1
|
Kocabiyik O, Amlashi P, Vo AL, Suh H, Rodriguez-Aponte SA, Dalvie NC, Love JC, Andrabi R, Irvine DJ. Vaccine targeting to mucosal lymphoid tissues promotes humoral immunity in the gastrointestinal tract. SCIENCE ADVANCES 2024; 10:eadn7786. [PMID: 38809992 PMCID: PMC11135404 DOI: 10.1126/sciadv.adn7786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Viruses, bacteria, and parasites frequently cause infections in the gastrointestinal tract, but traditional vaccination strategies typically elicit little or no mucosal antibody responses. Here, we report a strategy to effectively concentrate immunogens and adjuvants in gut-draining lymph nodes (LNs) to induce gut-associated mucosal immunity. We prepared nanoemulsions (NEs) based on biodegradable oils commonly used as vaccine adjuvants, which encapsulated a potent Toll-like receptor agonist and displayed antigen conjugated to their surface. Following intraperitoneal administration, these NEs accumulated in gut-draining mesenteric LNs, priming strong germinal center responses and promoting B cell class switching to immunoglobulin A (IgA). Optimized NEs elicited 10- to 1000-fold higher antigen-specific IgG and IgA titers in the serum and feces, respectively, compared to free antigen mixed with NE, and strong neutralizing antibody titers against severe acute respiratory syndrome coronavirus 2. Thus, robust gut humoral immunity can be elicited by exploiting the unique lymphatic collection pathways of the gut with a lymph-targeting vaccine formulation.
Collapse
Affiliation(s)
- Ozgun Kocabiyik
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A. Lina Vo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergio A. Rodriguez-Aponte
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| |
Collapse
|
2
|
Foo ACY, Lafont BAP, Mueller GA. Expanding the Antiviral Potential of the Mosquito Lipid-transfer Protein AEG12 Against SARS-CoV-2 Using Hydrophobic Antiviral Ligands. FEBS Lett 2022; 596:2555-2565. [PMID: 35891619 PMCID: PMC9353291 DOI: 10.1002/1873-3468.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
The mosquito protein AEG12 encompasses a large (~ 3800 Å3) hydrophobic cavity which binds and delivers unsaturated fatty acids into biological membranes, allowing it to lyse cells and neutralize a wide range of enveloped viruses. Herein, the lytic and antiviral activities are modified with non‐naturally occurring lipid ligands. We generated novel AEG12 complexes in which the endogenous fatty acid ligands were replaced with hydrophobic viral inhibitors. The resulting compounds modulated cytotoxicity and infectivity against SARS‐CoV‐2, potentially reflecting additional mechanisms of action beyond membrane destabilization. These studies provide valuable insight into the design of novel broad‐spectrum antiviral therapeutics centred on the AEG12 protein scaffold as a delivery vehicle for hydrophobic therapeutic compounds.
Collapse
Affiliation(s)
- Alexander C Y Foo
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
3
|
Dergunov AD, Savushkin EV, Dergunova LV, Litvinov DY. Significance of Cholesterol-Binding Motifs in ABCA1, ABCG1, and SR-B1 Structure. J Membr Biol 2018; 252:41-60. [DOI: 10.1007/s00232-018-0056-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
|
4
|
Gerl MJ, Vaz WLC, Domingues N, Klose C, Surma MA, Sampaio JL, Almeida MS, Rodrigues G, Araújo-Gonçalves P, Ferreira J, Borbinha C, Marto JP, Viana-Baptista M, Simons K, Vieira OV. Cholesterol is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients. Sci Rep 2018; 8:14764. [PMID: 30282999 PMCID: PMC6170447 DOI: 10.1038/s41598-018-33116-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
Shotgun lipidomic analysis of 203 lipids in 13 lipid classes performed on blood plasma of donors who had just suffered an acute coronary syndrome (ACS, n = 74), or an ischemic stroke (IS, n = 21), or who suffer from stable angina pectoris (SAP, n = 78), and an age-matched control cohort (n = 52), showed some of the highest inter-lipid class correlations between cholesteryl esters (CE) and phosphatidylcholines (PC) sharing a common fatty acid. The concentration of lysophospatidylcholine (LPC) and ratios of concentrations of CE to free cholesterol (Chol) were also lower in the CVD cohorts than in the control cohort, indicating a deficient conversion of Chol to CE in the blood plasma in the CVD subjects. A non-equilibrium reaction quotient, Q′, describing the global homeostasis of cholesterol as manifested in the blood plasma was shown to have a value in the CVD cohorts (Q′ACS = 0.217 ± 0.084; Q′IS = 0.201 ± 0.084; Q′SAP = 0.220 ± 0.071) that was about one third less than in the control cohort (Q′Control = 0.320 ± 0.095, p < 1 × 10−4), suggesting its potential use as a rapid predictive/diagnostic measure of CVD-related irregularities in cholesterol homeostasis.
Collapse
Affiliation(s)
| | - Winchil L C Vaz
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal
| | - Neuza Domingues
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal
| | | | | | - Júlio L Sampaio
- Lipotype GmbH, Tatzberg 47, 01307, Dresden, Germany.,Centre de Recherche, Institut Curie, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Manuel S Almeida
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Gustavo Rodrigues
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Pedro Araújo-Gonçalves
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Jorge Ferreira
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Claudia Borbinha
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisboa, Portugal
| | - João Pedro Marto
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisboa, Portugal
| | - Miguel Viana-Baptista
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisboa, Portugal
| | - Kai Simons
- Lipotype GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Otilia V Vieira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal.
| |
Collapse
|
5
|
Coreta-Gomes FM, Vaz WLC, Moreno MJ. Effect of Acyl Chain Length on the Rate of Phospholipid Flip-Flop and Intermembrane Transfer. J Membr Biol 2017; 251:431-442. [PMID: 29264685 DOI: 10.1007/s00232-017-0009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/13/2017] [Indexed: 11/25/2022]
Abstract
The rate at which phospholipids equilibrate between different membranes and between the non-polar environments in biological fluids is of high importance in the understanding of biomembrane diversity, as well as in the development of liposomes for drug delivery. In this work, we characterize the rate of insertion into and desorption from POPC bilayers for a homologous series of amphiphiles with the fluorescent NBD group attached to phosphoethanolamines of different acyl chain lengths, NBD-diC n -PE with n = 6, 8, 10, and 12. The rate of translocation between bilayer leaflets was also characterized, providing all the relevant parameters for their interaction with lipid bilayers. The results are complemented with data for NBD-diC14-PE obtained from literature (Abreu et al. Biophys J 87:353-365, 2004; Moreno et al. Biophys J 91:873-881, 2006). The rate of translocation between the POPC leaflets is not dependent on the length of the acyl chains, while this affects strongly the rate of desorption from the bilayer. Insertion in the POPC bilayer is not diffusion controlled showing a significant dependence on the acyl chain length and on temperature. The results obtained are compared with those previously reported for NBD-LysoC14-PE (Sampaio et al. Biophys J 88:4064-4071, 2005), and with the homologous series of single chain amphiphiles NBD-C n (Cardoso et al. J Phys Chem B 114:16337-16346, 2010; J Phys Chem B 115:10098-10108, 2011). This allows the establishment of important relations between the rate constants for interaction with the lipid bilayers and the structural properties of the amphiphiles, namely the total surface and the cross-section of their non-polar region.
Collapse
Affiliation(s)
- Filipe M Coreta-Gomes
- CQC-Biological Chemistry Group, Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535, Coimbra, Portugal
- QOPNA, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Winchil L C Vaz
- CEDOC, NOVA Medical School, Faculdadede Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria J Moreno
- CQC-Biological Chemistry Group, Chemistry Department FCTUC, Largo D. Dinis, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
6
|
Samelo J, Mora MJ, Granero GE, Moreno MJ. Partition of Amphiphilic Molecules to Lipid Bilayers by ITC: Low-Affinity Solutes. ACS OMEGA 2017; 2:6863-6869. [PMID: 31457272 PMCID: PMC6645030 DOI: 10.1021/acsomega.7b01145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/25/2017] [Indexed: 05/28/2023]
Abstract
A protocol is developed to allow the accurate characterization of partition to lipid bilayers for solutes with low affinity, using isothermal titration calorimetry. The methodology proposed is suitable for studies using complex membranes, such as intact biomembranes or whole cells. In the method developed, the association is characterized at increasing solute concentrations. This allows the characterization of solute partition into unperturbed membranes, as well as effects induced by high solute concentrations. Most druglike molecules are expected to interact with low-to-moderate affinity with relevant cell membranes. This is due to both the need for a relatively high aqueous solubility of the drug and the poor binding properties of the cell membranes. The methodology is applied to characterize the interaction of antibiotic Rifampicin with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and with lipid bilayers representative of bacterial membranes.
Collapse
Affiliation(s)
- Jaime Samelo
- Chemistry
Department FCTUC, CQC-Biological Chemistry
Group, Largo D. Dinis,
Rua Larga, 3004-535 Coimbra, Portugal
| | - Maria Julia Mora
- Unidad
de Investigación y Desarrollo en Tecnología Farmacéutica
(UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas,
Facultad de Ciencias Químicas, Universidad
Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Gladys Ester Granero
- Unidad
de Investigación y Desarrollo en Tecnología Farmacéutica
(UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas,
Facultad de Ciencias Químicas, Universidad
Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Maria João Moreno
- Chemistry
Department FCTUC, CQC-Biological Chemistry
Group, Largo D. Dinis,
Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
7
|
Filipe HAL, Bowman D, Palmeira T, Cardoso RMS, Loura LMS, Moreno MJ. Interaction of NBD-labelled fatty amines with liquid-ordered membranes: a combined molecular dynamics simulation and fluorescence spectroscopy study. Phys Chem Chem Phys 2016; 17:27534-47. [PMID: 26426766 DOI: 10.1039/c5cp04191k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A complete homologous series of fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl-(NBD) labelled fatty amines of varying alkyl chain lengths, NBD-Cn, inserted in 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) or N-palmitoyl sphingomyelin (SpM) bilayers, with 50 mol% and 40 mol% cholesterol (Chol), respectively, was studied using atomistic molecular dynamics simulations. For all amphiphiles in both bilayers, the NBD fluorophore locates at the interface, in a more external position than that previously observed for pure POPC bilayers. This shallower location of the NBD group agrees with the lower fluorescent quantum yield, shorter fluorescence lifetime, and higher ionisation constants (smaller pKa) determined experimentally. The more external location is also consistent with the changes measured in steady-state fluorescence anisotropy from POPC to POPC/Chol (1 : 1) vesicles. Accordingly, the equilibrium location of the NBD group within the various bilayers is mainly dictated by bilayer compositions, and is mostly unaffected by the length of the attached alkyl chain. Similarly to the behaviour observed in POPC bilayers, the longer-chained NBD-Cn amphiphiles show significant mass density near the mixed bilayers' midplanes, and the alkyl chains of the longer derivatives, mainly NBD-C16, penetrate the opposite bilayer leaflet to some extent. However, this effect is quantitatively less pronounced in these ordered bilayers than in POPC. Similarly to POPC bilayers, the effects of these amphiphiles on the structure and dynamics of the host lipid were found to be relatively mild, in comparison with acyl-chain phospholipid analogues.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
8
|
La Rosa C, Scalisi S, Lolicato F, Pannuzzo M, Raudino A. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations. J Chem Phys 2016; 144:184901. [DOI: 10.1063/1.4948323] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Carmelo La Rosa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Silvia Scalisi
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Fabio Lolicato
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Martina Pannuzzo
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Antonio Raudino
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
9
|
Yang PW, Lin TL, Hu Y, Jeng US. A time-resolved study on the interaction of oppositely charged bicelles--implications on the charged lipid exchange kinetics. SOFT MATTER 2015; 11:2237-2242. [PMID: 25649711 DOI: 10.1039/c4sm02886d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Time-resolved small-angle X-ray scattering was applied to study charged lipid exchange between oppositely charged disc-shaped bicelles. The exchange of charged lipids gradually reduces the surface charge density and weakens the electrostatic attraction between the oppositely charged bicelles which form alternately stacked aggregates upon mixing. Initially, at a high surface charge density with almost no free water layer between the stacked bicelles, fast exchange kinetics dominate the exchange process. At a later stage with a lower surface charge density and a larger water gap between the stacked bicelles, slow exchange kinetics take over. The fast exchange kinetics are correlated with the close contact of the bicelles when there is almost no free water layer between the tightly bound bicelles with a charged lipid exchange time constant as short as 20-40 min. When the water gap becomes large enough to have a free water layer between the stacked bicelles, the fast lipid exchange kinetics are taken over by slow lipid exchange kinetics with time constants around 200-300 min, which are comparable to the typical time constant of lipid exchange between vesicles in aqueous solution. These two kinds of exchange mode fit well with the lipid exchange models of transient hemifusion for the fast mode and monomer exchange for the slow mode.
Collapse
Affiliation(s)
- Po-Wei Yang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
10
|
Filipe HAL, Santos LS, Prates Ramalho JP, Moreno MJ, Loura LMS. Behaviour of NBD-head group labelled phosphatidylethanolamines in POPC bilayers: a molecular dynamics study. Phys Chem Chem Phys 2015; 17:20066-79. [DOI: 10.1039/c5cp01596k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An NBD-diC16PE/POPC bilayer with typical fluorophore inverted-snorkelling configurations, and mass density profiles across the membrane. The wide distribution of the NBD fluorophore lies at the origin of its complex emission kinetics.
Collapse
Affiliation(s)
- Hugo A. L. Filipe
- Departamento de Química
- Faculty of Science and Technnology
- University of Coimbra
- Rua Larga
- Portugal
| | - Lennon S. Santos
- Departamento de Química
- Faculty of Science and Technnology
- University of Coimbra
- Rua Larga
- Portugal
| | - J. P. Prates Ramalho
- Departamento de Química
- Escola de Ciências e Tecnologia
- Universidade de Évora
- Rua Romão Ramalho
- Portugal
| | - Maria João Moreno
- Departamento de Química
- Faculty of Science and Technnology
- University of Coimbra
- Rua Larga
- Portugal
| | - Luís M. S. Loura
- Centro de Química de Coimbra
- Rua Larga
- Portugal
- Centro de Neurociências e Biologia Celular
- Universidade de Coimbra
| |
Collapse
|
11
|
Filipe HAL, Salvador A, Silvestre JM, Vaz WLC, Moreno MJ. Beyond Overton’s Rule: Quantitative Modeling of Passive Permeation through Tight Cell Monolayers. Mol Pharm 2014; 11:3696-706. [DOI: 10.1021/mp500437e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- H. A. L. Filipe
- Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
- Centro
de Neurociências e Biologia Celular, Universidade de Coimbra, 3000-214 Coimbra, Portugal
| | - A. Salvador
- Centro
de Neurociências e Biologia Celular, Universidade de Coimbra, 3000-214 Coimbra, Portugal
- Chemistry
Department, FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | - J. M. Silvestre
- Centro
de Neurociências e Biologia Celular, Universidade de Coimbra, 3000-214 Coimbra, Portugal
| | - W. L. C. Vaz
- Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
- Chemistry
Department, FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | - M. J. Moreno
- Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
- Centro
de Neurociências e Biologia Celular, Universidade de Coimbra, 3000-214 Coimbra, Portugal
- Chemistry
Department, FCTUC, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
12
|
Estronca LMBB, Filipe HAL, Salvador A, Moreno MJ, Vaz WLC. Homeostasis of free cholesterol in the blood: a preliminary evaluation and modeling of its passive transport. J Lipid Res 2014; 55:1033-43. [PMID: 24711632 DOI: 10.1194/jlr.m043067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Indexed: 01/23/2023] Open
Abstract
The rate of noncatalyzed transfer of cholesterol (Chol) among lipoproteins and cells in the blood is of fundamental importance as a baseline to assess the role of active transport mechanisms, but remains unknown. Here we address this gap by characterizing the associa-tion of the Chol analog, ergosta-5,7,9(11),22-tetraen-3β-ol (DHE), with the lipoproteins VLDL, LDL, HDL2, and HDL3 Combining these results with data for the association of DHE with liposomes, we elaborated a kinetic model for the noncatalyzed exchange of free Chol among blood compartments. The computational results are in good agreement with experimental values. The small deviations are explained by the nonequilibrium distribution of unesterified Chol in vivo, due to esterification and entry of new unesterified Chol, and eventual effects introduced by incubations at low temperatures. The kinetic profile of the homeostasis of unesterified Chol in the blood predicted by the model developed in this work is in good agreement with the observations in vivo, highlighting the importance of passive processes.
Collapse
Affiliation(s)
- Luís M B B Estronca
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Hugo A L Filipe
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Armindo Salvador
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Maria João Moreno
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Winchil L C Vaz
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Pantusa M, Sportelli L, Bartucci R. Influence of stearic acids on resveratrol-HSA interaction. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:969-77. [PMID: 22987139 DOI: 10.1007/s00249-012-0856-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/22/2012] [Accepted: 09/03/2012] [Indexed: 02/05/2023]
Abstract
The interaction between the natural polyphenol resveratrol and human serum albumin (HSA), the most abundant transport protein in plasma, has been studied in the absence and in the presence of up to six molecules of stearic acids (SA) pre-complexed with the protein. The study has been carried out by using the intrinsic fluorescence of both HSA and resveratrol. Protein and polyphenol fluorescence data indicate that resveratrol binds to HSA with an association constant k(a) = (1.10 ± 0.14) × 10(5) M(-1) and (1.09 ± 0.02) × 10(5) M(-1), respectively, whereas Job plot evidences the formation of an equimolar protein/drug complex. Low SA content associated with HSA does not affect significantly the structural conformation of the protein and its interaction with resveratrol, whereas high SA content induces conformational changes in the protein, and reduces resveratrol binding affinity. The photostability of resveratrol in the different samples changes in the order: buffer < (high [SA]/HSA) < HSA < (low [SA]/HSA). The results on (SA/HSA)-resveratrol samples highlight the ability of the protein to bind hydrophobic and amphiphilic ligands and to protect from degradation an important antioxidant molecule under biologically relevant conditions.
Collapse
Affiliation(s)
- Manuela Pantusa
- Department of Physics and CNISM Unit, University of Calabria, 87036 Rende, Italy.
| | | | | |
Collapse
|
14
|
Estronca LMBB, Silva JCP, Sampaio JL, Shevchenko A, Verkade P, Vaz ADN, Vaz WLC, Vieira OV. Molecular etiology of atherogenesis--in vitro induction of lipidosis in macrophages with a new LDL model. PLoS One 2012; 7:e34822. [PMID: 22514671 PMCID: PMC3325953 DOI: 10.1371/journal.pone.0034822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/06/2012] [Indexed: 02/02/2023] Open
Abstract
Background Atherosclerosis starts by lipid accumulation in the arterial intima and progresses into a chronic vascular inflammatory disease. A major atherogenic process is the formation of lipid-loaded macrophages in which a breakdown of the endolysomal pathway results in irreversible accumulation of cargo in the late endocytic compartments with a phenotype similar to several forms of lipidosis. Macrophages exposed to oxidized LDL exihibit this phenomenon in vitro and manifest an impaired degradation of internalized lipids and enhanced inflammatory stimulation. Identification of the specific chemical component(s) causing this phenotype has been elusive because of the chemical complexity of oxidized LDL. Methodology/Principal Findings Lipid “core aldehydes" are formed in oxidized LDL and exist in atherosclerotic plaques. These aldehydes are slowly oxidized in situ and (much faster) by intracellular aldehyde oxidizing systems to cholesteryl hemiesters. We show that a single cholesteryl hemiester incorporated into native, non-oxidized LDL induces a lipidosis phenotype with subsequent cell death in macrophages. Internalization of the cholesteryl hemiester via the native LDL vehicle induced lipid accumulation in a time- and concentration-dependent manner in “frozen" endolysosomes. Quantitative shotgun lipidomics analysis showed that internalized lipid in cholesteryl hemiester-intoxicated cells remained largely unprocessed in those lipid-rich organelles. Conclusions/Significance The principle elucidated with the present cholesteryl hemiester-containing native-LDL model, extended to other molecular components of oxidized LDL, will help in defining the molecular etiology and etiological hierarchy of atherogenic agents.
Collapse
Affiliation(s)
- Luis M. B. B. Estronca
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Joao C. P. Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Julio L. Sampaio
- Max-Planck Institute for Molecular Cell Biology and Genetics. Pfotenhauerstrasse, Dresden, Germany
| | - Andrej Shevchenko
- Max-Planck Institute for Molecular Cell Biology and Genetics. Pfotenhauerstrasse, Dresden, Germany
| | - Paul Verkade
- Schools of Biochemistry, and Physiology and Pharmacology, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Alfin D. N. Vaz
- Pharmacokinetics, Dynamics & Metabolism, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | | | - Otilia V. Vieira
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
15
|
Filipe HAL, Moreno MJ, Loura LMS. Interaction of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled fatty amines with 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine bilayers: a molecular dynamics study. J Phys Chem B 2011; 115:10109-19. [PMID: 21749140 DOI: 10.1021/jp203532c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A complete homologous series of fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled fatty amines of varying alkyl chain length, NBD-C(n), inserted in 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, was studied using atomistic molecular dynamics (MD) simulations. For all amphiphiles, the NBD fluorophore locates near the glycerol backbone/carbonyl region of POPC and establishes stable hydrogen bonding with POPC ester oxygen atoms. Small differences observed in the transverse location of the fluorophore correlate with other calculated parameters and with small discrepancies recently measured in the photophysical properties of the molecules. The longer-chained NBD-C(n) amphiphiles show significant mass density near the bilayer midplane, and the chains of these derivatives interdigitate to some extent the opposite bilayer leaflet. This phenomenon leads to a slower lateral diffusion for the longer-chained derivatives (n > 12). Effects of these amphiphiles on the structure and dynamics of the host lipid were found to be relatively mild, in comparison with acyl-chain-labeled NBD probes. The molecular details obtained by this work allow the rationalization of the nonmonotonic behavior, recently obtained experimentally, for the photophysical parameters of the amphiphiles and the kinetic and thermodynamic parameters for their interaction with the POPC membranes.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Centro de Química de Coimbra, Universidade de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | | | | |
Collapse
|
16
|
Cardoso RMS, Martins PAT, Gomes F, Doktorovova S, Vaz WLC, Moreno MJ. Chain-length dependence of insertion, desorption, and translocation of a homologous series of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled aliphatic amines in membranes. J Phys Chem B 2011; 115:10098-108. [PMID: 21749127 DOI: 10.1021/jp203429s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a complete characterization of the kinetics of interaction between the homologous series of fluorescent fatty amines with the fluorescent moiety 7-nitrobenz-2-oxa-1,3-diazol-4-yl covalently bound to the amine group, NBD-C(n) (n = 8-16), and a lipid bilayer in the liquid disordered phase. The insertion into and the desorption from the lipid bilayer, as well as the rate of translocation across the two bilayer leaflets, has been measured at different temperatures, allowing an estimation of the thermodynamic parameters in the formation of the transition state. This is the first report on the complete characterization of the kinetics of the interaction of a large series of structurally homologous amphiphiles. In a recent paper from this research group, the equilibrium interaction of NBD-C(n) (n = 4-10) with POPC bilayers and serum albumin was reported. This information allows the calculation of the equilibrium distribution of the amphiphiles among the aqueous phase, serum proteins, and biomembranes. The data presented in this manuscript complement its characterization with information on the kinetics of the interactions, making possible the quantitative evaluation of their pharmacokinetics. The rate of translocation is shown to decrease with increasing alkyl chain length up to n = 12, becoming relatively insensitive to further increases in n. The Gibbs free energy variation associated with the rate of desorption from the lipid bilayer increased linearly with n, with ΔΔG(‡o) = 3.4 ± 0.5 kJ mol(-1) per methylene group. It was also found that the process of insertion in the lipid bilayer is not diffusion-limited, although it is close to this limit for the smaller amphiphiles in the homologous series at high temperatures.
Collapse
Affiliation(s)
- Renato M S Cardoso
- Departamento de Química, Faculdade de Ciencias e Tecnologia da Universidade de Coimbra (FCTUC), Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
17
|
Pantusa M, Bartucci R. Kinetics of stearic acid transfer between human serum albumin and sterically stabilized liposomes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1351-7. [DOI: 10.1007/s00249-010-0589-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/18/2010] [Accepted: 02/28/2010] [Indexed: 11/30/2022]
|
18
|
Buranda T, Wu Y, Perez D, Chigaev A, Sklar LA. Real-time partitioning of octadecyl rhodamine B into bead-supported lipid bilayer membranes revealing quantitative differences in saturable binding sites in DOPC and 1:1:1 DOPC/SM/cholesterol membranes. J Phys Chem B 2010; 114:1336-49. [PMID: 20043651 DOI: 10.1021/jp906648q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantitative analysis of the staining of cell membranes with the cationic amphiphile, octadecyl rhodamine B (R18), is confounded by probe aggregation and changes to the probes' absorption cross section and emission quantum yield. In this paper, flow cytometry, quantum-dot-based fluorescence calibration beads, and FRET were used to examine real-time transfer of R18 from water to two limiting models of the cellular plasma membrane, namely, a single-component disordered membrane, dioleoyl-L-alpha-phosphatidylcholine (DOPC), and a ternary mixture of DOPC, cholesterol, and sphingomyelin (DSC) membranes, reconstituted on spherical and monodisperse glass beads (lipobeads). The quenching of R18 was analyzed as the probe concentration was raised from 0 to 10 mol % in membranes. The data show a > 2-fold enhancement in the quenching level of the probes that were reconstituted in DSC relative to DOPC membranes at the highest concentration of R18. We have parametrized the propagation of concentration-dependent quenching as a function of real-time binding of R18 to lipobeads. In this way, phenomenological kinetics of serum-albumin-mediated transfer of R18 from the aqueous phase to DOPC and DSC membranes could be evaluated under optimal conditions where the critical aggregation concentration (CAC) of the probe is defined as 14 nM. The mass action kinetics of association of R18 with DOPC and DSC lipobeads are shown to be similar. However, the saturable capacity for accepting exogenous probes is found to be 37% higher in DOPC relative to that for DSC membranes. The difference is comparable to the disparity in the average molecular areas of DOPC and DSC membranes. Finally, this analysis shows little difference in the spectral overlap integrals of the emission spectrum of a fluorescein derivative donor and the absorption spectrum of either monomeric or simulated spectrum of dimeric R18. This approach represents a first step toward a nanoscale probing of membrane heterogeneity in living cells by analyzing differential local FRET among sites of unique receptor expression in living cells.
Collapse
Affiliation(s)
- Tione Buranda
- Department of Pathology and Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | |
Collapse
|
19
|
In Vitro Simultaneous Transfer of Lipids to HDL in Coronary Artery Disease and in Statin Treatment. Lipids 2009; 44:917-24. [DOI: 10.1007/s11745-009-3342-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 09/01/2009] [Indexed: 12/13/2022]
|
20
|
Briley-Saebo KC, Geninatti-Crich S, Cormode DP, Barazza A, Mulder WJM, Chen W, Giovenzana GB, Fisher EA, Aime S, Fayad ZA. High-relaxivity gadolinium-modified high-density lipoproteins as magnetic resonance imaging contrast agents. J Phys Chem B 2009; 113:6283-9. [PMID: 19361222 PMCID: PMC2688742 DOI: 10.1021/jp8108286] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
There is an ongoing desire to produce high-relaxivity, Gd-based magnetic resonance imaging (MRI) contrast agents. These may allow for lower doses to be used, which is especially important in view of the current safety concerns surrounding Gd in patients. Here we report the synthesis of a high-relaxivity MRI contrast agent, by incorporating Gd-chelating lipids that coordinate two water molecules into high-density lipoprotein (q = 2 HDL). We compared the properties of q = 2 HDL with those of an analogous HDL particle labeled with Gd-chelating lipids that coordinate only one water molecule (q = 1 HDL). We found that the q = 2 HDL possessed an elevated r(1) of 41 mM(-1) s(-1) compared to 9 mM(-1) s(-1) for q = 1 HDL at 20 MHz, but the q = 2 HDL exhibited high R(2)* values at high fields, precluding imaging above 128 MHz. While carrying out this investigation we observed that enlarged, disrupted particles were formed when the synthesis was carried out above the lipid critical micelle concentration (cmc), indicating the importance of synthesis below the cmc when modifying lipoproteins in this manner. The high relaxivity of q = 2 HDL means it will be an efficacious contrast agent for future MR imaging studies.
Collapse
Affiliation(s)
| | | | | | - Alessandra Barazza
- Mount Sinai School of Medicine, New York, NY
- New York University School of Medicine, New York, NY
| | | | - Wei Chen
- Mount Sinai School of Medicine, New York, NY
| | | | | | | | | |
Collapse
|
21
|
Spontaneous transfer of stearic acids between human serum albumin and PEG:2000-grafted DPPC membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:921-7. [DOI: 10.1007/s00249-009-0442-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
|
22
|
Martins P, Gomes F, Vaz W, Moreno M. Binding of phospholipids to β-Lactoglobulin and their transfer to lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1308-15. [DOI: 10.1016/j.bbamem.2008.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/21/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|
23
|
Estronca LMBB, Moreno MJ, Vaz WLC. Kinetics and thermodynamics of the association of dehydroergosterol with lipid bilayer membranes. Biophys J 2007; 93:4244-53. [PMID: 17766353 PMCID: PMC2098731 DOI: 10.1529/biophysj.107.112847] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have examined the detailed kinetics and thermodynamics of the association of Ergosta-5,7,9(11),22-tetraen-3beta-ol (dehydroergosterol, DHE) with lipid bilayers prepared from 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), a 1:1 binary mixture of POPC and cholesterol (Chol), and a 6:4 binary mixture of egg sphingomyelin (SpM) and Chol. Association of DHE with all three membranes was shown to be entropically driven, most so in the case of SpM-Chol bilayers. Equilibrium partition coefficients for partitioning of DHE between the lipid phase and the aqueous phase were shown to be similar for POPC and POPC-Chol bilayers between 15 and 35 degrees C. Partitioning into the SpM-Chol bilayer is favored at higher temperatures and there is a crossover in solubility preference at approximately 25 degrees C. Insertion (k(+)) and desorption (k(-)) rate constants were shown to be very similar for POPC and POPC-Chol bilayer membranes, but were lower for SpM-Chol bilayers. Similar results were previously reported by us for the association of other amphiphiles with these membranes. We propose a model for the microscopic structure of a POPC-Chol (1:1) bilayer membrane that is consistent with these observations.
Collapse
|
24
|
Nath A, Grinkova YV, Sligar SG, Atkins WM. Ligand binding to cytochrome P450 3A4 in phospholipid bilayer nanodiscs: the effect of model membranes. J Biol Chem 2007; 282:28309-28320. [PMID: 17573349 DOI: 10.1074/jbc.m703568200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound protein cytochrome P450 3A4 (CYP3A4) is a major drug-metabolizing enzyme. Most studies of ligand binding by CYP3A4 are currently carried out in solution, in the absence of a model membrane. Therefore, there is little information concerning the membrane effects on CYP3A4 ligand binding behavior. Phospholipid bilayer Nanodiscs are a novel model membrane system derived from high density lipoprotein particles, whose stability, monodispersity, and consistency are ensured by their self-assembly. We explore the energetics of four ligands (6-(p-toluidino)-2-naphthalenesulfonic acid (TNS), alpha-naphthoflavone (ANF), miconazole, and bromocriptine) binding to CYP3A4 incorporated into Nanodiscs. Ligand binding to Nanodiscs was monitored by a combination of environment-sensitive ligand fluorescence and ligand-induced shifts in the fluorescence of tryptophan residues present in the scaffold proteins of Nanodiscs; binding to the CYP3A4 active site was monitored by ligand-induced shifts in the heme Soret band absorbance. The dissociation constants for binding to the active site in CYP3A4-Nanodiscs were 4.0 microm for TNS, 5.8 microm for ANF, 0.45 microm for miconazole, and 0.45 microm for bromocriptine. These values are for CYP3A4 incorporated into a lipid bilayer and are therefore presumably more biologically relevant that those measured using CYP3A4 in solution. In some cases, affinity measurements using CYP3A4 in Nanodiscs differ significantly from solution values. We also studied the equilibrium between ligand binding to CYP3A4 and to the membrane. TNS showed no marked preference for either environment; ANF preferentially bound to the membrane, and miconazole and bromocriptine preferentially bound to the CYP3A4 active site.
Collapse
Affiliation(s)
- Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| | - Yelena V Grinkova
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
25
|
Moreno MJ, Estronca LMBB, Vaz WLC. Translocation of phospholipids and dithionite permeability in liquid-ordered and liquid-disordered membranes. Biophys J 2006; 91:873-81. [PMID: 16617082 PMCID: PMC1563774 DOI: 10.1529/biophysj.106.082115] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a detailed study of the translocation rate of two headgroup-labeled phospholipid derivatives, one with two acyl chains, NBD-DMPE, and the other with a single acyl chain, NBD-lysoMPE, in lipid bilayer membranes in the liquid-disordered state (POPC) and in the liquid-ordered states (POPC/cholesterol (Chol), molar ratio 1:1, and sphingomyelin (SpM)/Chol, molar ratio 6:4). The study was performed as a function of temperature and the thermodynamic parameters of the translocation process have been obtained. The most important findings are 1), the translocation of NBD-DMPE is significantly faster than the translocation of NBD-lysoMPE for all bilayer compositions and temperatures tested; and 2), for both phospholipid derivatives, the translocation in POPC bilayers is approximately 1 order of magnitude faster than in POPC/Chol (1:1) bilayers and approximately 2-3 orders of magnitude faster than in SpM/Chol (6:4) bilayers. The permeability of the lipid bilayers to dithionite has also been measured. In liquid disordered membranes, the permeability rate constant obtained is comparable to the translocation rate constant of NBD-DMPE. However, in liquid-ordered bilayers, the permeability of dithionite is significantly faster then the translocation of NBD-DMPE. The change in enthalpy and entropy associated with the formation of the activated state in the translocation and permeation processes has also been obtained.
Collapse
Affiliation(s)
- Maria João Moreno
- Departamento de Quimica, Universidade de Coimbra, 3004-535 Coimbra, Portugal.
| | | | | |
Collapse
|
26
|
Nag K, Keough KMW, Morrow MR. Probing perturbation of bovine lung surfactant extracts by albumin using DSC and 2H-NMR. Biophys J 2006; 90:3632-42. [PMID: 16500977 PMCID: PMC1440744 DOI: 10.1529/biophysj.105.077370] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d(62)) had been added, were studied using deuterium-NMR spectroscopy ((2)H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10-35 degrees C, with a temperature of maximum heat flow (T(max)) around 27 degrees C. Incorporation of the DPPC-d(62) into BLES-reconstituted vesicles did not alter the T(max) or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and (2)H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. (2)H-NMR spectra of the DPPC-d(62) probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d(62) environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the (2)H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of (2)H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5-35 degrees C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in surfactant at NMR timescales (10(-5) s). Persistent phase separation at physiological temperature may provide for a basis for loss of surface activity of surfactant in dysfunction and disease.
Collapse
Affiliation(s)
- Kaushik Nag
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| | | | | |
Collapse
|
27
|
Sampaio JL, Moreno MJ, Vaz WLC. Kinetics and thermodynamics of association of a fluorescent lysophospholipid derivative with lipid bilayers in liquid-ordered and liquid-disordered phases. Biophys J 2005; 88:4064-71. [PMID: 15792982 PMCID: PMC1305637 DOI: 10.1529/biophysj.104.054007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have measured the rates of insertion into, desorption from, and spontaneous interlayer translocation (flip-flop) of the fluorescent lysophospholipid derivative NBD-lyso-1-myristoylphosphatidylethanolamine in l(d) and l(o) phase lipid bilayer membranes. The lipid bilayers, studied as LUV, were prepared from pure 1-palmitoyl-2-oleoylphosphatidylcholine, in the l(d) phase; and from two Chol-containing binary lipid mixtures, 1-palmitoyl-2-oleoylphosphatidylcholine and Chol (molar ratio of 1:1) and SpM and Chol (molar ratio of 6:4), both in the l(o) phase. Insertion, desorption, and translocation rate constants and equilibrium constants for association of the amphiphile monomer with the lipid bilayers were measured between 15 degrees C and 35 degrees C, and the standard free energies, enthalpies, and entropies, as well as the activation energies for these processes were derived from these data. The equilibrium partition coefficients for partitioning of the amphiphile between the aqueous phase and the different membrane phases were also derived, and an estimation was made of hypothetical partition coefficients and the respective energetic parameters for partitioning between the different lipid phases if these were to coexist in the same membrane. We show that, contrary to general belief, the association of NBD-lysoMPE with lipid bilayers is not a diffusion-controlled process, the rate-limiting step in insertion being the formation of a free area in the membrane surface of an adequate size for insertion to occur.
Collapse
|