1
|
Liu W, Rao X, Sun W, Chen X, Yu L, Zhang J, Chen J, Zheng X. The neuroinflammatory role of microRNAs in Alzheimer's disease: pathological insights to therapeutic potential. Mol Cell Biochem 2025; 480:2689-2706. [PMID: 39567427 DOI: 10.1007/s11010-024-05164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia, contributing to around 60-80% of cases. The main pathophysiology of AD is characterized by an abnormal accumulation of protein aggregates extracellularly (beta-amyloid plaques) and intracellularly (neurofibrillary tangles of hyperphosphorylated tau). However, an increasing number of studies have also suggested neuroinflammation may have a crucial role in precipitating the cascade reactions that result in the development of AD neuropathology. In particular, several studies indicate microRNAs (miRNAs) can act as regulatory factors for neuroinflammation in AD, with potential to affect the occurrence and/or progression of AD inflammation by targeting the expression of multiple genes. Therefore, miRNAs may have potential as therapeutic targets for AD, which requires more research. This article will review the existing studies on miRNAs that have been identified to regulate neuroinflammation, aiming to gain further insights into the specific regulatory processes of miRNAs, highlight the diagnostic and therapeutic potential of miRNAs as biomarkers in AD, as well as current challenges, and suggest the further work to bridge the gap in knowledge to utilize miRNAs as therapeutic targets for AD.
Collapse
Affiliation(s)
- Wenjia Liu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xin Rao
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Wen Sun
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaodong Chen
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Liyang Yu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiangtao Zhang
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| | - Jiong Chen
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xiaorong Zheng
- Blood Purification Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| |
Collapse
|
2
|
Kaur V, Sunkaria A. Unlocking the therapeutic promise of miRNAs in promoting amyloid-β clearance for Alzheimer's disease. Behav Brain Res 2025; 484:115505. [PMID: 40010509 DOI: 10.1016/j.bbr.2025.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects cognition and behavior, accounting for 60-70 % of dementia cases. Its mechanisms involve amyloid aggregates, hyperphosphorylated tau tangles, and loss of neural connections. Current treatments have limited efficacy due to a lack of specific targets. Recently, microRNAs (miRNAs) have emerged as key modulators in AD, regulating gene expression through interactions with mRNA. Dysregulation of specific miRNAs contributes to disease progression by disrupting clearance pathways. Antisense oligonucleotide (ASO)-based therapies show promise for AD treatment, particularly when combined with miRNA mimics or antagonists, targeting complex regulatory networks. However, miRNAs can interact with each other, complicating cellular processes and potentially leading to side effects. Our review emphasizes the role of miRNAs in regulating amyloid-beta (Aβ) clearance and highlights their potential as therapeutic targets and early biomarkers for AD, underscoring the need for further research to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Vajinder Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
3
|
Kaurani L, Pradhan R, Schröder S, Burkhardt S, Schuetz AL, Krüger DM, Pena T, Heutink P, Sananbenesi F, Fischer A. A role for astrocytic miR-129-5p in frontotemporal dementia. Transl Psychiatry 2025; 15:142. [PMID: 40216778 PMCID: PMC11992244 DOI: 10.1038/s41398-025-03338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Frontotemporal dementia is a debilitating neurodegenerative disorder characterized by frontal and temporal lobe degeneration, resulting in behavioral changes, language difficulties, and cognitive decline. In this study, smallRNA sequencing was conducted on postmortem brain tissues obtained from the frontal and temporal of FTD patients with GRN, MAPT, or C9ORF72 mutations. Our analysis identified miR-129-5p as consistently deregulated across all analyzed mutation conditions and brain regions. Functional investigations in in-vitro models revealed a novel role of miR-129-5p in astrocytes, where its loss led to neuroinflammation and impaired neuronal support functions, including reduced glutamate uptake. Depletion of miR-129-5p in astrocytes also resulted in the loss of neuronal spines and altered neuronal network activity in a cell culture system. These findings highlight miR-129-5p as a potential therapeutic target in neurodegenerative diseases and also sheds light on the role of astrocytes in Frontotemporal dementia pathogenesis.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.
| | - Ranjit Pradhan
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Sophie Schröder
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anna-Lena Schuetz
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Dennis M Krüger
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tonatiuh Pena
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.
| | - Andre Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Bahmani Kolour P, Ghazvini H, Naderi M, Ghalehnoei H, Rezaei Talarposhti M. Effects of memantine and donepezil on social memory, anxiety-like behavior and the expression levels of microRNA-124, microRNA-125b, and microRNA-132 in scopolamine-induced memory impairment in rats. Neurol Res 2025; 47:306-317. [PMID: 40028750 DOI: 10.1080/01616412.2025.2472848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/22/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Almost all physiological processes are modulated by microRNAs, therefore, dysregulation of these small regulatory RNAs is observed in a variety of diseases, including cognitive impairments. METHODS In this study, 40 male Wistar rats were randomly divided into five groups of control, scopolamine, donepezil, memantine, and combined administration of donepezil + memantine. Rats in scopolamine, donepezil, memantine, and combined administration of donepezil + memantine groups received scopolamine (1 mg/kg-intraperitoneal) for 7 days. After the last administration of scopolamine, was started injecting donepezil (3 mg/kg-i.p.), memantine (10 mg/kg-i.p.), and combined administration of Donepezil + Memantine (0.5 mg/kg and 5 mg/kg-i.p., respectively), up to 21 days. Twenty-four hours after the last injection, elevated plus-maze, social interaction, open field tests, and gene expression analysis of miR-124, miR-125b, and miR-132 in the hippocampus were carried out. RESULTS The results of the behavioral tests indicate that donepezil and memantine significantly prevented Scopolamine-induced anxiety, sociability, and social memory decline. The gene expression of selected microRNAs did not significantly differ between the groups. DISCUSSION This study revealed that donepezil and memantine effectively prevent synaptic plasticity disruption and cognitive decline induced by scopolamine. Findings indicated that this treatment is unrelated to the expression of the selected microRNAs. The positive effects of memantine and donepezil depend on age, dosages, cognitive task demands, and possibly the length and timing of the treatment.
Collapse
Affiliation(s)
- Pouria Bahmani Kolour
- Department of Medical Biotechnology, Molecular and Cell Biology Research Center, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Ghazvini
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mobin Naderi
- Department of Medical Biotechnology, Molecular and Cell Biology Research Center, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ghalehnoei
- Department of Medical Biotechnology, Molecular and Cell Biology Research Center, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoumeh Rezaei Talarposhti
- Department of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Kumari A, Rahaman A, Zeng XA, Baloch Z. Therapeutic potential and microRNA regulating properties of phytochemicals in Alzheimer's disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102439. [PMID: 40114707 PMCID: PMC11925107 DOI: 10.1016/j.omtn.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly and is characterized by the aggregation of Aβ (peptide) and neurofibrillary tangles along with inflammatory processes. Aging is a significant driver of these alterations, and dementia is a major cause of disability and mortality. Despite extensive clinical trials over the past two decades, no effective drug has been developed to improve AD symptoms or slow its progression, indicating the inefficiency of current treatment targets. In AD development, the molecular microenvironment plays a significant role. MicroRNAs (miRNAs) are a key component of this microenvironment, regulate post-transcriptional gene expression, and are expressed more abundantly in the brain than in other tissues. Several dysregulated miRNAs in AD have been linked to neuropathological changes, such as plaque and tangle accrual, as well as altered expression of notorious molecules. Preclinical studies have confirmed the efficacy of phytochemicals/food bioactive compounds (PCs/FBCs) in regulating miRNA expression, which makes them immensely beneficial for targeting miRNA-altered expression patterns in neuronal diseases. This review highlights the potential of miRNAs in driving AD pathology and its development. Furthermore, it discusses the therapeutic efficacy of PCs/FBCs and their miRNA-regulatory properties, especially focusing on antiinflammatory and antioxidant capacities for their development as effective AD agents.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Abdul Rahaman
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zulqarnain Baloch
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, Yunan, China
| |
Collapse
|
6
|
Feng Y, Cao S, Shi Y, Sun A, Flanagan ME, Leverenz JB, Pieper AA, Jung JU, Cummings J, Fang EF, Zhang P, Cheng F. Human herpesvirus-associated transposable element activation in human aging brains with Alzheimer's disease. Alzheimers Dement 2025; 21:e14595. [PMID: 39985481 PMCID: PMC11846481 DOI: 10.1002/alz.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Human herpesvirus (HHV) has been linked to Alzheimer's disease (AD), but the underlying mechanisms remain unknown. METHODS We leveraged functional genomics data from Religious Orders Study or the Rush Memory and Aging Project (ROS/MAP) and Mount Sinai Brain Bank (MSBB) brain biobanks and single-cell RNA-sequencing data from HHV-infected forebrain organoids to investigate HHV-infection-associated transposable element (TE) dysregulation underlying AD etiologies. RESULTS We identified widespread TE dysregulation in HHV-positive human AD brains, including an astrocyte-specific upregulation of LINE1 subfamily TEs in HHV-positive human AD brains. We further pinpointed astrocyte-specific LINE1 upregulation that could potentially regulate target gene NEAT1 expression via long-range enhancer-promoter chromatin interactions. This LINE1 dysregulation can be partially reversed by the usage of anti-HHV drugs (valacyclovir and acyclovir) in a virus-infected human brain organoid model. Finally, we demonstrated that valacyclovir rescued tau-associated neuropathology and alleviated LINE1 activation in an experimental tau aggregation model. DISCUSSION Our analysis provides associations linking molecular, clinical, and neuropathological AD features with HHV infection, which warrants future clinical validation. HIGHLIGHTS Via analysis of bulk RNA-seq data in two large-scale human brain biobanks, ROS/MAP (n = 109 pathologically confirmed AD and n = 44 cognitively healthy controls) and MSBB (n = 284 AD and n = 150 cognitively healthy controls), we identified widespread TE activation in HHV-positive human AD brains and significantly positive associations of HHV RNA abundance with APOE4 genotype, Braak staging score, and CERAD score. We identified cell type-specific LINE1 upregulation in both microglia and astrocytes of human AD brains via long-range enhancer-promoter chromatin interactions on lncRNA nuclear enriched abundant transcript 1 (NEAT1). We determined that usage of valacyclovir and acyclovir was significantly associated with reduced incidence of AD in a large real-world patient database. Using the HEK293 tau P301S model and U2OS mt-Keima cell model, we determined that valacyclovir treatment rescued tau-associated neuropathology and alleviated activation of LINE1 with increased cellular autophagy-level mechanistically supported clinical benefits of valacyclovir in real-world patient data.
Collapse
Affiliation(s)
- Yayan Feng
- Cleveland Clinic Genome Center, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Shu‐Qin Cao
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | - Yi Shi
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Anna Sun
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Margaret E. Flanagan
- Department of Pathology, Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - James B. Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Lou Ruvo Center for Brain Health, Neurological InstituteCleveland ClinicClevelandOhioUSA
| | - Andrew A. Pieper
- Harrington Discovery InstituteUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
- Department of PsychiatryCase Western Reserve UniversityClevelandOhioUSA
- Geriatric Psychiatry, GRECCLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
- Institute for Transformative Molecular Medicine, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of NeuroscienceCase Western Reserve University, School of MedicineClevelandOhioUSA
| | - Jae U. Jung
- Department of Cancer Biology, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Program of Infectious Biology, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of MedicineUniversity of Nevada Las VegasLas VegasNevadaUSA
| | - Evandro Fei Fang
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | - Pengyue Zhang
- Department of Biostatistics and Health Data ScienceIndiana UniversityIndianapolisIndianaUSA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
7
|
Wong Zhang DE, Gibson Hughes TA, Figueiredo Galvao HB, Lo C, Dinh QN, Zhang SR, Kim HA, Selvaraji S, Clarkson AN, Arumugam TV, Drummond G, Sobey CG, De Silva TM. Post-stroke cognitive impairment and brain hemorrhage are augmented in hypertensive mice. J Cereb Blood Flow Metab 2024; 44:1517-1534. [PMID: 38886874 PMCID: PMC11572097 DOI: 10.1177/0271678x241262127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Hypertension is a major risk factor for both stroke and cognitive impairment, but it is unclear whether it may specifically affect post-stroke cognitive impairment. We assessed the effect of hypertension and/or stroke on brain injury, cognitive outcome, and the brain transcriptomic profile. C57BL/6J mice (n = 117; 3-5 mo.) received s.c. infusion of either saline or angiotensin II followed by sham surgery or photothrombotic stroke targeting the prefrontal cortex seven days later. Cognitive function was assessed with the Barnes maze and RNA sequencing was used to quantify transcriptomic changes in the brain. Angiotensin II treatment produced spontaneous hemorrhaging after stroke. In the Barnes maze, hypertensive mice that received stroke surgery had an increased escape latency compared to other groups (day 3: hypertensive + stroke = 166.6 ± 6.0 s vs. hypertensive + sham = 122.8 ± 13.8 s vs. normotensive + stroke = 139.9 ± 10.1 s vs. normotensive + sham = 101.9 ± 16.7 s), consistent with impaired cognition. RNA sequencing revealed >1500 differentially expressed genes related to neuroinflammation in hypertensive + stroke vs. normotensive + stroke, which included genes associated with apoptosis, microRNAs, autophagy, anti-cognitive biomarkers and Wnt signaling. Overall, we show that the combination of hypertension and stroke resulted in greater learning impairment and brain injury.
Collapse
Affiliation(s)
- David E Wong Zhang
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Tayla A Gibson Hughes
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Hericka B Figueiredo Galvao
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Cecilia Lo
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Quynh Nhu Dinh
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Shenpeng R Zhang
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Hyun Ah Kim
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Sharmalee Selvaraji
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Andrew N Clarkson
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Thiruma V Arumugam
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Grant Drummond
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - T Michael De Silva
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
8
|
Alhenaky A, Alhazmi S, Alamri SH, Alkhatabi HA, Alharthi A, Alsaleem MA, Abdelnour SA, Hassan SM. Exosomal MicroRNAs in Alzheimer's Disease: Unveiling Their Role and Pioneering Tools for Diagnosis and Treatment. J Clin Med 2024; 13:6960. [PMID: 39598105 PMCID: PMC11594708 DOI: 10.3390/jcm13226960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents a significant health concern, often leading to substantial cognitive decline among older adults. A prominent feature of AD is progressive dementia, which eventually disrupts daily functioning and the ability to live independently. A major challenge in addressing AD is its prolonged pre-symptomatic phase, which makes early detection difficult. Moreover, the disease's complexity and the inefficiency of current diagnostic methods impede the development of targeted therapies. Therefore, there is an urgent need to enhance diagnostic methodologies for detection and treating AD even before clinical symptoms appear. Exosomes are nanoscale biovesicles secreted by cells, including nerve cells, into biofluids. These exosomes play essential roles in the central nervous system (CNS) by facilitating neuronal communication and thus influencing major physiological and pathological processes. Exosomal cargo, particularly microRNAs (miRNAs), are critical mediators in this cellular communication, and their dysregulation affects various pathological pathways related to neurodegenerative diseases, including AD. This review discusses the significant roles of exosomal miRNAs in the pathological mechanisms related to AD, focusing on the promising use of exosomal miRNAs as diagnostic biomarkers and targeted therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Alhanof Alhenaky
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Sultan H. Alamri
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mansour A. Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Sabah M. Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Princess Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11517, Egypt
| |
Collapse
|
9
|
Peng L, Zhang Z, Li Q, Song Z, Yan C, Ling H. Unveiling the multifaceted pathogenesis and therapeutic drugs of Alzheimer's disease: A comprehensive review. Heliyon 2024; 10:e39217. [PMID: 39629139 PMCID: PMC11612466 DOI: 10.1016/j.heliyon.2024.e39217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by the accumulation of β-amyloid (Aβ) plaques and tau phosphorylation-induced neurofibrillary tangles. This review comprehensively summarizes AD pathogenesis and related factors, drawing on a wealth of authoritative reports and research findings. Specifically, we delve into the intricate mechanisms underlying AD pathology, including Aβ deposition, tau protein phosphorylation, cholinergic dysfunction, neuroinflammation, mitochondrial oxidative stress, ferroptosis, imbalance in the gut microbiota, and microRNA dysregulation. We also explored the effects of these factors on the brain, including synaptic damage and cognitive impairment. Moreover, our review highlights the associations between the pathogenesis of AD and inflammatory cytokines in the peripheral blood and cerebrospinal fluid, dysbiosis of the gut microbiota, and changes in microRNA expression. Overall, we provided a systematic and illustrative overview of the pathogenesis and therapeutic drugs for AD, offering help in the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Liting Peng
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Zhiming Zhang
- Department of Anesthesiology, The First People's Hospital of Chenzhou, The Chenzhou Affiliated Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, Hunan, China
| | - Qi Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Zhenjiang Song
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Canqun Yan
- The Health Management Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hongyan Ling
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| |
Collapse
|
10
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Jia F, Han W, Gao S, Huang J, Zhao W, Lu Z, Zhao W, Li Z, Wang Z, Guo Y. Novel cuproptosis metabolism-related molecular clusters and diagnostic signature for Alzheimer's disease. Front Mol Biosci 2024; 11:1478611. [PMID: 39513039 PMCID: PMC11540791 DOI: 10.3389/fmolb.2024.1478611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder with no effective treatments available. There is growing evidence that cuproptosis contributes to the pathogenesis of this disease. This study developed a novel molecular clustering based on cuproptosis-related genes and constructed a signature for AD patients. Methods The differentially expressed cuproptosis-related genes (DECRGs) were identified using the DESeq2 R package. The GSEA, PPI network, GO, KEGG, and correlation analysis were conducted to explore the biological functions of DECRGs. Molecular clusters were performed using unsupervised cluster analysis. Differences in biological processes between clusters were evaluated by GSVA and immune infiltration analysis. The optimal model was constructed by WGCNA and machine learning techniques. Decision curve analysis, calibration curves, receiver operating characteristic (ROC) curves, and two additional datasets were employed to confirm the prediction results. Finally, immunofluorescence (IF) staining in AD mice models was used to verify the expression levels of risk genes. Results GSEA and CIBERSORT showed higher levels of resting NK cells, M2 macrophages, naïve CD4+ T cells, neutrophils, monocytes, and plasma cells in AD samples compared to controls. We classified 310 AD patients into two molecular clusters with distinct expression profiles and different immunological characteristics. The C1 subtype showed higher abundance of cuproptosis-related genes, with higher proportions of regulatory T cells, CD8+T cells, and resting dendritic cells. We subsequently constructed a diagnostic model which was confirmed by nomogram, calibration, and decision curve analysis. The values of area under the curves (AUC) were 0.738 and 0.931 for the external datasets, respectively. The expression levels of risk genes were further validated in mouse brain samples. Conclusion Our study provided potential targets for AD treatment, developed a promising gene signature, and offered novel insights for exploring the pathogenesis of AD.
Collapse
Affiliation(s)
- Fang Jia
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wanhong Han
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuangqi Gao
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianwei Huang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wujie Zhao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhenwei Lu
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenpeng Zhao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangyu Li
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Guo
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Penning A, Snoeck S, Garritsen O, Tosoni G, Hof A, de Boer F, van Hasenbroek J, Zhang L, Thrupp N, Craessaerts K, Fiers M, Salta E. NACC2, a molecular effector of miR-132 regulation at the interface between adult neurogenesis and Alzheimer's disease. Sci Rep 2024; 14:21163. [PMID: 39256511 PMCID: PMC11387632 DOI: 10.1038/s41598-024-72096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
The generation of new neurons at the hippocampal neurogenic niche, known as adult hippocampal neurogenesis (AHN), and its impairment, have been implicated in Alzheimer's disease (AD). MicroRNA-132 (miR-132), the most consistently downregulated microRNA (miRNA) in AD, was recently identified as a potent regulator of AHN, exerting multilayered proneurogenic effects in adult neural stem cells (NSCs) and their progeny. Supplementing miR-132 in AD mouse brain restores AHN and relevant memory deficits, yet the exact mechanisms involved are still unknown. Here, we identify NACC2 as a novel miR-132 target implicated in both AHN and AD. miR-132 deficiency in mouse hippocampus induces Nacc2 expression and inflammatory signaling in adult NSCs. We show that miR-132-dependent regulation of NACC2 is involved in the initial stages of human NSC differentiation towards astrocytes and neurons. Later, NACC2 function in astrocytic maturation becomes uncoupled from miR-132. We demonstrate that NACC2 is present in reactive astrocytes surrounding amyloid plaques in mouse and human AD hippocampus, and that there is an anticorrelation between miR-132 and NACC2 levels in AD and upon induction of inflammation. Unraveling the molecular mechanisms by which miR-132 regulates neurogenesis and cellular reactivity in AD, will provide valuable insights towards its possible application as a therapeutic target.
Collapse
Affiliation(s)
- Amber Penning
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Sarah Snoeck
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Oxana Garritsen
- UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Giorgia Tosoni
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Amber Hof
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Fleur de Boer
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | | - Lin Zhang
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nicky Thrupp
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | | | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Nateghi B, Keraudren R, Boulay G, Bazin M, Goupil C, Canet G, Loiselle A, St-Amour I, Planel E, Soulet D, Hébert SS. Beneficial effects of miR-132/212 deficiency in the zQ175 mouse model of Huntington's disease. Front Neurosci 2024; 18:1421680. [PMID: 39170678 PMCID: PMC11337869 DOI: 10.3389/fnins.2024.1421680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Huntington's disease (HD) is a rare genetic neurodegenerative disorder caused by an expansion of CAG repeats in the Huntingtin (HTT) gene. One hypothesis suggests that the mutant HTT gene contributes to HD neuropathology through transcriptional dysregulation involving microRNAs (miRNAs). In particular, the miR-132/212 cluster is strongly diminished in the HD brain. This study explores the effects of miR-132/212 deficiency specifically in adult HD zQ175 mice. The absence of miR-132/212 did not impact body weight, body temperature, or survival rates. Surprisingly, miR-132/212 loss seemed to alleviate, in part, the effects on endogenous Htt expression, HTT inclusions, and neuronal integrity in HD zQ175 mice. Additionally, miR-132/212 depletion led to age-dependent improvements in certain motor functions. Transcriptomic analysis revealed alterations in HD-related networks in WT- and HD zQ175-miR-132/212-deficient mice, including significant overlap in BDNF and Creb1 signaling pathways. Interestingly, however, a higher number of miR-132/212 gene targets was observed in HD zQ175 mice lacking the miR-132/212 cluster, especially in the striatum. These findings suggest a nuanced interplay between miR-132/212 expression and HD pathogenesis, providing potential insights into therapeutic interventions. Further investigation is needed to fully understand the underlying mechanisms and therapeutic potential of modulating miR-132/212 expression during HD progression.
Collapse
Affiliation(s)
- Behnaz Nateghi
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Remi Keraudren
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Gabriel Boulay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marc Bazin
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Claudia Goupil
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Geoffrey Canet
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Andréanne Loiselle
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
| | - Isabelle St-Amour
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale-Nationale, Québec, QC, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Denis Soulet
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Sébastien S. Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, CHUL, Québec, QC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
14
|
Nagaraj S, Quintanilla-Sánchez C, Ando K, Lopez-Gutierrez L, Doeraene E, Kosa AC, Aydin E, Brion JP, Leroy K. Downregulation of hsa-miR-132 and hsa-miR-129: non-coding RNA molecular signatures of Alzheimer's disease. Front Mol Neurosci 2024; 17:1423340. [PMID: 38984196 PMCID: PMC11231994 DOI: 10.3389/fnmol.2024.1423340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Alzheimer's disease (AD) affects the elderly population by causing memory impairments, cognitive and behavioral abnormalities. Currently, no curative treatments exist, emphasizing the need to explore therapeutic options that modify the progression of the disease. MicroRNAs (miRNAs), as non-coding RNAs, demonstrate multifaceted targeting potential and are known to be dysregulated in AD pathology. This mini review focuses on two promising miRNAs, hsa-miR-132 and hsa-miR-129, which consistently exhibit differential regulation in AD. By employing computational predictions and referencing published RNA sequencing dataset, we elucidate the intricate miRNA-mRNA target relationships associated with hsa-miR-132 and hsa-miR-129. Our review consistently identifies the downregulation of hsa-miR-132 and hsa-miR-129 in AD brains as a non-coding RNA molecular signature across studies conducted over the past 15 years in AD research.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Alzheimer and Other Tauopathies Research Group, Faculty of Medicine, ULB Center for Diabetes Research, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | - Karelle Leroy
- Alzheimer and Other Tauopathies Research Group, Faculty of Medicine, ULB Center for Diabetes Research, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Mei Z, Liu J, Schroeder JP, Weinshenker D, Duong DM, Seyfried NT, Li Y, Jin P, Wingo AP, Wingo TS. Lowering Hippocampal miR-29a Expression Slows Cognitive Decline and Reduces Beta-Amyloid Deposition in 5×FAD Mice. Mol Neurobiol 2024; 61:3343-3356. [PMID: 37989983 PMCID: PMC11087195 DOI: 10.1007/s12035-023-03791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
microRNA-29a (miR-29a) increases with age in humans and mice, and, in the brain, it has a role in neuronal maturation and response to inflammation. We previously found higher miR-29a levels in the human brain to be associated with faster antemortem cognitive decline, suggesting that lowering miR-29a levels could ameliorate memory impairment in the 5×FAD AD mouse model. To test this, we generated an adeno-associated virus (AAV) expressing GFP and a miR-29a "sponge" or empty vector. We found that the AAV expressing miR-29a sponge functionally reduced miR-29a levels and improved measures of memory in the Morris water maze and fear condition paradigms when delivered to the hippocampi of 5×FAD and WT mice. miR-29a sponge significantly reduced hippocampal beta-amyloid deposition in 5×FAD mice and lowered astrocyte and microglia activation in both 5×FAD and WT mice. Using transcriptomic and proteomic sequencing, we identified Plxna1 and Wdfy1 as putative effectors at the transcript and protein level in WT and 5×FAD mice, respectively. These data indicate that lower miR-29a levels mitigate cognitive decline, making miR-29a and its target genes worth further evaluation as targets to mitigate Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Zhen Mei
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiaqi Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason P Schroeder
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Aliza P Wingo
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
16
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
17
|
Yao X, Jiang X, Luo H, Liang H, Ye X, Wei Y, Cong S. MOCAT: multi-omics integration with auxiliary classifiers enhanced autoencoder. BioData Min 2024; 17:9. [PMID: 38444019 PMCID: PMC10916109 DOI: 10.1186/s13040-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Integrating multi-omics data is emerging as a critical approach in enhancing our understanding of complex diseases. Innovative computational methods capable of managing high-dimensional and heterogeneous datasets are required to unlock the full potential of such rich and diverse data. METHODS We propose a Multi-Omics integration framework with auxiliary Classifiers-enhanced AuToencoders (MOCAT) to utilize intra- and inter-omics information comprehensively. Additionally, attention mechanisms with confidence learning are incorporated for enhanced feature representation and trustworthy prediction. RESULTS Extensive experiments were conducted on four benchmark datasets to evaluate the effectiveness of our proposed model, including BRCA, ROSMAP, LGG, and KIPAN. Our model significantly improved most evaluation measurements and consistently surpassed the state-of-the-art methods. Ablation studies showed that the auxiliary classifiers significantly boosted classification accuracy in the ROSMAP and LGG datasets. Moreover, the attention mechanisms and confidence evaluation block contributed to improvements in the predictive accuracy and generalizability of our model. CONCLUSIONS The proposed framework exhibits superior performance in disease classification and biomarker discovery, establishing itself as a robust and versatile tool for analyzing multi-layer biological data. This study highlights the significance of elaborated designed deep learning methodologies in dissecting complex disease phenotypes and improving the accuracy of disease predictions.
Collapse
Affiliation(s)
- Xiaohui Yao
- Qingdao Innovation and Development Center, Harbin Engineering University, 1777 Sansha Rd, Qingdao, 266000, Shandong, China
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong St, Harbin, 150001, Heilongjiang, China
| | - Xiaohan Jiang
- Qingdao Innovation and Development Center, Harbin Engineering University, 1777 Sansha Rd, Qingdao, 266000, Shandong, China
| | - Haoran Luo
- Qingdao Innovation and Development Center, Harbin Engineering University, 1777 Sansha Rd, Qingdao, 266000, Shandong, China
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong St, Harbin, 150001, Heilongjiang, China
| | - Hong Liang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong St, Harbin, 150001, Heilongjiang, China
| | - Xiufen Ye
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong St, Harbin, 150001, Heilongjiang, China
| | - Yanhui Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong St, Harbin, 150001, Heilongjiang, China
| | - Shan Cong
- Qingdao Innovation and Development Center, Harbin Engineering University, 1777 Sansha Rd, Qingdao, 266000, Shandong, China.
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong St, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
18
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
19
|
Zhao R. Exercise mimetics: a novel strategy to combat neuroinflammation and Alzheimer's disease. J Neuroinflammation 2024; 21:40. [PMID: 38308368 PMCID: PMC10837901 DOI: 10.1186/s12974-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease (AD), characterized by the stimulation of resident immune cells of the brain and the penetration of peripheral immune cells. These inflammatory processes facilitate the deposition of amyloid-beta (Aβ) plaques and the abnormal hyperphosphorylation of tau protein. Managing neuroinflammation to restore immune homeostasis and decrease neuronal damage is a therapeutic approach for AD. One way to achieve this is through exercise, which can improve brain function and protect against neuroinflammation, oxidative stress, and synaptic dysfunction in AD models. The neuroprotective impact of exercise is regulated by various molecular factors that can be activated in the same way as exercise by the administration of their mimetics. Recent evidence has proven some exercise mimetics effective in alleviating neuroinflammation and AD, and, additionally, they are a helpful alternative option for patients who are unable to perform regular physical exercise to manage neurodegenerative disorders. This review focuses on the current state of knowledge on exercise mimetics, including their efficacy, regulatory mechanisms, progress, challenges, limitations, and future guidance for their application in AD therapy.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
20
|
Gammie SC, Messing A, Hill MA, Kelm-Nelson CA, Hagemann TL. Large-scale gene expression changes in APP/PSEN1 and GFAP mutation models exhibit high congruence with Alzheimer's disease. PLoS One 2024; 19:e0291995. [PMID: 38236817 PMCID: PMC10796008 DOI: 10.1371/journal.pone.0291995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/10/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with both genetic and non-genetic causes. Animal research models are available for a multitude of diseases and conditions affecting the central nervous system (CNS), and large-scale CNS gene expression data exist for many of these. Although there are several models specifically for AD, each recapitulates different aspects of the human disease. In this study we evaluate over 500 animal models to identify those with CNS gene expression patterns matching human AD datasets. Approaches included a hypergeometric based scoring system that rewards congruent gene expression patterns but penalizes discordant gene expression patterns. The top two models identified were APP/PS1 transgenic mice expressing mutant APP and PSEN1, and mice carrying a GFAP mutation that is causative of Alexander disease, a primary disorder of astrocytes in the CNS. The APP/PS1 and GFAP models both matched over 500 genes moving in the same direction as in human AD, and both had elevated GFAP expression and were highly congruent with one another. Also scoring highly were the 5XFAD model (with five mutations in APP and PSEN1) and mice carrying CK-p25, APP, and MAPT mutations. Animals with the APOE3 and 4 mutations combined with traumatic brain injury ranked highly. Bulbectomized rats scored high, suggesting anosmia could be causative of AD-like gene expression. Other matching models included the SOD1G93A strain and knockouts for SNORD116 (Prader-Willi mutation), GRID2, INSM1, XBP1, and CSTB. Many top models demonstrated increased expression of GFAP, and results were similar across multiple human AD datasets. Heatmap and Uniform Manifold Approximation Plot results were consistent with hypergeometric ranking. Finally, some gene manipulation models, including for TYROBP and ATG7, were identified with reversed AD patterns, suggesting possible neuroprotective effects. This study provides insight for the pathobiology of AD and the potential utility of available animal models.
Collapse
Affiliation(s)
- Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Albee Messing
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mason A. Hill
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tracy L. Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
21
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
22
|
Adiga D, Eswaran S, Srinath S, Khan NG, Kumar D, Kabekkodu SP. Noncoding RNAs in Alzheimer's Disease: Overview of Functional and Therapeutic Significance. Curr Top Med Chem 2024; 24:1615-1634. [PMID: 38616763 DOI: 10.2174/0115680266293212240405042540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disorder resulting from the complex interaction between genetic, epigenetic, and environmental factors. It represents an impending epidemic and lacks effective pharmacological interventions. The emergence of high throughput sequencing techniques and comprehensive genome evaluation has uncovered a diverse spectrum of noncoding RNA (ncRNA) families. ncRNAs are the critical modulators of an eclectic array of biological processes and are now transpiring as imperative players in diagnosing and treating various diseases, including neurodegenerative disorders. Several ncRNAs are explicitly augmented in the brain, wherein they potentially regulate cognitive abilities and other functions of the central nervous system. Growing evidence suggests the substantial role of ncRNAs as modulators of tau phosphorylation, Aβ production, neuroinflammation, and neuronal survival. It indicates their therapeutic relevance as a biomarker and druggable targets against AD. The current review summarizes the existing literature on the functional significance of ncRNAs in AD pathogenesis and its imminent implications in clinics.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Sriharikrishnaa Srinath
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune, 411038, Maharashtra, India
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA95616, USA
| | - Shama P Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| |
Collapse
|
23
|
Nguyen LD, Wei Z, Silva MC, Barberán-Soler S, Zhang J, Rabinovsky R, Muratore CR, Stricker JMS, Hortman C, Young-Pearse TL, Haggarty SJ, Krichevsky AM. Small molecule regulators of microRNAs identified by high-throughput screen coupled with high-throughput sequencing. Nat Commun 2023; 14:7575. [PMID: 37989753 PMCID: PMC10663445 DOI: 10.1038/s41467-023-43293-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023] Open
Abstract
MicroRNAs (miRNAs) regulate fundamental biological processes by silencing mRNA targets and are dysregulated in many diseases. Therefore, miRNA replacement or inhibition can be harnessed as potential therapeutics. However, existing strategies for miRNA modulation using oligonucleotides and gene therapies are challenging, especially for neurological diseases, and none have yet gained clinical approval. We explore a different approach by screening a biodiverse library of small molecule compounds for their ability to modulate hundreds of miRNAs in human induced pluripotent stem cell-derived neurons. We demonstrate the utility of the screen by identifying cardiac glycosides as potent inducers of miR-132, a key neuroprotective miRNA downregulated in Alzheimer's disease and other tauopathies. Coordinately, cardiac glycosides downregulate known miR-132 targets, including Tau, and protect rodent and human neurons against various toxic insults. More generally, our dataset of 1370 drug-like compounds and their effects on the miRNome provides a valuable resource for further miRNA-based drug discovery.
Collapse
Affiliation(s)
- Lien D Nguyen
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Jiarui Zhang
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Christina R Muratore
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan M S Stricker
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | - Tracy L Young-Pearse
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Wang L, Shui X, Diao Y, Chen D, Zhou Y, Lee TH. Potential Implications of miRNAs in the Pathogenesis, Diagnosis, and Therapeutics of Alzheimer's Disease. Int J Mol Sci 2023; 24:16259. [PMID: 38003448 PMCID: PMC10671222 DOI: 10.3390/ijms242216259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex multifactorial disorder that poses a substantial burden on patients, caregivers, and society. Considering the increased aging population and life expectancy, the incidence of AD will continue to rise in the following decades. However, the molecular pathogenesis of AD remains controversial, superior blood-based biomarker candidates for early diagnosis are still lacking, and effective therapeutics to halt or slow disease progression are urgently needed. As powerful genetic regulators, microRNAs (miRNAs) are receiving increasing attention due to their implications in the initiation, development, and theranostics of various diseases, including AD. In this review, we summarize miRNAs that directly target microtubule-associated protein tau (MAPT), amyloid precursor protein (APP), and β-site APP-cleaving enzyme 1 (BACE1) transcripts and regulate the alternative splicing of tau and APP. We also discuss related kinases, such as glycogen synthase kinase (GSK)-3β, cyclin-dependent kinase 5 (CDK5), and death-associated protein kinase 1 (DAPK1), as well as apolipoprotein E, that are directly targeted by miRNAs to control tau phosphorylation and amyloidogenic APP processing leading to Aβ pathologies. Moreover, there is evidence of miRNA-mediated modulation of inflammation. Furthermore, circulating miRNAs in the serum or plasma of AD patients as noninvasive biomarkers with diagnostic potential are reviewed. In addition, miRNA-based therapeutics optimized with nanocarriers or exosomes as potential options for AD treatment are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ying Zhou
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| |
Collapse
|
25
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
26
|
Guo X. A state-of-the-art review on miRNA in prevention and treatment of Alzheimer 's disease. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:485-498. [PMID: 37643982 PMCID: PMC10495246 DOI: 10.3724/zdxbyxb-2023-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial and heterogenic disorder. MiRNA is a class of non-coding RNAs with 19-22 nucleotides in length that can regulate the expression of target genes in the post-transcriptional level. It has been found that the miRNAome in AD patients is significantly altered in brain tissues, cerebrospinal fluid and blood circulation, as compared to healthy subjects. Experimental studies have suggested that expression changes in miRNA could drive AD onset and development via different mechanisms. Therefore, targeting miRNA expression to regulate the key genes involved in AD progression is anticipated to be a promising approach for AD prevention and treatment. Rodent AD models have demonstrated that targeting miRNAs could block biogenesis and toxicity of amyloid β, inhibit the production and hyper-phosphorylation of τ protein, prevent neuronal apoptosis and promote neurogenesis, maintain neural synaptic and calcium homeostasis, as well as mitigate neuroinflammation mediated by microglia. In addition, animal and human studies support the view that miRNAs are critical players contributing to the beneficial effects of cell therapy and lifestyle intervention to AD. This article reviews the most recent advances in the roles, mechanisms and applications of targeting miRNA in AD prevention and treatment based on rodent AD models and human intervention studies. The potential opportunities and challenges in clinical application of targeting miRNA for AD patients are also discussed.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Science, Yunnan Normal University, Engineering Research Center, Sustainable Development and Utilization of Biomass Energy of the Ministry of Education, Kunming 650500, China.
| |
Collapse
|
27
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
28
|
Walgrave H, Penning A, Tosoni G, Snoeck S, Davie K, Davis E, Wolfs L, Sierksma A, Mars M, Bu T, Thrupp N, Zhou L, Moechars D, Mancuso R, Fiers M, Howden AJ, De Strooper B, Salta E. microRNA-132 regulates gene expression programs involved in microglial homeostasis. iScience 2023; 26:106829. [PMID: 37250784 PMCID: PMC10213004 DOI: 10.1016/j.isci.2023.106829] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
microRNA-132 (miR-132), a known neuronal regulator, is one of the most robustly downregulated microRNAs (miRNAs) in the brain of Alzheimer's disease (AD) patients. Increasing miR-132 in AD mouse brain ameliorates amyloid and Tau pathologies, and also restores adult hippocampal neurogenesis and memory deficits. However, the functional pleiotropy of miRNAs requires in-depth analysis of the effects of miR-132 supplementation before it can be moved forward for AD therapy. We employ here miR-132 loss- and gain-of-function approaches using single-cell transcriptomics, proteomics, and in silico AGO-CLIP datasets to identify molecular pathways targeted by miR-132 in mouse hippocampus. We find that miR-132 modulation significantly affects the transition of microglia from a disease-associated to a homeostatic cell state. We confirm the regulatory role of miR-132 in shifting microglial cell states using human microglial cultures derived from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Amber Penning
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Giorgia Tosoni
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Sarah Snoeck
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Bioinformatics Core Facility, 3000 Leuven, Belgium
| | - Emma Davis
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Mayte Mars
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Taofeng Bu
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Nicola Thrupp
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Lujia Zhou
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Diederik Moechars
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Andrew J.M. Howden
- UK Dementia Research Institute, University of Dundee, Dundee DD1 4HN, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
29
|
Rather MA, Khan A, Wang L, Jahan S, Rehman MU, Makeen HA, Mohan S. TRP channels: Role in neurodegenerative diseases and therapeutic targets. Heliyon 2023; 9:e16910. [PMID: 37332910 PMCID: PMC10272313 DOI: 10.1016/j.heliyon.2023.e16910] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/09/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
TRP (Transient receptor potential) channels are integral membrane proteins consisting of a superfamily of cation channels that allow permeability of both monovalent and divalent cations. TRP channels are subdivided into six subfamilies: TRPC, TRPV, TRPM, TRPP, TRPML, and TRPA, and are expressed in almost every cell and tissue. TRPs play an instrumental role in the regulation of various physiological processes. TRP channels are extensively represented in brain tissues and are present in both prokaryotes and eukaryotes, exhibiting responses to several mechanisms, including physical, chemical, and thermal stimuli. TRP channels are involved in the perturbation of Ca2+ homeostasis in intracellular calcium stores, both in neuronal and non-neuronal cells, and its discrepancy leads to several neuronal disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS). TRPs participate in neurite outgrowth, receptor signaling, and excitotoxic cell death in the central nervous system. Understanding the mechanism of TRP channels in neurodegenerative diseases may extend to developing novel therapies. Thus, this review articulates TRP channels' physiological and pathological role in exploring new therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology & Physiology, Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, 11952, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Department of Pharmacy Practice, College of Pharmacy, Jazan University, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| |
Collapse
|
30
|
Kouhnavardi S, Cabatic M, Mañas-Padilla MC, Malabanan MA, Smani T, Cicvaric A, Muñoz Aranzalez EA, Koenig X, Urban E, Lubec G, Castilla-Ortega E, Monje FJ. miRNA-132/212 Deficiency Disrupts Selective Corticosterone Modulation of Dorsal vs. Ventral Hippocampal Metaplasticity. Int J Mol Sci 2023; 24:9565. [PMID: 37298523 PMCID: PMC10253409 DOI: 10.3390/ijms24119565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Cortisol is a potent human steroid hormone that plays key roles in the central nervous system, influencing processes such as brain neuronal synaptic plasticity and regulating the expression of emotional and behavioral responses. The relevance of cortisol stands out in the disease, as its dysregulation is associated with debilitating conditions such as Alzheimer's Disease, chronic stress, anxiety and depression. Among other brain regions, cortisol importantly influences the function of the hippocampus, a structure central for memory and emotional information processing. The mechanisms fine-tuning the different synaptic responses of the hippocampus to steroid hormone signaling remain, however, poorly understood. Using ex vivo electrophysiology and wild type (WT) and miR-132/miR-212 microRNAs knockout (miRNA-132/212-/-) mice, we examined the effects of corticosterone (the rodent's equivalent to cortisol in humans) on the synaptic properties of the dorsal and ventral hippocampus. In WT mice, corticosterone predominantly inhibited metaplasticity in the dorsal WT hippocampi, whereas it significantly dysregulated both synaptic transmission and metaplasticity at dorsal and ventral regions of miR-132/212-/- hippocampi. Western blotting further revealed significantly augmented levels of endogenous CREB and a significant CREB reduction in response to corticosterone only in miR-132/212-/- hippocampi. Sirt1 levels were also endogenously enhanced in the miR-132/212-/- hippocampi but unaltered by corticosterone, whereas the levels of phospo-MSK1 were only reduced by corticosterone in WT, not in miR-132/212-/- hippocampi. In behavioral studies using the elevated plus maze, miRNA-132/212-/- mice further showed reduced anxiety-like behavior. These observations propose miRNA-132/212 as potential region-selective regulators of the effects of steroid hormones on hippocampal functions, thus likely fine-tuning hippocampus-dependent memory and emotional processing.
Collapse
Affiliation(s)
- Shima Kouhnavardi
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maureen Cabatic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Marife-Astrid Malabanan
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, 41013 Seville, Spain
| | - Ana Cicvaric
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Edison Alejandro Muñoz Aranzalez
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ernst Urban
- Department for Pharmaceutical Sciences, Josef-Holaubek-Platz 2, 2D 303, 1090 Vienna, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
31
|
Yuechen Z, Shaosong X, Zhouxing Z, Fuli G, Wei H. A summary of the current diagnostic methods for, and exploration of the value of microRNAs as biomarkers in, sepsis-associated encephalopathy. Front Neurosci 2023; 17:1125888. [PMID: 37008225 PMCID: PMC10060640 DOI: 10.3389/fnins.2023.1125888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is an acute neurological deficit caused by severe sepsis without signs of direct brain infection, characterized by the systemic inflammation and disturbance of the blood-brain barrier. SAE is associated with a poor prognosis and high mortality in patients with sepsis. Survivors may exhibit long-term or permanent sequelae, including behavioral changes, cognitive impairment, and decreased quality of life. Early detection of SAE can help ameliorate long-term sequelae and reduce mortality. Half of the patients with sepsis suffer from SAE in the intensive care unit, but its physiopathological mechanism remains unknown. Therefore, the diagnosis of SAE remains a challenge. The current clinical diagnosis of SAE is a diagnosis of exclusion; this makes the process complex and time-consuming and delays early intervention by clinicians. Furthermore, the scoring scales and laboratory indicators involved have many problems, including insufficient specificity or sensitivity. Thus, a new biomarker with excellent sensitivity and specificity is urgently needed to guide the diagnosis of SAE. MicroRNAs have attracted attention as putative diagnostic and therapeutic targets for neurodegenerative diseases. They exist in various body fluids and are highly stable. Based on the outstanding performance of microRNAs as biomarkers for other neurodegenerative diseases, it is reasonable to infer that microRNAs will be excellent biomarkers for SAE. This review explores the current diagnostic methods for sepsis-associated encephalopathy (SAE). We also explore the role that microRNAs could play in SAE diagnosis and if they can be used to make the SAE diagnosis faster and more specific. We believe that our review makes a significant contribution to the literature because it summarizes some of the important diagnostic methods for SAE, highlighting their advantages and disadvantages in clinical use, and could benefit the field as it highlights the potential of miRNAs as SAE diagnostic markers.
Collapse
Affiliation(s)
| | - Xi Shaosong
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Hu Wei
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Krichevsky A, Nguyen L, Wei Z, Silva M, Barberán-Soler S, Rabinovsky R, Muratore C, Stricker J, Hortman C, Young-Pearse T, Haggarty S. Small Molecule Regulators of microRNAs Identified by High-Throughput Screen Coupled with High-Throughput Sequencing. RESEARCH SQUARE 2023:rs.3.rs-2617979. [PMID: 36993255 PMCID: PMC10055534 DOI: 10.21203/rs.3.rs-2617979/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
MicroRNAs (miRNAs) regulate fundamental biological processes by silencing mRNA targets and are dysregulated in many diseases. Therefore, miRNA replacement or inhibition can be harnessed as potential therapeutics. However, existing strategies for miRNA modulation using oligonucleotides and gene therapies are challenging, especially for neurological diseases, and none have yet gained clinical approval. We explore a different approach by screening a biodiverse library of small molecule compounds for their ability to modulate hundreds of miRNAs in human induced pluripotent stem cell-derived neurons. We demonstrate the utility of the screen by identifying cardiac glycosides as potent inducers of miR-132, a key miRNA downregulated in Alzheimer's disease and other tauopathies. Coordinately, cardiac glycosides downregulate known miR-132 targets, including Tau, and protect rodent and human neurons against various toxic insults. More generally, our dataset of 1370 drug-like compounds and their effects on the miRNome provide a valuable resource for further miRNA-based drug discovery.
Collapse
Affiliation(s)
| | - Lien Nguyen
- Brigham and Women's Hospital and Harvard Medical School
| | - Zhiyun Wei
- Brigham and Women's Hospital and Harvard Medical School
| | - M Silva
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Rosalia Rabinovsky
- 1. Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | | | | | |
Collapse
|
33
|
MicroRNAs and MAPKs: Evidence of These Molecular Interactions in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054736. [PMID: 36902178 PMCID: PMC10003111 DOI: 10.3390/ijms24054736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known to be the leading cause of dementia worldwide. Many microRNAs (miRNAs) were found deregulated in the brain or blood of AD patients, suggesting a possible key role in different stages of neurodegeneration. In particular, mitogen-activated protein kinases (MAPK) signaling can be impaired by miRNA dysregulation during AD. Indeed, the aberrant MAPK pathway may facilitate the development of amyloid-beta (Aβ) and Tau pathology, oxidative stress, neuroinflammation, and brain cell death. The aim of this review was to describe the molecular interactions between miRNAs and MAPKs during AD pathogenesis by selecting evidence from experimental AD models. Publications ranging from 2010 to 2023 were considered, based on PubMed and Web of Science databases. According to obtained data, several miRNA deregulations may regulate MAPK signaling in different stages of AD and conversely. Moreover, overexpressing or silencing miRNAs involved in MAPK regulation was seen to improve cognitive deficits in AD animal models. In particular, miR-132 is of particular interest due to its neuroprotective functions by inhibiting Aβ and Tau depositions, as well as oxidative stress, through ERK/MAPK1 signaling modulation. However, further investigations are required to confirm and implement these promising results.
Collapse
|
34
|
Boccardi V, Poli G, Cecchetti R, Bastiani P, Scamosci M, Febo M, Mazzon E, Bruscoli S, Brancorsini S, Mecocci P. miRNAs and Alzheimer's Disease: Exploring the Role of Inflammation and Vitamin E in an Old-Age Population. Nutrients 2023; 15:nu15030634. [PMID: 36771341 PMCID: PMC9919026 DOI: 10.3390/nu15030634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia worldwide and represents one of the leading factors for severe disability in older persons. Although its etiology is not fully known yet, AD may develop due to multiple factors, including inflammation and oxidative stress, conditions where microRNAs (miRNAs) seem to play a pivotal role as a molecular switch. All these aspects may be modulated by nutritional factors. Among them, vitamin E has been widely studied in AD, given the plausibility of its various biological functions in influencing neurodegeneration. From a cohort of old-aged people, we measured eight vitamin E forms (tocopherols and tocotrienols), thirty cytokines/chemokines, and thirteen exosome-extracted miRNAs in plasma of subjects suffering from subjects affected by AD and age-matched healthy controls (HC). The sample population included 80 subjects (40 AD and 40 HC) with a mean age of 77.6 ± 3.8 years, mostly women (45; 56.2%). Of the vitamin E forms, only α-tocopherol differed between groups, with significantly lower levels in AD. Regarding the examined inflammatory molecules, G-CSF, GM-CSF, INF-α2, IL-3, and IL-8 were significantly higher and IL-17 lower in AD than HC. Among all miRNAs examined, AD showed downregulation of miR-9, miR-21, miR29-b, miR-122, and miR-132 compared to controls. MiR-122 positively and significantly correlated with some inflammatory molecules (GM-CSF, INF-α2, IL-1α, IL-8, and MIP-1β) as well as with α-tocopherol even after correction for age and gender. A final binary logistic regression analysis showed that α-tocopherol serum levels were associated with a higher AD probability and partially mediated by miR-122. Our results suggest an interplay between α-tocopherol, inflammatory molecules, and microRNAs in AD, where miR-122 may be a good candidate as modulating factor.
Collapse
Affiliation(s)
- Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
- Correspondence: ; Tel.: +39-0755783524
| | - Giulia Poli
- Department of Medicine and Surgery, University of Perugia, 05100 Terni, Italy
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Patrizia Bastiani
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Michela Scamosci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marta Febo
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 05100 Terni, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 05100 Terni, Italy
| | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, 05100 Terni, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet Stockholm, 17177 Stockholm, Sweden
| |
Collapse
|
35
|
Non-coding RNAs as key players in the neurodegenerative diseases: Multi-platform strategies and approaches for exploring the Genome's dark matter. J Chem Neuroanat 2023; 129:102236. [PMID: 36709005 DOI: 10.1016/j.jchemneu.2023.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
A growing amount of evidence in the last few years has begun to unravel that non-coding RNAs have a myriad of functions in gene regulation. Intensive investigation on non-coding RNAs (ncRNAs) has led to exploring their broad role in neurodegenerative diseases (NDs) owing to their regulatory role in gene expression. RNA sequencing technologies and transcriptome analysis has unveiled significant dysregulation of ncRNAs attributed to their biogenesis, upregulation, downregulation, aberrant epigenetic regulation, and abnormal transcription. Despite these advances, the understanding of their potential as therapeutic targets and biomarkers underpinning detailed mechanisms is still unknown. Advancements in bioinformatics and molecular technologies have improved our knowledge of the dark matter of the genome in terms of recognition and functional validation. This review aims to shed light on ncRNAs biogenesis, function, and potential role in NDs. Further deepening of their role is provided through a focus on the most recent platforms, experimental approaches, and computational analysis to investigate ncRNAs. Furthermore, this review summarizes and evaluates well-studied miRNAs, lncRNAs and circRNAs concerning their potential role in pathogenesis and use as biomarkers in NDs. Finally, a perspective on the main challenges and novel methods for the future and broad therapeutic use of ncRNAs is offered.
Collapse
|
36
|
Di Leva F, Filosi M, Oyston L, Silvestri E, Picard A, Lavdas AA, Lobbestael E, Baekelandt V, Neely GG, Pramstaller PP, Hicks AA, Corti C. Increased Levels of the Parkinson's Disease-Associated Gene ITPKB Correlate with Higher Expression Levels of α-Synuclein, Independent of Mutation Status. Int J Mol Sci 2023; 24:1984. [PMID: 36768321 PMCID: PMC9916293 DOI: 10.3390/ijms24031984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Autosomal dominant mutations in the gene encoding α-synuclein (SNCA) were the first to be linked with hereditary Parkinson's disease (PD). Duplication and triplication of SNCA has been observed in PD patients, together with mutations at the N-terminal of the protein, among which A30P and A53T influence the formation of fibrils. By overexpressing human α-synuclein in the neuronal system of Drosophila, we functionally validated the ability of IP3K2, an ortholog of the GWAS identified risk gene, Inositol-trisphosphate 3-kinase B (ITPKB), to modulate α-synuclein toxicity in vivo. ITPKB mRNA and protein levels were also increased in SK-N-SH cells overexpressing wild-type α-synuclein, A53T or A30P mutants. Kinase overexpression was detected in the cytoplasmatic and in the nuclear compartments in all α-synuclein cell types. By quantifying mRNAs in the cortex of PD patients, we observed higher levels of ITPKB mRNA when SNCA was expressed more (p < 0.05), compared to controls. A positive correlation was also observed between SNCA and ITPKB expression in the cortex of patients, which was not seen in the controls. We replicated this observation in a public dataset. Our data, generated in SK-N-SH cells and in cortex from PD patients, show that the expression of α-synuclein and ITPKB is correlated in pathological situations.
Collapse
Affiliation(s)
- Francesca Di Leva
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Michele Filosi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Lisa Oyston
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erica Silvestri
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Alexandros A. Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - G. Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| |
Collapse
|
37
|
Elzayat EM, Shahien SA, El-Sherif AA, Hosney M. miRNAs and Stem Cells as Promising Diagnostic and Therapeutic Targets for Alzheimer's Disease. J Alzheimers Dis 2023; 94:S203-S225. [PMID: 37212107 PMCID: PMC10473110 DOI: 10.3233/jad-221298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is a cumulative progressive neurodegenerative disease characterized mainly by impairment in cognitive functions accompanied by memory loss, disturbance in behavior and personality, and difficulties in learning. Although the main causes of AD pathogenesis are not fully understood yet, amyloid-β peptides and tau proteins are supposed to be responsible for AD onset and pathogenesis. Various demographic, genetic, and environmental risk factors are involved in AD onset and pathogenesis such as age, gender, several genes, lipids, malnutrition, and poor diet. Significant changes were observed in microRNA (miRNA) levels between normal and AD cases giving hope for a diagnostic procedure for AD through a simple blood test. As yet, only two classes of AD therapeutic drugs are approved by FDA. They are classified as acetylcholinesterase inhibitors and N-methyl-D-aspartate antagonists (NMDA). Unfortunately, they can only treat the symptoms but cannot cure AD or stop its progression. New therapeutic approaches were developed for AD treatment including acitretin due to its ability to cross blood-brain barrier in the brain of rats and mice and induce the expression of ADAM 10 gene, the α-secretase of human amyloid-β protein precursor, stimulating the non-amyloidogenic pathway for amyloid-β protein precursor processing resulting in amyloid-β reduction. Also stem cells may have a crucial role in AD treatment as they can improve cognitive functions and memory in AD rats through regeneration of damaged neurons. This review spotlights on promising diagnostic techniques such as miRNAs and therapeutic approaches such as acitretin and/or stem cells keeping in consideration AD pathogenesis, stages, symptoms, and risk factors.
Collapse
Affiliation(s)
- Emad M. Elzayat
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sherif A. Shahien
- Biotechnology/Bimolecular Chemistry Program, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed A. El-Sherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
38
|
Nassar A, Kodi T, Satarker S, Chowdari Gurram P, Upadhya D, SM F, Mudgal J, Nampoothiri M. Astrocytic MicroRNAs and Transcription Factors in Alzheimer's Disease and Therapeutic Interventions. Cells 2022; 11:cells11244111. [PMID: 36552875 PMCID: PMC9776935 DOI: 10.3390/cells11244111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes are important for maintaining cholesterol metabolism, glutamate uptake, and neurotransmission. Indeed, inflammatory processes and neurodegeneration contribute to the altered morphology, gene expression, and function of astrocytes. Astrocytes, in collaboration with numerous microRNAs, regulate brain cholesterol levels as well as glutamatergic and inflammatory signaling, all of which contribute to general brain homeostasis. Neural electrical activity, synaptic plasticity processes, learning, and memory are dependent on the astrocyte-neuron crosstalk. Here, we review the involvement of astrocytic microRNAs that potentially regulate cholesterol metabolism, glutamate uptake, and inflammation in Alzheimer's disease (AD). The interaction between astrocytic microRNAs and long non-coding RNA and transcription factors specific to astrocytes also contributes to the pathogenesis of AD. Thus, astrocytic microRNAs arise as a promising target, as AD conditions are a worldwide public health problem. This review examines novel therapeutic strategies to target astrocyte dysfunction in AD, such as lipid nanodiscs, engineered G protein-coupled receptors, extracellular vesicles, and nanoparticles.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Fayaz SM
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Correspondence:
| |
Collapse
|
39
|
Alzheimer's disease large-scale gene expression portrait identifies exercise as the top theoretical treatment. Sci Rep 2022; 12:17189. [PMID: 36229643 PMCID: PMC9561721 DOI: 10.1038/s41598-022-22179-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 10/11/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects multiple brain regions and is difficult to treat. In this study we used 22 AD large-scale gene expression datasets to identify a consistent underlying portrait of AD gene expression across multiple brain regions. Then we used the portrait as a platform for identifying treatments that could reverse AD dysregulated expression patterns. Enrichment of dysregulated AD genes included multiple processes, ranging from cell adhesion to CNS development. The three most dysregulated genes in the AD portrait were the inositol trisphosphate kinase, ITPKB (upregulated), the astrocyte specific intermediate filament protein, GFAP (upregulated), and the rho GTPase, RHOQ (upregulated). 41 of the top AD dysregulated genes were also identified in a recent human AD GWAS study, including PNOC, C4B, and BCL11A. 42 transcription factors were identified that were both dysregulated in AD and that in turn affect expression of other AD dysregulated genes. Male and female AD portraits were highly congruent. Out of over 250 treatments, three datasets for exercise or activity were identified as the top three theoretical treatments for AD via reversal of large-scale gene expression patterns. Exercise reversed expression patterns of hundreds of AD genes across multiple categories, including cytoskeleton, blood vessel development, mitochondrion, and interferon-stimulated related genes. Exercise also ranked as the best treatment across a majority of individual region-specific AD datasets and meta-analysis AD datasets. Fluoxetine also scored well and a theoretical combination of fluoxetine and exercise reversed 549 AD genes. Other positive treatments included curcumin. Comparisons of the AD portrait to a recent depression portrait revealed a high congruence of downregulated genes in both. Together, the AD portrait provides a new platform for understanding AD and identifying potential treatments for AD.
Collapse
|
40
|
Dato S, Crocco P, Iannone F, Passarino G, Rose G. Biomarkers of Frailty: miRNAs as Common Signatures of Impairment in Cognitive and Physical Domains. BIOLOGY 2022; 11:1151. [PMID: 36009778 PMCID: PMC9405439 DOI: 10.3390/biology11081151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The past years have seen an increasing concern about frailty, owing to the growing number of elderly people and the major impact of this syndrome on health and social care. The identification of frail people passes through the use of different tests and biomarkers, whose concerted analysis helps to stratify the populations of patients according to their risk profile. However, their efficiency in prognosis and their capability to reflect the multisystemic impairment of frailty is discussed. Recent works propose the use of miRNAs as biological hallmarks of physiological impairment in different organismal districts. Changes in miRNAs expression have been described in biological processes associated with phenotypic outcomes of frailty, opening intriguing possibilities for their use as biomarkers of fragility. Here, with the aim of finding reliable biomarkers of frailty, while considering its complex nature, we revised the current literature on the field, for uncovering miRNAs shared across physical and cognitive frailty domains. By applying in silico analyses, we retrieved the top-ranked shared miRNAs and their targets, finally prioritizing the most significant ones. From this analysis, ten miRNAs emerged which converge into two main biological processes: inflammation and energy homeostasis. Such markers, if validated, may offer promising capabilities for early diagnosis of frailty in the elderly population.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.I.); (G.P.); (G.R.)
| | | | | | | | | |
Collapse
|
41
|
Dysregulated miRNAs in Progression and Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2022; 59:6107-6124. [PMID: 35867206 DOI: 10.1007/s12035-022-02950-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive degeneration of neurons due to the accumulation of amyloid-β peptide (Aβ) and hyper-phosphorylation of tau protein in the neuronal milieu leading to increased oxidative stress and apoptosis. Numerous factors contribute towards the progression of AD, including miRNA, which are 22-24 nucleotides long sequence which acts as critical regulators of cellular processes by binding to 3' UTR of mRNA, regulating its expression post-transcriptionally. This review aims to determine the miRNA with the most significant dysregulation in the brain and cerebrospinal fluid (CSF) of human patients. A systemized inclusion/exclusion criterion has been utilized based on selected keywords followed by screening of those articles to conclude a list of 8 highly dysregulated miRNAs based on the fold change of AD vs control patients, which could be used in clinical testing as these miRNAs play central role in the pathophysiology of AD. Furthermore, a network study of highly dysregulated miRNA estimated the association of these miRNA in the mediation of Aβ generation and aggregation, inhibition of autophagy, reduction of Aβ clearance, microglial and astrocytic activation, neuro-inflammation, tau hyper-phosphorylation, and synaptic loss.
Collapse
|
42
|
Ma X, Wang Y, Shi Y, Li S, Liu J, Li X, Zhong W, Pan Q. Exosomal miR-132-3p from mesenchymal stromal cells improves synaptic dysfunction and cognitive decline in vascular dementia. Stem Cell Res Ther 2022; 13:315. [PMID: 35841005 PMCID: PMC9284820 DOI: 10.1186/s13287-022-02995-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
Background/aims Vascular dementia (VD) results in cognition and memory deficit. Exosomes and their carried microRNAs (miRs) contribute to the neuroprotective effects of mesenchymal stromal cells, and miR-132-3p plays a key role in neuron plasticity. Here, we investigated the role and underlying mechanism of MSC EX and their miR-132-3p cargo in rescuing cognition and memory deficit in VD mice. Methods Bilateral carotid artery occlusion was used to generate a VD mouse model. MiR-132-3p and MSC EX levels in the hippocampus and cortex were measured. At 24-h post-VD induction, mice were administered with MSC EX infected with control lentivirus (EXCon), pre-miR-132-3p-expressing lentivirus (EXmiR-132-3p), or miR-132-3p antago lentivirus (EXantagomiR-132-3p) intravenously. Behavioral and cognitive tests were performed, and the mice were killed in 21 days after VD. The effects of MSC EX on neuron number, synaptic plasticity, dendritic spine density, and Aβ and p-Tau levels in the hippocampus and cortex were determined. The effects of MSC EX on oxygen–glucose deprivation (OGD)-injured neurons with respect to apoptosis, and neurite elongation and branching were determined. Finally, the expression levels of Ras, phosphorylation of Akt, GSK-3β, and Tau were also measured. Results Compared with normal mice, VD mice exhibited significantly decreased miR-132-3p and MSC EX levels in the cortex and hippocampus. Compared with EXCon treatment, the infusion of EXmiR-132-3p was more effective at improving cognitive function and increasing miR-132-3p level, neuron number, synaptic plasticity, and dendritic spine density, while decreasing Aβ and p-Tau levels in the cortex and hippocampus of VD mice. Conversely, EXantagomiR-132-3p treatment significantly decreased miR-132-3p expression in cortex and hippocampus, as well as attenuated EXmiR-132-3p treatment-induced functional improvement. In vitro, EXmiR-132-3p treatment inhibited RASA1 protein expression, but increased Ras and the phosphorylation of Akt and GSK-3β, and decreased p-Tau levels in primary neurons by delivering miR-132-3p, which resulted in reduced apoptosis, and increased neurite elongation and branching in OGD-injured neurons. Conclusions Our studies suggest that miR-132-3p cluster-enriched MSC EX promotes the recovery of cognitive function by improving neuronal and synaptic dysfunction through activation of the Ras/Akt/GSK-3β pathway induced by downregulation of RASA1. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02995-w.
Collapse
Affiliation(s)
- Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yan Wang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524001, China
| | - Yumeng Shi
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Suqing Li
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jinhua Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524001, China
| | - Wangtao Zhong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
43
|
Identification of potential therapeutic and diagnostic characteristics of Alzheimer disease by targeting the miR-132-3p/FOXO3a-PPM1F axis in APP/PS1 mice. Brain Res 2022; 1790:147983. [PMID: 35709892 DOI: 10.1016/j.brainres.2022.147983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder, which is characterized by progressive impairment of memory and cognition. Early diagnosis and treatment of AD has become a leading topic of research. In this study, we explored the effects of the miR-132-3p/FOXO3a-PPM1F axis on the onset of AD for possible early diagnosis and therapy. We found that miR-132-3p levels in the hippocampus and blood were drastically decreased in APP/PS1 mice from 9 months of age, and bi-directional manipulation of miR-132-3p levels induced magnified effects on learning memory behaviors, and manifestation of AD-related pathological characteristics and inflammatory cytokines in APP/PS1 mice of relevant ages. The hippocampal PPM1F expression levels were significantly elevated in APP/PS1 mice from 3 months of age, which was correlated with miR-132-3p levels at different ages. Overexpression of PPM1F remarkably accelerated the progression of learning memory deficits and associated pathological factors in APP/PS1 mice. Further, we showed that miR-132-3p modulated the expression of PPM1F via FOXO3a in HT22 cells. Finally, using peripheral blood samples of human study participants, we found that the miR-132-3p and PPM1F expression levels in patients with AD were also altered with prominent correlations. In conclusion, miR-132-3p indirectly regulates PPM1F expression by targeting FOXO3a, which could play an extensive role in contributing to the establishment of early diagnosis, treatment, and pathogenesis of AD.
Collapse
|
44
|
Dysregulated miRNAs as Biomarkers and Therapeutical Targets in Neurodegenerative Diseases. J Pers Med 2022; 12:jpm12050770. [PMID: 35629192 PMCID: PMC9143965 DOI: 10.3390/jpm12050770] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are representative neurodegenerative diseases (NDs) characterized by degeneration of selective neurons, as well as the lack of effective biomarkers and therapeutic treatments. In the last decade, microRNAs (miRNAs) have gained considerable interest in diagnostics and therapy of NDs, owing to their aberrant expression and their ability to target multiple molecules and pathways. Here, we provide an overview of dysregulated miRNAs in fluids (blood or cerebrospinal fluid) and nervous tissue of AD, PD, and ALS patients. By emphasizing those that are commonly dysregulated in these NDs, we highlight their potential role as biomarkers or therapeutical targets and describe the use of antisense oligonucleotides as miRNA therapies.
Collapse
|
45
|
Bazrgar M, Khodabakhsh P, Dargahi L, Mohagheghi F, Ahmadiani A. MicroRNA modulation is a potential molecular mechanism for neuroprotective effects of intranasal insulin administration in amyloid βeta oligomer induced Alzheimer's like rat model. Exp Gerontol 2022; 164:111812. [PMID: 35476966 DOI: 10.1016/j.exger.2022.111812] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Substantial evidence indicates that imbalance in the expression of miR-132-3p, miR-181b-5p, miR-125b-5p, miR-26a-5p, miR-124-3p, miR-146a-5p, miR-29a-3p, and miR-30a-5p in the AD brain are associated with amyloid-beta (Aβ) aggregation, tau pathology, neuroinflammation, and synaptic dysfunction, the major pathological hallmarks of Alzheimer's disease)AD(. Several studies have reported that intranasal insulin administration ameliorates memory in AD patients and animal models. However, the underlying molecular mechanisms are not yet completely elucidated. Therefore, the aim of this study was to determine whether insulin is involved in regulating the expression of AD-related microRNAs. Pursuing this objective, we first investigated the therapeutic effect of intranasal insulin on Aβ oligomer (AβO)-induced memory impairment in male rats using the Morris water maze task. Then, molecular and histological changes in response to AβO and/or insulin time course were assessed in the extracted hippocampi on days 1, 14, and 21 of the study using congo red staining, western blot and quantitative real-time PCR analyses. We observed memory impairment, Aβ aggregation, tau hyper-phosphorylation, neuroinflammation, insulin signaling dys-regulation, and down-regulation of miR-26a, miR-124, miR-29a, miR-181b, miR-125b, miR-132, and miR-146a in the hippocampus of AβO-exposed rats 21 days after AβO injection. Intranasal insulin treatment ameliorated memory impairment and concomitantly increased miR-132, miR-181b, and miR-125b expression, attenuated tau phosphorylation levels, Aβ aggregation, and neuroinflammation, and regulated the insulin signaling as well. In conclusion, our study suggest that the neuroprotective effects of insulin on memory observed in AD-like rats could be partially due to the restoration of miR-132, miR-181b, and miR-125b expression in the brain.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Fatemeh Mohagheghi
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
46
|
Uchida K. Waste Clearance in the Brain and Neuroinflammation: A Novel Perspective on Biomarker and Drug Target Discovery in Alzheimer's Disease. Cells 2022; 11:cells11050919. [PMID: 35269541 PMCID: PMC8909773 DOI: 10.3390/cells11050919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/26/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disease with a heterogeneous etiology. The pathology of Alzheimer’s disease is characterized by amyloid-beta and hyperphosphorylated tau, which are necessary for disease progression. Many clinical trials on disease-modifying drugs for AD have failed to indicate their clinical benefits. Recent advances in fundamental research have indicated that neuroinflammation plays an important pathological role in AD. Damage- and pathogen-associated molecular patterns in the brain induce neuroinflammation and inflammasome activation, causing caspase-1-dependent glial and neuronal cell death. These waste products in the brain are eliminated by the glymphatic system via perivascular spaces, the blood-brain barrier, and the blood–cerebrospinal fluid barrier. Age-related vascular dysfunction is associated with an impairment of clearance and barrier functions, leading to neuroinflammation. The proteins involved in waste clearance in the brain and peripheral circulation may be potential biomarkers and drug targets in the early stages of cognitive impairment. This short review focuses on waste clearance dysfunction in AD pathobiology and discusses the improvement of waste clearance as an early intervention in prodromal AD and preclinical stages of dementia.
Collapse
Affiliation(s)
- Kazuhiko Uchida
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Ibaraki, Japan; ; Tel.: +81-29-853-3210; Fax: +81-50-3730-7456
- Institute for Biomedical Research, MCBI, 4-9-29 Matsushiro, Tsukuba 305-0035, Ibaraki, Japan
| |
Collapse
|
47
|
Wingo AP, Wang M, Liu J, Breen MS, Yang HS, Tang B, Schneider JA, Seyfried NT, Lah JJ, Levey AI, Bennett DA, Jin P, De Jager PL, Wingo TS. Brain microRNAs are associated with variation in cognitive trajectory in advanced age. Transl Psychiatry 2022; 12:47. [PMID: 35105862 PMCID: PMC8807720 DOI: 10.1038/s41398-022-01806-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
In advancing age, some individuals maintain a stable cognitive performance over time, while others experience a rapid decline. Such variation in cognitive trajectory is only partially explained by common neurodegenerative pathologies. Hence, we aimed to identify new molecular processes underlying variation in cognitive trajectory using brain microRNA profile followed by an integrative analysis with brain transcriptome and proteome. Individual cognitive trajectories were derived from longitudinally assessed cognitive-test scores of older-adult brain donors from four longitudinal cohorts. Postmortem brain microRNA profiles, transcriptomes, and proteomes were derived from the dorsolateral prefrontal cortex. The global microRNA association study of cognitive trajectory was performed in a discovery (n = 454) and replication cohort (n = 134), followed by a meta-analysis that identified 6 microRNAs. Among these, miR-132-3p and miR-29a-3p were most significantly associated with cognitive trajectory. They explain 18.2% and 2.0% of the variance of cognitive trajectory, respectively, and act independently of the eight measured neurodegenerative pathologies. Furthermore, integrative transcriptomic and proteomic analyses revealed that miR-132-3p was significantly associated with 24 of the 47 modules of co-expressed genes of the transcriptome, miR-29a-3p with 3 modules, and identified 84 and 214 downstream targets of miR-132-3p and miR-29a-3p, respectively, in cognitive trajectory. This is the first global microRNA study of cognitive trajectory to our knowledge. We identified miR-29a-3p and miR-132-3p as novel and robust contributors to cognitive trajectory independently of the eight known cerebral pathologies. Our findings lay a foundation for future studies investigating mechanisms and developing interventions to enhance cognitive stability in advanced age.
Collapse
Affiliation(s)
- Aliza P Wingo
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mengli Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaqi Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael S Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hyun-Sik Yang
- Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Changsha, Hunan, China
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Philip L De Jager
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA.
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
48
|
Loon A, Zamudio F, Sanneh A, Brown B, Smeltzer S, Brownlow ML, Quadri Z, Peters M, Weeber E, Nash K, Lee DC, Gordon MN, Morgan D, Selenica MLB. Accumulation of C-terminal cleaved tau is distinctly associated with cognitive deficits, synaptic plasticity impairment, and neurodegeneration in aged mice. GeroScience 2022; 44:173-194. [PMID: 34410588 PMCID: PMC8810980 DOI: 10.1007/s11357-021-00408-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
C-terminal cleaved tau at D421 (∆D421-tau) accumulates in the brains of Alzheimer's disease (AD) patients. However, it is unclear how tau truncation, an understudied tau post-translational modification, contributes to AD pathology and progression. Utilizing an adeno-associated virus (AAV) gene delivery-based approach, we overexpressed full-length tau (FL-tau) and ∆D421-tau in 4- and 12-month-old mice for 4 months to study the neuropathological impact of accumulation in young adult (8-month) and middle-aged (16-month) mice. Overall, we show that independent of the tau species, age was an important factor facilitating tau phosphorylation, oligomer formation, and deposition into silver-positive tangles. However, mice overexpressing ∆D421-tau exhibited a distinct phosphorylation profile to those overexpressing FL-tau and increased tau oligomerization in the middle-age group. Importantly, overexpression of ∆D421-tau, but not FL-tau in middle-aged mice, resulted in pronounced cognitive impairments and hippocampal long-term potentiation deficits. While both FL-tau and ∆D421-tau induced neuronal loss in mice with age, ∆D421-tau led to significant neuronal loss in the CA3 area of the hippocampus and medial entorhinal cortex compared to FL-tau. Based on our data, we conclude that age increases the susceptibility to neuronal degeneration associated with ΔD421-tau accumulation. Our findings suggest that ΔD421-tau accumulation contributes to synaptic plasticity and cognitive deficits, thus representing a potential target for tau-associated pathologies.
Collapse
Affiliation(s)
- Anjanet Loon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Frank Zamudio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Awa Sanneh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Breanna Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Shayna Smeltzer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Milene L. Brownlow
- Department of Molecular Pharmacological & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Zainuddin Quadri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
- Sanders-Brown Center On Aging (SBCoA), College of Medicine, University of Kentucky, Lexington, KY USA
| | - Melinda Peters
- Department of Molecular Pharmacological & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Edwin Weeber
- Department of Molecular Pharmacological & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Kevin Nash
- Department of Molecular Pharmacological & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Daniel C. Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
- Sanders-Brown Center On Aging (SBCoA), College of Medicine, University of Kentucky, Lexington, KY USA
| | - Marcia N. Gordon
- Department of Molecular Pharmacological & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Dave Morgan
- Department of Molecular Pharmacological & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Maj-Linda B. Selenica
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
- Sanders-Brown Center On Aging (SBCoA), College of Medicine, University of Kentucky, Lexington, KY USA
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, 800 S. Limestone St, Lexington, KY 40536 USA
| |
Collapse
|
49
|
Ferrer I. Alzheimer's disease is an inherent, natural part of human brain aging: an integrated perspective. FREE NEUROPATHOLOGY 2022; 3:17. [PMID: 37284149 PMCID: PMC10209894 DOI: 10.17879/freeneuropathology-2022-3806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/21/2022] [Indexed: 06/08/2023]
Abstract
Alzheimer disease is one of the most challenging demons in our society due to its very high prevalence and its clinical manifestations which cause deterioration of cognition, intelligence, and emotions - the very capacities that distinguish Homo sapiens from other animal species. Besides the personal, social, and economical costs, late stages of AD are vivid experiences for the family, relatives, friends, and general observers of the progressive ruin of an individual who turns into a being with lower mental and physical capacities than less evolved species. A human brain with healthy cognition, conscience, and emotions can succeed in dealing with most difficulties that life may pose. Without these capacities, the same person probably cannot. Due, in part, to this emotional impact, the absorbing study of AD has generated, over the years, a fascinating and complex story of theories, hypotheses, controversies, fashion swings, and passionate clashes, together with tremendous efforts and achievements geared to improve understanding of the pathogenesis and treatment of the disorder. Familal AD is rare and linked to altered genetic information associated with three genes. Sporadic AD (sAD) is much more common and multifactorial. A major point of clinical discussion has been, and still is, establishing the differences between brain aging and sAD. This is not a trivial question, as the neuropathological and molecular characteristics of normal brain aging and the first appearance of early stages of sAD-related pathology are not easily distinguishable in most individuals. Another important point is confidence in assigning responsibility for the beginning of sAD to a few triggering molecules, without considering the wide number of alterations that converge in the pathogenesis of aging and sAD. Genetic risk factors covering multiple molecular signals are increasing in number. In the same line, molecular pathways are altered at early stages of sAD pathology, currently grouped under the aegis of normal brain aging, only to increase massively at advanced stages of the process. Sporadic AD is here considered an inherent, natural part of human brain aging, which is prevalent in all humans, and variably present or not in a few individuals in other species. The progression of the process has devastating effects in a relatively low percentage of human beings eventually evolving to dementia. The continuum of brain aging and sAD implies the search for a different approach in the study of human brain aging at the first stages of the biological process, and advances in the use of new technologies aimed at slowing down the molecular defects underlying human brain aging and sAD at the outset, and transfering information and tasks to AI and coordinated devices.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL); Biomedical Research Network of Neurodegenerative Diseases (CIBERNED); Institute of Neurosciences, University of Barcelona; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
50
|
Nguyen LD, Chau RK, Krichevsky AM. Small Molecule Drugs Targeting Non-Coding RNAs as Treatments for Alzheimer's Disease and Related Dementias. Genes (Basel) 2021; 12:2005. [PMID: 34946953 PMCID: PMC8701955 DOI: 10.3390/genes12122005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the enormous burden of Alzheimer's disease and related dementias (ADRD) on patients, caregivers, and society, only a few treatments with limited efficacy are currently available. While drug development conventionally focuses on disease-associated proteins, RNA has recently been shown to be druggable for therapeutic purposes as well. Approximately 70% of the human genome is transcribed into non-protein-coding RNAs (ncRNAs) such as microRNAs, long ncRNAs, and circular RNAs, which can adopt diverse structures and cellular functions. Many ncRNAs are specifically enriched in the central nervous system, and their dysregulation is implicated in ADRD pathogenesis, making them attractive therapeutic targets. In this review, we first detail why targeting ncRNAs with small molecules is a promising therapeutic strategy for ADRD. We then outline the process from discovery to validation of small molecules targeting ncRNAs in preclinical studies, with special emphasis on primary high-throughput screens for identifying lead compounds. Screening strategies for specific ncRNAs will also be included as examples. Key challenges-including selecting appropriate ncRNA targets, lack of specificity of small molecules, and general low success rate of neurological drugs and how they may be overcome-will be discussed throughout the review.
Collapse
Affiliation(s)
- Lien D Nguyen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel K Chau
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|