility and autophagy both in vivo and in human-induced dopaminergic neurons. Thus, we reveal a mechanism that neurons use to connect neuronal activity to local autophagy and that is critical for neuronal survival.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Marianna Decet
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Carles Calatayud
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Nikolaos Louros
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Ella Martin
- VIB-VUB Center for Structural Biology, Brussels 1050, Belgium; Department of Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, F-33000 Bordeaux, France
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; VIB Bio Core, KU Leuven, Leuven 3000, Belgium
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; VIB Bio Core, KU Leuven, Leuven 3000, Belgium
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Brussels 1050, Belgium; Department of Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | | | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium.
| |
Collapse
|
41
|
Jacquemyn J, Kuenen S, Swerts J, Pavie B, Vijayan V, Kilic A, Chabot D, Wang YC, Schoovaerts N, Corthout N, Verstreken P. Parkinsonism mutations in DNAJC6 cause lipid defects and neurodegeneration that are rescued by Synj1. NPJ Parkinsons Dis 2023; 9:19. [PMID: 36739293 PMCID: PMC9899244 DOI: 10.1038/s41531-023-00459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/16/2023] [Indexed: 02/06/2023] Open
Abstract
Recent evidence links dysfunctional lipid metabolism to the pathogenesis of Parkinson's disease, but the mechanisms are not resolved. Here, we generated a new Drosophila knock-in model of DNAJC6/Auxilin and find that the pathogenic mutation causes synaptic dysfunction, neurological defects and neurodegeneration, as well as specific lipid metabolism alterations. In these mutants, membrane lipids containing long-chain polyunsaturated fatty acids, including phosphatidylinositol lipid species that are key for synaptic vesicle recycling and organelle function, are reduced. Overexpression of another protein mutated in Parkinson's disease, Synaptojanin-1, known to bind and metabolize specific phosphoinositides, rescues the DNAJC6/Auxilin lipid alterations, the neuronal function defects and neurodegeneration. Our work reveals a functional relation between two proteins mutated in Parkinsonism and implicates deregulated phosphoinositide metabolism in the maintenance of neuronal integrity and neuronal survival.
Collapse
Affiliation(s)
- Julie Jacquemyn
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- Neuroscience and Mental Health Institute, University of Alberta, Department of Physiology, Department of Cell Biology, Group on Molecular and Cell Biology of Lipids, Edmonton, Alberta, Canada
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Benjamin Pavie
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- VIB-Bioimaging Core, 3000, Leuven, Belgium
| | - Vinoy Vijayan
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Ayse Kilic
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Dries Chabot
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Yu-Chun Wang
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- VIB Technology Watch, Technology Innovation Laboratory, VIB, Gent, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- VIB-Bioimaging Core, 3000, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium.
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium.
| |
Collapse
|
42
|
Dou C, Zhang Y, Zhang L, Qin C. Autophagy and autophagy-related molecules in neurodegenerative diseases. Animal Model Exp Med 2023; 6:10-17. [PMID: 35730702 PMCID: PMC9986236 DOI: 10.1002/ame2.12229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 11/07/2022] Open
Abstract
Autophagy is one of the degradation pathways to remove proteins or damaged organelles in cells that plays an important role in neuroprotection. Different stages of autophagy are regulated by autophagy-related genes, and many molecules such as transcription factor EB (TFEB) are involved. The complete autophagy process plays an important role in maintaining the dynamic balance of autophagy and is crucial to the homeostasis of intracellular substance and energy metabolism. Autophagy balance is disrupted in neurodegenerative diseases, accounting for a variety of degeneration disorders. These impairments can be alleviated or treated by the regulation of autophagy through molecules such as TFEB.
Collapse
Affiliation(s)
- Changsong Dou
- NHC Key Laboratory of Human Disease Comparative Medicine, Key Laboratory of Human Diseases Animal Model, Institute of Laboratory Animal Sciences, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yu Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Key Laboratory of Human Diseases Animal Model, Institute of Laboratory Animal Sciences, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Key Laboratory of Human Diseases Animal Model, Institute of Laboratory Animal Sciences, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Key Laboratory of Human Diseases Animal Model, Institute of Laboratory Animal Sciences, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|
43
|
Saenz J, Yao O, Khezerlou E, Aggarwal M, Zhou X, Barker DJ, DiCicco-Bloom E, Pan PY. Cocaine-regulated trafficking of dopamine transporters in cultured neurons revealed by a pH sensitive reporter. iScience 2023; 26:105782. [PMID: 36594015 PMCID: PMC9804146 DOI: 10.1016/j.isci.2022.105782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cocaine acts by inhibiting plasma membrane dopamine transporter (DAT) function and altering its surface expression. The precise manner and mechanism by which cocaine regulates DAT trafficking, especially at neuronal processes, are poorly understood. In this study, we engineered and validated the use of DAT-pHluorin for studying DAT localization and its dynamic trafficking at neuronal processes of cultured mouse midbrain neurons. We demonstrate that unlike neuronal soma and dendrites, which contain a majority of the DATs in weakly acidic intracellular compartments, axonal DATs at both shafts and boutons are primarily (75%) localized to the plasma membrane, whereas large varicosities contain abundant intracellular DAT within acidic intracellular structures. We also demonstrate that cocaine exposure leads to a Synaptojanin1-sensitive DAT internalization process followed by membrane reinsertion that lasts for days. Thus, our study reveals the previously unknown dynamics and molecular regulation for cocaine-regulated DAT trafficking in neuronal processes.
Collapse
Affiliation(s)
- Jacqueline Saenz
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
- Rutgers Graduate School of Biomedical Sciences, Molecular Biosciences Graduate Program, Piscataway, NJ 08854, USA
| | - Oscar Yao
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Elnaz Khezerlou
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Meha Aggarwal
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Xiaofeng Zhou
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - David J. Barker
- Rutgers, The State University of New Jersey, Department of Psychology, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Emanuel DiCicco-Bloom
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ping-Yue Pan
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| |
Collapse
|
44
|
Bademosi AT, Meunier FA. Unveiling the Nanoscale Dynamics of the Exocytic Machinery in Chromaffin Cells with Single-Molecule Imaging. Methods Mol Biol 2023; 2565:311-327. [PMID: 36205903 DOI: 10.1007/978-1-0716-2671-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neuronal and hormonal communication relies on the exocytic fusion of vesicles containing neurotransmitters and hormones with the plasma membrane. This process is tightly regulated by key protein-protein and protein-lipid interactions and culminates in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation and zippering that promotes vesicular fusion. Located on both sides of the vesicle and the plasma membrane, the zippering of the SNARE complex acts to overcome the energy barrier afforded by the repulsive electrostatic force stemming from apposing two negatively charged phospholipid membranes. Another component opposing the timely organization of the fusion machinery is thermal Brownian energy that tends to homogenize all cellular molecules by constantly switching their motions and directions through short-lived molecular interactions. Much less is known of the mechanisms counteracting these chaotic forces, allowing seamless cellular functions such as exocytic fusion. Super-resolution microscopy techniques such as single-molecule imaging have proven useful to start uncovering these nanoscale mechanisms. Here, we used single-particle tracking photoactivatable localization microscopy (sptPALM) to track syntaxin-1-mEos, a SNARE protein located on the plasma membrane of cultured bovine chromaffin cells. We demonstrate that syntaxin-1-mEos undergoes dramatic change in its mobility in response to secretagogue stimulation leading to increased nanoclustering. These nanoclusters are transient in nature and likely to provide docked vesicles with a molecular environment conducive to exocytic fusion.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia.
| |
Collapse
|
45
|
Kulkarni VV, Stempel MH, Anand A, Sidibe DK, Maday S. Retrograde Axonal Autophagy and Endocytic Pathways Are Parallel and Separate in Neurons. J Neurosci 2022; 42:8524-8541. [PMID: 36167783 PMCID: PMC9665928 DOI: 10.1523/jneurosci.1292-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Autophagy and endocytic trafficking are two key pathways that regulate the composition and integrity of the neuronal proteome. Alterations in these pathways are sufficient to cause neurodevelopmental and neurodegenerative disorders. Thus, defining how autophagy and endocytic pathways are organized in neurons remains a key area of investigation. These pathways share many features and converge on lysosomes for cargo degradation, but what remains unclear is the degree to which the identity of each pathway is preserved in each compartment of the neuron. Here, we elucidate the degree of intersection between autophagic and endocytic pathways in axons of primary mouse cortical neurons of both sexes. Using microfluidic chambers, we labeled newly-generated bulk endosomes and signaling endosomes in the distal axon, and systematically tracked their trajectories, molecular composition, and functional characteristics relative to autophagosomes. We find that newly-formed endosomes and autophagosomes both undergo retrograde transport in the axon, but as distinct organelle populations. Moreover, these pathways differ in their degree of acidification and association with molecular determinants of organelle maturation. These results suggest that the identity of autophagic and newly endocytosed organelles is preserved for the length of the axon. Lastly, we find that expression of a pathogenic form of α-synuclein, a protein enriched in presynaptic terminals, increases merging between autophagic and endocytic pathways. Thus, aberrant merging of these pathways may represent a mechanism contributing to neuronal dysfunction in Parkinson's disease (PD) and related α-synucleinopathies.SIGNIFICANCE STATEMENT Autophagy and endocytic trafficking are retrograde pathways in neuronal axons that fulfill critical degradative and signaling functions. These pathways share many features and converge on lysosomes for cargo degradation, but the extent to which the identity of each pathway is preserved in axons is unclear. We find that autophagosomes and endosomes formed in the distal axon undergo retrograde transport to the soma in parallel and separate pathways. These pathways also have distinct maturation profiles along the mid-axon, further highlighting differences in the potential fate of transported cargo. Strikingly, expression of a pathogenic variant of α-synuclein increases merging between autophagic and endocytic pathways, suggesting that mis-sorting of axonal cargo may contribute to neuronal dysfunction in Parkinson's disease (PD) and related α-synucleinopathies.
Collapse
Affiliation(s)
- Vineet Vinay Kulkarni
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Max Henry Stempel
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Anip Anand
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David Kader Sidibe
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
46
|
Jimenez-Sanchez M, Pampliega O, Soukup SF. Editorial: Autophagy in the central nervous system: Focus on neurons, glia and neuron-glia interactions. Front Cell Dev Biol 2022; 10:1036587. [PMID: 36313555 PMCID: PMC9599740 DOI: 10.3389/fcell.2022.1036587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Maria Jimenez-Sanchez
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Olatz Pampliega
- Departamento de Neurociencias, Achucarro Basque Center for Neurosciences, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | | |
Collapse
|
47
|
Berth SH, Rich DJ, Lloyd TE. The role of autophagic kinases in regulation of axonal function. Front Cell Neurosci 2022; 16:996593. [PMID: 36226074 PMCID: PMC9548526 DOI: 10.3389/fncel.2022.996593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Autophagy is an essential process for maintaining cellular homeostasis. Highlighting the importance of proper functioning of autophagy in neurons, disruption of autophagy is a common finding in neurodegenerative diseases. In recent years, evidence has emerged for the role of autophagy in regulating critical axonal functions. In this review, we discuss kinase regulation of autophagy in neurons, and provide an overview of how autophagic kinases regulate axonal processes, including axonal transport and axonal degeneration and regeneration. We also examine mechanisms for disruption of this process leading to neurodegeneration, focusing on the role of TBK1 in pathogenesis of Amyotrophic Lateral Sclerosis.
Collapse
|
48
|
Molecular Mechanism and Regulation of Autophagy and Its Potential Role in Epilepsy. Cells 2022; 11:cells11172621. [PMID: 36078029 PMCID: PMC9455075 DOI: 10.3390/cells11172621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an evolutionally conserved degradation mechanism for maintaining cell homeostasis whereby cytoplasmic components are wrapped in autophagosomes and subsequently delivered to lysosomes for degradation. This process requires the concerted actions of multiple autophagy-related proteins and accessory regulators. In neurons, autophagy is dynamically regulated in different compartments including soma, axons, and dendrites. It determines the turnover of selected materials in a spatiotemporal control manner, which facilitates the formation of specialized neuronal functions. It is not surprising, therefore, that dysfunctional autophagy occurs in epilepsy, mainly caused by an imbalance between excitation and inhibition in the brain. In recent years, much attention has been focused on how autophagy may cause the development of epilepsy. In this article, we overview the historical landmarks and distinct types of autophagy, recent progress in the core machinery and regulation of autophagy, and biological roles of autophagy in homeostatic maintenance of neuronal structures and functions, with a particular focus on synaptic plasticity. We also discuss the relevance of autophagy mechanisms to the pathophysiology of epileptogenesis.
Collapse
|
49
|
Bellucci A, Longhena F, Spillantini MG. The Role of Rab Proteins in Parkinson's Disease Synaptopathy. Biomedicines 2022; 10:biomedicines10081941. [PMID: 36009486 PMCID: PMC9406004 DOI: 10.3390/biomedicines10081941] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/29/2022] Open
Abstract
In patients affected by Parkinson's disease (PD), the most common neurodegenerative movement disorder, the brain is characterized by the loss of dopaminergic neurons in the nigrostriatal system, leading to dyshomeostasis of the basal ganglia network activity that is linked to motility dysfunction. PD mostly arises as an age-associated sporadic disease, but several genetic forms also exist. Compelling evidence supports that synaptic damage and dysfunction characterize the very early phases of either sporadic or genetic forms of PD and that this early PD synaptopathy drives retrograde terminal-to-cell body degeneration, culminating in neuronal loss. The Ras-associated binding protein (Rab) family of small GTPases, which is involved in the maintenance of neuronal vesicular trafficking, synaptic architecture and function in the central nervous system, has recently emerged among the major players in PD synaptopathy. In this manuscript, we provide an overview of the main findings supporting the involvement of Rabs in either sporadic or genetic PD pathophysiology, and we highlight how Rab alterations participate in the onset of early synaptic damage and dysfunction.
Collapse
Affiliation(s)
- Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-0303-717-380
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| |
Collapse
|
50
|
Sidibe DK, Vogel MC, Maday S. Organization of the autophagy pathway in neurons. Curr Opin Neurobiol 2022; 75:102554. [PMID: 35649324 PMCID: PMC9990471 DOI: 10.1016/j.conb.2022.102554] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/18/2023]
Abstract
Macroautophagy (hereafter referred to as autophagy) is an essential quality-control pathway in neurons, which face unique functional and morphological challenges in maintaining the integrity of organelles and the proteome. To overcome these challenges, neurons have developed compartment-specific pathways for autophagy. In this review, we discuss the organization of the autophagy pathway, from autophagosome biogenesis, trafficking, to clearance, in the neuron. We dissect the compartment-specific mechanisms and functions of autophagy in axons, dendrites, and the soma. Furthermore, we highlight examples of how steps along the autophagy pathway are impaired in the context of aging and neurodegenerative disease, which underscore the critical importance of autophagy in maintaining neuronal function and survival.
Collapse
Affiliation(s)
- David K Sidibe
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria C Vogel
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|