1
|
Pham TTM, Kim M, Nguyen TQN, Park JH, Kim JI, Seo JH, Kim JY, Ha E. Glycine Decarboxylase Regulates Renal Carcinoma Progression via Interferon Stimulated Gene Factor 3-Mediated Pathway. Int J Biol Sci 2025; 21:772-788. [PMID: 39781465 PMCID: PMC11705630 DOI: 10.7150/ijbs.104458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development. We found that GLDC depletion diminished nucleotide synthesis and promoted reactive oxygen species (ROS) generation to repress RCC progression, which was reversed by repletion of deoxynucleosides. Additionally, in vitro and in vivo studies revealed that GLDC plays an important role in regulation of proliferation and tumor growth via interferon stimulated gene factor 3 (ISGF3)-mediated pathway. Expressions of interferon regulatory factor 9 (IRF9) and signal transducer and activator of transcription 2 (STAT2) were elevated in GLDC knock-downed cells and decreased in GLDC over-expressed cells. Double knock-down of STAT2 and IRF9 in GLDC-deficient cells rescued GLDC depletion-induced decrease in cell proliferation. Furthermore, GLDC depletion increased cisplatin-and doxorubicin-induced DNA damage through ISGF3 pathway, leading to cell cycle dysregulation and increased mitotic catastrophe. These findings reveal that GLDC regulates RCC progression via ISFG3-mediated pathway and offers a promising strategy for RCC treatment.
Collapse
Affiliation(s)
- Thi Tuyet Mai Pham
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Mikyung Kim
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Thuy Quynh Nhu Nguyen
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Jae-Hyung Park
- Department of Physiology, School of Medicine, Keimyung University, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine, School of Medicine, Keimyung University, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Jin Young Kim
- Division of Haematology and Oncology, Department of Internal Medicine, School of Medicine, Keimyung University, Republic of Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
2
|
Li C, Yu Y, Wan Z, Chiu MC, Huang J, Zhang S, Zhu X, Lan Q, Deng Y, Zhou Y, Xue W, Yue M, Cai JP, Yip CCY, Wong KKY, Liu X, Yu Y, Huang L, Chu H, Chan JFW, Clevers H, Yuen KY, Zhou J. Human respiratory organoids sustained reproducible propagation of human rhinovirus C and elucidation of virus-host interaction. Nat Commun 2024; 15:10772. [PMID: 39738014 PMCID: PMC11686133 DOI: 10.1038/s41467-024-55076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
The lack of a robust system to reproducibly propagate HRV-C, a family of viruses refractory to cultivation in standard cell lines, has substantially hindered our understanding of this common respiratory pathogen. We sought to develop an organoid-based system to reproducibly propagate HRV-C, and characterize virus-host interaction using respiratory organoids. We demonstrate that airway organoids sustain serial virus passage with the aid of CYT387-mediated immunosuppression, whereas nasal organoids that more closely simulate the upper airway achieve this without any intervention. Nasal organoids are more susceptible to HRV-C than airway organoids. Intriguingly, upon HRV-C infection, we observe an innate immune response that is stronger in airway organoids than in nasal organoids, which is reproduced in a Poly(I:C) stimulation assay. Treatment with α-CDHR3 and antivirals significantly reduces HRV-C viral growth in airway and nasal organoids. Additionally, an organoid-based immunofluorescence assay is established to titrate HRV-C infectious particles. Collectively, we develop an organoid-based system to reproducibly propagate the poorly cultivable HRV-C, followed by a comprehensive characterization of HRV-C infection and innate immunity in physiologically active respiratory organoids. The organoid-based HRV-C infection model can be extended for developing antiviral strategies. More importantly, our study has opened an avenue for propagating and studying other uncultivable human and animal viruses.
Collapse
Affiliation(s)
- Cun Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yifei Yu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhixin Wan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Man Chun Chiu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Jingjing Huang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Shuxin Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiaoxin Zhu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Qiaoshuai Lan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Yanlin Deng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Ying Zhou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wei Xue
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ming Yue
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth Kak-Yuen Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, and Queen Mary Hospital, Hong Kong, China
| | - Xiaojuan Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | | | - Hin Chu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center (UMC) Utrecht, Utrecht, the Netherlands
- Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Kwok Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jie Zhou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China.
- BiomOrgan Ltd, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Kosmicki JA, Marcketta A, Sharma D, Di Gioia SA, Batista S, Yang XM, Tzoneva G, Martinez H, Sidore C, Kessler MD, Horowitz JE, Roberts GHL, Justice AE, Banerjee N, Coignet MV, Leader JB, Park DS, Lanche R, Maxwell E, Knight SC, Bai X, Guturu H, Baltzell A, Girshick AR, McCurdy SR, Partha R, Mansfield AJ, Turissini DA, Zhang M, Mbatchou J, Watanabe K, Verma A, Sirugo G, Ritchie MD, Salerno WJ, Shuldiner AR, Rader DJ, Mirshahi T, Marchini J, Overton JD, Carey DJ, Habegger L, Reid JG, Economides A, Kyratsous C, Karalis K, Baum A, Cantor MN, Rand KA, Hong EL, Ball CA, Siminovitch K, Baras A, Abecasis GR, Ferreira MAR. Genetic risk factors for COVID-19 and influenza are largely distinct. Nat Genet 2024; 56:1592-1596. [PMID: 39103650 PMCID: PMC11319199 DOI: 10.1038/s41588-024-01844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
Coronavirus disease 2019 (COVID-19) and influenza are respiratory illnesses caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses, respectively. Both diseases share symptoms and clinical risk factors1, but the extent to which these conditions have a common genetic etiology is unknown. This is partly because host genetic risk factors are well characterized for COVID-19 but not for influenza, with the largest published genome-wide association studies for these conditions including >2 million individuals2 and about 1,000 individuals3-6, respectively. Shared genetic risk factors could point to targets to prevent or treat both infections. Through a genetic study of 18,334 cases with a positive test for influenza and 276,295 controls, we show that published COVID-19 risk variants are not associated with influenza. Furthermore, we discovered and replicated an association between influenza infection and noncoding variants in B3GALT5 and ST6GAL1, neither of which was associated with COVID-19. In vitro small interfering RNA knockdown of ST6GAL1-an enzyme that adds sialic acid to the cell surface, which is used for viral entry-reduced influenza infectivity by 57%. These results mirror the observation that variants that downregulate ACE2, the SARS-CoV-2 receptor, protect against COVID-19 (ref. 7). Collectively, these findings highlight downregulation of key cell surface receptors used for viral entry as treatment opportunities to prevent COVID-19 and influenza.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giorgio Sirugo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | - Alina Baum
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | |
Collapse
|
4
|
Pan Q, Zhang Y, Liu T, Xu Q, Wu Q, Xin J. Mycoplasma glycine cleavage system key subunit GcvH is an apoptosis inhibitor targeting host endoplasmic reticulum. PLoS Pathog 2024; 20:e1012266. [PMID: 38787906 PMCID: PMC11156438 DOI: 10.1371/journal.ppat.1012266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/06/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Mycoplasmas are minimal but notorious bacteria that infect humans and animals. These genome-reduced organisms have evolved strategies to overcome host apoptotic defense and establish persistent infection. Here, using Mycoplasma bovis as a model, we demonstrate that mycoplasma glycine cleavage system (GCS) H protein (GcvH) targets the endoplasmic reticulum (ER) to hijack host apoptosis facilitating bacterial infection. Mechanically, GcvH interacts with the ER-resident kinase Brsk2 and stabilizes it by blocking its autophagic degradation. Brsk2 subsequently disturbs unfolded protein response (UPR) signaling, thereby inhibiting the key apoptotic molecule CHOP expression and ER-mediated intrinsic apoptotic pathway. CHOP mediates a cross-talk between ER- and mitochondria-mediated intrinsic apoptosis. The GcvH N-terminal amino acid 31-35 region is necessary for GcvH interaction with Brsk2, as well as for GcvH to exert anti-apoptotic and potentially pro-infective functions. Notably, targeting Brsk2 to dampen apoptosis may be a conserved strategy for GCS-containing mycoplasmas. Our study reveals a novel role for the conserved metabolic route protein GcvH in Mycoplasma species. It also sheds light on how genome-reduced bacteria exploit a limited number of genomic proteins to resist host cell apoptosis thereby facilitating pathogenesis.
Collapse
Affiliation(s)
- Qiao Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yujuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qingyuan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Xinjiang, China
| | - Qi Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Fraser-Pitt D, Mercer DK, Francis ML, Toledo-Aparicio D, Smith DW, O'Neil DA. Cysteamine-mediated blockade of the glycine cleavage system modulates epithelial cell inflammatory and innate immune responses to viral infection. Biochem Biophys Res Commun 2023; 677:168-181. [PMID: 37597441 DOI: 10.1016/j.bbrc.2023.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transient blockade of glycine decarboxylase (GLDC) can restrict de novo pyrimidine synthesis, which is a well-described strategy for enhancing the host interferon response to viral infection and a target pathway for some licenced anti-inflammatory therapies. The aminothiol, cysteamine, is produced endogenously during the metabolism of coenzyme A, and is currently being investigated in a clinical trial as an intervention in community acquired pneumonia resulting from viral (influenza and SARS-CoV-2) and bacterial respiratory infection. Cysteamine is known to inhibit both bacterial and the eukaryotic host glycine cleavage systems via competitive inhibition of GLDC at concentrations, lower than those required for direct antimicrobial or antiviral activity. Here, we demonstrate for the first time that therapeutically achievable concentrations of cysteamine can inhibit glycine utilisation by epithelial cells and improve cell-mediated responses to infection with respiratory viruses, including human coronavirus 229E and Influenza A. Cysteamine reduces interleukin-6 (IL-6) and increases the interferon-λ (IFN-λ) response to viral challenge and in response to liposomal polyinosinic:polycytidylic acid (poly I:C) simulant of RNA viral infection.
Collapse
Affiliation(s)
- Douglas Fraser-Pitt
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom.
| | - Derry K Mercer
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom; Bioaster, LYON (headquarters) 40, Avenue Tony Garnier, 69007, Lyon, France
| | - Marie-Louise Francis
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - David Toledo-Aparicio
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Daniel W Smith
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Deborah A O'Neil
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| |
Collapse
|
6
|
Tsang TK, Wang C, Tsang NNY, Fang VJ, Perera RAPM, Malik Peiris JS, Leung GM, Cowling BJ, Ip DKM. Impact of host genetic polymorphisms on response to inactivated influenza vaccine in children. NPJ Vaccines 2023; 8:21. [PMID: 36804941 PMCID: PMC9940051 DOI: 10.1038/s41541-023-00621-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
In randomized controlled trials of influenza vaccination, 550 children received trivalent-inactivated influenza vaccine, permitting us to explore relationship between vaccine response and host single nucleotide polymorphisms (SNPs) in 23 candidate genes with adjustment of multiple testing. For host SNPs in TLR7-1817G/T (rs5741880), genotype GT was associated with lower odds (OR: 0.22, 95% CI: 0.09, 0.53) of have post-vaccination hemagglutination-inhibiting (HAI) titers ≥40, compared with genotype GG and TT combined under the over-dominant model. For host SNPs in TLR8-129G/C (rs3764879), genotype GT was associated with lower odds (OR: 0.47; 95% CI: 0.28, 0.80) of have post vaccination HAI titers ≥40 compared with genotype GG and AA combined under the over-dominant model. Our results could contribute to the development of better vaccines that may offer improved protection to all recipients.
Collapse
Affiliation(s)
- Tim K. Tsang
- grid.194645.b0000000121742757WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China ,Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Can Wang
- grid.194645.b0000000121742757WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nicole N. Y. Tsang
- grid.194645.b0000000121742757WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vicky J. Fang
- grid.194645.b0000000121742757WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ranawaka A. P. M. Perera
- grid.194645.b0000000121742757WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - J. S. Malik Peiris
- grid.194645.b0000000121742757WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China ,grid.194645.b0000000121742757HKU-Pasteur Research Pole, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gabriel M. Leung
- grid.194645.b0000000121742757WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China ,Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Benjamin J. Cowling
- grid.194645.b0000000121742757WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China ,Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Dennis K. M. Ip
- grid.194645.b0000000121742757WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
7
|
Layton DS, Butler J, Stewart C, Stevens V, Payne J, Rootes C, Deffrasnes C, Walker S, Shan S, Gough TJ, Cowled C, Bruce K, Wang J, Kedzierska K, Wong FYK, Bean AGD, Bingham J, Williams DT. H7N9 bearing a mutation in the nucleoprotein leads to increased pathology in chickens. Front Immunol 2022; 13:974210. [PMID: 36275684 PMCID: PMC9583263 DOI: 10.3389/fimmu.2022.974210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
The zoonotic H7N9 avian influenza (AI) virus first emerged in 2013 as a low pathogenic (LPAI) strain, and has repeatedly caused human infection resulting in severe respiratory illness and a mortality of ~39% (>600 deaths) across five epidemic waves. This virus has circulated in poultry with little to no discernible clinical signs, making detection and control difficult. Contrary to published data, our group has observed a subset of specific pathogen free chickens infected with the H7N9 virus succumb to disease, showing clinical signs consistent with highly pathogenic AI (HPAI). Viral genome sequencing revealed two key mutations had occurred following infection in the haemagglutinin (HA 226 L>Q) and nucleoprotein (NP 373 A>T) proteins. We further investigated the impact of the NP mutation and demonstrated that only chickens bearing a single nucleotide polymorphism (SNP) in their IFITM1 gene were susceptible to the H7N9 virus. Susceptible chickens demonstrated a distinct loss of CD8+ T cells from the periphery as well as a dysregulation of IFNγ that was not observed for resistant chickens, suggesting a role for the NP mutation in altered T cell activation. Alternatively, it is possible that this mutation led to altered polymerase activity, as the mutation occurs in the NP 360-373 loop which has been previously show to be important in RNA binding. These data have broad ramifications for our understanding of the pathobiology of AI in chickens and humans and provide an excellent model for investigating the role of antiviral genes in a natural host species.
Collapse
Affiliation(s)
- Daniel S. Layton
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
- *Correspondence: Daniel S. Layton, ; David T. Williams,
| | - Jeffrey Butler
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Cameron Stewart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Vicky Stevens
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Jean Payne
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Christina Rootes
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Celine Deffrasnes
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Som Walker
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Songhua Shan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville, VIC, Australia
| | - Tamara J. Gough
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Christopher Cowled
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Kerri Bruce
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Jianning Wang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville, VIC, Australia
| | - Frank Y. K. Wong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Andrew G. D. Bean
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - David T. Williams
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
- *Correspondence: Daniel S. Layton, ; David T. Williams,
| |
Collapse
|
8
|
Human Nasal Organoids Model SARS-CoV-2 Upper Respiratory Infection and Recapitulate the Differential Infectivity of Emerging Variants. mBio 2022; 13:e0194422. [PMID: 35938726 PMCID: PMC9426414 DOI: 10.1128/mbio.01944-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The human upper respiratory tract, specifically the nasopharyngeal epithelium, is the entry portal and primary infection site of respiratory viruses. Productive infection of SARS-CoV-2 in the nasal epithelium constitutes the cellular basis of viral pathogenesis and transmissibility. Yet a robust and well-characterized in vitro model of the nasal epithelium remained elusive. Here we report an organoid culture system of the nasal epithelium. We derived nasal organoids from easily accessible nasal epithelial cells with a perfect establishment rate. The derived nasal organoids were consecutively passaged for over 6 months. We then established differentiation protocols to generate 3-dimensional differentiated nasal organoids and organoid monolayers of 2-dimensional format that faithfully simulate the nasal epithelium. Moreover, when differentiated under a slightly acidic pH, the nasal organoid monolayers represented the optimal correlate of the native nasal epithelium for modeling the high infectivity of SARS-CoV-2, superior to all existing organoid models. Notably, the differentiated nasal organoid monolayers accurately recapitulated higher infectivity and replicative fitness of the Omicron variant than the prior variants. SARS-CoV-2, especially the more transmissible Delta and Omicron variants, destroyed ciliated cells and disassembled tight junctions, thereby facilitating virus spread and transmission. In conclusion, we establish a robust organoid culture system of the human nasal epithelium for modeling upper respiratory infections and provide a physiologically-relevant model for assessing the infectivity of SARS-CoV-2 emerging variants.
Collapse
|
9
|
Transcriptome Analysis Reveals Critical Factors For Survival After Adenovirus Serotype 4 Infection. Poult Sci 2022; 102:102150. [PMID: 36989855 PMCID: PMC10070941 DOI: 10.1016/j.psj.2022.102150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Fowl adenovirus serotype-4 (FAdV-4) is highly lethal to poultry, making it one of the leading causes of economic losses in the poultry industry. However, a small proportion of poultry can survive after FAdV-4 infection. It is unclear whether there are genetic factors that protect chickens from FAdV-4 infection. Therefore, the livers from chickens uninfected with FAdV-4 (Normal), dead after FAdV-4 infection (Dead) or surviving after FAdV-4 infection (Survivor) were collected for RNA-seq, and 2,649 differentially expressed genes (DEGs) were identified. Among these, many immune-related cytokines and chemokines were significantly upregulated in the Dead group compared with the Survivor group, which might indicate that death is related to an excessive inflammatory immune response (cytokine storm). Subsequently, the KEGG results for DEGs specifically expressed in each comparison group indicated that cell cycle and apoptosis-related DEGs were upregulated and metabolism-related DEGs were downregulated in the Dead group, which also validated the reliability of the samples. Furthermore, GO and KEGG results showed DEGs expressed in all three groups were mainly associated with cell cycle. Among them, BRCA1, CDK1, ODC1, and MCM3 were screened as factors that might influence FAdV-4 infection. The qPCR results demonstrated that these 4 factors were not only upregulated in the Dead group but also significantly upregulated in the LMH cells after 24 h infection by FAdV-4. Moreover, interfering with BRCA1, CDK1, ODC1, and MCM3 significantly attenuated viral replication of FAdV-4. And interfering of BRCA1, CDK1, and MCM3 had more substantial hindering effects. These results provided novel insights into the molecular changes following FAdV-4 infection but also shed light on potential factors driving the survival of FAdV-4 infection in chickens.
Collapse
|
10
|
Salazar RA, Field SS. Factors Influencing Frequency of Pediatric Clinically Distinguishable Influenza: A 2 Season Case-Control Study. Clin Med Insights Pediatr 2022; 16:11795565221084159. [PMID: 35355882 PMCID: PMC8958712 DOI: 10.1177/11795565221084159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Little is known about the individual differences in susceptibility to, or lifetime frequency of clinically distinguishable influenza in children. Methods: Rapid enzyme linked immunoassay-confirmed influenza pediatric cases (n = 96) in season 1 (2017-2018) were compared to age-matched (mean 7.7 years) controls (n = 171) with no evidence of influenza in season 1. The 2 cohorts were again studied in season 2 (2018-2019) for influenza outcomes and influences. Medical records, questionnaires, and interviews were used to determine past influenza disease and vaccine histories. Results: After season 2, known lifetime influenza illnesses per year of age averaged 22.6% in cases and 5.6% in controls, with 62% of controls still having never experienced known influenza. Having had prior influenza was marginally significant as a risk for season 1 influenza in cases versus controls (P = .055), yet a significant risk factor in controls for season 2 (P = .018). Influenza vaccine rates were significantly higher in controls than in cases for season 1, with a greater female vaccine benefit. Lack of previous influenza had greater calculated effectiveness (52%) than vaccination (17%-26%) in escaping season 2 influenza. Lifetime rates of vaccination did not correlate with lifetime rates of known influenza in either cohort. Conclusions: Lifetime clinically distinguishable influenza rates varied among children, with many escaping it for years even without being immunized against it. Findings of less than expected clinical influenza, no correlation between vaccination frequency and disease frequency, sex differences, and an association between past clinical influenza and current risk, point to innate differences in individual influenza experiences.
Collapse
Affiliation(s)
- Ryan A Salazar
- University of Alabama at Birmingham School of Medicine (Medical Student), Huntsville, AL, USA
| | - Scott S Field
- Department of Pediatrics, University of Alabama at Birmingham, Huntsville Campus (Adjunct Faculty), Huntsville, AL, USA
| |
Collapse
|
11
|
Yi C, Cai C, Cheng Z, Zhao Y, Yang X, Wu Y, Wang X, Jin Z, Xiang Y, Jin M, Han L, Zhang A. Genome-wide CRISPR-Cas9 screening identifies the CYTH2 host gene as a potential therapeutic target of influenza viral infection. Cell Rep 2022; 38:110559. [PMID: 35354039 DOI: 10.1016/j.celrep.2022.110559] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022] Open
Abstract
Host genes critical for viral infection are effective antiviral drug targets with tremendous potential due to their universal characteristics against different subtypes of viruses and minimization of drug resistance. Accordingly, we execute a genome-wide CRISPR-Cas9 screen with multiple rounds of survival selection. Enriched in this screen are several genes critical for host sialic acid biosynthesis and transportation, including the cytohesin 2 (CYTH2), tetratricopeptide repeat protein 24 (TTC24), and N-acetylneuraminate synthase (NANS), which we confirm are responsible for efficient influenza viral infection. Moreover, we reveal that CYTH2 is required for the early stage of influenza virus infection by mediating endosomal trafficking. Furthermore, CYTH2 antagonist SecinH3 blunts influenza virus infection in vivo. In summary, these data suggest that CYTH2 is an attractive target for developing host-directed antiviral drugs and therapeutics against influenza virus infection.
Collapse
Affiliation(s)
- Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Cong Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Ze Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yifan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xu Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yue Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiaoping Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Zehua Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200000, China
| | - Meilin Jin
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China.
| |
Collapse
|
12
|
Wang D, Li C, Chiu MC, Yu Y, Liu X, Zhao X, Huang J, Cheng Z, Yuan S, Poon V, Cai J, Chu H, Chan JF, To KK, Yuen KY, Zhou J. SPINK6 inhibits human airway serine proteases and restricts influenza virus activation. EMBO Mol Med 2022; 14:e14485. [PMID: 34826211 PMCID: PMC9976594 DOI: 10.15252/emmm.202114485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
SPINK6 was identified in human skin as a cellular inhibitor of serine proteases of the KLK family. Airway serine proteases are required to cleave hemagglutinin (HA) of influenza A viruses (IAVs) to initiate an infection in the human airway. We hypothesized that SPINK6 may inhibit common airway serine proteases and restrict IAV activation. We demonstrate that SPINK6 specifically suppresses the proteolytic activity of HAT and KLK5, HAT- and KLK5-mediated HA cleavage, and restricts virus maturation and replication. SPINK6 constrains the activation of progeny virions and impairs viral growth; and vice versa, blocking endogenous SPINK6 enhances HA cleavage and viral growth in physiological-relevant human airway organoids where SPINK6 is intrinsically expressed. In IAV-infected mice, SPINK6 significantly suppresses viral growth and improves mouse survival. Notably, individuals carrying the higher SPINK6 expression allele were protected from human H7N9 infection. Collectively, SPINK6 is a novel host inhibitor of serine proteases in the human airway and restricts IAV activation.
Collapse
Affiliation(s)
- Dong Wang
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Cun Li
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Man Chun Chiu
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yifei Yu
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Xiaojuan Liu
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Xiaoyu Zhao
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Jingjing Huang
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Zhongshan Cheng
- Applied Bioinformatics CenterSt Jude Children’s Research HospitalMemphisTNUSA
| | - Shuofeng Yuan
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Vincent Poon
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Jian‐Piao Cai
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Hin Chu
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina,State Key Laboratory of Emerging Infectious DiseasesThe University of Hong KongHong KongChina
| | - Jasper Fuk‐Woo Chan
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina,State Key Laboratory of Emerging Infectious DiseasesThe University of Hong KongHong KongChina,Carol Yu Centre for InfectionThe University of Hong KongHong KongChina
| | - Kelvin Kai‐Wang To
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina,State Key Laboratory of Emerging Infectious DiseasesThe University of Hong KongHong KongChina,Carol Yu Centre for InfectionThe University of Hong KongHong KongChina
| | - Kwok Yung Yuen
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina,State Key Laboratory of Emerging Infectious DiseasesThe University of Hong KongHong KongChina,Carol Yu Centre for InfectionThe University of Hong KongHong KongChina
| | - Jie Zhou
- Department of MicrobiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina,State Key Laboratory of Emerging Infectious DiseasesThe University of Hong KongHong KongChina
| |
Collapse
|
13
|
Yin L, Liu S, Shi H, Feng Y, Zhang Y, Wu D, Song Z, Zhang L. Subcellular Proteomic Analysis Reveals Dysregulation in Organization of Human A549 Cells Infected with Influenza Virus H7N9. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164619666211222145450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
H7N9 influenza virus poses a high risk to human beings and proteomic evaluations of these infections may help to better understand its pathogenic mechanisms in human systems. Objective: To find membrane proteins related to H7N9 infection.
Methods:
Here, we infected primary human alveolar adenocarcinoma epithelial cells (A549) cells with H7N9 (including wild and mutant strains) and then produced enriched cellular membrane isolations which were evaluated by western blot. The proteins in these cell membrane fractions were analyzed using the isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteome technologies.
Results:
Differentially expressed proteins (n = 32) were identified following liquid chromatography-tandem mass spectrometry, including 20 down-regulated proteins such as CD44 antigen, and CD151 antigen, and 12 up-regulated proteins such as tight junction protein ZO-1, and prostaglandin reductase 1. Gene Ontology database searching revealed that 20 out of the 32 differentially expressed proteins were localized to the plasma membrane. These proteins were primarily associated with cellular component organization (n = 20), and enriched in the Reactome pathway of extracellular matrix organization (n = 4).
Conclusion:
These findings indicate that H7N9 may dysregulate cellular organization via specific alterations to the protein profile of the plasma membrane.
Collapse
Affiliation(s)
- Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Siyuan Liu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201400, China
| | - Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Dage Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
14
|
Van Goethem N, Danwang C, Bossuyt N, Van Oyen H, Roosens NHC, Robert A. A systematic review and meta-analysis of host genetic factors associated with influenza severity. BMC Genomics 2021; 22:912. [PMID: 34930124 PMCID: PMC8686082 DOI: 10.1186/s12864-021-08240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The severity of influenza disease can range from mild symptoms to severe respiratory failure and can partly be explained by host genetic factors that predisposes the host to severe influenza. Here, we aimed to summarize the current state of evidence that host genetic variants play a role in the susceptibility to severe influenza infection by conducting a systematic review and performing a meta-analysis for all markers with at least three or more data entries. RESULTS A total of 34 primary human genetic association studies were identified that investigated a total of 20 different genes. The only significant pooled ORs were retrieved for the rs12252 polymorphism: an overall OR of 1.52 (95% CI [1.06-2.17]) for the rs12252-C allele compared to the rs12252-T allele. A stratified analysis by ethnicity revealed opposite effects in different populations. CONCLUSION With exception for the rs12252 polymorphism, we could not identify specific genetic polymorphisms to be associated with severe influenza infection in a pooled meta-analysis. This advocates for the use of large, hypothesis-free, genome-wide association studies that account for the polygenic nature and the interactions with other host, pathogen and environmental factors.
Collapse
Affiliation(s)
- Nina Van Goethem
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| | - Célestin Danwang
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| | - Nathalie Bossuyt
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Herman Van Oyen
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Public Health and Primary Care, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| |
Collapse
|
15
|
Zhao X, Li C, Liu X, Chiu MC, Wang D, Wei Y, Chu H, Cai JP, Hau-Yee Chan I, Kak-Yuen Wong K, Fuk-Woo Chan J, Kai-Wang To K, Yuen KY, Zhou J. Human Intestinal Organoids Recapitulate Enteric Infections of Enterovirus and Coronavirus. Stem Cell Reports 2021; 16:493-504. [PMID: 33626333 PMCID: PMC7940440 DOI: 10.1016/j.stemcr.2021.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses, such as EV-A71 and CVA16, mainly infect the human gastrointestinal tract. Human coronaviruses, including SARS-CoV and SARS-CoV-2, have been variably associated with gastrointestinal symptoms. We aimed to optimize the human intestinal organoids and hypothesize that these optimized intestinal organoids can recapitulate enteric infections of enterovirus and coronavirus. We demonstrate that the optimized human intestinal organoids enable better simulation of the native human intestinal epithelium, and that they are significantly more susceptible to EV-A71 than CVA16. Higher replication of EV-A71 than CVA16 in the intestinal organoids triggers a more vigorous cellular response. However, SARS-CoV and SARS-CoV-2 exhibit distinct dynamics of virus-host interaction; more robust propagation of SARS-CoV triggers minimal cellular response, whereas, SARS-CoV-2 exhibits lower replication capacity but elicits a moderate cellular response. Taken together, the disparate profile of the virus-host interaction of enteroviruses and coronaviruses in human intestinal organoids may unravel the cellular basis of the distinct pathogenicity of these viral pathogens. An optimized differentiation protocol improves maturation of intestinal organoids SARS-CoV-2 and SARS-CoV infection triggers less robust response than enteroviruses Coronaviruses show lower sensitivity to type III IFNs than enteroviruses Intestinal organoids recapitulate disparate pathogenicity of CoVs and enteroviruses
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Cun Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Xiaojuan Liu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Man Chun Chiu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Dong Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Yuxuan Wei
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Ivy Hau-Yee Chan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth Kak-Yuen Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
16
|
Farris J, Alam MS, Rajashekara AM, Haldar K. Genomic analyses of glycine decarboxylase neurogenic mutations yield a large-scale prediction model for prenatal disease. PLoS Genet 2021; 17:e1009307. [PMID: 33524012 PMCID: PMC7850488 DOI: 10.1371/journal.pgen.1009307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 11/18/2022] Open
Abstract
Hundreds of mutations in a single gene result in rare diseases, but why mutations induce severe or attenuated states remains poorly understood. Defect in glycine decarboxylase (GLDC) causes Non-ketotic Hyperglycinemia (NKH), a neurological disease associated with elevation of plasma glycine. We unified a human multiparametric NKH mutation scale that separates severe from attenuated neurological disease with new in silico tools for murine and human genome level-analyses, gathered in vivo evidence from mice engineered with top-ranking attenuated and a highly pathogenic mutation, and integrated the data in a model of pre- and post-natal disease outcomes, relevant for over a hundred major and minor neurogenic mutations. Our findings suggest that highly severe neurogenic mutations predict fatal, prenatal disease that can be remedied by metabolic supplementation of dams, without amelioration of persistent plasma glycine. The work also provides a systems approach to identify functional consequences of mutations across hundreds of genetic diseases. Our studies provide a new framework for a large scale understanding of mutation functions and the prediction that severity of a neurogenic mutation is a direct measure of pre-natal disease in neurometabolic NKH mouse models. This framework can be extended to analyses of hundreds of monogenetic rare disorders where the underlying genes are known but understanding of the vast majority of mutations and why and how they cause disease, has yet to be realized. Building models of human genetic disease, both computational and animal, is an essential part of understanding the disease, designing treatments, and testing therapies. Here, we have developed new in silico tools to build models for the rare neurological disorder non-ketotic hyperglycinemia (NKH), which is caused by mutations in glycine decarboxylase (GLDC), a protein that degrades glycine. We first applied a mutation scoring tool to GLDC in both the human and mouse genomes, and then used this data to develop a computational model for predicting which mutations would be well-modeled in mice, and how severe their disease would be. We then validated this computational model by genetically-engineering a mutation predicted to cause mild disease and another predicted to cause severe disease. Our predictions were correct and we used them to develop a model relevant for over a hundred major and minor neurogenic mutations that suggests that the more severe the mutation, the greater chance it will cause disease that starts before birth and is likely to be fatal unless rescued by modifying diet. This study also demonstrates the power of in silico analyses for guiding the development of genetic disease models and incorporating them into scalable models that can be applied to understand hundreds of mutations that cause disease.
Collapse
Affiliation(s)
- Joseph Farris
- Boler-Parseghian Center for Rare and Neglected Disease, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United State of America
| | - Md Suhail Alam
- Boler-Parseghian Center for Rare and Neglected Disease, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United State of America
| | - Arpitha Mysore Rajashekara
- Boler-Parseghian Center for Rare and Neglected Disease, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United State of America
| | - Kasturi Haldar
- Boler-Parseghian Center for Rare and Neglected Disease, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United State of America
- * E-mail:
| |
Collapse
|
17
|
Li M, Chen Y, Chen T, Hu S, Chen L, Shen L, Li F, Yang J, Sun Y, Wang D, He L, Qin S, Shu Y. A host-based whole genome sequencing study reveals novel risk loci associated with severity of influenza A(H1N1)pdm09 infection. Emerg Microbes Infect 2021; 10:123-131. [PMID: 33393450 PMCID: PMC7832503 DOI: 10.1080/22221751.2020.1870412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Influenza A(H1N1)pdm09 virus has remained in a seasonal circulation since being recognized in 2009. Although it followed a mild course in most patients, in others it caused a series of severe clinical illnesses. Epidemiologic studies have implicated that host factors have a major influence on the disease severity of influenza A(H1N1)pdm09 infection. However, an understanding of relevant genetic variations and the underlying mechanisms is still limited. In this present study, we used a host-based whole genome sequencing (WGS) method to comprehensively explore the genetic risk loci associated with severity of influenza A(H1N1)pdm09 infection. From the common single-nucleotide variants (SNVs) analysis, we identified the abnormal nominally significant (P < 1 × 10−4) common SNVs enriched in PTBP3 gene. The results of rare functional SNVs analysis supported that there were several novel candidate genes might confer risk of severe influenza A(H1N1)pdm09 diseases, such as FTSJ3, CPVL, BST2, NOD2 and MAVS. Moreover, our results of gene set based analysis indicated that the HIF-1 transcription factor and IFN-γ pathway might play an important role in the underlying mechanism of severe influenza A(H1N1)pdm09. These findings will increase our knowledge about biological mechanism underlying the severe influenza A(H1N1)pdm09 and facilitate to design novel personalized treatments.
Collapse
Affiliation(s)
- Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yongkun Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shixiong Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, People's Republic of China
| | - Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fangcai Li
- Hunan Provincial Center for Disease Control and Prevention, Changsha, People's Republic of China
| | - Jing Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yan Sun
- Changsha Central Hospital, Changsha 410004, People's Republic of China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People's Republic of China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
18
|
Wang Q, Xu K, Xie W, Yang L, Chen H, Shi N, Bao C, Huang H, Zhang X, Liao Y, Jin H. Seroprevalence of H7N9 infection among humans: A systematic review and meta-analysis. Influenza Other Respir Viruses 2020; 14:587-595. [PMID: 32157809 PMCID: PMC7431636 DOI: 10.1111/irv.12736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/27/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
In spring 2013, a novel avian-origin influenza A (H7N9) virus emerged in mainland China. The burden of H7N9 infection was estimated based on systematic review and meta-analysis. The systematic search for available literature was conducted using Chinese and English databases. We calculated the pooled seroprevalence of H7N9 infection and its 95% confidence interval by using Freeman-Tukey double arcsine transformation. Out of 16 890 records found using Chinese and English databases, 54 articles were included in the meta-analysis. These included studies of a total of 64 107 individuals. The pooled seroprevalence of H7N9 infection among humans was 0.122% (95% CI: 0.023, 0.275). In high-risk populations, the highest pooled seroprevalence was observed among close contacts (1.075%, 95% CI: 0.000, 4.357). The seroprevalence among general population was (0.077%, 95% CI: 0.011, 0.180). Our study discovered that asymptomatic infection of H7N9 virus did occur, even if the seroprevalence among humans was low.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ke Xu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Weihua Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Liuqing Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haiyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Naiyang Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Changjun Bao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Haodi Huang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xuefeng Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yilan Liao
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Zhao X, Chu H, Wong BHY, Chiu MC, Wang D, Li C, Liu X, Yang D, Poon VKM, Cai J, Chan JFW, To KKW, Zhou J, Yuen KY. Activation of C-Type Lectin Receptor and (RIG)-I-Like Receptors Contributes to Proinflammatory Response in Middle East Respiratory Syndrome Coronavirus-Infected Macrophages. J Infect Dis 2020; 221:647-659. [PMID: 31562757 PMCID: PMC7107474 DOI: 10.1093/infdis/jiz483] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) poses an ongoing threat to public health worldwide. The studies of MERS patients with severe disease and experimentally infected animals showed that robust viral replication and intensive proinflammatory response in lung tissues contribute to high pathogenicity of MERS-CoV. We sought to identify pattern recognition receptor (PRR) signaling pathway(s) that mediates the inflammatory cascade in human macrophages upon MERS-CoV infection. METHODS The potential signaling pathways were manipulated individually by pharmacological inhibition, small interfering ribonucleic acid (siRNA) depletion, and antibody blocking. The MERS-CoV-induced proinflammatory response was evaluated by measuring the expression levels of key cytokines and/or chemokines. Reverse transcription-quantitative polymerase chain reaction assay, flow cytometry analysis, and Western blotting were applied to evaluate the activation of related PRRs and engagement of adaptors. RESULTS MERS-CoV replication significantly upregulated C-type lectin receptor (CLR) macrophage-inducible Ca2+-dependent lectin receptor (Mincle). The role of Mincle for MERS-CoV-triggered cytokine/chemokine induction was established based on the results of antibody blockage, siRNA depletion of Mincle and its adaptor spleen tyrosine kinase (Syk), and Syk pharmacological inhibition. The cytokine and/or chemokine induction was significantly attenuated by siRNA depletion of retinoic acid-inducible-I-like receptors (RLR) or adaptor, indicating that RLR signaling also contributed to MERS-CoV-induced proinflammatory response. CONCLUSIONS The CLR and RLR pathways are activated and contribute to the proinflammatory response in MERS-CoV-infected macrophages.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
| | - Bosco Ho-Yin Wong
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
| | | | - Dong Wang
- Department of Microbiology, Pokfulam, Hong Kong
| | - Cun Li
- Department of Microbiology, Pokfulam, Hong Kong
| | | | - Dong Yang
- Department of Microbiology, Pokfulam, Hong Kong
| | | | | | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
- Carol Yu Centre for Infection, Pokfulam, Hong Kong
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
- Carol Yu Centre for Infection, Pokfulam, Hong Kong
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
- Carol Yu Centre for Infection, Pokfulam, Hong Kong
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
20
|
Regulatory genome variants in human susceptibility to infection. Hum Genet 2019; 139:759-768. [PMID: 31807864 DOI: 10.1007/s00439-019-02091-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
Genome studies have accelerated the discovery of common and rare genetic variants associated with susceptibility to infection and with disease severity. Genome-wide association studies identified many common genetic variants associated with modest risk for infection. Over 80% of these common variants map to the non-coding genome and are thought to modulate the regulatory networks. Exome sequencing has rapidly expanded the number of recognized primary immunodeficiencies through the identification of rare coding variants. In contrast, less than 29 primary immunodeficiencies have causative rare variation mapped outside protein-coding regions. In the future, whole genome sequencing will accelerate the identification of rare variants of substantial phenotypic impact that disrupt essential regulatory elements and the three-dimensional structure of chromatin.
Collapse
|
21
|
Hayek S, Pietrancosta N, Hovhannisyan AA, Alves de Sousa R, Bekaddour N, Ermellino L, Tramontano E, Arnould S, Sardet C, Dairou J, Diaz O, Lotteau V, Nisole S, Melikyan G, Herbeuval JP, Vidalain PO. Cerpegin-derived furo[3,4-c]pyridine-3,4(1H,5H)-diones enhance cellular response to interferons by de novo pyrimidine biosynthesis inhibition. Eur J Med Chem 2019; 186:111855. [PMID: 31740051 DOI: 10.1016/j.ejmech.2019.111855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
There is an increasing interest in the field of cancer therapy for small compounds targeting pyrimidine biosynthesis, and in particular dihydroorotate dehydrogenase (DHODH), the fourth enzyme of this metabolic pathway. Three available DHODH structures, featuring three different known inhibitors, were used as templates to screen in silico an original chemical library from Erevan University. This process led to the identification of P1788, a compound chemically related to the alkaloid cerpegin, as a new class of pyrimidine biosynthesis inhibitors. In line with previous reports, we investigated the effect of P1788 on the cellular innate immune response. Here we show that pyrimidine depletion by P1788 amplifies cellular response to both type-I and type II interferons, but also induces DNA damage as assessed by γH2AX staining. Moreover, the addition of inhibitors of the DNA damage response led to the suppression of the P1788 stimulatory effects on the interferon pathway. This demonstrates that components of the DNA damage response are bridging the inhibition of pyrimidine biosynthesis by P1788 to the interferon signaling pathway. Altogether, these results provide new insights on the mode of action of novel pyrimidine biosynthesis inhibitors and their development for cancer therapies.
Collapse
Affiliation(s)
- Simon Hayek
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Nicolas Pietrancosta
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | | | - Rodolphe Alves de Sousa
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Nassima Bekaddour
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Laura Ermellino
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France; Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Stéphanie Arnould
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Julien Dairou
- Chimie Bio-inorganique des Dérivés Soufrés et Pharmacochimie (CBDSP), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Olivier Diaz
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Vincent Lotteau
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR9004, Université de Montpellier, Montpellier, France
| | - Gagik Melikyan
- Department of Organic Chemistry, Yerevan State University, Yerevan, Armenia.
| | - Jean-Philippe Herbeuval
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Pierre-Olivier Vidalain
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France.
| |
Collapse
|
22
|
Clohisey S, Baillie JK. Host susceptibility to severe influenza A virus infection. Crit Care 2019; 23:303. [PMID: 31488196 PMCID: PMC6729070 DOI: 10.1186/s13054-019-2566-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022] Open
Abstract
Most people exposed to a new flu virus do not notice any symptoms. A small minority develops critical illness. Some of this extremely broad variation in susceptibility is explained by the size of the initial inoculum or the influenza exposure history of the individual; some is explained by generic host factors, such as frailty, that decrease resilience following any systemic insult. Some demographic factors (pregnancy, obesity, and advanced age) appear to confer a more specific susceptibility to severe illness following infection with influenza viruses. As with other infectious diseases, a substantial component of susceptibility is determined by host genetics. Several genetic susceptibility variants have now been reported with varying levels of evidence. Susceptible hosts may have impaired intracellular controls of viral replication (e.g. IFITM3, TMPRS22 variants), defective interferon responses (e.g. GLDC, IRF7/9 variants), or defects in cell-mediated immunity with increased baseline levels of systemic inflammation (obesity, pregnancy, advanced age). These mechanisms may explain the prolonged viral replication reported in critically ill patients with influenza: patients with life-threatening disease are, by definition, abnormal hosts. Understanding these molecular mechanisms of susceptibility may in the future enable the design of host-directed therapies to promote resilience.
Collapse
Affiliation(s)
- Sara Clohisey
- Division of Genetics and Genomics, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - John Kenneth Baillie
- Division of Genetics and Genomics, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
- Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK.
| |
Collapse
|