1
|
Qi X, Guo H, Xia X, Liu Y, Qiu S, Lin T, He W, Jin L, Cheng J, Hao L, Liu W, Hu H. Paeoniflorin alleviated STZ-induced diabetic retinopathy via regulation of the PDI/ADAM17/MerTK pathway. Int Immunopharmacol 2025; 155:114571. [PMID: 40209310 DOI: 10.1016/j.intimp.2025.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and a leading cause of vision impairment in diabetic patients. The accumulation of apoptotic cells and inflammation are key pathological mechanisms in DR. The Mer tyrosine kinase (MerTK) receptor plays a critical role in maintaining retinal homeostasis. Proteolytic cleavage of MerTK by disintegrin and metalloproteinase-17 (ADAM17) disrupts MerTK-dependent clearance of apoptotic cells and diminishes its anti-inflammatory effects. Therefore, reducing the cleavage activity ADAM17's and promoting MerTK-dependent anti-inflammatory effects may represent potent strategy to alleviate DR. METHODS The DR mouse model was established using streptozotocin (STZ), and a high-glucose (HG)-induced in vitro model was developed using human retinal pigment epithelial (ARPE-19) cells. Relevant signaling molecules were analyzed through western blotting and immunohistochemistry. RESULTS Hyperglycemia promoted the accumulation of apoptotic cells and disrupted retinal microvascular growth. In both vivo and vitro model, MerTK expression was significantly reduced, while ADAM17 phosphorylation levels were markedly increased. In STZ-treated mice, protein disulfide isomerase (PDI) secretion initially rose but subsequently declined, whereas PDI secretion decreased under HG conditions. We then utilized paeoniflorin to increase the expression of this endogenous inhibitor of ADAM17. Results showed that paeoniflorin upregulated PDI production, suppressed ADAM17 expression, and enhanced MerTK phosphorylation in the eye tissues of STZ-induced mice. Additionally, paeoniflorin elevated the expression of suppressor of cytokine signaling 3 (SOCS3) and decreased the level of matrix metalloproteinase 9 (MMP9) both in vivo and in vitro. CONCLUSION Paeoniflorin may alleviate diabetic retinopathy by suppressing inflammation through modulation of the PDI/ADAM17/MerTK signaling pathway.
Collapse
Affiliation(s)
- Xiuting Qi
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Haiyue Guo
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Xinyue Xia
- The First Clinical College, Nanjing Medical University, Nanjing 211166, China
| | - Yanmei Liu
- The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Jiangsu 224005, China
| | - Shenghui Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Tongtong Lin
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligence Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenqi He
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Lai Jin
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Jing Cheng
- Department of Gastroenterology, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu, China; Department of Gastroenterology,Shanghai General Hospial of Nanjing Medical University, Shanghai, China
| | - Lanxiang Hao
- The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Jiangsu 224005, China.
| | - Wentao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| | - Haitao Hu
- The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Jiangsu 224005, China.
| |
Collapse
|
2
|
Guo C, Niu Y, Pan X, Sharma D, Lau E, Jin Y, Luxardi G, Amanullah M, Lo K, Moshiri A, Qian J, Montaner S, Sodhi A. Hypoglycemia promotes inner blood-retinal barrier breakdown and retinal vascular leakage in diabetic mice. Sci Transl Med 2025; 17:eadq5355. [PMID: 40305573 DOI: 10.1126/scitranslmed.adq5355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/28/2024] [Accepted: 02/12/2025] [Indexed: 05/02/2025]
Abstract
The blood-retinal barrier (BRB) serves as a physiological boundary regulating the passage of nutrients, waste, ions, proteins, and water to and from the retina. In patients with diabetic retinopathy, breakdown of the inner BRB (iBRB) results in damage to the neurovascular unit and is a principal cause of vision loss in the diabetic population. Here, we demonstrate that hypoglycemia, a common consequence of tight glycemic control and high glycemic variability, results in accumulation of the transcription factors hypoxia-inducible factor-1α (HIF-1α) and HIF-2α and the expression of dozens of HIF-dependent vasoactive mediators in the mouse retina. In diabetic mice, this modest increase in HIF-dependent hyperpermeability factors was sufficient to promote vesicular transcytosis, breakdown of the iBRB, and retinal vascular permeability. Genetic inhibition of either HIF-1α or HIF-2α resulted in an incomplete inhibition of the broad increase in HIF-regulated vasoactive gene expression in response to hypoglycemia. We therefore evaluated a pharmacologic dual HIF-1 and HIF-2 inhibitor, 32-134D, as a therapeutic approach to prevent hypoglycemia-induced HIF-dependent vasoactive gene expression. 32-134D effectively inhibited HIF-1α accumulation and HIF-regulated gene expression in human retinal tissue. In diabetic mice, intravitreal administration of 32-134D prevented the increase in expression of HIF-regulated vasoactive genes after transient episodes of hypoglycemia, blocking both breakdown of the iBRB and the promotion of retinal vascular hyperpermeability. Collectively, these observations help explain why patients with diabetes initiating tight glycemic control have worsening of their diabetic retinopathy and provide the foundation for clinical studies assessing HIF inhibition with 32-134D for its prevention.
Collapse
Affiliation(s)
- Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yueqi Niu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xuemei Pan
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Eye Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, China
| | - Deepti Sharma
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Evan Lau
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yang Jin
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Guillaume Luxardi
- Department of Ophthalmology and Vision Science, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Md Amanullah
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kevin Lo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ala Moshiri
- Department of Ophthalmology and Vision Science, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Zhang CL, Ma JJ, Li X, Yan HQ, Gui YK, Yan ZX, You MF, Zhang P. The role of transcytosis in the blood-retina barrier: from pathophysiological functions to drug delivery. Front Pharmacol 2025; 16:1565382. [PMID: 40308764 PMCID: PMC12040858 DOI: 10.3389/fphar.2025.1565382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
The blood-retina barrier (BRB) serves as a critical interface that separates the retina from the circulatory system, playing an essential role in preserving the homeostasis of the microenvironment within the retina. Specialized tight junctions and limited vesicle trafficking restrict paracellular and transcellular transport, respectively, thereby maintaining BRB barrier properties. Additionally, transcytosis of macromolecules through retinal vascular endothelial cells constitutes a primary mechanism for transporting substances from the vascular compartment into the surrounding tissue. This review summarizes the fundamental aspects of transcytosis including its function in the healthy retina, the biochemical properties of transcytosis, and the methodologies used to study this process. Furthermore, we discuss the current understanding of transcytosis in the context of pathological BRB breakdown and present recent findings that highlight significant advances in drug delivery to the retina based on transcytosis.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jing-Jie Ma
- Department of Audit, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hai-Qing Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yong-Kun Gui
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhi-Xin Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ming-Feng You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
He K, Dong X, Yang T, Li Z, Liu Y, He J, Wu M, Wei-Zhang S, Kaysar P, Cui B, Yao X, Zhang L, Zhou W, Xu H, Wei J, Liu Q, Hu J, Wang X, Yan H. Smoking aggravates neovascular age-related macular degeneration via Sema4D-PlexinB1 axis-mediated activation of pericytes. Nat Commun 2025; 16:2821. [PMID: 40121188 PMCID: PMC11929803 DOI: 10.1038/s41467-025-58074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Age-related macular degeneration (AMD) is a prevalent neuroinflammation condition and the leading cause of irreversible blindness among the elderly population. Smoking significantly increases AMD risk, yet the mechanisms remain unclear. Here, we investigate the role of Sema4D-PlexinB1 axis in the progression of AMD, in which Sema4D-PlexinB1 is highly activated by smoking. Using patient-derived samples and mouse models, we discover that smoking increases the presence of Sema4D on the surface of CD8+ T cells that migrate into the choroidal neovascularization (CNV) lesion via CXCL12-CXCR4 axis and interact with its receptor PlexinB1 on choroidal pericytes. This leads to ROR2-mediated PlexinB1 phosphorylation and pericyte activation, thereby disrupting vascular homeostasis and promoting neovascularization. Inhibition of Sema4D reduces CNV and improves the benefit of anti-VEGF treatment. In conclusion, this study unveils the molecular mechanisms through which smoking exacerbates AMD pathology, and presents a potential therapeutic strategy by targeting Sema4D to augment current AMD treatments.
Collapse
Affiliation(s)
- Kai He
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences; Tianjin Medical University, Tianjin, China
| | - Tianjing Yang
- School of Medicine, Nankai University, Tianjin, China
| | - Ziqi Li
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuming Liu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing He
- Laboratory of Vascular Biology and Organ Homeostasis, Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Meng Wu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences; Tianjin Medical University, Tianjin, China
| | - Selena Wei-Zhang
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Parhat Kaysar
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bohao Cui
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueming Yao
- School of Medicine, Nankai University, Tianjin, China
| | - Li Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhou
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Jun Wei
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Junhao Hu
- Laboratory of Vascular Biology and Organ Homeostasis, Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaohong Wang
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences; Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China.
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
5
|
Peng Y, Hu L, Xu H, Fang J, Zhong H. Resveratrol alleviates reactive oxygen species and inflammation in diabetic retinopathy via SIRT1/HMGB1 pathway-mediated ferroptosis. Toxicol Appl Pharmacol 2025; 495:117214. [PMID: 39719253 DOI: 10.1016/j.taap.2024.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
This study aims to explore the potential of using resveratrol (RES) to treat diabetic retinopathy (DR), as well as the involved molecular mechanisms underlying RES-mediated protection against DR. High concentration of glucose (HG)-induced Human retinal capillary endothelial cells (HRCECs) cell model and streptozotocin (STZ)-induced DR mice model were established. Then, cell viability, apoptosis, reactive oxygen species (ROS) levels, pro-inflammatory factors, and expression of the related proteins SIRT1, HMGB1, VEGF, and CD31 were assayed by a series of cell biology methods. Also, the ferroptosis-related indicators were also explored, including contents of Fe2+, glutathione (GSH), malondialdehyde (MDA), SLC7A11 and GPX4 protein expression. Results showed that RES could alleviate inflammation and oxidative stress in HG-induced HRCECs. In addition, the mRNA and protein expression of SIRT1 and HMGB1 were significantly changed in HG-induced HRCECs and STZ-induced DR mice, while RES treatment could reverse this alteration. In addition, the HMGB1 acetylation level was enhanced after downregulation of SIRT1. Moreover, the ROS generation, expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α), CD31, and VEGF changed by RES administration were reversed by SIRT1-silence. Besides, HG implement could dramatically up-regulated the Fe2+ and MDA contents, and down-regulated the content of GSH and SLC7A11 and GPX4 protein expression in HRCECs, as well as STZ-induced DR mice. RES implement could reverse the above alterations, while SIRT1-silence dramatically reversed these alterations changed by RES treatment. In conclusion, RES suppresses inflammation in DR, as well as inhibit retinal angiogenesis and oxidative stress, and inhibits ferroptosis to alleviate DR via SIRT1/HMGB1 pathway.
Collapse
Affiliation(s)
- Ye Peng
- Department of Ophthalmology, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Long Hu
- Department of Ophthalmology, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Huilei Xu
- Department of Ophthalmology, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Jian Fang
- Haiyan Bang'er Hospital, Jiaxing, Zhejiang, China
| | - Hongliang Zhong
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an 325200, Zhejiang, China.
| |
Collapse
|
6
|
Wu J, Liu Y, Zong J, Qiu M, Zhou Y, Li Y, Aili T, Zhao X, Hu B. TTK Inhibition Alleviates Postinjury Neointimal Formation and Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409250. [PMID: 39716891 PMCID: PMC11809377 DOI: 10.1002/advs.202409250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/19/2024] [Indexed: 12/25/2024]
Abstract
Atherosclerosis and its associated cardio-cerebrovascular complications remain the leading causes of mortality worldwide. Current lipid-lowering therapies reduce only approximately one-third of the cardiovascular risk. Furthermore, vascular restenosis and thrombotic events following surgical interventions for severe vascular stenosis significantly contribute to treatment failure. This highlights the urgent need for novel therapeutic targets to manage atherosclerosis and prevent restenosis and thrombosis after vascular injury. This study identifies TTK protein kinase (TTK) as a key regulator of vascular smooth muscle cell (VSMC) phenotypic switching in the context of postinjury neointimal formation and atherosclerosis. Mechanistically, TTK upregulation in VSMCs phosphorylates p120-catenin, leading to β-catenin nuclear accumulation and dissociation of the myocardin (MYOCD)/serum response factor (SRF) complex. Deletion of TTK specifically in VSMCs reduces postinjury neointimal formation in vascular injury models and attenuates atherosclerotic lesions in ApoE-/- mice. Notably, oral administration of the TTK inhibitor CFI-402257 mitigated neointimal formation without impairing reendothelialization and reduced atherosclerotic lesions in ApoE-/- mice without altering lipid levels. These findings suggest that targeting TTK, through inhibitors or alternative strategies, represents a promising approach to simultaneously prevent postinjury restenosis and treat atherosclerosis.
Collapse
Affiliation(s)
- Jie‐Hong Wu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yu‐Xiao Liu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jia‐Bin Zong
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Min Qiu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yi‐Fan Zhou
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ya‐Nan Li
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tuersun Aili
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xin‐Ran Zhao
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bo Hu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
7
|
Huang C, Zhang X, Wu M, Yang C, Ge X, Chen W, Li X, Liu S, Yang S. IL-1β-induced pericyte dysfunction with a secretory phenotype exacerbates retinal microenvironment inflammation via Hes1/STAT3 signaling pathway. Int Immunopharmacol 2025; 144:113611. [PMID: 39612772 DOI: 10.1016/j.intimp.2024.113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024]
Abstract
Retinal pericytes are mural cells surrounding capillaries to maintain the integrity of blood-retina barrier and regulate vascular behaviors. Pericyte loss has been considered as the hallmark of diabetic retinopathy (DR), which is a major complication of diabetes and the leading cause of blindness in adults. However, the precise function of pericytes in regulating the retinal microenvironment and the underlying mechanism remains largely unknown. In this study, we observed a secretory phenotype of pericytes with elevated inflammatory cytokines in response to Interleukin-1β (IL-1β), a canonical inflammatory cytokine which significantly increases during the initial stages of diabetic retinopathy. This phenotype is also accompanied by reduced expression of adherent junction proteins and contractile proteins. Paracrine cytokines derived from pericytes further induce the chemotaxis of microglia cells and trigger detrimental changes in endothelial cells, including reduced expression of tight junction protein Occludin and increased apoptosis. Mechanically, the secretion potential in pericytes is partially mediated by Hes1/STAT3 signaling pathway. Moreover, co-injection of stattic, an inhibitor targeting STAT3 activation, could effectively attenuate IL-1β-induced retinal inflammation and microglial activation in retina tissues. Collectively, these findings demonstrate the potential of retinal pericytes as an initial inflammatory sensor prior to their anatomical pathological loss, via undergoing phenotypic changes and secreting paracrine factors to amplify local inflammation and damage endothelial cells in vitro. Furthermore, inhibition of STAT3 activation by inhibitors significantly ameliorates IL-1β-induced retinal inflammation, suggesting STAT3 in retinal pericytes as a promising target for alleviating DR and other IL-1β-induced ocular diseases.
Collapse
Affiliation(s)
- Caoxin Huang
- Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Xiaofang Zhang
- Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Menghua Wu
- Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chen Yang
- Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xilin Ge
- Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenting Chen
- Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xuejun Li
- Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Suhuan Liu
- Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Shuyu Yang
- Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
8
|
Sun WJ, An XD, Zhang YH, Tang SS, Sun YT, Kang XM, Jiang LL, Zhao XF, Gao Q, Ji HY, Lian FM. Autophagy-dependent ferroptosis may play a critical role in early stages of diabetic retinopathy. World J Diabetes 2024; 15:2189-2202. [PMID: 39582563 PMCID: PMC11580571 DOI: 10.4239/wjd.v15.i11.2189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/16/2024] Open
Abstract
Diabetic retinopathy (DR), as one of the most common and significant microvascular complications of diabetes mellitus (DM), continues to elude effective targeted treatment for vision loss despite ongoing enrichment of the understanding of its pathogenic mechanisms from perspectives such as inflammation and oxidative stress. Recent studies have indicated that characteristic neuroglial degeneration induced by DM occurs before the onset of apparent microvascular lesions. In order to comprehensively grasp the early-stage pathological changes of DR, the retinal neurovascular unit (NVU) will become a crucial focal point for future research into the occurrence and progression of DR. Based on existing evidence, ferroptosis, a form of cell death regulated by processes like ferritinophagy and chaperone-mediated autophagy, mediates apoptosis in retinal NVU components, including pericytes and ganglion cells. Autophagy-dependent ferroptosis-related factors, including BECN1 and FABP4, may serve as both biomarkers for DR occurrence and development and potentially crucial targets for future effective DR treatments. The aforementioned findings present novel perspectives for comprehending the mechanisms underlying the early-stage pathological alterations in DR and open up innovative avenues for investigating supplementary therapeutic strategies.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Dong An
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Yue-Hong Zhang
- Department of Endocrinology, Fangshan Hospital of Beijing University of Chinese Medicine, Beijing 102400, China
| | - Shan-Shan Tang
- Department of Endocrinology, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Yu-Ting Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xiao-Min Kang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Lin-Lin Jiang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Fei Zhao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Qing Gao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Hang-Yu Ji
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Feng-Mei Lian
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| |
Collapse
|
9
|
Lei Y, Liu Q, Chen B, Wu F, Li Y, Dong X, Ma N, Wu Z, Zhu Y, Wang L, Fu Y, Liu Y, Song Y, Du M, Zhang H, Zhu J, Lyons TJ, Wang T, Hu J, Xu H, Chen M, Yan H, Wang X. Protein O-GlcNAcylation coupled to Hippo signaling drives vascular dysfunction in diabetic retinopathy. Nat Commun 2024; 15:9334. [PMID: 39472558 PMCID: PMC11522279 DOI: 10.1038/s41467-024-53601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Metabolic disorder significantly contributes to diabetic vascular complications, including diabetic retinopathy, the leading cause of blindness in the working-age population. However, the molecular mechanisms by which disturbed metabolic homeostasis causes vascular dysfunction in diabetic retinopathy remain unclear. O-GlcNAcylation modification acts as a nutrient sensor particularly sensitive to ambient glucose. Here, we observe pronounced O-GlcNAc elevation in retina endothelial cells of diabetic retinopathy patients and mouse models. Endothelial-specific depletion or pharmacological inhibition of O-GlcNAc transferase effectively mitigates vascular dysfunction. Mechanistically, we find that Yes-associated protein (YAP) and Transcriptional co-activator with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, are O-GlcNAcylated in diabetic retinopathy. We identify threonine 383 as an O-GlcNAc site on YAP, which inhibits its phosphorylation at serine 397, leading to its stabilization and activation, thereby promoting vascular dysfunction by inducing a pro-angiogenic and glucose metabolic transcriptional program. This work emphasizes the critical role of the O-GlcNAc-Hippo axis in the pathogenesis of diabetic retinopathy and suggests its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yi Lei
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiangyun Liu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Binggui Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fangfang Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiming Li
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Nina Ma
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziru Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuxin Fu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuming Liu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Yinting Song
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Mei Du
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jidong Zhu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Timothy J Lyons
- Division of Endocrinology, Diabetes and Metabolic Diseases at the Medical University of South Carolina, Charleston, SC, USA
| | - Ting Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junhao Hu
- Laboratory of Vascular Biology and Organ Homeostasis, Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Hua Yan
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China.
- School of Medicine, Nankai University, Tianjin, China.
| | - Xiaohong Wang
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Zhang Y, Jiang X, Wu D, Huang H, Jia G, Zhao G. Sema4D deficiency enhances glucose tolerance through GLUT2 retention in hepatocytes. J Transl Med 2024; 22:864. [PMID: 39334386 PMCID: PMC11429007 DOI: 10.1186/s12967-024-05694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The glucose transporter 2 (GLUT2) is constitutively expressed in pancreatic beta cells and hepatocytes of mice. It is the most important receptor in glucose-stimulated insulin release and hepatic glucose transport. The Sema4D is a signalin receptor on cell membranes. The correlation between Sema4D and GLUT2 has not been reported previously. We investigated whether knockdown of Sema4D could exert a hypoglycemic effect based on the increased GLUT2 expression in Sema4D -/- mice hepatocytes. METHODS The glucose tolerance test and insulin tolerance test in sema4D -/- and sema4D +/+ mice were compared before and after streptozotocin (STZ) injection; the expression of GLUT2 content on the membrane surface of both groups was verified by Western blot. Then, the levels of insulin and C-peptide in the serum of the two groups of mice after STZ injection were measured by ELISA; the differentially expressed mRNAs in the liver of the two groups of mice were analyzed by transcriptomic analysis; then the differences in the expression of GLUT2, glycogen, insulin and glucagon in the two groups of mice were compared by tissue section staining. Finally, metabolomics analysis was performed to analyze the metabolites differentially expressed in the two groups of mice. KEY FINDINGS First, Sema4D -/- male mice exhibited significantly greater glucose tolerance than wild-type mice in a hyperglycemic environment. Secondly, Sema4D -/- mice had more retained GLUT2 in liver membranes after STZ injection according to an immunofluorescence assay. After STZ injection, Sema4D -/- male mice did not exhibit fasting hyperinsulinemia like wild-type mice. Finally, analysis of metabolomic and immunohistochemical data also revealed that Sema4D -/- mice produce hypoglycemic effects by enhancing the pentose phosphate pathway, but not glycogen synthesis. CONCLUSIONS Thus, Sema4D may play an important role in the regulation of glucose homeostasis by affecting GLUT2 synthesis.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Xiaomei Jiang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Dongsong Wu
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Hao Huang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China.
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
11
|
Franzolin G, Brundu S, Cojocaru CF, Curatolo A, Ponzo M, Mastrantonio R, Mihara E, Kumanogoh A, Suga H, Takagi J, Tamagnone L, Giraudo E. PlexinB1 Inactivation Reprograms Immune Cells in the Tumor Microenvironment, Inhibiting Breast Cancer Growth and Metastatic Dissemination. Cancer Immunol Res 2024; 12:1286-1301. [PMID: 38874583 PMCID: PMC11369622 DOI: 10.1158/2326-6066.cir-23-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Semaphorin-plexin signaling plays a major role in the tumor microenvironment (TME). In particular, Semaphorin 4D (SEMA4D) has been shown to promote tumor growth and metastasis; however, the role of its high-affinity receptor Plexin-B1 (PLXNB1), which is expressed in the TME, is poorly understood. In this study, we directly targeted PLXNB1 in the TME of triple-negative murine breast carcinoma to elucidate its relevance in cancer progression. We found that primary tumor growth and metastatic dissemination were strongly reduced in PLXNB1-deficient mice, which showed longer survival. PLXNB1 loss in the TME induced a switch in the polarization of tumor-associated macrophages (TAM) toward a pro-inflammatory M1 phenotype and enhanced the infiltration of CD8+ T lymphocytes both in primary tumors and in distant metastases. Moreover, PLXNB1 deficiency promoted a shift in the Th1/Th2 balance of the T-cell population and an antitumor gene signature, with the upregulation of Icos, Perforin-1, Stat3, and Ccl5 in tumor-infiltrating lymphocytes (TILs). We thus tested the translational relevance of TME reprogramming driven by PLXNB1 inactivation for responsiveness to immunotherapy. Indeed, in the absence of PLXNB1, the efficacy of anti-PD-1 blockade was strongly enhanced, efficiently reducing tumor growth and distant metastasis. Consistent with this, pharmacological PLXNB1 blockade by systemic treatment with a specific inhibitor significantly hampered breast cancer growth and enhanced the antitumor activity of the anti-PD-1 treatment in a preclinical model. Altogether, these data indicate that PLXNB1 signaling controls the antitumor immune response in the TME and highlight this receptor as a promising immune therapeutic target for metastatic breast cancers.
Collapse
Affiliation(s)
- Giulia Franzolin
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
- Department of Science and Drug Technology, University of Torino, Torino, Italy.
| | - Serena Brundu
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
- Department of Science and Drug Technology, University of Torino, Torino, Italy.
| | - Carina F. Cojocaru
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
- Department of Science and Drug Technology, University of Torino, Torino, Italy.
| | - Aurora Curatolo
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
- Department of Science and Drug Technology, University of Torino, Torino, Italy.
| | - Matteo Ponzo
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Roberta Mastrantonio
- Department Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Gemelli–IRCCS, Rome, Italy.
| | - Emiko Mihara
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Atsushi Kumanogoh
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Osaka, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Luca Tamagnone
- Department Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Gemelli–IRCCS, Rome, Italy.
| | - Enrico Giraudo
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
- Department of Science and Drug Technology, University of Torino, Torino, Italy.
| |
Collapse
|
12
|
Zhang X, Hu Q, Peng H, Huang J, Sang W, Guan J, Huang Z, Jiang B, Sun D. Therapeutic potential of flavopiridol in diabetic retinopathy: Targeting DDX58. Int Immunopharmacol 2024; 137:112504. [PMID: 38897127 DOI: 10.1016/j.intimp.2024.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Diabetic retinopathy (DR), a common complication of diabetes, is characterized by inflammation and neovascularization, and is intricately regulated by the ubiquitin-proteasome system (UPS). Despite advancements, identifying ubiquitin-related genes and drugs specifically targeting DR remains a significant challenge. In this study, bioinformatics analyses and the Connectivity Map (CMAP) database were utilized to explore the therapeutic potential of genes and drugs for DR. Through these methodologies, flavopiridol was identified as a promising therapeutic candidate. To evaluate flavopiridol's therapeutic potential in DR, an in vitro model using Human Umbilical Vein Endothelial Cells (HUVECs) induced by high glucose (HG) conditions was established. Additionally, in vivo models using mice with streptozotocin (STZ)-induced DR and oxygen-induced retinopathy (OIR) were employed. The current study reveals that flavopiridol possesses robust anti-inflammatory and anti-neovascularization properties. To further elucidate the molecular mechanisms of flavopiridol, experimental validation and molecular docking techniques were employed. These efforts identified DDX58 as a predictive target for flavopiridol. Notably, our research demonstrated that flavopiridol modulates the DDX58/NLRP3 signaling pathway, thereby exerting its therapeutic effects in suppressing inflammation and neovascularization in DR. This study unveils groundbreaking therapeutic agents and innovative targets for DR, and establishes a progressive theoretical framework for the application of ubiquitin-related therapies in DR.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongsong Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiayang Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wei Sang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jitian Guan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
13
|
Sheng X, Zhang C, Zhao J, Xu J, Zhang P, Ding Q, Zhang J. Microvascular destabilization and intricated network of the cytokines in diabetic retinopathy: from the perspective of cellular and molecular components. Cell Biosci 2024; 14:85. [PMID: 38937783 PMCID: PMC11212265 DOI: 10.1186/s13578-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Microvascular destabilization is the primary cause of the inner blood-retinal barrier (iBRB) breakdown and increased vascular leakage in diabetic retinopathy (DR). Microvascular destabilization results from the combinational effects of increased levels of growth factors and cytokines, involvement of inflammation, and the changed cell-to-cell interactions, especially the loss of endothelial cells and pericytes, due to hyperglycemia and hypoxia. As the manifestation of microvascular destabilization, the fluid transports via paracellular and transcellular routes increase due to the disruption of endothelial intercellular junctional complexes and/or the altered caveolar transcellular transport across the retinal vascular endothelium. With diabetes progression, the functional and the structural changes of the iBRB components, including the cellular and noncellular components, further facilitate and aggravate microvascular destabilization, resulting in macular edema, the neuroretinal damage and the dysfunction of retinal inner neurovascular unit (iNVU). Although there have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying the microvascular destabilization, some still remain to be fully elucidated. Recent data indicate that targeting the intricate signaling pathways may allow to against the microvascular destabilization. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in the microvascular destabilization in DR. In this review, we discuss: (1) the brief introduction of DR and microvascular destabilization; (2) the cellular and molecular components of iBRB and iNVU, and the breakdown of iBRB; (3) the matrix and cell-to-cell contacts to maintain microvascular stabilization, including the endothelial glycocalyx, basement membrane, and various cell-cell interactions; (4) the molecular mechanisms mediated cell-cell contacts and vascular cell death; (5) the altered cytokines and signaling pathways as well as the intricate network of the cytokines involved in microvascular destabilization. This comprehensive review aimed to provide the insights for microvascular destabilization by targeting the key molecules or specific iBRB cells, thus restoring the function and structure of iBRB and iNVU, to treat DR.
Collapse
Affiliation(s)
- Xia Sheng
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Chunmei Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jiwei Zhao
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jianping Xu
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Peng Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Quanju Ding
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, National Clinical Research Center for Eye Diseases, Shanghai, China.
- The International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
- C-MER (Shenzhen) Dennis Lam Eye Hospital, Shenzhen, China.
- C-MER International Eye Care Group, C-MER Dennis Lam & Partners Eye Center, Hong Kong, China.
| |
Collapse
|
14
|
Peng W, Chen Q, Zheng F, Xu L, Fang X, Wu Z. The emerging role of the semaphorin family in cartilage and osteoarthritis. Histochem Cell Biol 2024:10.1007/s00418-024-02303-y. [PMID: 38849589 DOI: 10.1007/s00418-024-02303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
In the pathogenesis of osteoarthritis, various signaling pathways may influence the bone joint through a common terminal pathway, thereby contributing to the pathological remodeling of the joint. Semaphorins (SEMAs) are cell-surface proteins actively involved in and primarily responsible for regulating chondrocyte function in the pathophysiological process of osteoarthritis (OA). The significance of the SEMA family in OA is increasingly acknowledged as pivotal. This review aims to summarize the mechanisms through which different members of the SEMA family impact various structures within joints. The findings indicate that SEMA3A and SEMA4D are particularly relevant to OA, as they participate in cartilage injury, subchondral bone remodeling, or synovitis. Additionally, other elements such as SEMA4A and SEMA5A may also contribute to the onset and progression of OA by affecting different components of the bone and joint. The mentioned mechanisms demonstrate the indispensable role of SEMA family members in OA, although the detailed mechanisms still require further exploration.
Collapse
Affiliation(s)
- Wenjing Peng
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Chen
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Fengjuan Zheng
- The Department of Orthodontics, Hangzhou Stomatology Hospital, Hangzhou, China
| | - Li Xu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Xinyi Fang
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| | - Zuping Wu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
15
|
Cui K, Tang X, Yang B, Fan M, Hu A, Wu P, Yang F, Lin J, Kong H, Lu X, Yu S, Xu Y, Liang X. Sema4D Knockout Attenuates Choroidal Neovascularization by Inhibiting M2 Macrophage Polarization Via Regulation of the RhoA/ROCK Pathway. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 38913005 PMCID: PMC11204059 DOI: 10.1167/iovs.65.6.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/01/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose The aim of this study was to elucidate the role of Sema4D in the pathogenesis of senescence-associated choroidal neovascularization (CNV) and to explore its underlying mechanisms. Methods In this study, we utilized a model of laser-induced CNV in both young (3 months old) and old (18 months old) mice, including those with or without Sema4D knockout. The expression and localization of Sema4D in CNV were assessed using PCR, Western blot, and immunostaining. Subsequently, the morphological and imaging examinations were used to evaluate the size of CNV and vascular leakage. Finally, the expression of M2 markers, senescence-related markers, and molecules involved in the RhoA/ROCK pathway was detected. Results We found that Sema4D was predominantly expressed in macrophages within CNV lesions, and both the mRNA and protein levels of Sema4D progressively increased following laser photocoagulation, a trend more pronounced in old mice. Moreover, Sema4D knockout markedly inhibited M2 polarization in senescent macrophages and reduced the size and leakage of CNV, particularly in aged mice. Mechanistically, aging was found to upregulate RhoA/ROCK signaling, and knockout of Sema4D effectively suppressed the activation of this pathway, with more significant effects observed in aged mice. Conclusions Our findings revealed that the deletion of Sema4D markedly inhibited M2 macrophage polarization through the suppression of the RhoA/ROCK pathway, ultimately leading to the attenuation of senescence-associated CNV. These data indicate that targeting Sema4D could offer a promising approach for gene editing therapy in patients with neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, United States
| | - Andina Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Peiqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fengmei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Haolin Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
16
|
Jarosławska J, Kordas B, Miłowski T, Juranek JK. Mammalian Diaphanous1 signalling in neurovascular complications of diabetes. Eur J Neurosci 2024; 59:2628-2645. [PMID: 38491850 DOI: 10.1111/ejn.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.
Collapse
Affiliation(s)
- Julia Jarosławska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Tadeusz Miłowski
- Department of Emergency Medicine, School of Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
17
|
Li H, Li B, Zheng Y. Role of microglia/macrophage polarisation in intraocular diseases (Review). Int J Mol Med 2024; 53:45. [PMID: 38551157 PMCID: PMC10998719 DOI: 10.3892/ijmm.2024.5369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/05/2024] [Indexed: 04/02/2024] Open
Abstract
Macrophages form a crucial component of the innate immune system, and their activation is indispensable for various aspects of immune and inflammatory processes, tissue repair, and maintenance of the balance of the body's state. Macrophages are found in all ocular tissues, spanning from the front surface, including the cornea, to the posterior pole, represented by the choroid/sclera. The neural retina is also populated by specialised resident macrophages called microglia. The plasticity of microglia/macrophages allows them to adopt different activation states in response to changes in the tissue microenvironment. When exposed to various factors, microglia/macrophages polarise into distinct phenotypes, each exhibiting unique characteristics and roles. Furthermore, extensive research has indicated a close association between microglia/macrophage polarisation and the development and reversal of various intraocular diseases. The present article provides a review of the recent findings on the association between microglia/macrophage polarisation and ocular pathological processes (including autoimmune uveitis, optic neuritis, sympathetic ophthalmia, retinitis pigmentosa, glaucoma, proliferative vitreoretinopathy, subretinal fibrosis, uveal melanoma, ischaemic optic neuropathy, retinopathy of prematurity and choroidal neovascularization). The paradoxical role of microglia/macrophage polarisation in retinopathy of prematurity is also discussed. Several studies have shown that microglia/macrophages are involved in the pathology of ocular diseases. However, it is required to further explore the relevant mechanisms and regulatory processes. The relationship between the functional diversity displayed by microglia/macrophage polarisation and intraocular diseases may provide a new direction for the treatment of intraocular diseases.
Collapse
Affiliation(s)
- Haoran Li
- School of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Biao Li
- School of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Yanlin Zheng
- School of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
18
|
Ding W, Yang X, Lai K, Jiang Y, Liu Y. The potential of therapeutic strategies targeting mitochondrial biogenesis for the treatment of insulin resistance and type 2 diabetes mellitus. Arch Pharm Res 2024; 47:219-248. [PMID: 38485900 DOI: 10.1007/s12272-024-01490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic disorder marked by deficiencies in insulin secretion and/or function, affecting various tissues and organs and leading to numerous complications. Mitochondrial biogenesis, the process by which cells generate new mitochondria utilizing existing ones plays a crucial role in energy homeostasis, glucose metabolism, and lipid handling. Recent evidence suggests that promoting mitochondrial biogenesis can alleviate insulin resistance in the liver, adipose tissue, and skeletal muscle while improving pancreatic β-cell function. Moreover, enhanced mitochondrial biogenesis has been shown to ameliorate T2DM symptoms and may contribute to therapeutic effects for the treatment of diabetic nephropathy, cardiomyopathy, retinopathy, and neuropathy. This review summarizes the intricate connection between mitochondrial biogenesis and T2DM, highlighting the potential of novel therapeutic strategies targeting mitochondrial biogenesis for T2DM treatment and its associated complications. It also discusses several natural products that exhibit beneficial effects on T2DM by promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kaiyi Lai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
19
|
Sun F, Sun Y, Wang X, Zhu J, Chen S, Yu Y, Zhu M, Xu W, Qian H. Engineered mesenchymal stem cell-derived small extracellular vesicles for diabetic retinopathy therapy through HIF-1α/EZH2/PGC-1α pathway. Bioact Mater 2024; 33:444-459. [PMID: 38076648 PMCID: PMC10697990 DOI: 10.1016/j.bioactmat.2023.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 09/04/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness worldwide with limited treatment options. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) hold promise as a cell-free therapy for retinal diseases. In this study, we present evidence that the intravitreal injection of MSC-sEVs improved retinal function and alleviated retinal apoptosis, inflammation, and angiogenesis in both db/db mice and streptozotocin-induced diabetic rats. Mechanistically, hyperglycemia-induced activation of hypoxia-inducible factor-1α (HIF-1α) inhibited the tripartite motif 21 (TRIM21)-mediated ubiquitination and degradation of enhancer of zeste homologue 2 (EZH2), ultimately resulting in the downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) through EZH2-induced methylation modification. The presence of miR-5068 and miR-10228 in MSC-sEVs targeted the HIF-1α/EZH2/PGC-1α pathway. The blockade of miR-5068 and miR-10228 abolished the retinal therapeutic effects of MSC-sEVs. Additionally, we engineered MSC-sEVs with elevated levels of miR-5068 and miR-10228 to enhance retinal repair efficiency. Together, our findings provide novel insights into the mechanism underlying DR progress and highlight the potential of MSC-sEVs, especially engineered MSC-sEVs, as a therapeutic option for DR.
Collapse
Affiliation(s)
- Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Yuntong Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Xiaoling Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361006, Fujian, China
| | - Junyan Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shenyuan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yifan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Mengyao Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| |
Collapse
|
20
|
Zhang X, Su D, Wei D, Chen X, Hu Y, Li S, Zhang Y, Ma X, Hu S, Sun Z. Role of MST2/YAP1 signaling pathway in retinal cells apoptosis and diabetic retinopathy. Toxicol Appl Pharmacol 2024; 484:116885. [PMID: 38447873 DOI: 10.1016/j.taap.2024.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Diabetic retinopathy (DR) is a main factor affecting vision of patients, and its pathogenesis is not completely clear. The purpose of our study was to investigate correlations between MST2 and DR progression, and to study the possible mechanism of MST2 and its down pathway in high glucose (HG)-mediated RGC-5 apoptosis. The diabetic rat model was established by intraperitoneal injection of streptozotocin (STZ) 60 mg/kg. HE and TUNEL staining were used to evaluate the pathological changes and apoptosis of retinal cells in rats. Western blot, qRT-PCR and immunohistochemistry showed that levels of MST2 were increased in diabetic group (DM) than control. In addition, the differential expression of MST2 is related to HG-induced apoptosis of RGC-5 cells. CCK-8 and Hoechst 33,342 apoptosis experiments showed that MST2 was required in HG-induced apoptosis of RGC-5 cells. Further research revealed that MST2 regulated the protein expression of YAP1 at the level of phosphorylation in HG-induced apoptosis. Simultaneously, we found that Xmu-mp-1 acts as a MST2 inhibitor to alleviate HG-induced apoptosis. In summary, our study indicates that the MST2/YAP1 signaling pathway plays an important role in DR pathogenesis and RGC-5 apoptosis. This discovery provides new opportunities for future drug development targeting this pathway to prevent DR.
Collapse
Affiliation(s)
- Xiao Zhang
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Dongmei Su
- Department of Genetics, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Health Department, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100081, China
| | - Dong Wei
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Xiaoya Chen
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Yuzhu Hu
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Sijia Li
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Yue Zhang
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China
| | - Xu Ma
- Department of Genetics, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Health Department, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100081, China.
| | - Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China.
| | - Zhaoyi Sun
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China.
| |
Collapse
|
21
|
Luo L, Cai Y, Jiang Y, Gong Y, Cai C, Lai D, Jin X, Guan Z, Qiu Q. Pipecolic acid mitigates ferroptosis in diabetic retinopathy by regulating GPX4-YAP signaling. Biomed Pharmacother 2023; 169:115895. [PMID: 37984309 DOI: 10.1016/j.biopha.2023.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Diabetic retinopathy (DR) is currently recognized as the leading cause of end-stage eye disease. Pipecolic acid, a metabolite, has a significant regulatory effect on several pathological processes. However, the exact mechanism by which it causes damage in diabetic retinopathy is unknown. Between September 2021 and December 2022, 40 patients were retrospectively examined and divided into two groups: the healthy group (n = 20) and the DR group (n = 20). Metabolomic analysis found that pipecolic acid plays an important role in this process. Streptozotocin-induced diabetic mice and high-glucose cultured human retinal capillary endothelial cells (HRCECs) were then treated with pipecolic acid. Several oxidative stress measurements and RNA sequencing of retinal cells were tested. A gene interaction study was conducted using bioinformatics. Comparison of serological metabolites between healthy volunteers and DR patients showed that pipecolic acid was significantly lower in DR patients, and there was a negative correlation between the level of pipecolic acid with blood glucose and glycated hemoglobin. Yes-associated protein (YAP) mRNA, Malondialdehyde (MDA), and reactive oxygen species (ROS) levels were significantly higher in diabetic mice, but glutathione peroxidase (GSH-Px) levels were significantly lower. Pipecolic acid significantly alleviated oxidative stress and YAP expression. The number of vascular tubes was significantly higher in the DR group, and pipecolic acid treatment significantly reduced tube formation. RNA-Sequencing analysis revealed that YAP and glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) expression was reduced, and functional enrichment analysis revealed that ferroptosis and Hippo signaling pathways play an important role in this process. Additionally, pipecolic acid's ability to improve DR is diminished after YAP and GPX4 ablation. This study found that pipecolic acid, as a metabolite, may impede the progression of DR by inhibiting the YAP-GPX4 signaling pathway.
Collapse
Affiliation(s)
- Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Yanyun Jiang
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingying Gong
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chunyang Cai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Xiao Jin
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu PR China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
22
|
Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023; 168:115734. [PMID: 37857245 DOI: 10.1016/j.biopha.2023.115734] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Nowadays, diabetes mellitus has emerged as a significant global public health concern with a remarkable increase in its prevalence. This review article focuses on the definition of diabetes mellitus and its classification into different types, including type 1 diabetes (idiopathic and fulminant), type 2 diabetes, gestational diabetes, hybrid forms, slowly evolving immune-mediated diabetes, ketosis-prone type 2 diabetes, and other special types. Diagnostic criteria for diabetes mellitus are also discussed. The role of inflammation in both type 1 and type 2 diabetes is explored, along with the mediators and potential anti-inflammatory treatments. Furthermore, the involvement of various organs in diabetes mellitus is highlighted, such as the role of adipose tissue and obesity, gut microbiota, and pancreatic β-cells. The manifestation of pancreatic Langerhans β-cell islet inflammation, oxidative stress, and impaired insulin production and secretion are addressed. Additionally, the impact of diabetes mellitus on liver cirrhosis, acute kidney injury, immune system complications, and other diabetic complications like retinopathy and neuropathy is examined. Therefore, further research is required to enhance diagnosis, prevent chronic complications, and identify potential therapeutic targets for the management of diabetes mellitus and its associated dysfunctions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Naira A Ashour
- Department of Neurology, Faculty of Physical Therapy, Horus University, New Damietta 34518, Egypt
| | - Roaa T Zaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
23
|
García-Bermúdez MY, Vohra R, Freude K, van Wijngaarden P, Martin K, Thomsen MS, Aldana BI, Kolko M. Potential Retinal Biomarkers in Alzheimer's Disease. Int J Mol Sci 2023; 24:15834. [PMID: 37958816 PMCID: PMC10649108 DOI: 10.3390/ijms242115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) represents a major diagnostic challenge, as early detection is crucial for effective intervention. This review examines the diagnostic challenges facing current AD evaluations and explores the emerging field of retinal alterations as early indicators. Recognizing the potential of the retina as a noninvasive window to the brain, we emphasize the importance of identifying retinal biomarkers in the early stages of AD. However, the examination of AD is not without its challenges, as the similarities shared with other retinal diseases introduce complexity in the search for AD-specific markers. In this review, we address the relevance of using the retina for the early diagnosis of AD and the complex challenges associated with the search for AD-specific retinal biomarkers. We provide a comprehensive overview of the current landscape and highlight avenues for progress in AD diagnosis by retinal examination.
Collapse
Affiliation(s)
| | - Rupali Vohra
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Kristine Freude
- Group of Stem Cell Models and Embryology, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Peter van Wijngaarden
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Keith Martin
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery, Department of Health, Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Blanca Irene Aldana
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| |
Collapse
|
24
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
25
|
Yang C, Li Y, Liu Y, Xu Z, Li W, Cao W, Jin K, Liu Y. Protection of Barrier Function in Cultured Human Corneal Epithelial Cells by Semaphorin 4D. Curr Eye Res 2023; 48:894-903. [PMID: 37395011 DOI: 10.1080/02713683.2023.2232572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Corneal epithelial barrier function is important to maintain corneal homeostasis and is impaired by inflammation. We aimed to investigate the localization of semaphorin 4D (Sema4D) in the cornea, and its effects on the barrier function of cultured corneal epithelial cells. METHODS The expressions of semaphorin4 D and its receptor in the murine cornea were examined by immunoblot, immunofluorescent staining and confocal microscopy observations. Human corneal epithelial (HCE) cells stimulated by TNF-α or IL-1β were cultured with or without Sema4D. Cell viability was examined by CCK8, cell migration was evaluated by scratch wound assay, and barrier function was assessed by transepithelial electrical resistance (TEER) and Dextran-FITC permeability assay. The expression of tight junction proteins in HCE cells was examined by immunoblot, immunofluorescent staining and qRT-PCR. RESULTS We demonstrated that the protein of Sema4D and its receptor, plexin-B1, was expressed in murine cornea. Sema4D induced an increase in the TEER and a decrease in the permeability of HCE cells. It also induced the expression of tight junction protein ZO-1, occludin and claudin-1 in HCE cells. Furthermore, under stimulation of TNF-α or IL-1β, Sema4D treatment could inhibit the decreased TEER and the elevated permeability of HCE cells. CONCLUSIONS Sema4D is located distinctly in corneal epithelial cells and promoted their barrier function by increasing the expression of tight junction proteins. Sema4D may act as a preventive for maintaining corneal epithelial barrier function during ocular inflammation.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Yunzepeng Li
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Zhenghua Xu
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Wei Li
- Department of Pathology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Wanwei Cao
- Department of Pathology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Kai Jin
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Yang Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| |
Collapse
|
26
|
Wang L, Li D, Zhu Z, Liao Y, Wu J, Liu Y, Yang R, Dai H, Wu Z, Sun X. Knockout of Sema4D alleviates liver fibrosis by suppressing AOX1 expression. Pharmacol Res 2023; 195:106886. [PMID: 37591326 DOI: 10.1016/j.phrs.2023.106886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Liver fibrosis can occur in many chronic liver diseases, and no effective treatments are available due to the poorly characterized molecular pathogenesis. Semaphorin 4D (Sema4D) has immune functions and serves important roles in T cell priming. Here, we found that Sema4D was highly expressed in fibrotic liver, and the expression of Sema4D increased with hepatic stellate cells (HSCs) activation. Knockout of Sema4D alleviated liver fibrosis. Mechanistically, knockout of Sema4D alleviated liver fibrosis by suppressing the expression of AOX1 in retinol metabolism. Further investigation demonstrated that retinoic acid receptor α (RARA), an important nuclear receptor of retinoic acid, was reduced by Sema4D knockout during liver fibrogenesis. Sema4D knockout-mediated suppression of liver fibrosis was partly mediated by regulating the balance of Th1, Th2, Th17, and T-bet+Treg cells via inhibiting AOX1/RARA. Thus, targeting Sema4D may hold promise as a potential therapeutic approach for treating liver fibrosis.
Collapse
Affiliation(s)
- Lifu Wang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
| | - Zifeng Zhu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
| | - Yao Liao
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Ji Wu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuheng Liu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Ruibing Yang
- Guangzhou KingMed Diagnostic Laboratory Group Co Ltd, Guangzhou 510310, China
| | - Hanqiao Dai
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China.
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China.
| |
Collapse
|
27
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
28
|
Bai J, Chen L, Xu L, Zhang Q, Liu J, Zheng K. The value of serum Sema4D level in predicting the prognosis of patients with acute ST-segment elevation myocardial infarction and with high thrombus burden. BMC Cardiovasc Disord 2023; 23:230. [PMID: 37138227 PMCID: PMC10157983 DOI: 10.1186/s12872-023-03244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Acute ST-segment elevation myocardial infarction (STEMI) is a serious cardiovascular disease. High thrombus burden is an independent risk factor for poor prognosis of acute myocardial infarction. However, there is no study on the correlation between soluble semaphorin 4D (sSema4D) level and high thrombus burden in patients with STEMI. PURPOSE This study aimed to investigate the relationship between sSema4D level and the thrombus burden of STEMI and further explore its effect on the main predictive value of the occurrence of major adverse cardiovascular events (MACE). METHODS From October 2020 to June 2021, 100 patients with STEMI diagnosed in our hospital's cardiology department were selected. According to the thrombolysis in myocardial infarction(TIMI)score, STEMI patients were divided into high thrombus burden groups (55 cases) and non-high thrombus burden groups (45 cases) 0.74 patients with stable coronary heart disease (CHD) were selected as stable CHD group, and 75 patients with negative coronary angiography (CAG) were selected as control group. Serum sSema4D levels were measured in 4 groups. The correlation between serum sSema4D and high-sensitivity C-reactive protein (hs-CRP) in patients with STEMI was analyzed. The relationship of serum sSema4D levels between the high and non-high thrombus burden group was evaluated. The effect of sSema4D levels on the occurrence of MACE was explored in one year after percutaneous coronary intervention. RESULTS Serum sSema4D level was positively correlated with hs-CRP level in STEMI patients (P < 0.05) with a correlation coefficient of 0.493. The sSema4D level was significantly higher in the high versus non-high thrombus burden group (22.54(20.82,24.17), P < 0.05). Moreover, MACE occurred in 19 cases in high thrombus burden group and 3 cases in non-high thrombus burden group. The results of Cox regression analysis showed that sSema4D was an independent predictor of MACE (OR = 1.497,95% CI: 1.213-1.847, P < 0.001). CONCLUSION The sSema4D level is associated with coronary thrombus burden and is an independent risk factor for MACE.
Collapse
Affiliation(s)
- Jie Bai
- Department of Cardiology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital , Nantong, 226001, Jiangsu, China
| | - Liang Chen
- Department of Cardiology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital , Nantong, 226001, Jiangsu, China
| | - Louyuan Xu
- Department of Cardiology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital , Nantong, 226001, Jiangsu, China
| | - Qingquan Zhang
- Department of Cardiology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital , Nantong, 226001, Jiangsu, China
| | - Jun Liu
- Department of Cardiology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital , Nantong, 226001, Jiangsu, China
| | - Koulong Zheng
- Department of Cardiology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital , Nantong, 226001, Jiangsu, China.
| |
Collapse
|
29
|
Cowan R, Trokter M, Oleksy A, Fedorova M, Sawmynaden K, Worzfeld T, Offermanns S, Matthews D, Carr MD, Hall G. Nanobody inhibitors of Plexin-B1 identify allostery in plexin-semaphorin interactions and signalling. J Biol Chem 2023; 299:104740. [PMID: 37088134 DOI: 10.1016/j.jbc.2023.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
Plexin-B1 is a receptor for the cell surface semaphorin, Sema4D. This signalling system has been implicated in a variety of human diseases, including cancer, multiple sclerosis and osteoporosis. Whilst inhibitors of the Plexin-B1:Sema4D interaction have been previously reported, understanding their mechanism has been hindered by an incomplete structural view of Plexin-B1. In this study, we have raised and characterised a pair of nanobodies that are specific for mouse Plexin-B1, and which inhibit the binding of Sema4D to mouse Plexin-B1 and its biological activity. Structural studies of these nanobodies reveal that they inhibit the binding of Sema4D in an allosteric manner, binding to epitopes not previously reported. In addition, we report the first unbound structure of human Plexin-B1, which reveals that Plexin-B1 undergoes a conformational change on Sema4D binding. These changes mirror those seen upon binding of allosteric peptide modulators, which suggests a new model for understanding Plexin-B1 signalling, and provides a potential innovative route for therapeutic modulation of Plexin-B1.
Collapse
Affiliation(s)
- Richard Cowan
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Martina Trokter
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Arkadiusz Oleksy
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Marina Fedorova
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Kovilen Sawmynaden
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Thomas Worzfeld
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Str. 2 35043, Germany; Max-Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Stefan Offermanns
- Max-Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - David Matthews
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Mark D Carr
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Gareth Hall
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| |
Collapse
|
30
|
Liu X, Zhang C, Yang WH, Li SC, Wang RF, Zhang YB, Zhang ZL. Low expression of SEMA4D as a potential predictive molecular marker of poor survival in patients with melanoma combined with liver cancer. Oncol Lett 2023; 25:160. [PMID: 36936030 PMCID: PMC10017917 DOI: 10.3892/ol.2023.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/21/2022] [Indexed: 03/09/2023] Open
Abstract
This study explored the correlation between semaphorin 4D (SEMA4D) and the prognosis and survival time of patients with melanoma combined with liver cancer. A total of 272 patients were recruited, and clinical and follow-up data were recorded. The expression levels of SEMA4D and SEMA3B were determined. Pearson's χ2 test and Spearman's rank correlation coefficient were used to analyze the relationship between prognosis and the assessed parameters of melanoma patients. Univariate and multivariate Logistic regression and Cox proportional risk regression analyses were used for further analysis. Additionally, receiver operating characteristic curve and survival curves of subjects were plotted. The Pearson's χ2 test showed that the prognosis of melanoma patients was significantly correlated with age, tumor grade, and decreased SEMA4D expression. Additionally, Spearman's correlation coefficient analysis showed that age, tumor grade, and SEMA4D expression were significantly correlated with prognosis. Univariate logistic regression analysis showed that age and tumor grade, and SEMA4D expression, were significantly correlated with prognosis. Older patients, a higher tumor grade, and lower SEMA4D expression were associated with a poorer prognosis. Multivariate logistic regression analysis showed that older patients had a poorer prognosis, and patients with lower SEMA4D expression levels had a significantly worse prognosis than patients with higher SEMA4D expression levels. Kaplan-Meier analysis showed that the survival time of older patients was lower than that of the younger patients. The survival times of patients with lower SEMA4D expression levels were significantly lower than that of patients with higher SEMA4D expression levels. Multivariate Cox regression analysis showed that the survival time of older patients was lower than that of younger patients. The survival time of melanoma patients with low SEMA4D expression was significantly lower than that of patients with higher SEMA4D expression. SEMA4D was significantly associated with melanoma, and lower SEMA4D expression was associated with a poorer survival prognosis in melanoma patients.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chong Zhang
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Wu-Han Yang
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Sheng-Chao Li
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Rui-Feng Wang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yi-Bin Zhang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Zhi-Lei Zhang
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
- Correspondence to: Dr Zhi-Lei Zhang, Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, 12 Chang'an District Health Road, Shijiazhuang, Hebei 050011, P.R. China, E-mail:
| |
Collapse
|
31
|
Mu H, Pang Y, Liu L, Liu J, Liu C. Clinical values of serum Semaphorin 4D (Sema4D) in medication‑related osteonecrosis of the jaw. Eur J Med Res 2023; 28:140. [PMID: 36998031 PMCID: PMC10061851 DOI: 10.1186/s40001-023-01095-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/12/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Bisphosphonates (BPs) are widely used in clinical practice to prevent and treat bone metabolism-related diseases. Medication-related osteonecrosis of the jaw (MRONJ) is one of the major sequelae of BPs use. Early prediction and intervention of MRONJ are of great significance. METHODS Ninety-seven patients currently on treatment with BPs or with a history of BPs usage and 45 healthy volunteers undergoing dentoalveolar surgery were included in this study. Participants' serum Semaphorin 4D (Sema4D) levels were measured and analyzed before participants underwent surgery (T0) and after a 12-month follow-up (T1). Kruskal-Wallis test and ROC analysis were used to examine the predictive effect of Sema4D on MRONJ. RESULTS Sema4D levels in serum of patients corresponding to confirmed MRONJ were significantly lower at both T0 and T1 time points compared to non-MRONJ and healthy controls. Sema4D has a statistically predictive effect on the occurrence and diagnosis of MRONJ. Serum Sema4D levels were significantly reduced in MRONJ class 3 patients. MRONJ patients who received intravenous BPs had significantly lower Sema4D levels than those who received oral BPs. CONCLUSION Serum Sema4D level has predictive value for the onset of MRONJ in BPs users within 12 weeks after dentoalveolar surgery.
Collapse
Affiliation(s)
- Hong Mu
- Dental Clinic, Cangzhou Central Hospital, Xinhua West Road, Cangzhou, 061000, Hebei, China.
| | - Ying Pang
- Dental Clinic, Cangzhou Central Hospital, Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Lili Liu
- Dental Clinic, Cangzhou Central Hospital, Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Jingbo Liu
- General Department, Cangzhou Stomatological Hospital, Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Chunsheng Liu
- Department of Oral and Maxillofacial Surgery, Cangzhou People's Hospital, Qingchi Avenue, Cangzhou, 061000, Hebei, China
| |
Collapse
|
32
|
Zheng B, Lyu L, Wang X, Wen H, Li Y, Li J, Yao Y, Zuo C, Yan S, Xie S, Qi X. Comparative transcriptomic analysis and genome-wide characterization of the Semaphorin family reveal the potential mechanism of angiogenesis around embryo in ovoviviparous black rockfish (Sebastes schlegelii). Gen Comp Endocrinol 2023; 338:114275. [PMID: 36940835 DOI: 10.1016/j.ygcen.2023.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
To guarantee the quality and survival rate of their offspring, ovoviviparous teleost evolved special characteristics of in vivo fertilization and embryo development. Maternal black rockfish, having over 50 thousand embryos developing within the ovary simultaneously, provided around 40% nutrition throughout oocyte development, while the capillaries around each embryo contributed the rest 60% during pregnancy. Since fertilization, capillaries started to proliferate and developed into a placenta-like structure that covered over half of each embryo. Aimed to characterize the potential mechanism behind, comparative transcriptome analysis of samples collected according to the process of pregnancy. Three important time point in the process, including mature oocyte stage, fertilization and sarcomere period, were chosen for the transcriptome sequencing. Our study identified key pathways and genes involved in the cell cycle as well as DNA replication and repair, cell migration and adhesion, immune, and metabolic functions. Notably, several of the semaphoring gene family members were differently expressed. To confirm the accuracy of these genes, total of 32 sema genes were identified from the whole genome and distinct expression pattern of sema genes was observed in different pregnant stages. Our results revealed a novel insight for further investigating the functions of sema genes in reproduction physiology and embryo processes in ovoviviparous teleost.
Collapse
Affiliation(s)
- Bingyan Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Songyang Xie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
33
|
Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv Ophthalmol 2023; 68:175-210. [PMID: 36427559 DOI: 10.1016/j.survophthal.2022.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading cause of visual impairment and childhood blindness worldwide. The disease is characterized by an early stage of retinal microvascular degeneration, followed by neovascularization that can lead to subsequent retinal detachment and permanent visual loss. Several factors play a key role during the different pathological stages of the disease. Oxidative and nitrosative stress and inflammatory processes are important contributors to the early stage of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion-induced neurovascular degeneration. Destructive neovascularization is driven by mediators of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced retinal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the revascularization of the avascular zone. This review focuses on current concepts about signaling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new potentially preventive and therapeutic modalities. A better understanding of the intricate molecular mechanisms underlying the pathogenesis of ROP should allow the development of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and facilitate physiological retinal vascular development.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal; Departamento de Oftalmologia, Hospital Cuf Descobertas, Lisboa, Portugal.
| | - Carlos Marques-Neves
- Centro de Estudos das Ci.¼ncias da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Hercília Guimarães
- Departamento de Ginecologia-Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal.
| |
Collapse
|
34
|
Park HJ, Kim Y, Kim MK, Kim HJ, Bae SK, Bae MK. Inhibition of the Semaphorin 4D-Plexin-B1 axis prevents calcification in vascular smooth muscle cells. BMB Rep 2023; 56:160-165. [PMID: 36443004 PMCID: PMC10068346 DOI: 10.5483/bmbrep.2022-0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/01/2022] [Accepted: 11/26/2022] [Indexed: 04/14/2024] Open
Abstract
Vascular calcification is common in cardiovascular diseases including atherosclerosis, and is associated with an increased risk of pathological events and mortality. Some semaphorin family members play an important role in atherosclerosis. In the present study, we show that Semaphorin 4D/Sema4D and its Plexin-B1 receptor were significantly upregulated in calcified aorta of a rat chronic kidney disease model. Significantly higher Sema4D and Plexin-B1 expression was also observed during inorganic phosphate-induced calcification of vascular smooth muscle cells. Knockdown of Sema4D or Plexin-B1 genes attenuated both the phosphate-induced osteogenic phenotype of vascular smooth muscle cells, through regulation of SMAD1/5 signaling, as well as apoptosis of vascular smooth muscle cells, through modulation of the Gas6/Axl/Akt survival pathway. Taken together, our results offer new insights on the role of Sema4D and Plexin-B1 as potential therapeutic targets against vascular calcification. [BMB Reports 2023; 56(3): 160-165].
Collapse
Affiliation(s)
- Hyun-Joo Park
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Yeon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Mi-Kyoung Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Soo-Kyung Bae
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
35
|
Zheng K, Bai J, Xu L, Chen L. The value of serum Sema4D level in reflecting the inflammatory state of acute ST-segment elevation myocardial infarction. J Thorac Dis 2023; 15:627-634. [PMID: 36910063 PMCID: PMC9992611 DOI: 10.21037/jtd-23-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
Background This study sought to investigate the expression of soluble semaphorin 4D (sSema4D) in acute ST-segment elevation myocardial infarction (STEMI) and to explore its value in evaluating the inflammatory status of acute myocardial infarction (AMI). Methods From October 2020 to June 2021, 100 patients with STEMI diagnosed at the Department of Cardiology of our hospital were selected as the STEMI group, 83 patients with unstable angina (UA) were selected as the UA group, and 78 patients with negative coronary angiography (CAG) were selected as the control group. The baseline data of the 3 groups of patients were recorded, the sSema4D levels were determined, the expression of sSema4D levels in AMI was analyzed, and the value of sSema4D levels in reflecting inflammatory state of AMI was explored. Results Compared with UA group and control group, the expression of sSema4D in peripheral blood of STEMI group was significantly increased (P<0.001), which could better reflect the inflammatory status of patients with STEMI than traditional inflammatory indicators [hypersensitive c-reactive protein (hs-CRP)] (P<0.05). The receiver operating characteristic (ROC) curve showed that sSema4D (AUC =0.780, cut-off =19.62, 95% CI: 0.629, 0.837, P<0.001) was more specific than hs-CRP (AUC =0.697, cut-off =3.39, 95% CI: 0.629, 0.765, P<0.001) in reflecting the inflammatory status of STEMI patients. Conclusions sSema4D levels have certain value in reflecting the inflammatory state of STEMI.
Collapse
Affiliation(s)
- Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Bai
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Louyuan Xu
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Liang Chen
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
36
|
Li Y, Liang H, Zhang C, Qiu Y, Wang D, Wang H, Chen A, Hong C, Wang L, Wang H, Hu B. Ophthalmic Solution of Smart Supramolecular Peptides to Capture Semaphorin 4D against Diabetic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203351. [PMID: 36437109 PMCID: PMC9875641 DOI: 10.1002/advs.202203351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss in working age population. Intravitreal injection of anti-VEGF antibody is widely used in clinical practice. However, about 27% of patients show poor response to anti-VEGF therapy and about 50% of these patients continue to have macular thickening. Frequent intravitreal injections of antibody may increase the chance of endophthalmitis and cause visual loss or even blindness once happened. Therefore, there is a greatly urgent need for novel noninvasive target to treat DR clinically. Here, the formulation of a smart supramolecular peptide (SSP) eye drop for DR treatment that is effective via specifically identifying and capturing soluble semaphorin 4D (sSema4D), a strongly pro-angiogenesis and exudates factor, is reported. The SSP nanostructures encapsulate sSema4D so that all biological effects mediated by three receptors of sSema4D are inhibited, thereby significantly alleviating pathological retinal angiogenesis and exudates in DR. Moreover, it is found that combination of SSPs eye drop and anti-VEGF injection shows better therapeutic effect over anti-VEGF treatment alone. Overall, SSP eye drop provide an alternative and effective method for noninvasive treatment for DR.
Collapse
Affiliation(s)
- Ya‐Nan Li
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Hong‐Wen Liang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100190China
| | - Chun‐Lin Zhang
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yan‐Mei Qiu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - David Wang
- Neurovascular DivisionDepartment of NeurologyBarrow Neurological InstituteSaint Joseph's Hospital and Medical CenterPhoenixAZ85013USA
| | - Hai‐Ling Wang
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - An‐Qi Chen
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Can‐Dong Hong
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lei Wang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100190China
| | - Hao Wang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100190China
| | - Bo Hu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
37
|
Yang X, Diaz V, Huang H. The Role of Interferon Regulatory Factor 1 in Regulating Microglial Activation and Retinal Inflammation. Int J Mol Sci 2022; 23:14664. [PMID: 36498991 PMCID: PMC9739975 DOI: 10.3390/ijms232314664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS). Microglial activation plays a prominent role in neuroinflammation and CNS diseases. However, the underlying mechanisms of microglial activation are not well understood. Here, we report that the transcription factor interferon regulatory factor 1 (IRF1) plays critical roles in microglial activation and retinal inflammation by regulating pro- and anti-inflammatory gene expression. IRF1 expression was upregulated in activated retinal microglia compared to those at the steady state. IRF1 knockout (KO) in BV2 microglia cells (BV2ΔIRF1) created by CRISPR/Cas9 genome-editing technique causes decreased microglia proliferation, migration, and phagocytosis. IRF1-KO decreased pro-inflammatory M1 marker gene expression induced by lipopolysaccharides (LPS), such as IL-6, COX-2, and CCL5, but increased anti-inflammatory M2 marker gene expression by IL-4/13, such as Arg-1, CD206, and TGF-β. Compared to the wild-type cells, microglial-conditioned media (MCM) of activated BV2ΔIRF1 cell cultures reduced toxicity or death to several retinal cells, including mouse cone photoreceptor-like 661 W cells, rat retinal neuron precursor R28 cells, and human ARPE-19 cells. IRF1 knockdown by siRNA alleviated microglial activation and retinal inflammation induced by LPS in mice. Together, the findings suggest that IRF1 plays a vital role in regulating microglial activation and retinal inflammation and, therefore, may be targeted for treating inflammatory and degenerative retinal diseases.
Collapse
Affiliation(s)
- Xu Yang
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Aier Eye Hospital Group, Aier Eye Institute, Changsha 410015, China
| | - Valeria Diaz
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Hu Huang
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
38
|
Ren J, Zhang S, Pan Y, Jin M, Li J, Luo Y, Sun X, Li G. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Front Pharmacol 2022; 13:953691. [PMID: 36016568 PMCID: PMC9396039 DOI: 10.3389/fphar.2022.953691] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and blindness worldwide, is caused by retinal neurovascular unit dysfunction, and its cellular pathology involves at least nine kinds of retinal cells, including photoreceptors, horizontal and bipolar cells, amacrine cells, retinal ganglion cells, glial cells (Müller cells, astrocytes, and microglia), endothelial cells, pericytes, and retinal pigment epithelial cells. Its mechanism is complicated and involves loss of cells, inflammatory factor production, neovascularization, and BRB impairment. However, the mechanism has not been completely elucidated. Drug treatment for DR has been gradually advancing recently. Research on potential drug targets relies upon clear information on pathogenesis and effective biomarkers. Therefore, we reviewed the recent literature on the cellular pathology and the diagnostic and prognostic biomarkers of DR in terms of blood, protein, and clinical and preclinical drug therapy (including synthesized molecules and natural molecules). This review may provide a theoretical basis for further DR research.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yunfeng Pan
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Jiaxin Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| |
Collapse
|
39
|
Vogler M, Oleksy A, Schulze S, Fedorova M, Kojonazarov B, Nijjar S, Patel S, Jossi S, Sawmynaden K, Henry M, Brown R, Matthews D, Offermanns S, Worzfeld T. An antagonistic monoclonal anti-Plexin-B1 antibody exerts therapeutic effects in mouse models of postmenopausal osteoporosis and multiple sclerosis. J Biol Chem 2022; 298:102265. [PMID: 35850304 PMCID: PMC9396414 DOI: 10.1016/j.jbc.2022.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis and multiple sclerosis are highly prevalent diseases with limited treatment options. In light of these unmet medical needs, novel therapeutic approaches are urgently sought. Previously, the activation of the transmembrane receptor Plexin-B1 by its ligand semaphorin 4D (Sema4D) has been shown to suppress bone formation and promote neuroinflammation in mice. However, it is unclear whether inhibition of this receptor–ligand interaction by an anti–Plexin-B1 antibody could represent a viable strategy against diseases related to these processes. Here, we raised and systematically characterized a monoclonal antibody directed against the extracellular domain of human Plexin-B1, which specifically blocks the binding of Sema4D to Plexin-B1. In vitro, we show that this antibody inhibits the suppressive effects of Sema4D on human osteoblast differentiation and mineralization. To test the therapeutic potential of the antibody in vivo, we generated a humanized mouse line, which expresses transgenic human Plexin-B1 instead of endogenous murine Plexin-B1. Employing these mice, we demonstrate that the anti–Plexin-B1 antibody exhibits beneficial effects in mouse models of postmenopausal osteoporosis and multiple sclerosis in vivo. In summary, our data identify an anti–Plexin-B1 antibody as a potential therapeutic agent for the treatment of osteoporosis and multiple sclerosis.
Collapse
Affiliation(s)
- Melanie Vogler
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany
| | - Arkadiusz Oleksy
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Sabrina Schulze
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany
| | - Marina Fedorova
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Baktybek Kojonazarov
- Institute for Lung Health (ILH), University Hospital Giessen and Marburg, Medical Clinic II, 35392 Giessen, Germany
| | - Sharandip Nijjar
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Seema Patel
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Sian Jossi
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Kovilen Sawmynaden
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Maud Henry
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Richard Brown
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - David Matthews
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany; Medical Faculty, University of Frankfurt, Frankfurt 60590, Germany
| | - Thomas Worzfeld
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim 61231, Germany; LOEWE Center for Translational Medicine and Pharmacology, Frankfurt 60596, Germany; Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.
| |
Collapse
|
40
|
Liu L, Yang L, Liu X, Liu M, Liu J, Feng X, Nie Z, Luo J. SEMA4D/PlexinB1 promotes AML progression via activation of PI3K/Akt signaling. Lab Invest 2022; 20:304. [PMID: 35794581 PMCID: PMC9258142 DOI: 10.1186/s12967-022-03500-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. SEMA4D is a 150 kDa transmembrane protein that belongs to the IV class of the subfamily of semaphorin family. Previous studies have reported that SEMA4D is a multifunctional target in many solid tumors, involving multiple physiological systems, and there are emerging therapies to target these pathways. The role of SEMA4D in AML has not yet been explored.
Methods
The SEMA4D expression prolile, clinical data and potential prognostic analysis were acquired via the cBioPortal and GEPIA databases. SEMA4D expression was measured using real-time quantitative PCR and western blot. Cell counting kit-8 (CCK8) and flow cytometry were used to evaluate the malignant biological characteristics.
Results
We observed that SEMA4D was increased in AML patients and correlated with risk stratification and prognosis. Moreover, SEMA4D promotes the proliferation and inhibits apoptosis of AML cells by binding to its receptor, PlexinB1, and reduces the sensitivity of AML cells to daunorubicin. In addition, SEMA4D/PlexinB1 promotes the proliferation and survival of AML cells by activating the PI3K/Akt signaling pathway. VX15/2503, an anti-SEMA4D antibody, can inhibit the proliferation of AML cells in xenograft mouse models, thereby inhibiting the development of AML.
Conclusion
SEMA4D will serve as a unique predictive biomarker and a possible therapeutic target in AML.
Collapse
|
41
|
Lin J, Cui K, Xu Y, Tang X, Shi Y, Lu X, Yang B, He Q, Yu S, Liang X. Inhibition of CD146 attenuates retinal neovascularization via vascular endothelial growth factor receptor 2 signalling pathway in proliferative diabetic retinopathy. Acta Ophthalmol 2022; 100:e899-e911. [PMID: 34477295 DOI: 10.1111/aos.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the expression of CD146 and its role in proliferative diabetic retinopathy (PDR). METHODS Enzyme linked immunosorbent assay was performed to analyse the expression and relationship of sCD146, vascular endothelial growth factor (VEGF), sVEGFR1 and sVEGFR2 in vitreous specimens from PDR and idiopathic epiretinal membranes (IERM) or idiopathic macular hole patients. The location of CD146 in ERMs was detected by immunofluorescence. The oxygen-induced retinopathy (OIR) mice model was established and the adeno-associated virus expressing a shRNA of CD146 (AAV1-shCD146-GFP) was administered via intravitreal injection. The effect of AAV1-shCD146-GFP was explored by immunofluorescence, Western blot and quantitative real-time PCR. RESULTS The levels of sCD146 in vitreous specimens from PDR patients and CD146 in retinas from OIR mice were significantly increased. Immunofluorescence showed that CD146 was co-located with CD31, VEGF, VEGFR1 and VEGFR2, respectively. Intravitreal injection of AAV1-shCD146-GFP could dramatically reduce the formation of neovascularization and non-perfusion area by inhibiting VEGFR2 phosphorylation. CONCLUSION Our results indicated that CD146 was involved in the development of retinal neovascularization via VEGFR2 pathway. Anti-CD146 may be an innovative or adjuvant therapy, which provides a new direction for the treatment of PDR and other ocular neovascular diseases.
Collapse
Affiliation(s)
- Jianqiang Lin
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yue Xu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Xi Lu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Qingjing He
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| |
Collapse
|
42
|
Abstract
The global prevalence of metabolic diseases, such as obesity, diabetes, and atherosclerosis, is rapidly increasing and has now reached epidemic proportions. Chronic tissue inflammation is a characteristic of these metabolic diseases, indicating that immune responses are closely involved in the pathogenesis of metabolic disorders. However, the regulatory mechanisms underlying immunometabolic crosstalk in these diseases are not completely understood. Recent studies have revealed the multifaceted functions of semaphorins, originally identified as axon guidance molecules, in regulating tissue inflammation and metabolic disorders, thereby highlighting the functional coupling between semaphorin signaling and immunometabolism. In this review, we explore how semaphorin signaling transcends beyond merely guiding axons to controlling immune responses and metabolic diseases.
Collapse
|
43
|
Qiu M, Zong JB, He QW, Liu YX, Wan Y, Li M, Zhou YF, Wu JH, Hu B. Cell Heterogeneity Uncovered by Single-Cell RNA Sequencing Offers Potential Therapeutic Targets for Ischemic Stroke. Aging Dis 2022; 13:1436-1454. [PMID: 36186129 PMCID: PMC9466965 DOI: 10.14336/ad.2022.0212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/12/2022] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke is a detrimental neurological disease characterized by an irreversible infarct core surrounded by an ischemic penumbra, a salvageable region of brain tissue. Unique roles of distinct brain cell subpopulations within the neurovascular unit and peripheral immune cells during ischemic stroke remain elusive due to the heterogeneity of cells in the brain. Single-cell RNA sequencing (scRNA-seq) allows for an unbiased determination of cellular heterogeneity at high-resolution and identification of cell markers, thereby unveiling the principal brain clusters within the cell-type-specific gene expression patterns as well as cell-specific subclusters and their functions in different pathways underlying ischemic stroke. In this review, we have summarized the changes in differentiation trajectories of distinct cell types and highlighted the specific pathways and genes in brain cells that are impacted by stroke. This review is expected to inspire new research and provide directions for investigating the potential pathological mechanisms and novel treatment strategies for ischemic stroke at the level of a single cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie-hong Wu
- Correspondence should be addressed to: Dr. Bo Hu () and Dr. Jie-hong Wu (), Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Correspondence should be addressed to: Dr. Bo Hu () and Dr. Jie-hong Wu (), Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Zhao F, Gao X, Ge X, Cui J, Liu X. Cyanidin-3-o-glucoside (C3G) inhibits vascular leakage regulated by microglial activation in early diabetic retinopathy and neovascularization in advanced diabetic retinopathy. Bioengineered 2021; 12:9266-9278. [PMID: 34699316 PMCID: PMC8810139 DOI: 10.1080/21655979.2021.1996512] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is a kind of anthocyanin which shows strong anti-inflammation, anti-tumor and anti-oxidant properties. This paper was designed to explore the potential effects of C3G on diabetic retinopathy (DR). C57BL/6 mice were administrated with streptozotocin (STZ) or vehicle control for the establishment of diabetic models. To simulate hyperglycemia and hypoxia, D-glucose (30 mM) and CoCl2 (200 μm/l) were utilized to treat HRECs, respectively. The migration, invasion, inflammation and tube formation abilities of cells were evaluated with the adoption of wound healing, transwell, ELISA and tube formation assays, respectively. Besides, immunofluorescence staining was utilized to detect proliferation and retinal vessels. Evans blue permeation assay were performed to evaluate the vascular leakage in DR mice. Moreover, western blot and qPCR were used to quantify the mRNA and protein expressions of ionized calcium-binding adapter molecule (Iba)-1 and tight junction proteins. Results showed that C3G alleviated the inflammation, microglial activation and angiogenesis in DR mice. Moreover, the proliferation and inflammation of BV2 cells induced by high glucose (HG) were suppressed by C3G. Evans blue permeation assay demonstrated the potency of C3G in attenuating vascular leakage. In addition, C3G suppressed the migration, invasion and angiogenesis of human retinal endothelial cells (HRECs) DR model in vitro.By confirming the role of C3G in inhibiting vascular leakage regulated by microglia activation in early DR and angiogenesis in advanced DR, this study pointed out the potential of C3G as a therapeutic drug for DR management.
Collapse
Affiliation(s)
- Fangling Zhao
- Faculty of Medicine, Nantong University Medical School, Nantong, China
| | - Xiang Gao
- School of Life Science, Nantong University, Nantong, China
| | - XiaoJuan Ge
- School of Life Science, Nantong University, Nantong, China
| | - Jiawen Cui
- Gynaecology and Obstetrics, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xia Liu
- Faculty of Medicine, Nantong University Medical School, Nantong, China
| |
Collapse
|
45
|
Meng C, Gu C, He S, Su T, Lhamo T, Draga D, Qiu Q. Pyroptosis in the Retinal Neurovascular Unit: New Insights Into Diabetic Retinopathy. Front Immunol 2021; 12:763092. [PMID: 34737754 PMCID: PMC8560732 DOI: 10.3389/fimmu.2021.763092] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is prevalent among people with long-term diabetes mellitus (DM) and remains the leading cause of visual impairment in working-aged people. DR is related to chronic low-level inflammatory reactions. Pyroptosis is an emerging type of inflammatory cell death mediated by gasdermin D (GSDMD), NOD-like receptors and inflammatory caspases that promote interleukin-1β (IL-1β) and IL-18 release. In addition, the retinal neurovascular unit (NVU) is the functional basis of the retina. Recent studies have shown that pyroptosis may participate in the destruction of retinal NVU cells in simulated hyperglycemic DR environments. In this review, we will clarify the importance of pyroptosis in the retinal NVU during the development of DR.
Collapse
Affiliation(s)
- Chunren Meng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Tong Su
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Thashi Lhamo
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| | - Deji Draga
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| |
Collapse
|
46
|
Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging Targets in Type 2 Diabetes and Diabetic Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100275. [PMID: 34319011 PMCID: PMC8456215 DOI: 10.1002/advs.202100275] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/07/2021] [Indexed: 05/06/2023]
Abstract
Type 2 diabetes is a metabolic, chronic disorder characterized by insulin resistance and elevated blood glucose levels. Although a large drug portfolio exists to keep the blood glucose levels under control, these medications are not without side effects. More importantly, once diagnosed diabetes is rarely reversible. Dysfunctions in the kidney, retina, cardiovascular system, neurons, and liver represent the common complications of diabetes, which again lack effective therapies that can reverse organ injury. Overall, the molecular mechanisms of how type 2 diabetes develops and leads to irreparable organ damage remain elusive. This review particularly focuses on novel targets that may play role in pathogenesis of type 2 diabetes. Further research on these targets may eventually pave the way to novel therapies for the treatment-or even the prevention-of type 2 diabetes along with its complications.
Collapse
Affiliation(s)
- Sevgican Demir
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Peter P. Nawroth
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| |
Collapse
|
47
|
Lu GF, Chen SC, Xia YP, Ye ZM, Cao F, Hu B. Synergistic inflammatory signaling by cGAS may be involved in the development of atherosclerosis. Aging (Albany NY) 2021; 13:5650-5673. [PMID: 33589571 PMCID: PMC7950297 DOI: 10.18632/aging.202491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022]
Abstract
Inappropriate activation or overactivation of cyclic GMP-AMP synthase (cGAS) by double-stranded deoxyribonucleic acid (dsDNA) initiates a regulatory signaling cascade triggering a variety of inflammatory responses, which are a great threat to human health. This study focused on identifying the role of cGAS in atherosclerosis and its potential mechanisms. The relationship between cGAS and atherosclerosis was identified in an ApoE -/- mouse model. Meanwhile, RNA sequencing (RNA-seq) analysis of the underlying mechanisms of atherosclerosis in RAW264.7 macrophages treated with cGAS inhibition was conducted. Results showed that cGAS was positively correlated with atherosclerotic plaque area, and was mainly distributed in macrophages. RNA-seq analysis revealed that inflammatory response, immune response and cytokine–cytokine receptor interaction may play important roles in the development of atherosclerosis. Real-time quantitative polymerase chain reaction (RT-qPCR) results showed that the expression of the pro-inflammatory factors, signal transducer and activator of transcription (Stat), interferon regulatory factor (Irf), toll-like receptors (Tlrs), and type I interferons (Ifns) were synergistically reduced when cGAS was inhibited. Furthermore, cGAS inhibition significantly inhibited RAW264.7 macrophage M1 polarization. These results demonstrate that cGAS may contribute to the development of atherosclerosis through synergistic inflammatory signaling of TLRs, STAT/IRF as well as IFNs, leading to macrophage M1 polarization.
Collapse
Affiliation(s)
- Guan-Feng Lu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng-Cai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zi-Ming Ye
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Fei Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
48
|
Jiang Q, Liu C, Li CP, Xu SS, Yao MD, Ge HM, Sun YN, Li XM, Zhang SJ, Shan K, Liu BH, Yao J, Zhao C, Yan B. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction. J Clin Invest 2021; 130:3833-3847. [PMID: 32343678 DOI: 10.1172/jci123353] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Vascular pericyte degeneration is the predominant clinical manifestation of DR, yet the mechanism governing pericyte degeneration is poorly understood. Circular RNAs (circRNAs) play important roles in multiple biological processes and disease progression. Here, we investigated the role of circRNA in pericyte biology and diabetes-induced retinal vascular dysfunction. cZNF532 expression was upregulated in pericytes under diabetic stress, in the retinal vessels of a diabetic murine model, and in the vitreous humor of diabetic patients. cZNF532 silencing reduced the viability, proliferation, and differentiation of pericytes and suppressed the recruitment of pericytes toward endothelial cells in vitro. cZNF532 regulated pericyte biology by acting as a miR-29a-3p sponge and inducing increased expression of NG2, LOXL2, and CDK2. Knockdown of cZNF532 or overexpression of miR-29a-3p aggravated streptozotocin-induced retinal pericyte degeneration and vascular dysfunction. By contrast, overexpression of cZNF532 or inhibition of miR-29a-3p ameliorated human diabetic vitreous-induced retinal pericyte degeneration and vascular dysfunction. Collectively, these data identify a circRNA-mediated mechanism that coordinates pericyte biology and vascular homeostasis in DR. Induction of cZNF532 or antagonism of miR-29a-3p is an exploitable therapeutic approach for the treatment of DR.
Collapse
Affiliation(s)
- Qin Jiang
- Affiliated Eye Hospital and.,Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chao-Peng Li
- Department of Ophthalmology, Huai'an First People's Hospital, Huai An, China
| | - Shan-Shan Xu
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Mu-Di Yao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Hui-Min Ge
- Affiliated Eye Hospital and.,Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ya-Nan Sun
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Shu-Jie Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kun Shan
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bai-Hui Liu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Yao
- Affiliated Eye Hospital and.,Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chen Zhao
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Biao Yan
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Abstract
Diabetic retinopathy remains a leading cause of blindness despite recent advance in therapies. Traditionally, this complication of diabetes was viewed predominantly as a microvascular disease but research has pointed to alterations in ganglion cells, glia, microglia, and photoreceptors as well, often occurring without obvious vascular damage. In neural tissue, the microvasculature and neural tissue form an intimate relationship with the neural tissue providing signaling cues for the vessels to form a distinct barrier that helps to maintain the proper neuronal environment for synaptic signaling. This relationship has been termed the neurovascular unit (NVU). Research is now focused on understanding the cellular and molecular basis of the neurovascular unit and how diabetes alters the normal cellular communications and disrupts the cellular environment contributing to loss of vision in diabetes.
Collapse
Affiliation(s)
- David A Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
50
|
Neutrophil-Derived Semaphorin 4D Induces Inflammatory Cytokine Production of Endothelial Cells via Different Plexin Receptors in Kawasaki Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2020:6663291. [PMID: 33381571 PMCID: PMC7759398 DOI: 10.1155/2020/6663291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
Inflammation of endothelial cells (ECs) plays an important role in the pathogenesis of coronary artery lesions (CALs) in Kawasaki disease (KD). Semaphorin 4D (Sema4D) is the first semaphorin shown to have immunoregulatory functions by interacting with its receptors—plexin Bs. Recently, Sema4D has been reported to exert a proinflammatory effect on the endothelium and to be involved in cardiovascular disease. However, the role of Sema4D in KD remains unknown. This study was aimed at revealing the change of soluble Sema4D (sSema4D) in the serum of patients with KD and the effect of the sSema4D-plexin axis on the production of proinflammatory cytokines from human coronary endothelial cells (HCAECs) stimulated with sera from KD patients. Our results showed that serum sSema4D levels were specifically elevated in KD patients, especially in those with CALs, and correlated positively with disease severity and serum concentrations of interleukin- (IL-) 1β, IL-6, and IL-8. The disintegrin and metalloproteinase domain 17- (AMAM17-) mediated Sema4D shedding from neutrophils contributed to the elevation of sSema4D in the serum of KD patients. Furthermore, we found that Sema4D induced IL-1β production of HCAECs via plexin B2, whereas it promoted IL-6 and IL-8 production via plexin B1. Moreover, the expression of both plexin B1 and plexin B2 was upregulated in HCAECs treated with KD sera, and silencing of the two plexin receptors suppressed the overexpression of IL-1β, IL-6, and IL-8 in KD serum-treated HCAECs. Thus, our findings indicated that sSema4D released from neutrophils participates in the pathogenesis of KD-CALs by promoting inflammatory cytokine production of ECs via both plexin B1 and plexin B2, and Sema4D may be a novel predictor for KD-CALs and a candidate therapeutic target for anti-inflammatory strategies of KD.
Collapse
|